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NOTATION

The following convention for vector and matrix notation is used in this report:

L

a lower case, underlined, italic letter represents a vector. A
capitalized subscript refers to the coordinate frame in which the
vector is expressed; lower case subscripts indicate components of the
vector, or descriptive information.

a vector superscripted with an x indicates the “cross-product” matrix
of the vector,
0 Vg Uy
p¥=| vg 0 vy
Uy U 0
a capital italicized letter indicates a matrix.

a matrix subscripted in this fashion indicates a transformation
matrix from frame A to frame B.






1.0 SUMMARX

The Star Line Maneuver (SLM) is a technique for updating the alignment of a Space
Shuttle payload’s Inertial Measuring Unit (IMU) using measurements made by the orbiter’s
star trackers. The technique was developed by the Charles Stark Draper Laboratory (CSDL),
and is baselined for the Aeroassist Flight Experiment (AFE), a spacecraft which is
manifested for the first quarter of 1995. The SLM is similar to the Attitude Match Update
performed for payloads using an Inertial Upper Stage QTUS). However, the SLM is more
accurate since it uses measurements of the distant stars as an alignment reference, rather
than a Space Shuttle IMU. While the SLM has never been used operationally, CSDL has
performed various performance analyses of the technique, including linear covariance error
analyses, parametric studies, and a modified Monte Carlo analysis. In this report, analyses
of the SLM are presented which verify and augment the CSDL performance analyses.

To perform the analyses presented herein, a simplified environment model was
developed using a commercially available interactive software package, Matlab. For its state
dynamics and measurement models, the environment model used those designed into the
SLM algorithm’s extended Kalman filter. To model inputs from the AFE IMU resulting from
Space Shuttle maneuvers, a second-order expansion about the identity matrix was used in
small steps. Results from this simulation compared favorably with a test case provided by
CSDL, and parametric analyses of two filter design parameters were confirmed.

This simulation was also used to perform Monte Carlo analysis of the SLM. This
analysis was used to confirm that the SLM Kalman filter is an unbiased and consistent
estimator over the range of expected environment states. The analysis also augmented the
modified Monte Carlo analysis of CSDL, by providing better mean and 16 performance
estimates than are possible with the modified technique. In order to limit the number of
runs required for the analysis, the method of confidence intervals was used. Three hundred
ninety-nine cases were run, which resulted in a 95% confidence level in the results. These
results showed that the SLM filter’s state and error estimates were unbiased and consistent,

and provided an enhanced look at the filter's mean and 1c performance.

While the results presented in this report should enhance the AFE guidance and
navigation community’s confidence in the SLM technique, it should be recalled that the
environment models used in this and all previous performance analyses were derived from
the nominal models in the SLM algorithm. Additional analyses are recommended to
characterize the robustness of the technique to a wider range of environment models.
Furthermore, the architecture of the interfaces between the SLM processor and the Space
Shuttle and AFE navigation systems has yet to be determined. The form taken by this
architecture may affect SLM processing.



2.0 BACKGROUND

The SLM is a technique for aligning the IMU of a spacecraft in the payload bay of the
Space Shuttle, using an extended Kalman filter to process data from the orbiter's star
trackers. Because orbiter star tracker measurements are utilized to establish a reference
frame based on the distant stars, the payload IMU accuracy achievable with this alignment
technique is superior to methods which utilize the orbiter IMU as a reference frame.

A deterministic version of the SLM technique was first proposed by Kevin Daly of
CSDL in 1984 [1], as an alternate attitude update method for the Boeing Aerospace
Company’s IUS. While never used by the IUS program, Y.C. Tao of CSDL proposed using the
SLM technique to perform IMU alignment for the AFE in 1987 [2], when that program was
confronting weight and cost difficulties. As a result, a heavy and costly star tracker, which
served only to perform this alignment, could be removed from the program. This star tracker
deletion was approved by Marshall Space Flight Center (MSFC) program managers, with the
concurrence of the AFE Guidance and Navigation (G&N) Mode Team at the Johnson Space
Center (JSC), and the SLM was baselined as the sole IMU alignment method for the mission.
Subsequent SLM design and analysis activities have been performed by Roger Hain of CSDL,
with oversight from the G&N Mode Team at JSC.

In subsequent paragraphs, the AFE navigation accuracy requirements which
motivate the need for a high precision IMU alignment are discussed, along with a high-level
description of the technique. In addition, an overview of performance analyses previously
conducted is given, as well as a discussion of how the analyses presented in this report were
motivated.

2.1 AFE NAVIGATION ACCURACY REQUIREMENTS

2.1.1 Mission Overview

The purpose of the AFE is to execute an aeroassisted maneuver from a
41 x 19,328 nautical mile (nmi) orbit into a 166 x 166 nmi orbit, as currently envisioned by
mission planners. Such a maneuver would form part of the mission of a proposed
Aeroassisted Orbital Transfer Vehicle, and would be gimilar to aerocapture maneuvers which
are proposed for Space Exploration Initiative (SEI) missions to the Moon and Mars. The
AFE’s mission objectives include [3]

* Gathering atmospheric entry environmental data,

¢ Gathering knowledge of high altitude, high Mach number aerodynamic
performance,

* Gaining experience in guidance and control algorithms effective for
aerobraking trajectories, and

e Collecting data for experiments which assess aeroassist flight technology.

The AFE trajectory is depicted in figure 2-1. Approximately one revolution after
aligning its IMU with the SLM, the vehicle will be deployed from the Space Shuttle into a
160 nmi circular orbit. The spacecraft will next perform a burn which transfers it onto the
elliptical orbit using a Star 63 solid rocket motor (SRM). The spent SRM case will then be



ejected. The subsequent aeropass will place the vehicle into a 184 x 30 nmi orbit. Three
burns will follow to place the vehicle into a 166 nmi circular recovery orbit, and experimental
data will be downlinked. The Space Shuttle will then rendezvous with the AFE, and recover
it using the Remote Manipulator System. Upon return to the ground, the AFE’s onboard
experiments and thermal protection tiles will be inspected [4].

(1) Star Line
Maneuver
184 x 30 nmi
elliptical orbit
(3) SRM burn
(2) Deploy
!'t
(5) Rallse perigee \ 41 x 19323 nmi
to 166 nmi t elliptical orbit

Figure 2-1. - AFE Trajectory with Selected Events
(orbital data for information only and subject to change)

2.1.2 Pre-Aeronass Mission Error Analvsis

In order to properly compute guidance commands during the aeropass, the AFE’s
unknown error in flight path angle at entry interface (EI) must not exceed 0.05 degrees, 3c.
This unknown error derives principally from five statistically independent navigation system
initialization and measurement errors which propagate to EI as state vector uncertainties

[61:

(1) The uncertainty in the Space Shuttle navigation state transferred to the
AFE during the AFE navigation system initialization.

(2) Unmodeled and unsensed translational accelerations from uncoupled jet
firings, atmospheric drag, vents, etc. during the AFE pre-SRM burn coast.

(8) SRM burn acceleration measurement errors that result from AFE IMU
accelerometer bias and scale factor uncertainties.

(4) Initial AFE IMU platform misalignment uncertainties that cause SRM
burn thrust vector pointing errors.

(5) Initial uncompensated gyro bias drift rate uncertainties that cause the
IMU platform to drift as a function of time from its ideal alignment; these
also cause SRM burn thrust vector pointing errors.



Of interest to this report are the last two error sources, since their contributions to the flight
path angle error at EI can be minimized with an accurate predeployment IMU alignment
such as the SLM.

Linear covariance analysis performed by Frank Kreimendahl of CSDL [6] showed
that a predeployment IMU fine alignment which provided root mean square (rms) errors of
50 arcsec per axis would result in a 3o flight path angle at EI of 0.033 degrees. This IMU
alignment accuracy specification included an assumption of a gyro drift bias rate of
0.01 degrees/hour.

Based on this study, a 50 arcsec/axis accuracy requirement was placed on the IMU
update quaternion provided by the SLM. While this requirement allows nearly a 36 arcsec
3¢ “fudge factor” at EI, it should be realized that linear covariance (lincov) analyses are often
more optimistic than Monte Carlo methods. For example, the possibly nonlinear effect on EI
state uncertainty of unmodeled and unsensed translational accelerations (error source (2)
above) cannot be fully examined by lincov analysis. Such effects must be approximated in
lincov studies, for example as velocity random walk errors.

2.2 OVERVIEW OF AFE IMU ALIGNMENT

An idealization of the problem of aligning the IMU of a payload in the Space Shuttle
payload bay is depicted in figure 2-2. The problem is reduced to two dimensions to simplify
the discussion. As shown, the orbiter carries a navigation base, assumed to be rigid, upon
which are mounted three IMUs and two star trackers (STs). These IMUs maintain an
estimate of the orientation of the mean-of-1950 (M50) inertial frame with respect to a shuttle
body-fixed coordinate frame. Note that there exists an error associated with this estimate.
At some distance from the navigation base, the AFE is rigidly mounted to the orbiter payload
bay, but due to static and dynamic flexure in the intervening structure, an angular bias
exists between the AFE body frame and the orbiter body frame. Here, the AFE body frame is
considered to be nominally coincident with the shuttle body axes; the angular bias would be
applied to any nominal transformation between the two body-fixed systems.

The simplest alignment scheme, known as a “coarse alignment,” is simply to transfer
the orbiter IMU attitude quaternion directly to the payload IMU. The resulting AFE body to
M50 quaternion contains the structurally induced angular bias, which is thought to be about
1200 arcsec/axis. This quaternion also includes the estimation error associated with the
orbiter IMUs, which is 82 arcsec/axis, 1o, immediately after an orbiter IMU stellar update.
This error derives largely from IMU gimbal angle resolver limitations. While a coarse
alignment is not adequate for most payloads, it is used as an initialization for the fine
alignment techniques discussed below.
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Figure 2-2. - Alignment of the AFE IMU in the Space Shuttle Payload Bay

Daly presented a method in [1] to remove the static component of this structural bias.
This technique, called the “Body Axis Maneuver” by Daly, is presently used by the IUS under
the name “Attitude Match Update® (AMU). In the AMU, the shuttle performs rotations
which are sensed by the orbiter IMU and the payload IMU as occurring about differing axes.
The differences are used to estimate the payload bay bending bias. A two-dimensional
depiction of the AMU is shown in figure 2-3. The orbiter rotates 180° about the X axis (from
an orbiter-fixed point-of-view, the M50 frame rotates, as shown in the figure). The payload
IMU senses this maneuver as occurring about a vector p in the X“Y”frame. If & and u, .are

the unit vectors in the directions of p and X, respectively, then the misalignment abetween
X-Y and X-Y"’is given by

a=cosl(u, 1) @1

In three dimensions, two maneuvers about orthogonal axes are required, and the relations
between the misalignments and the sensed maneuver directions are more involved. Also,
180° maneuvers are not required, but the accuracy of the method decreases rapidly as the
maneuver gizes fall below 60°.

The accuracy achievable with the AMU technique is still limited by the orbiter IMU
accuracy. For more precise alignment, an improved inertial reference is needed. The SLM
uses the distant stars to provide such a reference, by means of the orbiter star trackers.
Other than substituting a star-tracker-derived reference for an IMU-derived reference, the
SLM is nominally identical to the AMU. However, the current SLM design also uses an
extended Kalman filter to attempt to estimate errors induced from star tracker
measurements and errors associated with the dynamic portion of the structural
misalignment. The filter also estimates gyro drift, which allows its ‘misalignment estimate to
remain relatively “fresh” in a deployment slip scenario.
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Figure 2-8. - Observability of Coordinate Frame Misalignment Through Body
Rotation

2.3 SLM PERFORMANCE ANALYSES

Various performance analyses of the SLM have been accomplished for the AFE
program by Tao and Hain. Mission trade studies, sensitivity analyses, and a modified Monte
Carlo study have been accomplished.

Early work presented by Tao in [2] examined performance trades between mission
options, such as maneuver size, star separation angle, and boresighting stars in the star
tracker field-of-view. Sensitivities to IMU parameters, star tracker measurement noise, and
payload bay dynamic bending were also presented. Tao also showed in [7] that using both
orbiter star trackers could improve performance by 20%. In both studies, the magnitude of
an exponentially correlated random variable (ECRV) used to model payload bay dynamic
bending was shown to be nearly linear with respect to final IMU alignment accuracy. Tao
quotes Treder, et al. [8] as giving the nominal rms value of this parameter to be
72 arcsec/axis, which results in a nominal worst axis alignment of 75 arcsec/axis for the one
tracker case. B

In later work by Hain [9), linear covariance, sensitivity, modified Monte Carlo, and
deployment slip contingency analyses are presented. These studies indicated an -
improvement in final IMU alignment accuracy to 25 arcsec/axis, achieved through the use of
Hain’s extended Kalman filter and from lowering the ECRV magnitude to 24 arcsec, rms, per
axis. This revised estimate of the dynamic bending magnitude was derived from an IUS
AMU study [10]. The modified Monte Carlo method used is described by Anthony Bogner of
CSDLin [11]. The purpose of this technique is to reduce the number of cases required in
Monte Carlo analysis to produce accurate 3¢ error statistics. Use of this approach allowed
Hain to verify his linear covariance analysis with only 83 cases, a substantial savings in
computer resources. As Bogner points out however, this method is less accurate than
standard techniques for producing accurate mean and 1c values.
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An additional analysis of the sensitivity of the SLM dynamic bending modeling errors
was performed by Hain [12]. The purpose of this study was to examine the errors induced by
imperfect modeling of the true environment by the filter implemented in the SLM algorithm.,
In the study, the magnitude of the environment dynamic bending ECRV was parametrically
varied, holding the filter value to 24 and 48 arcsec. It was found that the highest acceptable
environment ECRV magnitude was 100 arcsec, for either filter value. This result echoed
previous linear covariance analyses. However, environment dynamic bending models other
than an ECRV were not examined.

While the performance analyses described above are comprehensive, several issues
are still of concern. The primary issue is the model for the payload bay dynamic bending.
The two known sources of ECRV magnitude data, [8] and [10], conflict by nearly 50 arcsec.
While both are within the 100 arcsec limit indicated by linear covariance analysis, no studies
of modeling errors have considered bending models other than an ECRV. However, ECRVs
have historically proven to be reliable models for highly uncertain dynamics, as long as the
ECRV parameters are chosen appropriately. Additional analysis in this area would
nevertheless be desirable, but is not considered in this report.

A secondary concern is that the linear covariance performance analyses had not been
verified with standard Monte Carlo techniques. Although the accurate 3o data provided by
the modified Monte Carlo method is more critical to mission success or failure, accurate mean
and 1o data complete the statistical picture of SLM performance, and support the results
given by the newer method. Also, through the use of confidence intervals, an inordinately
large number of cases need not be sampled to ensure a valid result. Standard Monte Carlo
results are presented in section 4 of this report, along with a complete description of the
confidence interval method of estimation.

A final concern relates to the AFE program’s reliance on a sole source for navigation
analysis. While verification studies are often perceived as duplication of effort, such analyses
increase confidence in system performance. For this reason, an attempt was made to
duplicate some of the parametric studies performed by Hain in [9]. These results are
presented in section 8. '



3.0 YERIFICATION STUDX

A simulation was developed which supplied inputs from the environment and from
the Space Shuttle and AFE navigation computers to the SLM processor. The simulation was
built using user-friendly, interactive software tools and simplified models whenever possible.
In addition, a few assumptions were made concerning implementation details of the SLM
algorithm, and minor changes were made to the design to improve simulation efficiency. A
gingle-case comparison to 8 CSDL SLM simulation was performed, as well as verifications of
parametric studies of payload bay dynamic bending model parameters. Close agreement was
found for all comparison cases.

3.1 METHOD

8.1.1 Implementation Considerations

The simulation used by CSDL for performance analysis is a high fidelity, six degree-
of-freedom Space Shuttle simulator. The major impediment to simulation of the SLM
algorithm by the Navigation, Control, and Aeronautics Division (NCAD) has been that no
high fidelity simulation tool was readily available to civil service analysts. As a result, the
major issue of the simulation development was how to create an environment model which
could furnish the required inputs to the SLM processors with adequate accuracy without
becoming a major software development project in itself. This issue was resolved in the
present simulation in a twofold manner: by implementing the simulation utilizing a user-
friendly software language, and by reducing the complexity of the environment model itself.

The simulation was implemented using the syntax of Matlab, an interpretive,
interactive, matrix-manipulation application. A listing of this simulation is included in
Appendix A. Matlab provides matrix and vector operations, a large library of utility routines,
flexible plotting capabilities, and is easy to debug due to its interpretive nature. In addition,
Matlab scripts can be easily ported between Macintosh and IBM-compatible personal
computers, and Microvax and Sun workstations. However, Matlab scripts run more slowly
than equivalent compiled versions of the same algorithms.

8.1.2 Changes to the SLM Algorithm

The SLM algorithm was implemented as specified in [13]; however, as a result of
choosing Matlab as the software environment, changes were made to the specified algorithm.
Operations on rotation matrices were substituted whenever possible for equivalent
quaternion manipulations, to take advantage of the compiled Matlab C-language matrix and
vector operators. It was judged that manipulating nine elements of a matrix using a
compiled routine was faster than operating on four elements of an equivalent quaternion
using an interpreted, user-developed quaternion package. Also, simulation complexity was
reduced by omitting the development of quaternion applications, and debugging was
gimplified by the use of matrix notation, which is generally more intuitive than that of
quaternions. In addition, the simulation was designed to operate at 1 Hz, rather than the 25
Hz rate specified in [13]. This change significantly reduced execution time, and little change
in results was noted when the time step was increased.

A further consideration of implementing the algorithm as given in [18] is that no
control logic is provided which specifies the calling order of the major subprocedures. In the
present simulation, it was decided to call the state propagation subprocess once per



simulation step. This control logic was found necessary due to the large time step used. In

contrast, [13] implies that in the flight software, state propagation will not be performed on
the same cycle as measurement incorporation; presumably due to the high execution rate of
the design, performing both functions on the same step will not be required.

8.1.3 Environment Model

The basic components of the environment portion of the simulation are a state
dynamics model, a measurement model, and an attitude timeline model. Before the details of
these models can be described, the following definitions are required:

{x(t)}A= the random process, i.e. collection of functions of time, which describes
the possible expected environment state vector time histories. The
method of the Monte Carlo technique, discussed further in section 4,
is to observe a sufficiently large number of the members of {x)}.

£#)2 amember of the ensemble of functions {x(t)}, determined from a given
trial, i.e. a given observation of {x(?)}. The initial value taken by x(2)
is governed by a probability distribution function, described in the
sequel. Subsequent values are determined by the environment model
dynamics, described below.

&2 the SLM Kalman filter’s estimate of an observed &(¢) at time ¢.
gt 8 the state error vector, at time £

&) =a(t) - &0 8.1
This quantity is also known as the true error vector, to distinguish it

from the error estimates maintained by the state error covariance
matrix.

E@® 2 the state error covariance matrix, at time ¢:

E®=Elgt) g0 7] (3.2)

where E[-] indicates the expected value. Note that the true value of gt) is not maintained by
the covariance, but only an estimate of its expected value, i.e. its mean.



8.1.3.1 State Dynamics and Measurement Models

The state dynamics and measurement models are the deterministic forms of the
corresponding SLM filter models given in [13], viz.

a) = Ft) x(t) + u(t) (8.9

#)=hx®)+z 8.4)

Here, x and z_are the state and measurement vectors, F is the matrix of linearized state
dynamics partials, h(x) is the non-linea; measurement model, and y and p are the state and

measurement noise vectors.

The state vector x consists of 5 misalignment vectors which correspond to the 15
states modeled in the dynamics of the SLM filter; these are the x, y, and z components of

o -
the misalignments in the AFE body to M50 inertial a"ml
transformation, E,1=| y-ial

| %.ial ]

the static components of the misalignments in the star o, p
tracker 1 to AFE body transformation (payload bay static o
bending), b =| “y-sb

| %.sb |
Degd ]
the precession of the AFE IMU axes with respect to the AFE ®

body frame, due to gyro bias drift, Xog =| “yed

| %.gd |
: . : -ax-st T

the misalignments in the star tracker 1 to star tracker 2 o

transformation, X, =| Tyt
_az-st -

the dynamic components of the misalignments in the star oL g
tracker 1 to AFE body transformation (payload bay dynamic o

bending), X =| “y-db

| %.db

The dynamics of these state variables, assumed to be quasi-time-invariant and linear, are
given by

0 @®
0 e 0

F= 0 3.5
0 0 (3.6)
Fa

where IM B(t) is the AFE body to inertial transformation,

10



1/1, 1 0
= T,
de-l: 0 2 1/13] (3.6)

and T is the time constant associated with the ith element of the dynamic bending ECRV.
The effect of M B(t) in the dynamics matrix is to map the gyro drift onto the inertial

misalignment. As long as the orbiter maneuvers are performed slowly, the elements of this
matrix will vary slowly in comparison to the SLM processor time step. Thus, F may be
assumed to be quasi-time-invariant and linear.

The state noise is given by
Ikial
Usb
B=| Mgd 3.7

Hst
Udb

where Wigl = Ush = Ugd = Ust = [0 0 0JT, and uqp has the form of the noise portion of the

ECRV, or
Cdb{\h ) e-2At/1’1
uab =| ogpy\1-e24/72 00,1 3.8)
0'db3‘\’1 . e-2At/13 7

where

7(0,1) = a normal random variable, with zero mean and unit variance,
odb; = the magnitude, or rms value, of the ith element of the ECRV.

Although equation (3.4) is in vector form, the measurements are processed singly.
These measurements consist of the components of star lines-of-sight. By linearizing matrix
expansions of the misalignments x about the identity matrix, it is possible to reduce the non-
linear measurement model to a linear form, as shown in [14]. The resulting scalar equation
is

&=b"x (3.9)

where & is the measurement residual and hl.Tis a row vector, dependent on which
component of the line-of-sight is being considered, and which star tracker is being used. Note
that h‘.Tis also a function of the current estimate of the misalignments.

The measurement noise is applied via the scalar equation,

v=0,2n01 (3.10)

in which o,/ is the variance associated with star tracker measurements.
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8.1.3.2 Initial Conditions
Assuming the mean of {x(0)} = 0, the filter’s best initial estimate of the state vector is
&(t) = 0, so that
Eo=El @) -0 &0 -071=E(20) &0 ] (8.12)
Therefore, a vector generated from the initial error covariance is equivalent to a realization of
the initial value of the random function x(¢), the function describing the environment state.

Such a vector can be generated as follows.

First, the eigenvalues and eigenvectors of the initial covariance matrix, Eg, are found
using

Ep=E=ZA (3.12)
where
Ag ]
i, 0
A= . (3.13)
0 .
Ays ]
Ee | &1 &2 855 (8.14)

and the 4; and §; are the eigenvalues and eigenvectors of Eo, respectively. Now, the 4;
correspond to the uncorrelated mean square errors, which are equivalent to 1o errors since
the mean of {x(0)} = 0. Also, the £; indicate the directions of the correlations between these
errors. Therefore, an initial 1o state vector, &, can be determined by

xp = Ediag(AF"”? (3.15)
Here, diag(A) indicates a vector containing the diagonal elements of A,

8.1.3.3 Attitude Timeline Model

The attitude timeline model is used to provide attitude information to the SLM
algorithm which would be supplied by the orbiter's IMU at AFE power-up (for the coarse
alignment), and by the AFE's IMU during the Star Line Maneuver itself. As such, this model
takes the place of IMU models for both the orbiter and the AFE. This model uses a series of
2nd-order Taylor expansions of small angle rotations about the identity matrix to model each
maneuver as follows:

M0 =1 0dtd +3@df [ad 1] (3.16)
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where

new™ dd(t) = approximate rotation matrix from attitude at time ¢ to attitude

at next time step ¢ + dt,
a = axis about which maneuver is performed,
a = “cross-product” matrix of above,
0] = maneuver rate, and

dt = gimulation time step.

Then, if I'M B(t) is the body-to-inertial rotation matrix at time ¢,

3.2 RESULTS

Several verification analyses were accomplished with the simulation. Three studies
were performed: a baseline test (referred to as SLM_BSLN), comparisons to a run supplied
by CSDL [15] (referred to as RH_BSLN), and verifications of parametric studies performed
by CSDL.

The baseline case, SLM_BSLN, is a variation of the CSDL-supplied run, RH_BSLN.
Both scenarios use both of the Space Shuttle's star trackers, and use three measurement
periods, which are separated by two 90° rotations by the orbiter. In the baseline run, the
orbiter has an initial attitude in which the Z body axis is aligned with the Z axis of the M50
frame, and the X and Y body axes are rotated by -10.6° from the X and Y inertial axes,
respectively. After collecting one average measurement from each star tracker, the shuttle
executes a 90° rotation about the Z body axis at a rate of 0.2 degrees/second. Another set of
measurements is taken, which is followed by a 90° rotation about the minus X inertial axis at
the same maneuver rate. The final data take period then occurs. The input loads for this
case are given in table 3-1, and a schematic of its attitude timeline is shown in figure 3-1.
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Table 3-1: Input Loads for Baseline Case, SLM_BSLN

0.9829 0.1840 0]

IMBSTS t=0 =[ -.1840 0.9329 (1)
Maneuver axes:

1st maneuver [ 0 0 1 ]
2nd maneuver [ -.1840 0.9829 0 ]
Maneuver sizes:
1st maneuver 80° . s
2nd maneuver 90°
Maneuver rate: 0.2 degrees/second
No. of star trackers used: 2 )
Star lines-of-sight:
- Z star tracker -Y star tracker
1st data take period [0 0 1] [ O -1 0 1
2nd data take period [ 0 0 a1 1 [1 0 0 1
8rd data take period {0 -1 0 1 [1 0 0 1
- Measurement variance: 225 arcsec2
aial=[ 82 82 82 1} arcsec
O, = [1200 1200 1200 ] arcsec
adb=[ 24 24 24 ] arcsec
“gd"[ 0.01 0.01 0.01] degrees/hour
O,y =[ 60 60 60 ] arcsec
aat2=[ 60 60 60 1 arcsec
T, = [ 400 400 400 ] sec
_db_
IMU misalignment [1310.00 -982.20 2096.54 ] arcsec
Payload bay static misalignment [1498.24 -619.37 2018.74 ] arcsec
Gyro bias drift rate [ 0.01 0.01 0.00 ] deghr
Star tracker misalignment [ -6.60 1820 1.25 ] arcsec
Payload bay dynamic misalignment [ 23.06 1550 -18.87 ] arcsec

Other:
BSTS MparE =1

Correlation modeling: On ,
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Inertial Lines-of-Sight to Stars
Minus Y ST:[0,-1,0]
Minus ZST:[0,0,-1]

90° about [0, 0gl]

I ial Li £.Sight to St
MinusYST:[ 1,0,0]
Minus ZST:10,0,-1]

80° about [-1, 070]

Inertial Lines-of-Sight to St
- Yp Minus YST:[ 1,0,0]
X, { Minus Z8T:[0,-1,0]

Z

Figure 3-1. - Orbiter Measurement Attitudes and Maneuvers for SLM_BSLN
(Star in -Z ST not shown)
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The errors in final IMU alignment for SLM_BSLN are shown in table 3-2. Here,
filter rms errors are found from the square root of the diagonal elements of the final filter
covariance, and true errors are the differences between the filter's estimates and the
environment's values for the final alignment states. The root sum squared, or rss, of the
errors in each axis is also shown.

Table 8-2: SLM_BSLN, Final IMU Alignment Errors (arcsec)

AXIS 1 AXIS 2 AXIS S RSS OF AXES
FILTER RMS (1c) ERRORS  22.87 17.74 22.66 36.75

TRUE ERRORS 14.37 -9.89 -30.00 34.70

Next, RH_BSLN, the CSDL-supplied comparison case was examined. The major
differences between this case and SLM_BSLN are in orbiter attitudes. The approximate
initial attitude in this run is as follows: the shuttle's Z axis is aligned with the M50 minus X’
axis, and the X and Y body axes are rotated by -10.6° from the minus Z and minus Y inertial
axes, respectively. The second data collection attitude is reached by a 90° maneuver about
the minus Z body axis, which is followed by a 90° rotation about the Z inertial axis to reach
the final attitude. The input loads for this case are given in table 3-3, and figure 3-2 depicts
the sequence of attitudes. Note that a different set of star pairs is necessarily required for
this maneuver sequence. The results for this case are shown in table 3-4. The results of
running the same case using the CSDL simulation are shown in table 3-5.
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Table 3-3: Input Loads for RH_BSLN

#——

Maneuvers;
0.0431 -.0310 -.9986]

M (t=0)=[ 0.1654 -9855 0.0378
I'"BSTS -9853 -1668 -.0373

Maneuver axes:

1st maneuver [ 0.0431 -.0310-0.9986 ]
2nd maneuver [ 0.1654 -9855 0.0378 1]
Maneuver gizes:
1st maneuver 90°
2nd maneuver 90°
Maneuver rate: 0.2_degrees/second
No. of star trackers used: 2
Star lines-of-sight:
- Z star tracker -Y star tracker
1st data take period [ 1 0 o1 [0 1 0 1]
2nd data take period [ 1 0 o1 [o 0 1 ]
3rd data take period [0 1 o 1 [0 0 1 1]
_ Measurement variance; 225 arc:sec2
"ial'[ 82 82 82 ] arcsec
O = [1200 1200 1200 ] arcsec
"db'[ 24 24 24 ] arcsec
agd=[ 0.01 0.01 0.01] degrees/hour -
O1 =[ 60 60 60 ] arcsec
O 0 =] 60 60 60 ] arcsec
b= [ 400 400 400 ] sec
IMU misalignment [ 243.87 10.32 1848.03 ] arcsec
Payload bay static misalignment [-1732.60 -302.73 -239.66 1 arcsec
Gyro bias drift rate [ -0.01 -0.01 0.00 ] deghr
Star tracker misalignment [ -155.13 78.90 -71.03 ] arcsec
Payload bay dynamic misaligrgnent [ 27.37 32.06 -23.99 ] arcsec

Other:
BSTS MpArE =1
Correlation modelig. On
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Y,
Minus YST:[0,1,01]
>'¢ Minus ZST:[1,0,0]
B
Z
90° about [0, 0, Bll
Yg
Minus YST:[0,0,11
Z Minus ZST:[{1,0,01]
| ] I YB
290° about [09 oplll
B
x — Yp Minus YST:[0,0,11]
Z; Minus ZST:(0,1,01]

I

Figure 3-2. - Orbiter Measurement Attitudes and Maneuvers for RH_BSLN
(Star in -Z ST not shown)
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Table 8-4: RH_BSLN Using NCAD sim, Final IMU Alignment Errors (arcsec)

AXIS 1 AXIS 2 AXIS 3 RSS OF AXES
FILTER RMS (10) ERRORS  22.54 17.78 22.85 36.69
TRUE ERRORS -2.89 -24.27 -18.51 46.89

Table 8-5: RH_BSLN Using CSDL sim, Final IMU Alignment Errors (arcsec)

AXIS 1 AXIS 2 AXIS3  RSS OF AXES
FILTER RMS (16) ERRORS  19.53 14.63 18.72 30.76
TRUE ERRORS -11.28 3.56 -11.19 16.28

A comparison of the data in tables 3-4 and 3-5 indicates the degree of difference
between the NCAD and CSDL simulations. It should be noted that small differences exist
between the orbiter attitude timeline and initial environment state used in the generation of
these results.

The final set of verification runs compares parametric studies of magnitudes and
time constants for an ECRV used to model a portion of the filter dynamics (viz.
equation (3.6)). The input loads for these studies are shown in table 3-6. In figure 3-3, the
results using the CSDL high fidelity simulation for the ECRV magnitude study are compared
to the results obtained using the NCAD simulation. Similarly, figure 3-4 presents a
comparison of the ECRV time constant studies. In the diagrams, the rss of the filter rms
final errors is represented on the vertical axis. Also, ref denotes data derived from plots in
CSDL presentations, and sim represents results from the current simulation. It should be
noted that an attitude sequence different from the previous cases was used in these
comparisons. In particular, the magnitude of the second orbiter maneuver was 60°, rather
than 90°,
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Table $-8;: Input Loads for Parametric Studies

#

Maneuvers:
[0.0431 -0810 -.9986
M (t=0)=| 0.1654 -.9855 0.0378]
I'"BSTS -9853 -.1668 -.0873
Maeaneuver axes:
1st maneuver [ 0.0431 -.0810-0.9986 1
2nd maneuver [ 0.1654 -.9855 0.0378 1
Maneuver sizes:
1st maneuver 90°
2nd maneuver 60°
Maneuver rate: 0.2 degreea/second
No. of star trackers used: 2
Star lines-of-gight:
- Z gtar tracker -Y star tracker
1st data take period [ 1 0 o 1 [0 1 0 1
2nd data take period [ 1 0 o 1 [0 0 1 1
3rd data take period [ 065000086600 1 [ O 0 1 1]
- Measurement variance; 226 arcsec2
°ial=[ 82 82 82 ] arcsec
9, =[1200 1200 1200 ] arcsec
o=l . * * ] arcsec
"gd=[ 0.01 0.01 0.01] degrees/hour
%, =[ 60 60 60 ] arcsec
a“2=[ 60 60 60 ] arcsec
1db= [ 2] L 2 3 ik ] Bec
* Range: 60y, <192 arcsec
** Range: 451&540003ec
. 1:
IMU misalignment [ 243.87 10.32 1848.03 ] arcsec
Payload bay static misalignment [-1732.60 -302.73 -239.65 ] arcsec
Gyro bias drift rate [ -0.01 -0.01 0.001 deghr
Star tracker misalignment [ -155.18 78.90 -71.03 ] arcsec
Payload bay dynamic misalignment [ 2787 38206 -23.99] arcsec

t As a result of being derived from the initial covariance, the initial state varies when o dbis
parametrically varied. The state vector shown is for a nominal value of 55, .

Otber:
BSTS Mparg =1
Correlation modeling: On

#
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Final RMS IMU Misallgnment, arcsec

200

150

100 o ref

& sim
X /
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Magn. (std. dev.) of ECRV, arcsec

Figure 3-3.- Comparison of ECRV Magnitude Parametric Analyses

Final AMS IMU Misatlignment, arcsec

200

150

ref
® sim

100

SOM

0 500 1000 1500 2000

Time Constant of ECRV, sec

Figure 3-4.- Comparison of ECRV Time Constant Parametric Analyses
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3.3 DISCUSSION

For the present simulation, good agreement is found when the final filter rms IMU
alignment errors of SLM_BSLN (table 8-2) and RH_BSLN (table 3-4) are compared. Thus,
the simulation’s implementation of the filter is shown to be convergent and consistent for two
different attitude and star pair sequences. When RH_BSLN run using the CSDL simulation
(table 3-6) is considered, good comparisons in filter rms 1o IMU alignment errors are also
obtained. The small observed differences in filter rms errors could be expected, since the
high fidelity CSDL simulation contains more accurate models and fewer approximations.
The larger differences in true errors could be expected, since the initial environment state
vector used in the CSDL simulation was different.

Furthermore, good agreement is found when the ECRV parametric studies performed
using the NCAD simulation are compared to the CSDL results (figures 3-3 and 3-4). Again,
small differences in the plots can be ascribed to the differences in the fidelity of the
gimulations.

While the cases examined above do not cover the range of analyses performed by
CSDL, they include three different attitude sequences, 7 different star pairs, and 13 different
runs, a reasonable subset for verification purposes. The close agreements found in these
verification tests support the CSDL assertion that the SLM can be used to accurately align
the AFE's IMU. The results also indicate that this technique is relatively insensitive to some
implementation changes.
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40 MONTE CARLO ANALYSIS

A statistical evaluation of the SLM algorithm was performed using the Monte Carlo
technique along with the previously described simulation program. Three hundred ninety-
nine initial error state vectors were generated using a normal distribution function, which
had a zero mean, and the transformed eigenvalues of the initial filter covariance matrix as
variances. These initial states were next used as inputs for the simulation program to
generate a sample of the infinite population of SLM processor outputs. Estimates of the
means and standard deviations of the final values of the true errors and filter rms values
were then computed. Ninety-five percent confidence intervals were also generated for these
statistics. Using this data, the following hypotheses were tested:

1  The filter is an unbiased and consistent estimator of the environment
state vector. -

II. The filter is an unbiased and consistent estimator of the root mean
square (rms) errors associated with its state vector estimate.

Both hypotheses were found to be true, indicating that previous performance analysis [9]
provided reliable indications of filter performance under all expected possible conditions.

41 METHOD
4.1.1 Initial Conditions

Random initial environment state vectors were derived from the filter covariance
matrix. As shown in Section 3.1.3.2,

20= Sdiag(a}" @D

gives an initial 1o state vector. Thus, a random initial state vector can be generated with

x) = EdiagAf2. n(0,1) + b, 4.2)

where

n0,1) = arandom variable having a normal distribution with zero mean
and unit variance, and

Pep = the mean of zp= 0

As long as no biases are introduced through propagation of initial vectors generated
by this method, the resulting ensemble of random state trajectories will retain a zero mean.

412 Simulation Processing

The initial error state vector defined above is propagated and updated using
gimulated measurements in an identical fashion to the method previously described in
section 3. The input loads used for these runs are identical to those given in table 3-5, except
that nominal values were used for the ECRV parameters, and a random initial environment
state vector was used. For Monte Carlo cases, the vector given in table 3-6 is the 1o state
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vector discussed in section 4.1.1. As previously, the rms error estimates from the SLM filter's
covariance matrix and the true errors, gt), were saved every 5 seconds during the simulation.

4.1.3 Post-Processing

A Matlab script, mc_post, was written to post-process the Monte Carlo data (a listing
is included in Appendix B). This program reads from all Monte Carlo cases the final filter

rms error estimates and the final true errors. It then calculates :'c'g and & the sample mean

and standard deviation of the true errors, and Erms and $me’ the sample mean and standard

deviation of the filter rms error estimates. The following standard formulas [16] are used for
these computations:

n
- 1
x = in (4.3)
i=l

n
o= [ L D2 @1

i=l
In these formulas, n is the number of Monte Carlo cases.

Due to the finite nature of the sample size on which these estimates are based, some
indication of the quality or reliability of these values is desired. One method for arriving at
such an indication is to define an interval about the estimate within which the true value has

a given probability of lying. Such an interval is called a confidence interval. This concept is
described as follows by Allen [16]:

The idea of a confidence interval is very similar to that of an error limit in
numerical analysis. If we calculate a value x and know that the error in the
calculation does not exceed & (where &> 0), then we know the true value lies
between x - 6and x + §. In the case of an estimator, we are dealing with a
random variable, 8o we cannot predict with certainty that the true value 8of
the parameter is within any finite interval. However, we can choose a high
probability, such as 0.95 (95%), and then construct an interval, called a
confidence interval, such that the probability that the true value of 8lies in
the interval is 0.95. This is usually stated in the form of a 100(1 - @)%
confidence interval where a, sometimes called the “level of significance,” is
the probability of error.

Allen gives several theorems which describe the computation of confidence intervals. Allen’s
formulas are given below. (N.B. : these formulas may also be found in a standard math
handbook, such as [17]).



The 100(1 - )% confidence interval for an estimate of a mean is given by

2,y O ,
Xt 4.5
<n (4.5)
where g is the true standard deviation (assumed to be known here), and z - is defined to be

the largest value of z such that Pr(Z>z] = &, where Z is a standard normal random variable.
(For a 95% confidence interval & = 0.05, and z 2= 1.96.) If ois unknown, the expression

above should be modified:

.fiths
\n

wheret , is defined by Pr[T>tw2] = /2, and T' has a Student-¢ distribution with n-I degrees

of freedom. However, as n — oo, a Student-¢ distribution approaches a standard normal
distribution. Therefore, s may be substituted for oin equation (4.5) for n 2 30 [16].

(4.6)

The 100(1 - @)% confidence interval for a variance estimate is given by

2 2
n-1k 5025(" 1)
2 2
) X2

4.7

where x; i determined by a chi-squared distribution with n-1 degrees of freedom.

42 RESULTS

The sample mean and standard deviation of the true steady-state errors, Eg and %

and Xoms and $ms’ the sample mean and standard deviation of the filter steady-state rms

error estimates, are given in tables 4-1 and 4-2, based on sampling 399 simulation cases. In
addition, 95% confidence intervals are given for each parameter.
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Table 4-1: 95% Confidence Intervals for Mean and Standard Deviation of True

Errors, n = 399
#
7 j&' arcsec s£. arcsec

- IMU -1.62 ES 3.06 2020 s 3122 < 33.55
Inertial -0.79 * 2.04 1951 € 2087 =< 22.42
Misalign -1.65 + 2.43 2316 < 2478 < 26.60
PLB to -1.28 £ 2.38 2266 < 2424 < 26.04
ST1 Static 0.79 + 2.62 25.02 < 2676 S 28.76
Misalign -5.11 + 7.97 76.06 < 8132 =< 87.38
Gyro 0.0001 = 0.0010 0.0096 < 0.0103 < 0.0111
Drift 0.0001 = 0.0010 0.0094 < 0.0100 < 0.0108
Rate 0.0005 = 0.0009 0.0090 < 0.0096 < 0.0103
8T1to 1.60 + 1.26 1192 < 1274 < 13.69
ST2 5.73 + 7.38 7048 < 76.81 < 80.92
Misalign 5.63 + 7.67 7224 < 7725 < 83.01
PLB to 0.17 t 2.26 2168 < 23.07 < 24.79
ST1 Dyn 0.80 t 2.08 19.86 < 2124 < 22.82
Misalign 0.73 + 2.11 20.12 < 2151 < 23.11

W

Table 4-2: 95% Confidence Intervals for Mean and Standard Deviation of Filter
RMS Error Estimates, n = 399

Xems’ arcsec S$ms’ arcsec

- IMU 29.03 S 0.14 136 < 146 < 1.67
Inertial 19.37 E 0.10 091 < 097 < 1.04
Misalign 22.88 1 0.11 1.07 < 116 < 1.23
PLB to 24.26 + 0.12 114 < 122 < 131
ST1 Static 26.39 F - 0.13 124 < 132 < 1.42
Misalign 83.22 E 2 0.41 3980 s 417 S 4.49
Gyro 0.0100 =+ 0.0000 0.00056 < 0.00056 < 0.0005
Drift 0.0099 = 0.0000 0.0006 < 0.0005 < 0.0005
_Rate 0.0098 + 0.0000 0.0006 < 0.00056 £ 0.0005
ST1to 12,60 + 0.06 069 < 063 < 0.68
8T2 76.91 < 0.38 361 = 386 < 4.14
Misalign 77.01 t 0.38 361 s 386 < 4.15
PLB to 23.38 t 0.12 110 < 117 s 1.26
ST1 Dyn 21.99 t 0.11 108 < 110 s 1.18
Misalign 22.12 b 0.11 104 < 111 < 1.18

#

4.3 DISCUSSION
43.1 State Vector Estimation

In the simulation used for this study, the environment model consisted simply of the
deterministic forms of the state dynamics and measurement models used by the Kalman
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filter. Thus, if the noise terms in the environment were zeroed, the steady-state error vector
£ would be zero in a properly functioning filter. However, when the noise terms are

included, the various steady-state error vectors observed in many trials of the simulation
exhibit the characteristics of a random variable. If the mean of this random variable matches
the mean of the environment noise models, then the filter is an unbiased estimator of the
environment state vector. If the standard deviation of this random variable is sufficiently
small, then the filter is a consistent estimator, since it can be expected to converge to the
same estimates each time.

The major noise source present in the state dynamics models is the ECRV used to
model payload bay dynamic bending. Because of correlations in the error covariance matrix,
this noise term is included in the IMU inertial misalignment state and the payload bay static
bending state. The magnitude of the noise portion of this ECRV was 24 arcsec/axis, 1o, with
a zero mean. Thus, the true mean and standard deviation of the steady-state errors, He and

Op should be on the order of 0 and 24 arcsec, respectively, for the IMU inertial and payload

bay misalignment portions of the error vector. The sampled values for these parameters,
shown in table 4-1, closely match these predictions, within 95% confidence limits. One
exception is the third component of payload bay static bending, where an unobservable star
tracker misalignment forms the lower error limit.

The gyro drift rate and star tracker misalignment portions of the state dynamics are
modeled as constants with random initial values. The distribution functions for these
variables have a zero mean and standard deviations of 0.01 deg/sec/axis for gyro drift rate
and 85 arcsec/axis for star tracker mounting misalignment (root sum squared of 60
arcsec/axis/star tracker). No measurements were made which could provide information
about gyro drift rate, and no information can be gained in the direction of the star tracker
boresight axes [9]. Hence, the uncertainty in the initial conditions of the gyro drift and two of
the star tracker misalignment axes are unresolvable by the filter, and their initial random
distributions will be reflected in the steady-state error statistics, as shown by table 4-1. The
remaining component of star tracker misalignment is resolved to approximately 15 arcsec,
the noise level associated with the measurement model.

Since all components of the mean of the true error vector were zero (to within the
95% confidence intervals), the filter was found to be an unbiased estimator of the simulated
environment model. In addition, the filter was found to be consistent in its estimates, to
within 95% confidence intervals surrounding the variances imposed by noise terms in the
environment model. Hypothesis I is therefore confirmed.

432 Estimation of Root Mean Square Errors

A Kalman filter maintains its own estimate of the accuracy of its state vector
estimate by means of a covariance matrix. This matrix contains estimates of mean square
state errors along its main diagonal and correlation estimates in its off-diagonal terms. As
stated previously, the square roots of the diagonal terms, or the root mean square errors, are
equivalent to the standard deviations associated with the state estimate. Therefore,
unbiased steady-state rms error estimates should correspond to the standard deviations
associated with observations of the ensemble of true error state vectors. Furthermore,
consistent rms error estimates should have a small standard deviation.

A comparison of the sample mean of the filter rms error estimates in table 4-2 with

the true error standard deviations in table 4-1 shows close agreement. Only the three
components of IMU Inertial Misalignment fall outside the 95% confidence intervals of sEby a
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few hundredths of an arcsecond. The filter can therefore be qualified as an unbiased
estimator of the rms errors, verifying the first statement of Hypothesis II.

The sample standard deviations of the filter rms error estimates, also shown in table
4-2, are uniformly small in comparison to the sample means. In addition, these values are on
the order of one-half the size of the confidence intervals surrounding & From this result, it
can be concluded that the filter consistently estimated the rms errors; thus, Hypothesis Il is
verified.

Finally, the mean and 1c data in tables 4-1 and 4-2 augment the modified Monte
Carlo performance analysis presented in [9]. In the modified Monte Carlo approach, initial
error vectors are scattered uniformly within a 3.56 error ellipse. In contrast, the standard
Monte Carlo technique places 67% of the initial error vectors within a 1o error ellipse. Thus,
a larger sample of the 1¢ region is examined with the standard technique so that, in general,
its mean and 1o estimates are more reliable than those of the modified method.

In [9], the modified Monte Carlo method was used only to verify that no final IMU
alignment errors fell outside the 30 range predicted by previous linear covariance analysis.
It was judged that too few cases were run to produce accurate statistics. Such statistics are
given by tables 4-1 and 4-2. The sample standard deviation of IMU inertial misalignment in
table 4-1, averaged over the three axes, is 25.61 arcsec, which agrees well with the linear
covariance analysis figure of about 25 arcsec. The data in table 4-2 can be analogized to the
results of running 399 linear covariance analyses in order to see the effects of random
residuals on the covariance updates. As these data show, such effects are quite small.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

Verification analyses in this report have shown that a simplified simulation of the
SLM developed by the NCAD is convergent and consistent for two different attitude and star
pair sequences. Also, good agreement was found with a simulation check case provided by
the CSDL. In addition the NCAD simulation was used to verify parametric analyses [2], [7],
and [9] performed by Draper of an ECRV used to model payload bay dynamic bending.

Monte Carlo analysis has shown that the SLM algorithm can accurately and reliably
estimate a large sample of the possible expected inertial misalignment biases present in
attitude information transferred from Space Shuttle IMUs to the AFE IMU. The SLM
algorithm has also been shown to accurately and reliably estimate root mean square errors
associated with its misalignment estimates. These conclusions support and verify previous
linear covariance error analysis and modified Monte Carlo analysis [9].

The reader should note that in the all of these investigations, the SLM Kalman filter
was only required to estimate biases which were of the genre expected by its designers. This
shortcoming was a result of using environment dynamics and measurement models which
closely resembled the filter’s models. Most components of the true environment are well
understood, and these are included in the filter's models when judged significant by the
designer. However, the payload bay dynamic bending component, which results from
day/night thermal cycling of the orbiter’s longerons, is a poorly understood phenomenon
which has never been directly measured. As the sensitivity analysis in section 2 and [2]}, [7],
and [9] showed, even a correct model is quite sensitive to parameter variations. In [13], this
modeling issue has been only partially addressed, since only parametric variations within the
nominal model were investigated. No firm requirement for more extensive study of this issue
exists, since there is good confidence among the members of the AFE GN&C community that
the ECRV model of dynamic bending is adequate. Nevertheless, as the AFE GN&C system
design schedule permits, analyses to indicate the filter’s robustness to more diverse modeling
errors would further enhance confidence in the SLM filter design.

Another topic not addressed in this report are problems associated with properly
integrating the SLM algorithm with the star tracker data provided by the Space Shuttle
GN&C computers. The relatively inflexible architecture of the orbiter’s onboard software and
hardware interfaces makes the properly time-tagged data difficult to acquire at the required
rates. This problem is augmented if telemetry is used to transfer the data between the
orbiter and the AFE, as is currently envisioned for SLM ground processing. Individuals from
the operations, software design, and GN&C design communities at CSDL, Ji SC, and MSFC
are currently pursuing these issues.
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APPENDIX A - THE PROGRAM SI.M SIM

PROGRAM FLOW OVERVIEW

In order to give an overview of the simulation structure, the functional
relationships of some of its modules are shown below. Each block corresponds to a Matlab
script or function which is described in the sequel. Inner blocks are called by outer blocks.
The page number on which a listing of these modules begins is given in parentheses after
the module title.

SLM SIM (A-4)

* Declare global variables

SIM EXEC (A-6)

e Read i-loads (standard deviations of error sources, constant
transformation matrices, etc.)

» Coarse align:
1MparE = 1MBsTs BSTS ¥BAFE

SLM INIT (A-12)
e Initialize filter dynamics and covariance

e Incorporate filter state vector into filter transformation
matrices, e.g.

Mpgy =1-lEgy 1 ™

ENV_INIT (A-15)
o Initialize filter dynamics (same model as filter)

e Incorporate environment state vector into environment
transformation matrices

¢ while T_SIM < T_END,
SIM_SEQUENCER (A-17)

e Zero control flags




1st Y Set 1st DTP
D}'P flags ON | :
N
Y | Set2nd DTP
' flags ON | ’
N
Y | Set3rd DTP
flags ON >
N
Set maneuver
flags ON
ENV_CONTROL (A-19)

Compute new
| attitude

¢ Propagate environment state:

xi+1==d>xi +w

e Incorporate environment state vector into
environment transformation matrices

Compute ST
H & V angles




SLM CONTROL (A-22)

SLM PROP

( Listing of SLM_PROP begins on A-26)
( Listing of SLM_MEAS begins on A-23)

* Save plotting data
e T SIM = T_SIM + DT_SIM

¢ End while

PROGRAM LISTING

Following are lists of the Matlab scripts and functions which compose the
simulation program. The modules are listed in the order in which they are called. For
information about the conventions and standard functions of Matlab, refer to the Matlab
User’s Guide, available from The Mathworks, Inc. 20 North Main St., Suite 250, Sherborn,

MA 01770.

A capitalization convention is used in the program to indicate global (i.e. shared or
common) variables. There is no analogous provision in Matlab for named common
blocks. Note that the only purpose of the main script, sim_sim, is to declare these global
variables, and then to call the executive function, sim_exec.




.STAR LINE MANEUVER SIMULATION SCRIPT
%...Version of 17 Apr 90

%...Purpose: main script for SIM simulation; initializes global variables
% and iloads

clear
pack

%...DECLARE GLOBAL VARIABLES
%...SLM processor
global E F_FILT X FILT M IMU TO_I FILT M ST MISALIGN | FILT ...
M ] BAFE TO_T | FILT M | BAFE TO STl FILT M BAFE TO_. ST2 FILT ...
DT SIM M STl TO_] BAFE ALIGN CORRELATED
7%...Environment model processor
global F_ENV X ENV M IMU TO T ENV M _ SB_MISALIGN ENV ...
M | { ST | MISALIGN 1 ENV M_ E_TO . STl ENV M ] BAFE TO_ST2 _ENV ...
M ] | BAFE TO_T_] ENV
%...I-loads used by both of above processors
global SIG_STS IAL SIG_SB SIG DB_IC SIG_DYN BEND SIG_GD SIG_ST1
S1G . . ST2 TAU DB ST MEAS ° VAR M | STl TO_. ST2 M BAFE_TO | BSTS ...
M ] BSTS_TO__ ST1 M| BSTS TO_. ) ST2 U_ STAR D2R SEC 2 RAD DPH 2_RPS
%...Coarse alignment
glcbal M BSTS TO I
%...IMU model
global M BAFE TO I MAN_RATE MAN AXIS T_MAN
%...ST model
global V H ST ID STAR ID
%...5im sequencing and timing

global T _SIM DT _SIM T_START! MEAS T_END T_SIM START ...
STAR PAIRS ST ID ARRAY MAN | BAXES

..Plot arrays
global PLOT FREQ FILT RMS_ERRS TRUE_ERRS T _PLOT PLOT_ARRAY_SIZE

%...Names of data files



global DIARY NAME MAT FILE NAME
%...BEGIN SIMULATION
sim exec

%...END SLM SIM

PR e e o . 6 e e e i e e S S S o S e e S T S S . e e




function sim exec

dC 0P o JO o o oe o0 do oo

o0

o0 o

%..

%

.STAR LINE MANEUVER SIMULATION EXECUTIVE

..Version of 2 May 90

..I-loads
iloadslm; % Original baseline case
ilod rh0: % R. Hain inital attitude and stars; comparison case
ilod rh4; $ R. Hain initial attitude and stars; 60 deg 2nd maneuv.
ilods_mc; % Monte Carlo case: R. Hain baseline case, with

% 60 degree second maneuver

.Comment out the following if this is not a Monte Carlo case

load case number; $ if this is first run, make sure to reset!
case number = case_number + 1;

save case_ number;

case string = int2str(case_number);

eval (['delete ', DIARY NAME, case string,'.dat’ ])

eval (['diary ', DIARY NAME, case_string,'.dat’ 1)

..Open diary file and print header

eval (['delete ', DIARY NAME ])

eval (['diary ', DIARY NAME ])

stime = fix(clock):

fprintf ('\n STAR LINE MANEUVER SIMULATION \n')
COMMENT

case_number % for Monte Carlo only
fprintf('\n Sim started at ')

. fprintf(‘%2.0f:%2.0f:%2.0f,',Stime(4),stime(5),stime(6))

fprintf ('%2.0£/%2.0£/%4.0f \n', stime (2),stime (3),stime (1))
hold off -

. .Coarse align

M BAFE TO_I = M _BSTS_TO_I * M _BAFE TO_BSTS;

.Initialize SIM algorithm

slm _init;

..Initialize Environment

env_init;

.Print initial environmment and filter state vectors, and initial

filter covariance matrix rms errors

xe = X ENV ,/SEC_2 RAD;



xf =X FILT ./SEC_2_RAD;
ee = diag(E) .”~0.5 ./SEC_2 RAD;

fprintf ('\n INIT ENV STATE \n')

fprintf(' imu misalignment %10.2f %10.2f %10.2f \n', xe(l),xe(2),xe(3) )
fprintf (' plb static misal %10.2f %10.2f %10.2f \n', xe(4),xe(5),xe(6) )
fprintf (' gyro drift rate %10.2f %10.2f %$10.2f \n', xe(7),xe(8),xe(9) )
fprintf (' stl to st2 misal %10.2f %10.2f %10.2f \n', xe(10),xe(1ll),xe(12) )
fprintf(' plb dyn bend mis %10.2f %10.2f %10.2f \n', xe(13),xe(14),xe(15) )

fprintf (*\n INIT FILT STATE \n')

fprintf(® imu misalignment $£10.2f %10.2f %10.2f \n', xf(1),x£(2),x£(3) )
fprintf (' plb static misal %10.2f %10.2f %10.2f \n’', xf (4),xf(5),x£(6) )
fprintf(' gyro drift rate %10.2f $%10.2f %10.2f \n', x£(7),x£(8),x£(9) )
fprintf (' stl to st2 misal %£10.2f %10.2f %10.2f \n', x£(10),xf(11),xf(12) )
fprintf(' plb dyn bend mis $%10.2f %10.2f %10.2f \n', x£f(13),x£(14),x£(15) )

fprintf('\n INIT FILT COV - RMS ERRORS \n')

fprintf(' imu misalignment $10.2f %10.2f %10.2f \n', ee(l),ee(2),ee(3) )
fprintf(' plb static misal %10.2f %10.2f %10.2f \n', ee(4),ee(5),ee(6) )
fprintf(' gyro drift rate %10.2f %10.2f %$10.2f \n', ee(7),ee(8),ee(9) )
fprintf (' stl to st2 misal %10.2f %10.2f %$10.2f \n', ee(10),ee(ll),ee(1l2) )
fprintf(' plb dyn bend mis %10.2f %10.2f %10.2f \n', ee(13),ee(l4),ee(ld) )

%...Begin simulation

T SIM = T_SIM START;
first_pass_plot = 1;
sim done = 0;
while T _SIM <= T_END, , S T
sim sequencer
if T SIM = T_END, sim done=1;, end
slm_sim_plotter (first_pass_plot,sim done)
if first pass plot==1, first_pass plot=0;, end
T SIM = T_SIM + DT_SIM;

end

eval (['save ', MAT FILE NAME ]) % use for single-case
% eval (['save ', MAT FILE NAME, case_string, ... % use for Monte-Carlo
% ' FILT_RMS ERRS TRUE_ERRS T PLOT']) " " "

diary off

%...End sim_exec




function iloadslm

%—— — . e e e e e e S O B o S S S T S i 2 R S S T =

%...STAR LINE MANEUVER ILOADS

%...Purpose: to initialize constant variables and matrices for the
% SLM simulation

%...Version of: 02 May 90

%...Run Specific text matrices

MAT FILE NAME = 'orig | bsln' ;
DIARX NAME = 'orig bsln.dat' ;
COMMENT = 'Baseline Case';

%...Conversion constants
D2R = pi./180;
SEC_2_RAD = D2R./3600;
DPH _2_RPS = D2R./3600;

%...5im timing parameters
T _SIM START = 0;

DT SIM = 1;
DT_SIM = 1;
T START MEAS = 5;

%...Maneuver parameters

man size = [ 90 90] .*D2R ;
MAN RATE = 0.2 .*D2R ;
T_MAN(1) = 1./MAN RATE.*man _size(l) + T_START MEAS ;
T MAN(2) = 1./MAN RATE.*man  size(2) + T TMAN(1) ;
% T _END = 10;
T END = T MAN(2) + 50.*DT_SIM;

MAN AXES = [ 0.0000 0.0000 1.0000;
-0.1840 0.9829 0.0000;
0 0 0 1"
star_table;

%...Measurement parameters

STAR PAIRS = [ 110 111;
110 112;

111 112;
0 0];
ST ID ARRAY = [

oOrRFR
oONNN

— e
~e



..STS inertia (not currently used)

I_STS = [ 959576. 3146, -252978.
3146. 7178685. -778.
-252978. -778. 7529715. 1:

..Initial STS attitude

M BSTS TO I = [ 0.9829 0.1840 O
-0.1840 0.9829 O
0 0 173

. .Transformation matrices

M BAFE TO | BSTS
m_ stsnb to stl

eye(3);
[-.0056491 .9994101 -.0338744
.9894338 .0006786 -.1449833

-.1448747 -.0343355 -.9888540 }:
[-.9662658 -.1833851 .1808317
-.1839513 .0000000 -.9829353

.1802558 -.9830411 -.0337339 ]';

c_stsnb_p ang = cos( 10.6 .*D2R}):

s_stsnb p ang = sin( 10.6 .*DZR);

m bsts_to stsnb = [ c_stsnb p ang

0

m_stsnb_to_st2

0 s_stsnb_p_ang

1 0
-s_stsnb p ang 0 c stsnb_p ang ];

| _TO . m_stsnb_to_stl * m _bsts_to stsnb ;

M BSTS_TO ST2 = m __stsnb_to_st2 * m ] _ bsts_to_stsnb ;

M | STl TO BAFE (M BSTS TO . ) ST1 * M| BAFE —TO BSTS)' ;

M STl TO_. ) ST2 = M BSTS TO ST2 * M | BSTS TO ST1' ;

M BSTS_TO_ST1

. .Expected 1l-sigma values of error sources

SIG STS IAL = [ 82; 82; 82 ] .* SEC_2 RAD ;
SIG_SB = [ 1200; 1200; 1200 ] .* SEC_2 RAD ;
SIGDB IC = [ 24; 24; 24 ) .* SEC 2 RAD ;
SIG DYN BEND= [ 24; 24; 24 ] .* SEC 2 RAD ;
SIG_GD =[ .01; .01; .01 ] .* DPH 2 RPS ;
~ SIG_ST1 =[ 60; 60; 60] .* SEC_2 RAD ;
SIG_ST2 =[ 60; 60; 60 ] .* SEC_ 2 RAD ;
TAU DB = [ 400; 400; 400 ] ; '
ST MEAS VAR = 225 .* SEC_2_RAD."2 ;

..Correlation modeling flag

ALIGN CORRELATED = 1;

..Initial Environment State Vector

..If random state derived from filter covariance, set to 1:

DERIVE_IC_FROM COV = 1;

SEED = 20174;

..Alternate initial state vectors

of do

x_sts_ial = 82 .* rand(3,1)
x _sb = 1200 .* rand(3,1)



% x_db ic = 24 .* rand(3,1)

% x_stl = 60 .* rand(3,1)

% x_st2 = 60 .* rand(3,1)

% x(1:3) = (x_sts ial.”2 + x_sb.”2 + x db_ic."2).".5;
% x(4:6) = (x_sb.”2 + x st1.72).%.5;

% x(7:9) = [0.01; 0.01; 0.01]}:

% x(10:12) = (x_stl.”2 + x_st2.72).7.5;

% x(13:15) = x _db_ic

% X ENV = x' .*SEC_2 RAD;

%...Plot parameters
PLOT_FREQ = 1/5;

%...End iloads

F=—- - —
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function star_table

.0000; 0.0000;-1.0000];
.0000;-1.0000; 0.0000}:;
.0000; 0.0000; 0.0000};
.5000; 0.0000; 0.8660];
.0395;-0.0343:-0.9986];
.0343;-0.2225;-0.97431;
.0343; 0.9550;-0.2945];
.1834;-0.9830; 0.0000};
.9830; 0.1803; 0.0337]:
.9830; 0.0609; 0.1730];

U_STAR(:,110)
U_STAR(:,111)
U_STAR(:,112)
U_STAR(:,113)
U_STAR(:,114)
U_STAR(:,115)
U STAR(:,116)
U_STAR(:,117)
U_STAR(:,118)
U_STAR(:,119)

i
11 T I I

Y Y ey ey ey ey ey ey ey
OO0OO0OO0OO0OO0OOHOO
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function slm init

G —_— — e e e et e e e S o e o e S S S T P

%...STAR LINE MANEUVER FILTER INITIALIZATION

...Version of 2 Mar 90

Modified: 5 Mar 90
8 Mar 90 (correct rot. sense of m bsts_to_stsnb)

o o ol

%...Purpose: to initialize the filter dynamics and covariance matrices

%...Initialize system dynamics
F_FILT = zeros (15,15) ;
F_FILT(13:15,13:15) = diag( -1 ./TAU DB );
X FILT = zeros(15,1) ;
%...Initiallize covariance
sig_afe_: ial = (SIG_STS_IAL. ~2 + SIG_SB. ~2 + SIG_DB_IC. ~2). H
sig_plb (5IG_SB. 2 + SIG ST1.”2). 0.5 ;
sig st = (SIG_ ST1.72 + SIG._ - ST2.72).70.5 ;

E = zeros(15,15);

E(1:3,1:3) = diag(sig_afe_ial.”2) ;
E(4:6,4:6) = diag(sig plb.”2) ;
E(7:9,7:9) = diag(SIG_GD."2) :

E(10:12,10:12) = diag(sig_st.”2) ;
E(13:15,13:15) = diag(SIG DB IC.~2) ;

%...If correlations are modeled, initialize off-diagonal elements of E
if ALIGN CORRELATED,
%...Init correlation between IMU misalign and plb static bending

E(1:3,4:6)
E(4:6,1:3)

M BAFE_TO I * diag(SIG_SB."2) ;
E(1:3,4:6)' ;

%...Init correlation bet IMU misalign and plb dynamic bending

E(1:3,13:15) = M BAFE TO I * diag(SIG_DB IC. ~2)
E(13:15,1:3) = E(1:3,13:15)" ;

%...Init correlation bet plb static bending and star tracker misalign

- E(4:6,10:12) = M _ST1_TO_BAFE * diag(SIG_ST1. ~2) * M ST1_TO_ST2' ;
E(10:12,4:6) = E(4:6,10: :12) "' ;

end
%...Initialize misalignment transformation matrices

slm update_transf;
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%...End slm init
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function slm update_transf

%— —_— e —————————— e o =
%...STAR LINE MANEUVER TRANSFORMATION MATRIX UPDATE

%...Version of 5 Mar 90

%...Purpose: to update the time-varying transformation matrices
% which are derived from the state vector of misalignments

%...Using lst-order expansion, approximate misalignment transf's

M IMU TO_I FILT = eye(3) - xmat( X FILT(1:3) )

m_sb misalign = M BSTS_TO_STl * ( eye(3) - xmat( X FILT(4:6) ) )' 7
M ST MISALIGN_FILT = eye(3) - xmat( X FILT(10:12) )

m_db misalign = ( eye(3) - sxmat( X FILT(13:15) ) )' ;

%...Update misalignment transformations

M BAFE TO I_FILT = M IMU_TO_I_FILT' * M BAFE TO I ;
M BAFE_TO_ST1_FILT = m_sb_misalign * m_db misalign * M BAFE_TO_BSTS :
M BAFE_TO ST2_FILT = M ST MISALIGN FILT * M STl _TO_STZ * ...

M BAFE_TO_ST1_FILT ;

%...End slm update transf
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function env_init

Gm— ———— - —— - ———— -
%...STAR LINE MANEUVER ENVIRONMENT INITIALIZATION

%...Version of 2 Mar 90

% Modified: 5 Mar 90

% 5 Apr 90 (to base random number seed on clock)

% 9 Apr 90 (change from svd to eig)
PSS PR LSS Sttt

%...Initialize env system dynamics matrix

F_ENV = zeros (15,15) -
F_ENV(13:15,13:15) = diag( -1 ./TAU DB );

%...Initialize static misalignment transformation matrices using
% 1st-order Taylor expansion

temp = eye(3) - xmat( X _ENV(4:6) ) ;% + ...
% 0.5%( X ENV(4:6) * X ENV(4:6)' - eye(3) ):
M _SB MISALIGN ENV = M BSTS TO_ST1 * temp' ;
M_ST MISALIGN ENV = eye(3) - xmat( X _ENV(10:12) ) :% + ...
% 0.5% ( X_ENV(10:12) * X ENV(10:12)' - eye(3) )’

env_update_transf;

%...End env_init
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function env_update_transf

%

%...

Modified:

..Version of 2 Mar 90

5 Mar 90

STAR LINE MANEUVER ENVIRONMENT TRANSFORMATION MATRIX UPDATE

. .Purpose: to update the time-varying transformation matrices

which are derived from the state vector of misalignments

M IMU_TO_I ENV =

m db misalign =

..Using 2nd-order expansion, approximate misalignment transf's

eye(3) - xmat( X ENV(1:3) ) /% + ...

0.5%( X _ENV(1:3) * X ENV(1:3)' - eye(3) ):

M BAFE TO_I_ENV
M BAFE_TO ST1_ENV

M _BAFE_TO_ST2_ENV

..Update misalignment transformations

( eye(3) - xmat( X _ENV(13:15) ) )' :% + ...
0.5*( X_ENV(13:15) * X_ENV(13:15)' - eye(3) ) )'

M IMU_TO_I_ENV' * M BAFE TO_ I ;
M SB MISALIGN ENV * m db misalign * ...

M BAFE TO BSTS ;

M_ST MISALIGN ENV * M _ST1_TO ST2 * ...
M BAFE TO_ST1_ENV ;

..End env_update_ transf

A-16



function sim_sequencer

Y- e e e e e e e e
%...SIM SIMULATION SEQUENCER

%,..Version of 17 Apr 90

%...Zero control flags

env_meas_this pass = 0;
env_att_prop_this_pass = 0;
slm_meas_this _pass = 0

if T SIM < T_START MEAS,
MAN AXIS = [0;0:0);:

%...lst measurement interval

elseif T SIM = T_START_ MEAS,
env_meas_this_pass = 1;
slm_meas_this pass = 1;
STAR ID = STAR PAIRS(1,:)
ST ID = ST_ID_ARRAY(1,1)

elseif T SIM == T_START_MEAS + DT_SIN,
env_meas _this pass = 1;
slm meas_this_pass = 1;
STAR ID = STAR _PAIRS(1,:)
ST_. ID = ST_ID ARRAX(l 2)
MAN AXIS = MAN AXES(:,1)

.2nd measurement interval

elseif T SIM == T MAN(1),
env_meas_this pass = 1;
slm_meas_this_pass = 1;
STAR ID = STAR PRIRS(2,:)

ST ID = ST_ID ARRAY(2,1)

elseif T _SIM = T MAN(1) + DT_SIM,
env_meas_this_pass = 1;
slm meas_this pass = 1;
STAR ID = STAR PAIRS(Z,:)
ST D = ST_ID ARRAX(Z 2)
MAN AXIS = MAN | AXES(:,2)

.3rd measurement interval

elseif T SIM = T MAN(2),
env_meas_this pass = 1;
slm meas_this pass = 1;
STAR ID = STAR . PAIRS(3,:)

ST ID = ST_ID ARRAY(3,1)

elseif T SIM == T MAN(2) + DT_SIM,
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env_meas_this pass =
slm meas_this_pass =
STAR ID = STAR PATIRS(3,:)
ST ID = ST_ID ARRAY(3,2)

1;
1;

...If not measuring, then maneuver
else
env_att_prop_this_pass = 1;
end

...Call env and slm controllers with sequencing flags

env control (env_meas_this_pass,env_att_prop_this pass)

M BAFE TO I ENV
if ST _ID =1,
M BAFE_TO ST1_ENV
elseif ST ID =2,
M _BAFE_TO ST2_ENV
end
slm_control (slm meas_this_pass)

M BAFE_TO I_FILT
if ST ID ==1,
M BAFE_TO ST1_FILT
elseif ST ID =2,
M BAFE_TO_ST2_FILT
end
xf =X FILT*180*3600/pi;
diary off
fprintf('\n T _SIM = %6.2f \n', T_SIM)
diary on

fprintf (' FILT STATE - ARC SEC \n')

fprintf (' imu misalignment %10.2g %10.2g %10.2g \n',
fprintf(' plb static misal %10.2g %10.2g %10.2g \n',
fprintf(' gyro drift rate %10.2g %10.2g %10.2g \n',
fprintf(' stl to st2 misal %10.2g %10.2g %10.2g \n',
fprintf (' plb dyn bend mis %10.2g %10.2g %10.2g \n’,

. .End sim sequencer
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function env_pontrol(env_meas_;his_pass,env_att_prop_phis_pass)

§mmm

%..

o0 0@ o0 Je oo

oe

.SLM ENVIRONMENT MODEL CONTROLLER

..Version of 7 Mar 90

Modified 16 Mar 90
3 Apr 90 (to put env state prop before env meas)

(also to fix coding error - F_ENV for F)
11 Apr 90 (to add state noise)

..If this is a maneuver pass, compute new sts attitude

if env_att_prop_this_pass,

M BSTS_TO I = imu model( M BSTS TO I );

M BSTS TO I = 1__ rate_att_prop ( M BSTS_TO_I, MAN AXIS,
MAN RATE, DT_SIM);

M BAFE_TO I = M BSTS_TO_I * M _BAFE_TO_BSTS :

end

. .Propagate env state vector and update transf matrices

rand(’'normal’)

F_ENV(1:3,7:9) = M BAFE TO_I ENV ;

phi = eye(1l5) + F_] ENV*DT SIM + 0. 5*F_ENV*DT_SIM"2 ;
X ENV = phi * X ENV ;

sig db_env = [50;50;50] ./3600.*pi./180;

state | noise = sqrt( diag(eye(3) - phi(13:15,13:15)"*2 ) ) ...

.* sig db_env .* rand(3,1) ;
X_ENV(13:15) = X ENV(13 15) + state noise;
env_update__transf

if env_meas_this_pass,

[ V(1) H(1) ] = env_st_model( U _STAR(:, STAR . ID(1) ),
MBAFE TO I_ENV, MBAFE TO__ STl ENV );

[ V(2) H(2) ] = env st model( U S'I‘AR( :, STAR ID(2) ),
MBAFE TOIENV, MBAFE TO_: ST2 ENV)

T _MEAS = T_SIM

end

..End env_control

_.If this is a measurement pass, compute star tracker offset angles
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function [m b to i_new] = 1_rate_att prop(m b_to_i_old, e_axis, w, dt)

%

%

o o0 d0 o o o o0 o° o° oP oC oP oo oo

. 0P o@

oP

...LOW RATE ATTITUDE PROPAGATION FUNCTION

...Version of 28 Feb 90
Modified: 12 Mar 90

...Purpose: to update the body to inertial transformation matrix
as if an actual attitude state were being propagated
during a maneuver. Since this method uses a small angle
approximation to update the current transformation matrix,
the product w*dt should be sufficiently small to obtain
whatever required accuracy is desired.

.« «Inputs:
m b to i old
e_axis

w
dt

...Qutput:
m b to_i new

Descr.:

Current transformation, body to inertial
Eigen-axis about which maneuver occurs:
specify in body-axis frame

Maneuver rate, in radians/time unit

Time step, in units compatible with w

Updated body-to-inertial transf. matrix

...Construct cross-product matrix of eigenaxis

e = e axis

ecross = [ 0 -e(3)
0
-e(2) e(1l)

e(3)

e(2)
-e (1)
o 1:

...Approximate rotation matrix using 2nd-order Taylor expansion

wdt = w*dt;

m = eye(3) - wdt*ecross + 0.5*wdt”2*( e*e' - eye(3) )’

m(l,:)

m(l,:)/norm(m(l,:));

m(2,:) = m(2,:)/norm(m(2,:}):

m(3,:)
m old to _new = m;

m(3,:)/norm(m(3,:)):

...Compute new body to inertial transformation

mb to i new=mb to i old * m_old to new';

...End 1_rate_att_prop
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function [v, h] = env_st model( u i, m b to i, m b to st )

fmmm e —————————————
%...STAR LINE MANEUVER ENVIRONMENT STAR TRACKER MODEL

%...Version of 2 Mar 90
% Modified 3 Apr 90 (to include meas noise)

%...Purpose: to simulate the output average v and h angles from the
% sts star trackers

%...Inputs: Descr.: Source(s) :

% u i Inertial position of star

% mb to i Body-to-inertial transformation

% m b to_st Body-to-star tracker transf

%...0utputs:

% v Vertical offset of star from center

% of star tracker field of view

% h Horizontal offset

F——— - - [

%...Transform star line of sight to star tracker frame

mitost =mbtost*mbtodi’:
ust =mi to st *ui;

%...Compute v and h angles

atan( -u_st(1l) / u_st(3) ):
atan( u_st(2) / u_st(3) ):

v

h
%...Add measurement noise

sig st = sqrt (ST_MEAS VAR);

rand('normal'):

-t = clock;
rand('seed',t (6) *7348)

fprintf ('\n Seed for meas noise is %8.2f \n', rand('seed’))

bias st = 0:
v = v + sig st .* rand + bias_st;
h =h + sig_st .* rand + bias_st:

%...End env_st_model
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function slm_control (slm_meas_this pass)

g—— S e e e e i e e e e e e
%...SILM EVENT CONTROLLER
%...Version of 16 Mar 90

% Modified 19 Mar 90
% 9 Apr 90 (to correlate filt and env propagation)

G e e e e e e ST T
%...Measurement passes
if slm meas this pass,
slm meas
end
%...Prop filt state on measurement and manuever passes
slm prop

%...End slm_control

S _
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function slm meas

fmm - e ———
%...STAR LINE MANEUVER MEASUREMENT PROCESSING AND FILTER UPDATE

%...Version of 19 Mar 90

§omm - - e ———————— —_——

%...Two passes are performed, 1st for V angle, then for H angle meas
for 1 = 1:2,
%...Filter's estimate for star los in appropriate st frame

u_st_est = M_BAFE TO_ ST1_FILT * M BAFE_TO_I I FILT' * ...
U STAR( :, STAR . ID( ST ID ) )

if ST ID == 2,
u st est = M ST | MISALIGN FILT * M _ST1_TO STZ * u_st_est;

end
u_st_est = u_st_est / norm( u_st est )
%...Construct from V and H angles the measured los

u_st_meas = [-tan( V(ST_ID) ); tan( H(ST_ID) y: 11:
u_st_meas = u_st_meas / norm {u_st_meas)

%...Measurement geometry vectors (lst 2 cols of b)
b = calc_b vec
%...Measurement residual
del g = u_st _meas(i) - u_st_est(i)
%...Mean-squared residual and residual test ratio (w/ 6-sigma edit)

eb = E * b(:,1);
ms_residual = b(:,i)' * eb + ST MEAS VAR
= abs(del_q) / (6 * sqrt (ms_residual) )

%...Update covariance (and resymmetrize) and update state

if r < 1,
= eb / ms_residual;
w! % display weighting vector
E=E-w?*eb';
E=E - tril(E) + triu(E)’;
X FILT = X _FILT + w * del g:
sim \_update " transf
end

xe = X ENV ./SEC_2_RAD;
xf =X | FILT /SEC 2 RAD;
ee = diag(E) .~0.5 ./SEC_2 RAD;
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fprintf ('\n ENV STATE \n')

fprintf(' imu misalignment %10.2f %10.2f %10.2f \n', xe(l),xe(2),xe(3) )
fprintf (' plb static misal %10.2f %10.2f %10.2f \n', xe(4),xe(5),xe(6) )
fprintf (' gyro drift rate %10.2f %10.2f %10.2f \n', xe(7),xe(8),xe(9) )
fprintf(* stl to st2 misal %10.2f %$10.2f %10.2f \n', xe(10),xe(1ll),xe(12) )
fprintf(' plb dyn bend mis %10.2f %10.2f %10.2f \n', xe(13),xe(14),xe(15) )

fprintf ('\n FILT STATE \n')

fprintf (' imu misalignment %10.2f %10.2f %10.2f \n', xf(1),xf(2),x£(3) )
fprintf (' plb static misal %10.2f %10.2f %10.2f \n', xf(4),x£f(5),x£(6) )
fprintf (* gyro drift rate $£10.2f %10.2f %10.2f \n', xf(7),x£(8),x£(9) )
fprintf (' stl to st2 misal %10.2f %$10.2f %10.2f \n', x£(10),xf(11),xf(12))
fprintf (' plb dyn bend mis %10.2f %10.2f %10.2f \n', x£f(13),xf(14),x£(15))

fprintf (*\n FILT COV - RMS ERRORS \n')

fprintf(' imu misalignment %10.2f %10.2f %10.2f \n', ee(l),ee(2),ee(3) )
fprintf (' plb static misal %10.2f %10.2f %10.2f \n', ee(4),ee(5),ee(6) )
fprintf (' gyro drift rate %10.2f %10.2f %10.2f \n', ee(7),ee(B),ee(9) )
fprintf(' stl to st2 misal %10.2f $10.2f %10.2f \n', ee(10),ee(11l),ee(12) )
fprintf (' plb dyn bend mis %10.2f %10.2f %10.2f \n', ee(13),ee(14),ee(15) )

end

..End slm meas
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function [b] = calc_b_vec

..STAR LINE MANEUVER MEASUREMENT GEOMETRY VECTOR COMPUTATION

..Version of 19 Mar 90

——— T s i A - S e S ——— T — i

. .Cross-product matrices of star los in some useful frames

u i cross = xmat ( U STAR( iy STAR ID( ST ID ) ) )
u_] b = M BAFE TO I FILT' * U STAR( :, STAR . ID( ST_ID ) );
u_] b cross = xmat { ub):

. .Include stl-to-st2 bending effects if this is a stZ2 meas pass

if ST ID = 2,
u_st2_cross = xmat ( M BAFE_TO ) ST2_FILT * ub ):

b(10:12,1:3) = u_st2 . cross’;

mb to st =M BAFE_TO_ST2 FILT;
else,

b(10:12,1:3) = zeros(3,3):

m b_to st = M BAFE_TO_ST1 FILT;
end

. .Compute remaining portion of b-matrix

b(1:3,1:3) = ( m b to st * M BAFE TO I FILT' * u i cross }';
b(4:6,1:3) = - (1 m_] b to st * 1 u_b cross )T

p(7:9,1:3) = zeros (3, 3):

b(13:15,1:3) = b(4:6,1:3);

..End calc_b vec

function x = xmat (v)

X

%..

[ 0 -v(3) v(2)
v(3) 0 -v(1)
-v(2) v(1) 0o 1

.End cross
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function slm_prop

fmm— e ——— e e e e e e e e e o e e o e o e e e
%...STAR LINE MANEUVER PROPAGATION FUNCTION

%...Version of 19 Mar 90

Fm——— o e e e e B . T e A . S ot S B o S e i U o S R e o S B e i o

%...Update the portion of the filter dynamics matrix which
% transforms the gyro drift rate vector into an IMU alignment
% perturbation

F FILT(1:3,7:9) = M BAFE TO I FILT;
%...Approximate state transition matrix

phi = eye(15) + F_FILT*DT_SIM + 0.5 * F_FILT"2 * DT_SIM"2;
%...Propagate filter state vector

X FILT = phi*X FILT;

%...Construct random nolse portion of the ECRV which models
% dynamic bending

q db = diag( (eye(3) - phi (13:15,13:15)~2 )} * SIG_DYN_BEND."Z2 );
%...Propagate filter covariance

E=phi * E * phi' ;
E(13:15,13:15) = E(13:15,13:15) + q db ;

%...Update transformation matrices
slm _update transf

%...End propagation
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function slm sim plotter (first_pass, sim done)

%...STAR LINE MANEUVER PLOTTING FUNCTION

%...Version of 20 Mar 90
% Modified: 26 Mar 90

%—- - - -

%...Initialize plot variables if 1st pass

if first_pass,
PLOT ARRAY_SIZE = T_END./DT_SIM.*PLOT FREQ + 1;
FILT RMS_ERRS = zeros (15, PLOT_ARRAY SIZE);
TRUE_ERRS = zeros (15, PLOT_. ARRAY SIZE);
T PLOT = zeros(l, PLOT_. ARRAY SIZE),

end

%...Fill plot arrays

if rem(T_SIM,1/PLOT_FREQ) = 0,
i= T SIM.*PLOT ' FREQ + 1;
FILT | RMS _ERRS (: ,1) = diag(E).”~0.5 ./SEC_2 RAD:
TRUE_ERRS( ,1) = (X_ENV - X FILT) /SEC 2 RAD;
T _PLOT(i) = T_SIM;

end

%...Perform plotting if sim is finished

if sim done,
for i = 1:PLOT_ARRAY SIZE,

ial_f£ilt rss( ,1) = norm(FILT _RMS ERRS(1:3,1));
sb_. filt rss( 1) norm (FILT ] RMS ERRS(4 6,1)):
gd [ filt rss( 1) norm (FILT RMS ERRS(7 9,i)):
st__ Tfilt _rss(: ,i) norm(FILT RMS ERRS(lO 12,1)):
db_.  filt . _rss(:,1) norm (FILT ] " RMS ERRS(13 15,1)):
ial err rss( 1) norm (TRUE_ " ERRS (1:3,1))
sb_ err rss( ,1) = norm(TRUE_] ERRS (4:6,1)):
gd_err “rss(:,1i) = norm(TRUE_] " ERRS(7:9,1));
st_err rss( ,1) = norm(TRUE_ " ERRS (10: 12 iy):
db-err_;ss( 1) = norm(TRUE_] " ERRS (13:15,1))

end

ftime = fix(clock}):;

fprintf('\n Sim finished at ')

fprintf (*%2.0£:%2.0£:%2.0f, ', ftime(4), ftime (5), ftime(6))
printf('%Z 0f/%2.0£/%4.0f \n' ftime (2), ftime (3) ,ftime (1))
fprintf (*\n Hit any key to begin plotting... \n')

pause

plot (T_PLOT,ial_filt _rss,'.',T PLOT,ial_er;_:ss,'-')
title('Filter RMS, True Errors')

xlabel ('time, sec')

ylabel ('RSS IMU Alignment, arcsec’)

pause
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plot (T_PLOT,sb_filt rss,’' 1, T PLOT,sthrr_;ss,
title('Filter RMS, True Errors')

xlabel ('time, sec')

ylabel (*RSS PLB Static Bending, arcsec’')

pause

plot (T PLOT,qd filt rss,'.',T_PLOT,gd err_rss,'

title('Filter RMS, True Errors')
xlabel ('time, sec')

ylabel ('RSS Gyro Drift Rate, deg/hr')
pause

plot (T_PLOT,st_filt rss,'.’',T PLOT,st_grr_;ss,
title ("Filter RMS, True Errors')

xlabel ('time, sec')

ylabel ('RSS ST1 to ST2 misaligm, arcsec')
pause

plot (T_PLOT,db_filt rss,'.’,T_PLOT, db_err rss,'
title('Filter RMS, True Errors')

xlabel ('time, sec')

ylabel ("RSS PLB Dyn Bending, arcsec')

pause

plot (T_PLOT,ial_filt rss)

title ("Filter RMS Misalign Errors')
xlabel ('time, sec')

ylabel ('RSS IMU Alignment, arcsec')
pause

plot (T_PLOT,sb_filt_rss)

title ("Filter RMS Misalign Errors')
xlabel ("time, sec')

ylabel ('RSS PLB Static Bending, arcsec')
pause

plot (T_PLOT,gd filt_rss)

title ("Filter RMS Misalign Errors')
xlabel ("time, sec’)

ylabel ('RSS Gyro Drift Rate, deg/hr')
pause

plot (T_PLOT,st_filt_rss)

title("Filter RMS Misalign Errors')
xlabel ("time, sec')

ylabel ("RSS ST1 to ST2 misalign, arcsec')
pause

plot (T_PLOT,db_filt_rss)

title ("Filter RMS Misalign Errors’)
xlabel ('time, sec')

ylabel ('RSS PLB Dyn Bending, arcsec')
pause
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plot (T_PLOT,ial_err_rss)
title('True Errors')

xlabel ("time, sec')

ylabel ('RSS IMU alignment, arcsec')
pause

plot (T_PLOT,sb_err_rss)

title('True Errors’')

xlabel ('time, sec')

ylabel ('RSS PLB Static Bending, arcsec')
pause

plot(T_pLOT,gd_grr_;ss)

title ('True Errors')

xlabel ('time, sec')

ylabel ('RSS Gyro Drift Rate, deg/hr')
pause

plot (T_PLOT,st_err_rss)

title ('True Errors')

xlabel ('time, sec')

ylabel ('RSS ST1 to ST2 misalign, arcsec')
pause

plot (T_PLOT,db_err_rss)

title('True Errors')

xlabel ('time, sec')

ylabel ('RSS PLB Dyn Bending, arcsec')
pause

end

...End slm sim plotter
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%...SLM post-sim plotting script
%...User must load in the proper data file, or comment out the following:

load slm mats.mat

clg

subplot (221)
semilogy(t_plot,FILT_BMS_ERRS(1,:),’——',t_plot,abs(TRUE_ERRS(I,:)),':
xlabel ('time, sec')
ylabel ("IALL'")
subplot (222)
semilogy(t_plot,FILT_RMS_ERRS(Z,:),'—-',t_plot,abs(TRUE_ERRS(Z,:)),':
xlabel ('time, sec')
ylabel ('IAL2')
subplot (223)
semilogy(t_plot,FILT;BMS_ERRS(3,:),'—-',t_plot,abs(TRUE_ERRS(3,:)),':
xlabel ('time, sec')
ylabel ('IAL3’)

text (0.6, 0.3, 'Filt RMS Errors --', 'sc')
text (0.6, 0.2, 'True Errors : ', 'sc')
pause

clg

subplot (221)

semilogy (t_plot,FILT RMS ERRS(4,:),'--',t_plot,abs(TRUE_ERRS(4,:)),":
Xlabel ("time, sec')
ylabel ('PLB1')
subplot (222)
semilogy(t_plot,FILT_BMS_ERRS(S,:),'--',t_plot,abs(TRUE_ERRS(S,:)),':
xlabel ('time, sec’)
ylabel ('PLB2')
subplot (223)
semilogy (t_plot,FILT RMS ERRS(6,:),'--',t_plot,abs (TRUE_ERRS(6,:)),":
xlabel ("time, sec')

ylabel ('PLB3')

text (0.6, 0.3, 'Filt RMS Errors --', 'sc')

text (0.6, 0.2, 'True Errors : ', 'sc')
pause

clg

axis ([0 1000 -3 -1])

subplot (221)

semilogy (t_plot,FILT RMS_ERRS(7,:),'--',t_plot,abs(TRUE_ERRS(7,:)),":
xlabel ('time, sec')
ylabel ('GDR1'")
subplot (222)
semilogy (t_plot,FILT RMS ERRS(8,:),'--',t_plot,abs(TRUE_ERRS(8,:)),":
xlabel ('time, sec')
ylabel ('GDR2'")
subplot (223)
semilogy (t_plot,FILT RMS_ERRS(9,:),'--',t_plot,abs (TRUE_ERRS(9,:)),":
xlabel ("time, sec')
ylabel ('GDR3')

text (0.6, 0.3, 'Filt RMS Errors --', 'sc')
text (0.6, 0.2, 'True Errors 7, 'sc')
axis;
pause
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clg
subplot (221)

xlabel ("time, sec')
ylabel (*STM1')
subplot (222)

semilogy (t_plot,FILT RMS_ERRS(11,:

xlabel ('time, sec')
ylabel ("STM2')
subplot (223)

semilogy (t_plot,FILT RMS_ERRS(1Z,:

xlabel ("time, sec')
ylabel ('STM3')

text (0.6, 0.3, 'Filt RMS Errors

text (0.6, 0.2, 'True Errors
pause

clg
subplot (221)

semilogy (t_plot,FILT RMS_ERRS(13,:

xlabel ('time, sec')
ylabel ('DYN1'")
subplot (222)

semilogy (t_plot,FILT RMS_ERRS (14,

xlabel ('time, sec')
ylabel ('DYN2')
subplot (223)

semilogy (t_plot,FILT_RMS_ERRS (15,

xlabel ("time, sec')
ylabel ('DYN3')

text (0.6, 0.3, 'Filt RMS Errors

text (0.6, 0.2, 'True Errors

%...End slm post
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APPENDIX B - THE PROGRAM MC POST

The Matlab script below implements the equations given in Section 4.1.3 of this
report. Inputs are N, the number of Monte Carlo cases, and conf_limit, which may be either
0.95 or 0.99. Defaults are assigned in the script, but the user may change these values via
the keyboard while the script is running.

The program requires that two arrays containing, along their rows, the true errors
and filter rms errors (as defined in the report) for each case. Only the last column of the
array is required. The arrays should be stored in a Matlab data file (mat file). The
naming convention for these files is mc_case$.mat, where $ should be replaced by the case
number.

Note that case number 136 is excluded in the version below. This case was a
repetition of case 135.

PROGRAM LISTING

%——— SIM Monte Carlo Simulation Post Processor —--——-——=-===-=s--—-———-—-osoooo=os
N = 400
conf_limit = .95
keyboard

Tru Errs All Cases = zeros(N,15);
Filt RMS All Cases = zeros(N,15);

for i=1:N,
if {==136,1i=1i+1;end;
eval (['load mc_case',int2str(i)]);
Tru Errs All _Cases(i,:) = TRUE_ERRS(:,162)';
Filt RMS All Cases(i,:) = FILT RMS_ERRS(:,162)';
end

%...Sample mean and std dev

tru errs_est_mean = mean( Tru Errs_All Cases )
tru_errs_est_std dev = std( Tru Errs All Cases )
filt_rms_est_mean = mean{ Filt RMS All Cases )
filt_rms_est_std dev = std (Filt RMS All Cases )
pause

clc
%...Confidence Intervals

if conf limit==.950,

z = 1,960;
elseif conf_limits==.990,
z = 2,576;
else,
fprintf ('Input value of conf limit not allowable - ')
fprintf ('Re-enter')
keyboard
end



chi2_lo = gen_chi2(N-1,2);
chi2 up = gen chi2(N-1,-z);

conf_int_xbar tru = z.*tru_errs_est_std dev./sqrt (N)
lo_conf_lim sdev_tru = sqgrt( (N-1) .* (tru_errs_est_std dev.”2)./chiz lo )
up_conf_lim sdev_tru = sqrt( (N-1) .* (tru_errs_est_std dev.”2)./chiZ up )}

conf int xbar filt = z.*filt_rms_est_std dev./sqrt(N)

lo conf 1im sdev filt = sqrt( (N-1).*(filt_rms est_std dev.”2)./chiZ lo )

up_conf_lim sdev_filt = sqrt( (N-1) .* (£ilt_rms_est_std dev."~2)./chi2_up )
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examined through verification of baseline cases and Monte Carlo analyses using a
simplified simulation. The simulation uses nominal state dynamics and measurement models
from the Kalman filter as its real world models, and is programmed on a Microvax
minicomputer using Matlab, an interactive matrix analysis tool. Results are presented
which confirm and augment previous performance studies, thereby enhancing confidence in
the Star Line Maneuver design methodology. Additional analyses are suggested to
characterize the method's robustness to more diverse real world models, and to the
architecture of the data interfaces between the Aeroassist F1ight Experiment and the Space

Shuttle.
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