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The purpose of the Probabilistic Structural Analysis Methods (PSAM) project is to develop

structural analysis capabilities for the design analysis of advanced space propulsion system

hardware. The PSAM effort consists of three major technical thrusts: probabilistic finite element

methods (PFEM), probabilistic approximate analysis methods (PAAM), and probabilistic advanced

analysis methods (PADAM). The boundary, element method is used as the basis of the Probabilistic

Advanced Analysis Methods (PADAM) this is discussed in this text. In particular, the BEST3D

code developed under NASA/HOST program is modified for inclusion in the PSAM module as

NESSUS/BEM.

The probabilistic boundary element method code (PBEM) is used to obtain the structural

response and sensitivity results to a set of random variables. As such, PBEM performs analogous

to other structural analysis codes such as finite elements in the PSAM system. The probabilistic

analysis is performed by coupling PBEM and the Fast Probability Integrator (FPI) using a highly

efficient mean based algorithm. Preliminary validation studies have shown PBEM to be an accurate

tool for probabilistic analysis.

For linear problems, unlike the finite element method (FEM), the BEM governing equations

are written at the boundary of the body only, thus, the method eliminates the need to model the

volume of the body. However, for general body force problems, a direct condensation of the

governing equations to the boundary of the body is not possible and therefore volume modelling is

generally required. Since such volume modeling mostly eliminates the advantage of the BEM

procedure, a surface transformation technique based on particular integrals is used to replace th<:

volume integral by equivalent surface integrals in the current analysis.

To illustrate the particular integral procedure, consider the solution of thermoelastic problem

The surface transformation technique requires the evaluation of the particular integrals of the

inhomogeneous Navier's equilibrium equations. However, in general, the temperature field is not

known as a continuous functions, instead, the values of the temperatures are known at selected

points at the surface and volume of the body. The procedure assumes that the temperature field

then can be expressed in terms of interpolation functions and unknown densities associated with

each collocation point. Since this procedure replaces the actual temperature field by an approximate

field, the resulting integrals equations, while satisfying the equilibrium conditions, are only

approximate. A plot of the interpolated temperature field on the surface of a cube subjected to

uniform temperature shown in figure 4 indicates that the global interpolation results is in error

except at collocation points. Nevertheless, the particular integral solution procedure uses nodal

values interpolated by regular isoparametric shape functions in their computations which seems to

minimize the interpolation error effect.
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As a first example, consider the free vibration analysis of a cantilever beam. The fix-st five

normal modes shown in figure 5 using two BEM models agree well with FEM results, thus, validating

the free-vibration analysis procedure. To validate the particular integral procedure for the

thermoelastic problem, we considered the solution of hollow sphere with an external radius to

internal radius ratio of 2 subjected to linear radial temperature variation. The normalized hoop stress

compared to the theoretical results in figure 6 validates the particular integral procedure for thermal

problems. To further investigate the accuracy of the procedure for higher temperature variations,

we considered the same sphere subjected to cubic radial temperature variation. Again the agreement

between the computational the theoretical results for hoop stresses is excellent as shown in figure

7. This shows that while the interpolated temperature field is in error, the solution of the

corresponding boundary integral equations even for a higher order temperature field is still very

accurate. As a final example, we considered a hollow cylinder subjected to linear temperature

variation. We further assumed that the Young's modulus also varied linearly for this case. The

resulting hoop stress compared to FEM in figure 8 validates the material inhomogeneity procedure.

Overview of NESSUS/BEM System
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BEM Formulation for General Body Force Analysis
Does Not Use Domain Modeling

• Regular Domain BIE for Thermoelasticity

cu+f Tuds--f Utds+ S Sgdv
-- s s V-

• BIE for Particular Solution Replaces Domain Integral

cu,>-,-S-,-,.,,><,s-S_u_u,,'<,s:Sv_,_<,v
• Surface-Only BIE Replaces Thermoelastic BIE

^ f ^ f ^cu+ Tuds-- Utds
s S

^ _Pco)U=U-

t = t-- tP(o)

Particular Solutions Obtained for Approximating
Body Forces

• Navier's Equilibrium Equation (Thermoelastic)

N • u p = mV_

• Collocate 0 with Boundary Interpolation Functions

N

O"(qm)=,_, K(qm,Qn )_P (Qn) Qn_'S
n--1

• Particular Solution for Collocated Temperatures Replaces Domain
Integral

s s V-

• Surface-Only BIE for Interpolated Temperatures

_.r " .f " .r __cu+ T_" ds= Ut'ds + S(0- dV
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Interpolation Error Within the Domain

• Global Interpolation Functions

• Collocated at User-Defined

Points (Surface and Interior)

• Particular Solution Method

Minimizes Interpolation
Error Effect

• Particular Solution

Approximation Uses
Shape Functions

BIE

Error in Global Interpolation
Function for Constant Temperature

Collocation Points

15.6

Error

Normal Vibration Modes of BEM and FEM

Models Are Compared

a) BEM Map 1

b) BEM Map 2

a) FEM Map 1

b) FEM Map 2

First Five Modes of Vibration for the Cantilever Models

I ' f ........ M,,- J ..... 41M Nodes/ CPU(sec) I

Mode 1 Mode 2 ode 3,Mode ode 5 Elements VAX 8700

BEM-1 I 2686 t 544i 113485 16810 I 25382 I 44/14

2810 ! 5333--12736 16255 24523 86/28 - ?526-
.BEM-2 3033 5449 r13191 17227 125141 I 195/96 i 158

;EM:12 2885 5354__2778_i6224 __24522 I 1125.68 1....... 801 .
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Results Are Accurate

Even For Cubic Temperature Variation

Hollow Sphere
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Temperature-Dependent Thermal
Analysis Procedure Validated

Hollow Cylinder
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Current NESSUS/BEM Code Capabilities

• Linear Elastic Stress Analysis

• Centrifugal Loading Analysis

• Free-Vibration Analysis

• Thermal Analysis

• Thermal Analysis with Temperature-Dependent
Material Properties

NESSUS/FEM Future Developments

• Additional Particular Integrals -
(e.g., Steep Thermal Gradient, Linear Temperature Field)

• Elastoplastic Analysis

• Large Deformation Analysis

• Transient Analysis
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