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Navier-Stokes Analysis of Turbomachinery Blade

External Heat Transfer

Abstract

The two-dimensional, compressible, thin-layer Navier-Stokes and energy equations

were solved numerically to obtain heat transfer rates on turbomachinary blades. The

Baldwin-Lomax algebraic model and the q-co Low Reynolds Number Two-Equation

model were used for modeling of turbulence. For the numerical solution of the govern-

ing equations a four-stage Runge-Kutta solver was employed. The turbulence model

equations were solved using an implicit scheme. Numerical solutions are presented

for two-dimensional flow within two vane cascades. The heat transfer results and the

pressure distributions were compared with published experimental data. The agree-

ment between the numerical calculations and the experimental values were found to

be generally favorable. Tile position of transition from laminar to turbulent flow was

also predicted accurately.
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Axial distance

Physical Cartesian coordinates

Symbols

Constant in the q- _., equations = 0.0065

Specific heat ratio

Turbulence dissipation rate

Transformed coordinate transverse to the body

Kronecker delta

Thermal conductivity of the fluid
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Kinematic viscosity

Transformed time
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Density
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Introduction

Modern gas turbines operatc at high temperature and pressureto achieveim-

proved efl:iciencies.The design of such enginesfor extendedperiods of operation

requiresan extensiveknowledgeof heat transferrates. Integral boundarylayer meth-

ods represent the simplest mcthods which may be used to determine heat transfer

but, becauseof the many assumptionsmade in their development,have a limited

range of applications. Therefore, thesemethods areoften employedin preliminary

designapplications. Differential boundarylayermethodsusingparabolicsolverssuch

as CENMIX [1] are more of a standard p.racticefor calculation of heat transfer. A

popular computercodefor this purpose,namelySTAN5[2], wasdevelopedovermany

yearsalong with a parallel experimentalprogramon the fundamentalsof convective

heat transfer. This codeincorporates many empirically obtained tools to make the

modeling of such phenomenaas laminar/turbulent transition and the effect of tur-

bulencepossible.The differential-methodhasa wider rangeof application compared

to the integral method. The method, however,fails near stagnation and separation

points. It also requires the specification of starting profiles near the leading edge

and the prescription of the flow velocity or the pressuredistribution at the edge

of the boundary layer. This boundary specificationneedsto be performed for the

turbulence model parameters if one opts to usea model which employsdifferential

equations (e.g. two- equation models,Reynoldsstressmodels, etc.). Many sugges-

tions have been made regarding the form and the manner in which suchboundary

conditions areto be specified[3-7]. In viewof the fact that the solution is sensitiveto

the starting profile and to the free streamboundarycondition, analternative method

is desirable.

In a blade cascade,the flow conditions are very complexand many complicating

phenomenaare at work simultaneously.A list of the more important flow phenom-
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ena and blade characteristics affecting the blade heat transfer would contain: laminar,

transitional and turbulent flows; stagnation flow; acceleration and deceleration; free

stream turbulence; separation; curvature; surface roughness; Mach number effects;

transpiration; shock boundary layer interaction; and flow unsteadiness. It is desir-

able that the method of analysis have the capability to account for the above effects.

The ideal approach would be to solve the unsteady Navier-Stokes equations. How-

ever, the large computer time and memory requirements make this approach as yet

impossible. The blade-to-blade solution of the Reynolds averaged Navier-Stokes equa-

tions along with a suitable model of turbulence is an alternative that can be utilized

as a design tool. Some authors have calculated friction and/or heat transfer using

time-marching methods originally devised for inviscid Euler calculations. Carter et

al. [8] and Marconi and Wilson [9] have discussed the contamination of the velocity

and temperature profiles in the boundary layer which comes about as a result of the

smoothing operation performed to prevent oscillations and odd-even decoupling. In

references [8-10] special care was taken to minimize this problem.

In the work, presented herein, the two-dimensional, compressible, Navier-Stokes

and energy equations were solved using a time-marching scheme to obtain heat trans-

fer rates on turbomachinery blades. For the turbulent closure problem, two models

were employed, namely, Baldwin-Lomax algebraic model and q -w low Reynolds

number two-equation model. The formulation of the problem and the turbulence

models employed, are discussed next, numerical issues and results are presented sub-

sequently.

Formulation

As discussed in the introduction, direct solution of the Navier-Stokes equations

is impractical because of the very small grid size requirement. To circumvent this



problem, the mass-averaged (Favre) Navier-Stokes equations are used. The mass-

weighted averaging helps to simplify the formulation of the turbulent compressible

flow but it does not eliminate the need for closure assumptions. In this work, the

Baldwin-Lomax algebraic model [11] and the q- w low Reynolds Number model of

Coakley [12] were employed.

Governing Equations

The mass-weighted time-averaged governing equations in the conservation law

form in body-fitted coordinates as given in [13] will be given. The general transfor-

mation is:

0 = t; _ = _(_,u); _ = _(x,y) (1)

which is used to transform the physical domain (z, y) to the computational domain

(_, 7). The governing equations in the transformed coordinates are:

where
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The transformed viscous terms are:

(3)
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Constant values of Pr = 0.71 and PrT = 0.9 were used for all the calculations.

The temperature differences within the cascades are not large enough to warrant

the use of a variable PrandtI number. Comparing the results obtained using both a

variable and a constant value of PrT, Boyle [10] concluded that the differences in the

results were small. This is understandable if one realizes that the contribution of the

term #T/PrT, in the region very close to the wall is very small. This also happens to

be the region in which variable Prandtl number models show a large value for Prr .

The thin-layer approximation, as discussed by Baldwin and Lomax [11], was used

to simplify tile coding.

Body-Fitted Grid Generation

The quality of the computational grid is vital to the success of the numerical

computations. The grid has to be fine enough in locations where large gradients are

present (such as near the walls and in the vicinity of the stagnation points). They

also need to be coarse where these gradients are not as severe (free stream, far wake,

far upstream) to make the computations more economical.

There are a number of different methods for generating such grids. Algebraic,

hyperbolic and elliptic methods are common ways of accomplishing the task. In this

work elliptic mesh generation is employed to construct a C-type grid. The advantage

of this method is that the grid so generated is smooth and free of discontinuities. A

code called GR.APE which was developed by R. Sorenson [14] is employed for this



purpose.

Baldwin-Lomax Zero-Equation Turbulence Model

This model [11] is a two-layer model that divides the boundary layer into an inner

layer where the viscous effects are dominant and an outer layer where the turbulence

effects are of more significance. This model is based on the well-documented Cebeci-

Smith [15] model. The inner region is modeled in nearly the same way as the Cebeci-

Smith model. It uses the magnitude of the vorticity in the inner region in contrast

to the Cebeci-Smith model which uses the shearing strain. The need to calculate the

boundary layer and the displacement thickness is eliminated by replacing the length
i

scale by one which is easily computed. The frde stream turbulence is not a variable in

this model, therefore the influence of the free _tream turbulence on the heat transfer

I

rate cannot be modeled using this model. Recently Boyle [10] has made modifications

to this model to account for several effects not included in the original model. This

model can be easily programmed and is popular in the CFD community.

q-aJ Low Reynolds Number Turbulence Model

It is well known that the heat transfer on turbomachinery blades is affected by

the level of the free stream turbulence. The q - w model of Coakley [12] was chosen

to help simulate the effects of free stream turbulence and model transition. The

constants which determine the high Reynolds number behavior of the model were

determined as a result of the direct transformation of the high Reynolds number

model proposed by Jones and Launder from k and e to q = v_" and ¢o = e/k



with the kinetic energy assumedconstant in the diffusion terms. The low Reynolds

number part of the model wasconstructed by the choiceof damping functions that

reasonablyproduced the skin friction and profiles of velocity and kinetic energy in

calculation of low-speedboundary layer and pipe flows. As describedby Coakley, the

unusualchoiceof q in place of k eliminates the need for additional terms to balance

molecular diffusion. The chosen turbulence model has superior numerical behavior

compared to the k - e model. This can be understood if one considers the behavior

of those parameters close to a wall. Close to a wall k and e are both proportional to

y2, but q is proportional to y and w is constant making the present model less stiff.

The model equations cast in the conservation form are:

OQ OE OF OR OT

o-7+_- +N = (_- + N ) + s
[where the flux vectors are defined as

(._)

(6)

F = j-I ( pVq ) j-l((#+_)(q(ml+q'rn2) )

T=j-I( (li+_z'_,)(q_m:+q"ma) )(_,+ Z)(_o_m_+_,_3)

In the above, ml = (2 + (y: , m2 = _._. + (_T/y ,ma = rl_2 + %2 .

The source terms of the model are:

S = j-I (1/2(C,,DP/w2 -1- _D/w)Pwq )(C,(C,,P/w _ - _V/w) - C=)_.,:
(7)

in which

D = [1- _=v(-m/_r)]



where the term ReT = qy/u is the turbulence Reynolds number. In tensor notation,

D = Uk,k

is the divergence of the velocity field,

2

$ = (u,.j + uj,i - "_&,juk,k)ui,j

is the strain rate invariant, and

2

P = _TS - -_pkT)

is the rate of production of turbulent kinetic energy.

The turbulent viscosity is defined as:

(8)

#T=C,D_ pk (9)
r _O

The process of transition, as simulated by the low Reynolds number two-equation

models is described by Patankar and Schmidt [6]. Their description of the process

is as follows: The convection and diffusion of kinetic energy into the boundary layer

increases the "production" term in the modeled kinetic energy equation which in turn

causes a rapid increase in k or q and #T • This is how the transition process

is simulated. The process then slowly decays and stabilizes due to the low Reynolds

number functions and the influence of the boundary conditions. This they conclude,

limits the usefulness of such models to flows for which the free stream turbulence is

the cause of transition.

The method of solution adopted was an implicit scheme and is discussed in a later

section.

Boundary Conditions
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Chima [13]presentsthe details on the stablemethod of specification/calculation

of the boundary conditions for the solution of the mean-flowequations.

The boundary conditions on q and w were set up in the following manner:

Inlet- At the inlet of the calculation domain the value of q is specified using the

experimental conditions, namely:

q = {1.5(Tu,.,o,

The value of oa is specified in the following manner: First a value for e is estimated.

To accomplish this, an estimate for the dissipation length scale is required. This length

scale is usually not reported as a part of the experimental conditions. For cascade

conditions the dissipation length scale is assumed to be equal to a certain percent of

the pitch. For example Hah [16] assumed a dissipation length scale equivalent to 1.0%

of the pitch. This assumption was made in the course of the calculations performed

in this work. With the assumed length scale, one now proceeds to make an estimate

of the rate of dissipation at the inlet.

e = ka/2/g and (11)

Wall- The boundary conditions for the turbulence parameters on the wall are:

c%a

q=0 and On -0 (12)

where n is in the direction normal to the wall.

Exit- The exit boundary conditions were computed by assuming the second deriva-

tive of q and 0a to be zero in the streamwise direction.

Periodic Boundary- The periodic boundary was treated as an interior point. It

should be noted that the boundary conditions were imposed explicitly.

Numerical Scheme
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The quasi-three-dimensionalviscous code (RVCQ3D) developedby Chima [13]

is utilized to predict the meanflow. The codeemploysan explicit, finite-difference,

multi-stage,Runge-Kutta algorithm. The multi-stageRunge-Kuttaschemedeveloped

by Jameson,Schmidt, and TurkeI [17] is usedto advancethe flow equationsin time

from an initial guessto a steadystate. Local time stepping and residualsmoothing

are used to help stabilize the schemeand accelerateconvergence.The convective

terms areevaluatedat everystageof the scheme.The diffusive and dissipative terms

are evaluatedat the first and secondstageof the schemeto improve stability and

convergence.The residual smoothing is alsoperformedat all of the four stagesof the

Runge-Kutta scheme. The Beam-Warmingapproximate factorization [18] implicit

schemeis usedfor the solution of the q -w model equations. This results in a

two-by-two system of coupled equations. The equations are coupled through the

Jacobian of the source term matrix. This m_trix was replaced by a simple diagonal

form suggested by Coakely [12], namely:

where

and

D = hi (13)

.x= + (14)

J #T (15)

Coakley reports that the above choice maintains the diagonal dominance of the

. implicit tridiagonal solver.

This resulted in decoupling of the model equations and thereby a reduction of the

computing time per iteration.

Artifi'cial Dissipation
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As discussedpreviously,when using central differencingin the convectionterms

it is necessaryto add artificial damping to preventthe occurrenceof instability in the

solution algorithm.

It was noticed in the courseof this work and it has been reported by others

including Marconi and Wilson [9] and Davis, Ni and Carter [8], that the artificial

dissipationhasa detrimental effecton the prediction of heat transfer and wall shear

stress. It has to be reducedto zero in the region very closeto the wall. This was

accomplishedby multiplying the scaling coef_cients of the artificial dissipation terms

by the factor, [MIN[(j/j,d_e)*, 1], where j is the index in the 77 direction and jedg,

is an estimate of the index of the edge of the boundary layer, z is a positive real

number between 2 and 5. Admittedly the above method is ad hoc and needs to be

substituted with a better scheme.

Results and Discussion

The experimental configurations chosen for comparisons are two for which there

is extensive data available. These are: first stage stator from the large low-speed

experiments of Dring et al. [19] and stator vane from the experiments of Hylton et

al. [3], designated as the C3X airfoil.

Code validation was performed prior to the above calculations using theoretical

correlations available on flat plate [20].

The algebraic and the two-equation models required approximately 40 x 10 -8 and

85 x 10 -6 seconds per iteration per grid point respectively. The memory requirements

for all the cases were below 2.0 megawords. Computations were performed on the

NASA Lewis Cray-XMP.
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The heat transfer parameterswere plotted as presentedin the respectiverefer-

ences.They aredefinedasfollows:

ql!

H= w
- To( .z O (16)

H

st- p o c,,v o (17)

where H is the heat transfer coefficient and q"_,, T_, and To(;,uO are the wall heat

flux the wall temperature and inlet total temperature respectively. St, p_e/, Cp

and V_,! are the Stanton number, the reference density, heat capacity and reference

velocity. The wall heat flux is computed using

OT

= (is)

Large Low-Speed Cascade

In this section, the results obtained for the first-stage stator of tlle large low-

speed cascade of Dring et al. [19] will be discussed. The Reynolds numbers are

representative of the conditions in turbomachinery. However, the inlet Mach numbers

are consistently below 0.1 in all the experimental runs in [19]. The very low Mach

number and the constant wall heat flux boundary condition makes this test require

an inordinate number of iterations to converge. The final approach to convergence

was extremely slow. It should be noted that the flow pressure converges long before

the heat transfer quantities. The number of iterations required for convergence was

about 30,000 to 40,000 when the Baldwin-Loman model was used. The runs using

the two-equation model were started from a converged solution using the algebraic

model and required an additional 12,000 iterations.

The stator geometry and a typical grid which was employed for the discretization

of the equations are presented in figure 1 . The Reynolds number based on the axial

14



chord and exit velocity wasapproximately 250,000correspondingto the designcon-

dition of the cascade.The inlet total temperatureand wall heat flux wereprescribed

asper the experimentalconditions. The spacingof the first point awayfrom the wall

waschosensuchthat the value of y+ waslessthan unity. Two levelsof turbulence

were considered,namely, 0.5% and a grid-generated9.8% turbulence level. Figure

2 showsthe comparison betweenthe calculatedsurfacepressurevariations and the

experimentalmeasurementsfor the aboveReynoldsnumber.

Figures3 and 4 show the experimentaland the predictedheat transfer for the two

runsof large low-speedcascadeconsideredin this work. Laminar flow calculationsare

also includedfor comparison. The experimental results for the low turbulence level

of 0.5% reveal that the flow on the pressuresurfaceis mainly laminar and that only

near the trailing edge doesit appear to turn transitional. The flow on the suction

side, however,doesbecomefully turbulent. ,Thetransition to turbulent flow on the

suction surfacefor this case,appearsto havebeen influencedby the changefrom a

favorableto an adversepressuregradient. In t_hecaseof the grid-generatedturbulence

of 9.8%, the pressuresurfaceflow appearsto be in a prolonged transition process.

The onsetof transition on the suction surfaceis further upstreamascomparedto the

caseof low free stream turbulence. As suchit can be concludedthat the transition

is inducedby the free stream turbulence.

Figure 3 showsthe results obtained for the low free stream turbulence. For the

Baldwin-Lomax model, two grid arrangementswere considered,namely, a coarse

150x 30 grid and a fine 200 × 50 grid. The Stanton number is basedon the exit

velocity and density. The fit to the data is satisfactory for both grids. The position

of transition from laminar to turbulent flowon the suction sidewasspecifiedfor this

calculationusingthe experimentaldata. The result presentedusingthe q-w model

was obtained on the fine grid. The position of transition on the suction surface was

not specified and was predicted. The heat transfer agrees well with the experimental

data. The pressure surface was predicted to be laminar and heat transfer agrees with

15



experiments.

Figure 4 showsthe results obtained for the high free stream turbulence. The

computation using the Baldwin-Lomax model wasperformedon the fine grid where

the locationsof the onsetof transition on the suction surfacewasspecifiedasdeduced

from the experimental results. The pressuresurfaceboundary layer wasassumedto

be fully turbulent. Therefore, the onset of transition was specifiedto be somewhat

downstreamof the stagnationpoint. For the two-equationmodel,an evenfiner 250x

50 grid wasused.This wasdonebecausethe flow remainedlaminar on the pressure

surfaceona coarsergrid. Further refinementof thegrid wasnot performedbecauseof

the largecomputational work required. Ascan beseenfrom figure 4, the suction side

transition to turbulent flow aspredicted by the Baldwin-Lomax model is abrupt and

doesnot conform to the experimental results. This is becauseBaldwin-Lomax model

does not accountfor the processof transitior_. The heat transfer in the turbulent

regimeis well predicted. The suction surfaceheat transfer is successfullypredicted

using the two-equationmodel. The pressuresurfaceheat transfer is underpredicted

for both modelsand may be due to the coarsegrid in the streamwisedirection. The

stagnation heat transfer for this caseis augmentedby the high level of free stream

turbulence. This cannot be predicted by the present algebraic model. There are

algebraicmodelshowever,that can accountfor sucheffects [10]. The two-equation

model correctly predicted the heat transfer near stagnation. This may be fortuitous

since it is known that eddy viscosity type modelsare generally not suitable for the

stagnation region. The main reasonfor the weaknessof the two-equationturbulence

models in predicting the stagnation flow heat transfer is the useOfthe Boussinesq

hypothesis. This hypothesisworks well for shear-dominatedflows, but in the case

of stagnation flows wherethe production of turbulence is dominated by the normal

stresses, this approximation is inaccurate.
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Run PT(pa) TT(°I() Tw(OK) M2 Re2x 10 -6 TuN

149 4743 795 657 0.92 1.51 6.5

158 4707 808 592 0.91 1.47 8.3

109 6208 796 665 0.90 1.96 6.5

I13 6248 781 600 0.89 2.02 8.3

Table 1: C3X Cascade Runs

C3X Vane of Hylton et al.

The next set of cases considered was the data of Hylton et al. [3] which were

obtained with a cascade of vanes with the designation of C3X. The airfoil is rep-

resentative of the highly-loaded low-solidity airfoils currently employed. Four runs

were chosen such that the effect of the Reynolds number and the inlet free stream

turbulence could be studied. The conditions of these runs and their numerical des-

ignations are summarized in Table 1. In the table, TT and PT are the inlet total

temperature and pressure respectively and Tw is the wall temperature. The walI

to gas temperature ratio, Reynolds and Mach number numbers are representative of

engine operating conditions.

Figure 5 shows the cascade and a typical grid employed for the discretization.

Other pertinent physical dimensions can be found in reference [3]. The surface pres-

sure variation comparison for Run 149 is presented in figure 6. In that figure, the

abscissa is the distance from the leading edge, normalized by the axial chord. The

pressure side experiences a favorable pressure gradient along the surface, while on the

suction side the pressure gradient is favorable to approximately the mid-chord where

it becomes adverse.

Runs were made using the algebraic model for cases 149 and 109, with two grids

of 150 x 50 and 200 x 60 point densities. Figures 7 and 8 show results obtained

using both of the models. Laminar flow and two-equation model calculations are also
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included for comparison. In common with the results presentedin [3], tile actual

heat transfer coefficient is normalized by a referenceheat transfer coefficient No

equal to 1135 watts/M=/°K. The abscissa is the surface distance measured from the

stagnation point and is normalized by the suction or the pressure surface arc lengths.

The value of y+ for these runs was consistently chosen to be of the order of 0.5. The

wall boundary condition was constant temperature. Typically, 4,000 iterations were

required to obtain converged heat transfer results for the algebraic model.

When using the algebraic model, the locations of the onsets of transition on the

the two surfaces were prescribed to best match those of the experiments. The heat

transfer is overpredicted when the algebraic model is used. It should be noted however

that in reference [3], the flow on the pressure surface is characterized as transitional

and not turbulent. This could e.-,cplain the disagreement between the experimental

and the predicted results on the pressure surface.

The two-equation model was run on the fine grid. It was applied to all four cases.

The computations typically required an additional 8,000 iterations to converge. Com-

parisons with the experimental data are shown in figures 9 and 10. The following

conclusions were drawn from the results of the two-equation model calculations: 1)

The onset of transition from laminar to turbulent flow is correctly predicted for aI1

four cases, however, the heat transfer is underpredicted prior to transition and over-

predicted at the end of the transition process; 2) the enhancement of the heat transfer

as a result of an increase in the free stream turbulence and wall to gas temperature

ratio has been successfully simulated; 3) there is very good agreement for the pressure

side for all the four cases; 4) there is an overestimation of the stagnation point heat

transfer, the reasons for which have already been explored; 5) the transition from

laminar to turbulent flow is not smooth.
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Concludlng Remarks

Predictions were made of the heat transfer rates on turbine vanes using a Navier-

Stokes solver. This is a departure from the common practice of using boundary layer

methods to perform this task. The latter requires information on the free stream

velocity or pressure which are obtained from experiments or a separate computer

program that would solve the Euler equations to extract this information. Other in-

formation such as the distribution of the free stream turbulence and the length scale

are separately derived by solving the reduced forms of the appropriate equations. The

present method does away with that and has the added advantage that it can solve

separated flows as well as attached flows. The Baldwin-Lomax algebraic model and

Coakely's two-equation model were used in an attempt to account for the turbulence

effects. Algebraic models are easy to implement computationally, and do not have the

added computational expense of solving the extra model equations and the accompa-

nying convergence difficulties. They are therefore good candidates for a first attempt

to estimate the heat transfer coefficients in the turbomachinery environment. The

influence of the free stream turbulence on transition from laminar to turbulent flow

and its enhancement of heat transfer on the turbomachinery blades is well-known. It

was shown that this influence can be accounted for, albeit at a higher cost in com-

puter time, by the use of the two-equation model. There is room for improvements

however, as the predictive capability of the model is not equally satisfactory for the

cases considered. A more comprehensive study is required to determine the causes of

the deficiencies.

Again, it should be stressed that more work is needed to improve the turbulence

models, but it is felt that the general approach pursued in this work shows promise for

future attempts at obtaining engineering estimates of the ,heat transfer characteristics

of turbomachinery blades.

19



Acknowledgement

The work presented herein, was supported by NASA Lewis ResearchCenter

through grant NAG 3-548.

20



References

[1] Patankar, S. V. and Spalding D. B., Heat and Mass Transfer in Bound-

ary Layers, 2nd ed., Intertext, London, 1970.

[2] Crawford, M. E. and Kays, W. M., "STAN5- A Program for Numeri-

cal Computation of Two-Dimensional Internal and External Boundary

Layer Flows," NASA CR-2742, 1976.

[3] Hylton, L. D., Turner, E. R., Mihelc, M. S., Nealy, D. A. and York,

R.E., "Analysis and Experimental Evaluation of the Heat Transfer

Distribution over the Surfaces of Turbine Vanes," NASA CR-168015,

May 1983.

[4] Wang, J. H., Jen, H. F., and Hartel, E. O., "Airfoil Heat Transfer

Calculation Using a Low Reynolds Number Version of a Two-Equation

Turbulence Model," Journal of Engineering for Gas Turbine and Power,

Vol. 107, Jan. 1985., pp. 60-67.

[5] Rodi, W. and Scheuerer, G., "Calculation of Heat Transfer to

Convection-Cooled Gas Turbine Blades," Journal of Engineering for

Gas Turbines and Power, Vol. 107, July 1985, pp. 620-627.

[6] Schmidt, R. C. and Patankar, S. V., "Two-Equation Low Reynolds

Number Turbulence Modeling of Transitional Boundary Layer Flows

Characteristic of Gas Turbine Blades," NASA CR-4145, May 1988.

[7] Zerkle, R. D. and Lounsbury, R. J., "The Influence of Freestream Turbu-

lence and Pressure Gradient on Heat Transfer to Gas Turbine Airfoils,"

AIAA paper 87-I917, 1987.

[8] Carter, J. E. Davis, L. D., Ni R. H., "Cascade Viscous Flow Analysis

Using the Navier-Stokes Equations," AIAA paper 86-0033, 1986.

21



[9] Marconi,F. and Wilson, G., "The Computation of the BoundaryRegion

Using the Thin-Layer Navier-StokesEquations," AIAA paper 88-0231,

1988.

[10] Boyle, R. J., "Navier-StokesAnalysis of Turbine Blade External Heat

Transfer," ASME Paper90-GT-42, 35th ASME International GasTur-

bine and AeroengineConferenceand Exposition, Brussels,1990.

[11] Baldwin, B. S. and Lomax, H., "Thin-Layer Approximation and Al-

gebraic Model for Separated Turbulent Flows," AIAA paper 78-0257,

1978.

[12] Coakley, T. J., "Turbulence Modeling Methods for the Compressible

Navier-Stokes Equations," AIAA paper 83-1693, 1983.

[13] Chima, R. V., "Development of an Explicit Multigrid Algorithm for

Quasi-Three-Dimensional Viscous Flows in Turbomachinery," AIAA

paper 86-0032, 1986. (NASA TM-87128, 1986)

[14] Sorenson, R. L., "A Computer Program to Generate Two-Dimensional

Grids About Airfoils and Other Shapes by the Use of Poisson's Equa-

tion," NASA TM-81198, MAY 1980.

[15] Cebeci, T. and Smith, A.M.O., Analysis of Turbulent Boundary Layers,

Academic Press, 1974.

[16] Hah, C., "A Numerical Modeling of Endwall and Tip-Clearance Flow

of an Isolated Compressor Rotor," AIAA Journal, Vol. 108, Jan. 1986,

pp. 15-21.

[17] Jameson, A., Schmidt, W. and Turkel, E., "Numerical Solutions of the

Euler Equations by Finite Volume Methods Using Runge-Kutta Time-

Stepping Schemes," AIAA paper 81-1259, 1981.

22



[18] Tannehill, John C., Anderson,Dale A. and Pletcher,RichardH., Com-

putational Fluid Mechanics and Heat Transfer, Hemisphere Publishing

Corporation, New York, 1984, pp. 489-496.

[19] Dring, R. P., Blair, M. F., Joslyn, H. D., Power, G. D., and Verdon,

J. M., "The Effect of Inlet Turbulence and Rotor-Stator Interactions on

the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine

Model," NASA CR-4079, 1986.

[20] Ameri, A. A., Navier Stokes Analysis of Turbomachinery Blade External

Heat Transfer, Doctoral Dissertation, Cleveland State University, 1990.

23



Figure 1: Large Low speed Cascade and a Typical Grid

Figure 2: Pressure Distribution on the Large Low Speed Vane, Re = 250,000

Figure 3: Stanton No. on the Large Low Speed Vane, Re = 250,000, Tu = 0.5%

Figure 4: Stanton No. on the Large Low Speed Vane, Re = 250,000, Tu = 9.8%

Figure 5: C3X Vane Cascade and a Typical Grid

Figure 6: Pressure Distribution on the C3X Vane, Case 149

Figure 7: Heat Transfer Coefficient C3X Vane, Case 149

Figure 8: Heat Transfer Coefficient, C3X Vane, Case 109

Figure 9: Heat Transfer Coefficient, C3X vane, Cases 149 and 158

Figure 10: Heat Transfer Coefficient, C3X Vane, Cases 109 and 113
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