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EXECUTIVE SUMMARY

This final report presents a synopsis of the On-Orbit Compressor Technology
Program performed by Southwest Research Institute for NASA-JSC under Contract No.
NAS9-18051. The objective is the exploration of compressor technology applicable for
use by the Space Station Fluid Management System, Space Station Propulsion System, and
related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-
art in natural gas compressor technology to the unique requirements of high-pressure, low-
flow, small, light, and low-power devices for on-orbit applications. This technology is
adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

The compressor technology development is based on detailed performance
modeling and breadboard testing. The comprehensive digital time domain model used as a
design tool includes: cycle thermodynamics, real gas properties, in cylinder heat transfer,
valve dynamics, ring leaks, piston friction, attached piping acoustic effects, and piston
inertial effects. The design concept is an eccentric crankshaft with anti-friction bearing
driven pistons and actuator return springs. Self-lubricated guide and seal rings are used to
center the piston and maintain gas pressure. The driving means is a variable speed electric
motor. Active cooling is used at the cylinder walls and pulsation bottles.

The prototype compressor developed under this project is intended for compressing
oxidizing gas mixtures for storage/disposal. This waste gas comes from experiment
modules and is discharged into a vessel initially at 100 psia. The compressor pumps the
vessel up to 1000 psia. The prototype design is a 3-cylinder, two stage reciprocating
piston type compressor with pressure actuated check valves. The total displacement is
0.625 cubic inches. The unit weighs 30 pounds and fits into an envelope of 0.5 cubic feet.
The maximum power requirement is 500 watts and the estimated life is 9500 hours.

The overall conclusion is that compressor technology has been developed for on-
orbit applications that balances all of the complex design requirements, and is provided
within a time frame consistent with the Space Station Freedom schedule. The test program
has documented that the performance of the prototype compressor meets the EIS
requirements.



1.0 INTRODUCTION

Space Station Freedom is the first on-orbit application requiring mechanical gas
compression devices. All prior on-orbit applications have utilized pressurized tanks to
supply high-pressure gas. On-orbit applications constitute a unique set of design
requirements that cannot be met by existing gas compressor technology. This unique
combination of requirements is for high-pressure, low-flow devices with minimum size,
weight, and power along with the need for low maintenance, long life, and component
commonality between compressor applications.

The objective of this project, therefore, is the exploration of compressor
technology applicable for use by the Space Station Fluid Management System (FMS),
Space Station Propulsion System, and related on-orbit fluid transfer systems. The
approach is to develop conceptual designs for seven on-orbit applications, develop a
detailed design of a prototype for one of these applications, fabricate this prototype and
verify it's performance. As a result of this technology development effort subsequent
projects will translate this technology into flight hardware in a time frame consistent with
the support of Space Station Freedom and future on-orbit missions.

The starting point for this Technology Development Program was Southwest
Research Institute's 30-year history in compressor technology for the natural gas industry.
The state-of-the-art (SOA) for this technology is based on large, heavy, high-pressure, and
high-flow natural gas compressors. This project concentrated on adapting this SOA to the
unique requirements for on-orbit applications. As a part of this effort, a prototype unit for
one on-orbit application was designed, built, and tested. During the course of this project,
however, a number of significant changes occurred in the Space Station program. These
changes included a continual evolution of Space Station requirements, a continual evolution
of the Fluid Management System operating conditions, and a new requirement for
endurance testing of the prototype at NASA-JSC. These affected the End Item
Specifications for a number of the applications, as well as the prototype. '

Specific modifications required an investigation of: (1) trace contaminants, (2)
life extension (increase in life goal by a factor of 10 beyond current SOA), (3) compressor
vibrations, and (4) design changes due to new operating conditions.



Since this is a Technology Development Program, the significance of the results
from this project can be applied to the ever changing technical requirements of the Space
Station program, and not that a specific piece of hardware meets a new operating condition.
Once final requirements are fixed, the technology developed during this program can be
used as a basis for producing a piece of flight hardware.

The initial contract required the delivery of all hardware developed during the
project. However, the need to deliver a working prototype for long-term endurance testing
is outside this requirement. Since the primary objective of this project was not hardware
development, the first prototype was developed for performance testing and verification
only. Prior to any long-term endurance testing with this unit, it should be upgraded based
on results of this initial project. ’

This final report documents the results for the entire on-orbit compressor
technology program. The following chapters summarize the major project phases of
conceptual design, detail final prototype design, and prototype verification program, and
analysis of results. Detailed phase reports for each of these phases are included in the
appendices of the report.

2.0 CONCEPTUAL DESIGNS

The conceptual design layout is illustrated in Figure 1. This design places
emphasis on simplicity and a minimum number of components. The requirement for
commonality is met by a discrete number of cylinder bores and stroke combinations. The
cylinder sizes required to satisfy the range of requirements for this program are quite small
in displacement, and therefore, warrant unique design concepts to satisfy the range of flow,
gas properties, and pressure ratio requirements. High performance and good efficiency are
required for these very small, multi-stage compressors. Therefore, we must pay special
attention to factors which detract from efficiency, while keeping in mind durability, size,
weight and power. The basic efficiency issues for these small cylinders are mechanical
friction, valve and piston seal leakage, and heating effects.

The basic design concept is the employment of an eccentric crankshaft with anti-
friction bearing driven pistons and piston return springs. Self-lubricated guide and seal
rings are used to center the piston in the cylinder and maintain gas pressure. The driving
means is a variable speed electric motor and check valves are used for gas suction and
discharge. Active cooling is used at the cylinder walls and at the discharge accumulators

for each stage.
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The compressor requirements for the seven applications cover a wide range of gas
properties, pressure, temperature, flow, and duty cycle. The fluid systems of interest are:
(1) Space Station Integrated Waste Fluid System (IWFS), (2) Space Station Integrated
Nitrogen System (INS), (3) Space Station Propulsion System, and (4) Orbital Space Craft
Refueling System (OSCRS). The specific applications are as follows:

Type I: Space Station IWFS - Reducing Gas Mixture Storage/Disposal

Type II: Space Station IWFS - Oxidizing Gas Mixture Storage/Disposal
Type I:  Space Station INS - Nitrogen Gas Storage/Resupply

TypeIV:  Space Station Propulsion System - Hydrogen Gas Storage/Resupply
Type V: Space Station Propulsion System - Oxygen Gas Storage/Resupply
Type VI.  OSCRS - Pressurant Gas Resupply |

Type VI OSCRS - Ullage Gas Recompression

The detailed operation requirements are summarized in Table L. Significant problems and
challenges are presented by these requirements, and no existing hardware is currently
available to meet the specifications. As an example, the Type I application requires
compression of a reducing gas mixture consisting largely of hydrogen, carbon dioxide, and
nitrogen from 0.12 MPa (18 psia) up to 8.3 MPa (1200 psia), a total pressure ratio of 67:1,
on a continuous basis, with a 10,000 hour operating life goal. Employing a conventional
approach, this would be accomplished by a reciprocating compressor using three or four
stages driven at relatively high speeds, resulting in very small or miniature cylinders. An
early selection for the fourth stage for the Type I application was a cylinder with a 0.0095
meter (0.375 inch) bore, a 0.0022 meter (0.086 inch) stroke driven at up to 3300 RPM.
The problems posed by such miniature cylinders, valves, and other compressor
components were apparent early on, but developments during this project have allowed a
reversal toward more acceptably sized cylinders (larger) driven at low speeds.

The Type VII application presents a unique challenge since the compression of
helium saturated with hydrazene, having a maximum safety limit of 71.1°C (160°F), is
required from an initial pressure of 2.76 MPa (400 psia) up to 31 MPa (4500 psia). The
problem here, based on conventional compression technology, is to achieve this total
pressure ratio (11.25:1) employing a reasonable number of stages without ever exceeding
71.1°C (160°F) at any point of the compression cycle. Based on the starting temperature of
51.7°C (125°F), and assuming isentropic compression with no precooling, the first stage
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pressure ratio could not exceed 1.156:1, hence, many stages would be required. The
thermal problem for this application is further compounded by the lack of a liquid cooled
heat sink (ammonia buss duct) which is available for most other applications.

The compressor conceptual design is based on detailed performance modeling and
breadboard testing (summarized in the Prototype Design Final Report included in Appendix
B) to verify the model. The comprehensive digital time domain model includes cycle
thermodynamics, real gas properties, in cylinder heat transfer, valve dynamics, ring leaks,
piston friction, attached piping acoustic effects, and piston inertial effects. Besides
predicting the compressor performance, the simulation model also provides prediction of
several mechanical components such as: actuator bearing B-10 life, seal ring wear, actuator
interface contact stress/life, valve stress/life, return spring stress/life, and piston loading.

Table II shows the basic conceptual design and performance information for the
compressors for all seven applications which were outlined in Table I. The top section of
Table II shows design data, including number of stages, bore, stroke, and cylinder
clearance factor (CF). The full range of compression required by these seven applications
is covered by three distinct cylinder sizes, or:

. 1 inch Bore x 0.8 inch Stroke
. 0.875 inch Bore x 0.48 inch Stroke
. 0.500 inch Bore x 0.25 inch Stroke

The compressor for the Type II application, which was carried to the prototype
hardware stage as part of this project, consists of two stages. The first stage employs two
identical cylinders with a bore of 0.875 inches and a stroke of 0.48 inches. The second
stage has a single cylinder with a bore and stroke of 0.500 and 0.250 inches, respectively.

All other applications, with the exception of Type III, employ two stages with
single cylinders per stage, each stage cylinder differing in bore and stroke. The Type I
application employs identical cylinders for first and second stages (0.500 inch bore and
0.250 inch stroke) with proper loading accomplished by the selection of interstage
pressure.

The second two sections of Table II show predicted performance data for each
application. The suction, interstage, and discharge pressures are denoted by Ps, Pis, and
Pd. Effective suction temperature at the cylinder intake valve (not the gas temperature at the
compressor unit) is denoted by Ts.
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Predicted flow rate is shown in the bottom portion of Table II for the conceptual
design rotational speeds indicated. In general, each flow rate equals or slightly exceeds the
values shown in Table L.

3.0 DETAIL PROTOTYPE DESIGN

The Type II prototype compressor developed under this project is intended for
compressing an oxidizing gas mixture for storage/disposal. The waste gas comes from
experiment modules and is discharged into a storage vessel initially at a minimum pressure
of 100 psia until the vessel is pumped up to the upper design pressure of 1000 psi. Some
of the general design specifications for compressor performance, operating environment,

and working fluid are given below.

Compressor Performance Requirements:
Nominal Fluid Flow Rate 0.11 Kg/hr (0.25 LBM/hr)
Maximum Fluid Flow Rate 0.50 Kg/hr (1.10 LBM/hr)
Inlet Pressure 0.07 - 0.20 MPa (10 - 30 psia)
Discharge Pressure 0.69 - 6.90 MPa (100 - 1000 psia)
Maximum Discharge Pressure 8.28 MPa (1200 psia)
Inlet Fluid Temperature 15.5 - 32.2°C (60 - 90°F)
Duty Cycle Continuous Operation
Operating Life 10,000 hr

Operating Environment:
Weight Limitation 36.3 Kg (80 LBM)
Size Limitation 1.5 cubic feet
Power Limitation 1.0 KW Peak

Fluid Mixture:
Nitrogen 60.0%
Argon 19.3%
Oxygen 3.0%
Air 11.3%
Carbon Dioxide 1.9%
Krypton 1.8%
Xenon 0.6%
Helium 0.2%
Trace Reductants <0.1%



Trace Contaminants <1.8%
Inlet Dew Point 30°F

The basic design, shown in Figure 2, is a 3-cylinder, two stage reciprocating
piston type compressor with pressure actuated check valves. The pistons are follower
actuated by eccentrically mounted anti-friction bearings. The piston is held in contact with
the actuator with a preloaded spring. The following list presents the prototype compressor

design parameters:
Kirst Stage Second Stage

Number of Cylinders 2 1
Cylinder Bore (inches) 0.875 0.500
Compressor Nominal Speed (RPM) 650-1200 650-1200
Piston Displacement (cu. inches/cylinder) 0.288 - 0.049
Stroke (inches) 0.48 0.25
Clearance Volume (%) 6 10
Number of Suction Valves 2 1
Diameter of Suction Ports (inches) 0.125 0.094
Number of Discharge Ports 1 1
Diameter of Discharge Ports (inches) 0.125 0.094
Piston Guide Bore (inches) 1.250 1.250
Return Spring Preload (LB) 15 15
Return Spring Rate (LB/inch) 60 60
Actuator Bearing Size 206 106
Crank Main Bearing Size 207

Motor Peak Rated Torque (oz.-in.) 400

Motor Power at Rated Peak Torque (watts) 510

Maximum Continuous Output Power (watts) 560

This design was based on a number of competing design requirements and
represents a reasonable trade-off between performance, reliability and life requirements.
The design is simple with few moving parts, and based on component wear and life
predictions, is free of sudden catastrophic failure modes. Both compressor stages are
driven from a single drive motor and crank assembly resulting in fewer mechanical
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components and lighter weight compared with separate stages. The integration of both
stages also simplifies installation since manifolding between the two stages and the
pulsation bottles is incorporated into a single head assembly.

The three cylinder design is balanced to eliminate primary and residual secondary
shaking forces. While the three cylinder design is somewhat more complicated than other
possible designs, the ability to limit shaking forces is very important. The option of an
unbalanced compressor with compensating hardware (active or passive devices) was
investigated and determined to be unacceptable for a variable speed compressor.

The prototype hardware was fabricated in Southwest Research Institute's
Machine Shop and is shown in Figure 3.

4.0 VERIFICATION PROGRAM

The Verification Program provides the methods used to verify that the prototype
compressor meets the design requirements outlined in the End Item Specification (EIS).
The Verification Program is broken into three sections based upon the verification method
employed. The first section describes the verification by development testing. The second
section consists of verification by analysis, and the third section consists of verification of
assessment.

In order to ensure that the compressor meets the design requirements, some
detailed testing of compressor components and the compressor assembly is necessary as
indicated in Table III. Development testing is done to substantiate designs, measure
performance, and assure the design is suitable for initiation of formal flight hardware
development. Since development testing is not intended to provide flight certification, the
formal requirements of controlled design, formal certification, formal retest, and flight type
hardware are not required.

11
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Table III. Verification by Test

I ion No. & Titl Method of Verification
3.2.2. Strength Exempt Except for Proof
Pressure - Test

3.2.2.3 Surface Wear Test & Analysis
3.2.2.5 Weight Test

3.2.2.6 Envelope Test

422.1 Operating Pressures Test

4.2.2.2 Proof Pressure Test

4.2.3 Fluid Operating Temperatures Test

424 Fluid Flow Rate Test

425.1 Operating Life Test & Analysis

4.2.6 Power Limitations Test

The results of the surface wear tests performed with the Subassembly Test Article (STA)
are shown in Figure 4. The total assembly weight is 30 1bs. and the total envelope size is
0.5 cubic feet. The performance results are presented in Appendix C and are summarized

in Figures 5, 6, and 7.

These plots present the raw data in non-dimensional form. The abscissa is a non-
dimensional pressure in the form of pressure ratio (discharge pressure divided by suction
pressure). The ordinate is a non-dimensional mass flow rate which is, also, the volumetric
efficiency. The volumetric efficiency is defined as the mass of gas actually pumped by the
compressor, divided by the mass of gas which the compressor could pump, if it handled a
volume of gas equal to its piston displacement time compressor speed (in RPM), and if no
thermodynamics state changes occurred during the intake stroke (mass flow rate divided by
the product of suction density, piston displacement, and RPM).

Table IV lists the EIS items that require verification by analysis. Verification by
analysis is primarily used where simulated design conditions cannot be met, test data must
be extrapolated beyond the test parameters, and where articles of similar design have been
verified to equivalent requirements.

13
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Table IV. Verification by Analysis

| ion N i Method of Verification
3.2.2.3 Surface Wear Analysis & Test
4.2.2.3 Burst Pressure Analysis
4.25.1 Operating Life Testing & Analysis

The life limiting component for this device is the second stage piston seal ring.
The wear data presented in Figure 4 is used to estimate the operating life of the compressor.
The seal life analysis is based on the methods given in the ASME Design Manual on PTFE
Seals in Reciprocating Compressors!. The calculation method is as follows:

Predicted Life (Tpred.) in Hours

1 (Rlimth)
Kiest \ PmVa projected

= RN __ )
Kren = (5807,

Tpred. =

Riimit = % loss of ring thickness

N =  number of rings

P, = (I_lnl_) Pguc [(Pdis/Psuc) ol '1]
n = ratio of gas specific heais

Va =  stroke x RPM/6

A review of the STA seal wear test data indicates that after the initial break-in
period, the data shows a constant wear rate. If we use this wear rate and account for the
material loss during the break-in period, the above procedure can be used to predict life.
Based on assumed nominal pressure conditions, (interstage pressure of 200 psia and

1 American Society of Mechanical Engineers, “Manual of Material Selection, Design and Operating
Practices, PTFE Seals in Reciprocating Compressors,” ASME, New York, NY 10017, 1975.
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discharge pressure of 800 psia), nominal speed (650 RPM), and 50% ring thickness loss,
the predicted second stage seal life is 9500 hours. This predicted life, within the
uncertainty of the STA data, meets the requirement for minimum compressor life.

The burst pressure analysis indicates that the prototype meets the 2500 psia burst

pressure requirement.

Table V lists the EIS items that will be verified by assessment. Verification by
assessment requires the careful review and evaluation of design drawings or visual
inspections. Verification of EIS requirements by the assessment method is commonly used
" for verification of surface finishes, tolerances, identification, and items requiring visual
inspection. All items meet the assessment requirements.

5.0 ANALYSIS OF RESULTS

The global test data presented above, along with digitized in-cylinder pressure and
RPM versus time data, has been analyzed in order to evaluate the overall performance of
the prototype compressor. The in-cylinder data, when compared with corresponding
simulation results, has provided the best assessment of the detailed performance of the
cylinder, including heat transfer, valve and ring leaks, and indicated power. The
understanding gained from this comparison has helped in the interpretation of the global

test data.

The in-cylinder pressure data sought in the current tests was pressure versus
volume curves or “P-V card.” Normally, when P-V data is acquired for a reciprocating
piston compressor, a direct driven shaft digital encoder is employed to trigger simultaneous
storage of various channels of information for a select number of points in one revolution.
With the use of an encoder, the effect of compressor speed variation is nullified, and data is
obtained at the desired number of evenly spaced angular points.

Due to the integrated drive package, no encoder was able to be installed in the
compressor. There was, however, access to an analog instantaneous shaft rotational speed
signal in the motor control unit. A variable frequency, external device was used to cause
triggering of cylinder pressure and instantaneous RPM data acquisition by a digital
computer. Data was acquired over approximately one or more revolutions of the
compressor, with initiation of acquisition occurring at an arbitrary and unknown shaft
position. Approximately 650 points of data per revolution were acquired.
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Table V. Verification by Assessment
IS i Method of Verification

3.1.1.2 Mechanical Assessment
3.1.1.3 Electrical Assessment
3.1.2.2 Lubrication Assessment
3.2.3 Safety, Reliability, and

Quality Assurance Assessment
3.24.1 Transportation Assessment
3.2.4.2 Storage in Protected Areas Assessment
3.2.5 Transportability Assessment
3.3.1.1 Materials and Processes Assessment
3.3.1.2 Prohibited Materials Assessment
3.3.13 Fluids Assessment
3.3.14 Material Compatibility Assessment
3.3.1.5 Lubricants Assessment
3.3.1.6 Dissimilar Metals Assessment
3.3.1.7 Platings and Castings Assessment
3.3.1.8 Protective Treatment Assessment
3.3.1.11 Non-Destructive Evaluation Assessment
3.3.1.12 Cleanliness Assessment
3.3.1.15 Assembly Cleanliness Assessment
3.3.1.16 Parts Standardization Assessment
3.3.1.17 Threads and Fasteners Assessment
3.3.1.18 Locking Threaded Parts Assessment
3.3.1.19 Prohibited Retaining Methods Assessment
3.3.1.20 Surface Texture Assessment & Test
3.3.1.21 Dimensioning and Tolerancing Assessment
4.2.1 Fluid Assessment
4.2.7 Line Sizes Assessment

- —————,—
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In summary, the above data consisted of the files of corresponding cylinder
pressure and instantaneous RPM data starting at unknown shaft position points, containing
approximately 650 points per revolution. It was necessary to extract data representing only
one revolution, and then convert this data to a usable file of 512 points per revolution
representing cylinder pressure and shaft angle, to represent data that would be obtained by
the use of a shaft driven encoder. Once this was accomplished, existing digital software
was employed to compare test P-V cards with corresponding simulation results.

Data from two cases which represent opposite extremes for which in-cylinder
_ pressure was obtained is shown in Figures 8 and 9. The pressure versus volume data of
Figure 8 is for a low pressure ratio and maximum flow, while the data of Figure 9 is for a
deadhead pressure case with no flow. Both data sets are for a compressor speed of
approximately 650 RPM.

The data in Figure 8, which is an actual test P-V card for the prototype
compressor first stage, may in general be distinctively different from an ideal card for the
same compressor operating between the same suction and discharge pressures, and without
heat transfer or leaks. Figure 10 shows a comparison of the test card of Figure 8 with
simulation results for a corresponding ideal compressor cylinder with no leaks or heat
transfer. Note the difference between the two cards, particularly along the compression
line. Also, the test card shows evidence of a slightly late discharge valve closure which is
not indicated on the ideal card.

By varying heat transfer, leak parameters, and introduction of a late discharge
valve in the simulation model, it is possible to “force” an approximate agreement between
the test and simulation P-V cards. The results in Figure 11 show results of such a
“forcefit.” While not perfect, the results indicate that the greatest difference between the
ideal simulation and test result comparison in Figure 10 is largely a result of heat transfer,
with various ring and valve leaks playing an additional part. The effect of heat transfer is
generally to enhance performance, while leaks detract from performance.

A similar procedure to the above has been used to evaluate the case of Figure 9.
The results were essentially the same as discussed above in that the difference between an
ideal simulation and the test card could be reconciled by heat transfer plus minor valve and
ring leaks.
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The conclusions from the analysis described above and the global data are:

(D The compressor first stage cylinders are working generally as expected
with considerable enhancement from heat transfer, but minor valve and
ring leaks detract somewhat from performance. These leaks were to be
expected.

(2)  The second stage cylinder has a rather sizeable leak around the valves
and/or rings. Most likely the leakage is occurring around the rings.

3) The global test data generally shows trends which agree with the
conclusions above, and specifically:

. For a given suction and discharge pressure, the pressure ratio
across the first stage is equal to what is expected, while the
pressure ratio across the second stage is somewhat lower than
expected. This supports the conclusion that there is more leakage
on the second stage than the first stage.

. The shut-off deadhead pressure increases as speed increases for
the global test data, again reflecting in the leakage occurring in the
second stage.

4) The higher leakage occurring in the second stage cylinder is not inherent
in the valve and ring design, but rather in the execution of the miniature
size of the rings and valve seats.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The verification program has documented that the on-orbit compressor prototype
meets the requirements of the End Item Specification (EIS) relevant to prototype hardware.
The prototype compressor is 3/8 of the allowable weight (30 lbs. versus 80 1bs.), 1/3 of the
allowable volume (0.5 cu. ft. versus 1.5 cu. ft.), and 1/2 of the allowable power (500
watts versus 1000 watts). The performance requirements of flow rate, discharge pressure,
and suction pressure were independently verified. At a suction pressure of 27 psia and a
compressor speed of 650 RPM, the prototype developed a deadhead pressure of 1210 psia,
a 0.124 LBM./hr. flow rate at a 1000 psia discharge, a nominal flow rate of 0.24 LBM./hr
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at 800 psia discharge and 1.827 LBM/hr. flow rate at zero pressure rise. This performance
clearly meets the EIS requirements of an outlet pressure range of 100 to 1000 psia (1200
psia maximum), and a nominal flow rate of 0.25 LBM/hr (1.1 LBM/hr. maximum). The
one area of marginal performance is the leakage and life of the second stage piston seals.
With the current Space Station interest in significantly longer life than the EIS requirement
of 10,000 hours, we recommend that this area be further developed. We specifically
recommend that a lubricated seal ring technology be developed for improved sealing and

significant life extension.

The overall conclusion is that we have developed compressor technology for on-
orbit applications. This technology balances all of the complex design requirements and is
provided within a time frame consistent with the support of the Space Station Fluid
Systems Development. The verification program has documented that the performance of
the prototype waste gas compressor does indeed meet the EIS requirements.

6.2 Recommended Modifications to EIS

In general, the EIS represents a good specification for flight hardware. There are
a few sections that can be improved for the specific application of an on-orbit compressor.
The sections that should be modified are: Surface Wear (3.2.2.3), Lubricants (3.3.1.5),
Performance (4.2.2 & 4.2.4), Proof Pressure (4.2.2.2), and Service Life (4.2.5).

6.2.1 Surface Wear
The current EIS states that, “. . . shall not introduce contaminant into the fluid
flow path. . .” Each compressor type has a different application, and the effect of wear

particles is different. Specifically, a realistic acceptable number and size of wear particle
for the waste gas compressors should be stated.

6.2.2 Lubricants
The current EIS states that “. . . do not introduce contamination by entering the

fluid flow path.” As indicated above for wear particles, a realistic acceptable level of
lubricant transfer downstream for the waste gas compressor should be stated.

6.2.3 Performance

The current EIS provides inlet and outlet pressure ranges and a flow range
independent of each other. Since the flow rate is not independent of inlet and outlet
pressure, specific combined operating conditions should be stated. As an example, at an
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inlet (suction) pressure of 10 psia and an outlet (discharge) pressure of 1000 psia, the fluid
flow rate shall be 0.25 Ibm/hr. The performance of a compressor is best illustrated in the
form of a pressure versus fluid flow rate curve at a given rotational speed. The
performance curve can be specified by three points: the pressure at zero flow rate (i.e.,
deadhead pressure), the flow rate at zero pressure rise (i., maximum flow rate with
suction pressure equal to discharge pressure), and a nominal flow rate at a nominal
pressure. This approach to specifying performance assumes a constant compressor
rotational speed. Each rotational speed will have a different performance curve. The
control strategy for motor speed is also important. A constant speed compressor greatly
simplifies the control system, but a variable speed system provides more flexibility in
pressure versus flow rate combinations. Since the waste gas application is to pump up a
reservoir from 100 psia to 1000 psia, the important issue is at what flow rate. At a constant
speed, the flow rate will be high at 100 psia, i.e, the beginning of the cycle and gradually
decline as the vessel pressure approaches 1000 psia. If a constant flow rate is required
over the entire range of discharge pressures, then a variable speed is required. This
capability will result in a more complex control system and a larger capacity unit. Once the
operating conditions are determined, then a more specific performance specification can be
written with the above guidelines in mind.

6.2.4 Proof Pressure

The current EIS requires that the entire compressor be subjected to a proof
pressure of 1.5 times the maximum discharge pressure for five minutes and designed for a
burst pressure of 2.5 times the maximum discharge pressure. Since the case is vented to
suction pressure, the requirement that the case withstand this proof pressure results in a
significantly heavier case than if the case proof pressure was 1.5 times the highest pressure
it would experience (i.e., suction pressure). To be more specific, the design burst pressure
for the case is 2.5 times the maximum discharge pressure or 2500 psia. However, thisis a
hundred times the maximum suction pressure. A more realistic requirement would greatly
reduce the weight of the case and total weight of the compressor.

6.2.5 Service Life

The current EIS requires 10,000 operating hours of continuous duty. This life
requirement with an unlubricated compressor is severely pushing the state-of-the-art
(SOA). As the program proceeded, the objective of maximizing life potentially up to 10
years (876,000 hours) was recommended which is beyond the SOA. Two specific
modifications are recommended for the waste gas compressor. The first is to identify a
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realistic duty cycle, and the second is to allow a lubricated unit. A realistic duty cycle can
result in significant factors of life extension, i.e., if the compressor is realistically only on
1/4 of the time the life can be extended by a factor of 4 for dry seals. For lubricated seals,
the life prediction is more complex because wear is not only a factor of operating life but
also the number of starts. The life prediction for a lubricated unit, also, has the complexity
of the life of the lubricant. However, even with these added complexities in life prediction,
the life of lubricated units is significantly longer than unlubricated units, and has the chance
of meeting long-term Space Station life goals. The specification should be modified to
include operating hours and duty cycle.
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1.0 INTRODUCTION

The objective of this project is the exploration of compressor technology applicable
for use by the Space Station Fluid Management System (FMS), Space Station Propulsion
System, and related on-orbit fluid transfer systems. The approach is to perform
compressor research on a breadboard test article, to utilize the results to develop a
conceptual design to handle seven different applications, and to develop a prototype for one
of these specific applications. The prototype development will be based on the general
conceptual design and consist of a detailed prototype design, fabrication of the prototype,
and testing of the prototype. The primary emphasis is to develop basic compressor
technology (designs, materials, and manufacturing techniques) in a time frame consistent
with the support of the Space Station fluid systems development. Design considerations
will include: (1) maximization of service life; (2) commonalty; i.e., interchangeability of
common hardware assemblies; (3) ease of maintenance; (4) lightweight; (5) small size;
and (6) low power.

The purpose of this Conceptual Design Final Report is to document the conceptual
design for seven Space Station applications.

2.0 COMPRESSOR APPLICATIONS AND REQUIREMENTS

The compressor requirements for the seven applications cover a wide range of gas
properties, pressure, temperature, flow, and duty cycle. These requirements are
summarized in Table I. Significant problems and challenges are presented by these
requirements, and no existing hardware is currently available to meet the specifications. As
an example, the Type I application requires compression of a reducing gas mixture
consisting largely of hydrogen, carbon dioxide, and nitrogen from 0.12 MPa (18 psia) up
to 8.3 MPa (1200 psia), a total pressure ratio of 67:1, on a continuous basis, with a 10,000
hour operating life goal. Employing a conventional approach, this would be accomplished
by reciprocating compressors using three or four stages driven at relatively high speeds,
resulting in very small or miniature cylinders. An early selection for the fourth stage for the
Type I application was a cylinder with a 0.0095 meter (0.375 inch) bore, a 0.0022 meter
(0.086 inch) stroke driven at up to 3300 rpm. The problems posed by such miniature
cylinders, valves, and other compressor components were apparent early on, but
developments during this project have allowed a reversal toward more acceptably sized
cylinders (larger) driven at low speeds.
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The Type VII application presents a unique challenge since the compression of
helium saturated with hydrazene, having a maximum safety limit of 71.1°C (160°F), is
required from an initial pressure of 2.76 MPa (400 psia) up to 31 MPa (4500 psia). The
problem here, based on conventional compression technology, is to achieve this total
pressure ratio (11.25:1) employing a reasonable number of stages without ever exceeding
71.1°C (160°F) at any point of the compression cycle. Based on the starting temperature of
51.7°C (125°F), and assuming isentropic compression with no precooling, the first stage
pressure ratio could not exceed 1.156:1, hence, many stages would be required. The
thermal problem for this application is further compounded by the lack of a liquid cooled
heat sink (ammonia buss duct) which is available for most other applications.

3.0 SUMMARY OF TECHNICAL CHALLENGES

A major challenge of this project has been to provide enhanced and controlled heat
transfer through the compressor cycle in order to: (1) achieve high efficiency, (2) limit
cycle and discharge temperatures, and (3) reduce the required number of compression
stages. Control of cycle temperature is also important with respect to component life,
control of liquids and, particularly, to the Type VII application, to stay below the hydrazene
safety temperature limit.

Other technical challenges have included: (1) design of long life and dynamically
stable valves, (2) efficient control of pulsations, (3) meeting the power, weight, and
envelope requirements, and (4) achieve the life and maintainability goals. All of this must
be accomplished with component commonality as an important consideration.

4.0 FACTORS AFFECTING COMPRESSOR PERFORMANCE

4.1 Heat Transfer

Heating related phenomena can affect both the volumetric and thermal efficiency of
a reciprocating compressor. Two separate mechanisms are involved: one is direct
convective transfer of thermal energy to and from the gas and compressor mechanical
structure; and the other is an indirect heating mechanism related to the throttling which
occurs across the compressor suction valves. In general, improperly controlled heat



transfer reduces flow, thermal efficiency, and often increases the gas discharge
temperature. With conventional commercial compressors, flow and efficiency reductions
easily exceed 10 to 15 percent from thermal causes alone.

4.2 Compressor Valves

Valves are the single most failure-prone component on reciprocating compressors
used, for example, on gas transmission service, where they must operate continuously and,
therefore, build up operational stress cycles quickly. Many different types and
configurations of compressor valves have been and are being used, including reed, single
and multiple poppet, simple plate types, multiple concentric ring, and complex multiple-
degree-of-freedom plate types.

Compressor valves fail for a number of reasons. By failing, they no longer
perform the flow check function and thus allow leakage, and this is generally a result of
breakage. Another cause of failure is thermally-induced distortion. Some leakage may be
acceptable; too much is not.

4.3 Pulsation Effects

Another potential problem area with reciprocating compressors is the possible
interaction between valve dynamics and pulsations which may exist external to the
compressor valves. It has been demonstrated in laboratory tests and in the field that
pulsations can induce early or late valve closure, and also valve cocking effects which

result in premature valve failures.
5.0 PROTOTYPE COMPRESSOR CONCEPT

The compressor conceptual design is based on detailed performance modeling and
breadboard testing (summarized in the Prototype Design Final Report) to verify the model.
The comprehensive digital time domain model includes cycle thermodynamics, real gas
properties, in cylinder heat transfer, valve dynamics, ring leaks, piston friction, attached
piping acoustic effects, and piston inertial effects. Besides predicting the compressor
performance, the simulation model also provides prediction of several mechanical
components such as: actuator bearing B-10 life, seal ring wear, actuator interface contact
stress/life, valve stress/life, return spring stress/life, and piston loading.
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The Type II Prototype Design, shown in Figure 1, is a 3-cylinder, two stage
reciprocating piston type compressor with pressure actuated check valves. The pistons are
follower actuated by eccentrically mounted anti-friction bearings. The piston is held in
contact with the actuator with a preloaded spring. The following list presents the prototype
compressor design parameters:

First Stage Second Stage

Number of Cylinders 2 1
Cylinder Bore (inches) 0.875 0.500
Compressor Nominal Speed (RPM) 650-1000 650-1000
Piston Displacement (cu. inches/cylinder) 0.288 0.049
Stroke (inches) 0.48 0.25
Clearance Volume (%) 6 10
Number of Suction Valves 2 1
Diameter of Suction Ports (inches) 0.125 0.094
Number of Discharge Ports 1 1
Diameter of Discharge Ports (inches) 0.125 0.094
Piston Guide Bore (inches) 1.250 1.250
Return Spring Preload (LB) 15 15
Return Spring Rate (LB/inch) 60 60
Actuator Bearing Size 206 106
Crank Main Bearing Size 207

Motor Peak Rate Torque (0z.-in.) 400

Motor Power at Rated Peak Torque (watts) 510

Maximum Continuous Output Power (watts) 560

The above outlined design was based on a number of competing design
requirements and represents a reasonable trade-off between performance, reliability and life
requirements. The design is simple with few moving parts, and based on component wear
and life predictions, is free of sudden catastrophic failure modes. Both compressor stages
are driven from a single drive motor and crank assembly resulting in fewer mechanical
components and lighter weight compared with separate stages. The integration of both
stages also simplifies installation since manifolding between the two stages and the
pulsation bottles is incorporated into a single head assembly.

The three cylinder design is balanced to eliminate primary and residual secondary
shaking forces. While the three cylinder design is somewhat more complicated than other
possible designs, the ability to limit shaking forces is very important. The option of an
unbalanced compressor with compensating hardware (active or passive devices) was
investigated and determined to be unacceptable for a variable speed compressor.
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The concept design for the remaining compressor types are based on this Type II
design. The next section presents the design data and predicted performance.

6.0 EXAMPLE PREDICTED PERFORMANCE

Table II shows the basic conceptual design and performance information for the
compressors for all seven applications which were outlined in Table I. The top section of
Table II shows design data, including number of stages, bore, stroke, and cylinder
clearance factor (CF). The full range of compression required by these seven applications
is covered by three distinct cylinder sizes, or:

1 inch bore x 0.8 inch stroke
. 0.875 inch bore x 0.48 inch stroke
. 0.500 inch bore x 0.25 inch stroke

The compressor for the Type II application, which was carried to the prototype
hardware stage as part of this project, consists of two stages. The first stage employs two
identical cylinders with a bore of 0.875 inches and a stroke of 0.48 inches. The second
stage has a single cylinder with a bore and stroke of 0.500 and 0.250 inches, respectively.

All other applications, with the exception of Type III, employ two stages with
single cylinders per stage, each stage cylinder differing in bore and stroke. The Type I
application employs identical cylinders for first and second stages (0.500 inch bore and
0.250 inch stroke) with proper loading accomplished by the selection of interstage

pressure.

The second two sections of Table II show predicted performance data for each
application. The suction, interstage, and discharge pressures are denoted by Ps, Pis, and
Pd. Effective suction temperature at the cylinder intake valve (not the gas temperature at the
compressor unit) is denoted by Ts.

Predicted flow rate is shown in the bottom portion of Table II for the conceptual
design rotational speeds indicated. In general, each flow rate equals or slightly exceeds the
values shown in Table I.
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7.0 SUMMARY AND CONCLUSIONS

This project has demonstrated the use of relatively slow speed, high ratio
reciprocating compressor cylinders to satisfy the requirements of the Type II application.
The other six applications may be accomplished by the conceptual designs discussed

herein.

The predicted performance, total system weight, and volume requirements for the
application types appear to fall well within the required specifications. The prototype
compressor and drive design chosen should have long life and minimizes the risk of
catastrophic failures.
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1.0 INTRODUCTION

The objective of this project is the exploration of compressor technology applicable for use
by the Space Station Fluid Management System (FMS), Space Station Propulsion System, and
related on-orbit fluid transfer systems. The approach is to perform compressor research on a
breadboard test article, to utilize the results to develop a conceptual design to handle seven different
applications, and to develop a prototype for one of these specific applications. The prototype
development will be based on the general conceptual design and consist of a detailed prototype
design, fabrication of the prototype, and testing of the prototype. The primary emphasisis todevelop
basic compressor technology (designs, materials, and manufacturing techniques) in a time frame
consistent with the support of the Space Station fluid systems development. Design considerations
include: (1) maximization of service life; (2) commonalty; i.e., interchangeability of common
hardware assemblies; (3) ease of maintenance; (4) lightweight; (5) small size; and (6) low power.

The purpose of this Prototype Design Final Report is to document the design of the prototype
mixed gas compressor (Type IT) for Space Station. The conceptual design isatwostage reciprocating
piston type compressor with pressure actuated check valves.

2.0 DESIGN REQUIREMENTS

The prototype compressor developed under this project is intended for compressing an
oxidizing gas mixture for storage/disposal on Space Station Freedom. The waste gas comes from
the experiments on the Space Station and is discharged into a storage vessel initially at some
minimum pressure until the vessel is pumped up to the upper design pressure. A complete list of
design requirements are contained in the End Item Specification (EIS). Some of the general design
specifications for compressor performance, operating environment, and working fluid are given

below.

Compressor Performance Requirements

Nominal Fluid Flow Rate 0.11 Kg/hr (0.25 LBM/hr)
Maximum Fluid Flow Rate 0.50 Kg/hr (1.10 LBM/hr)

Inlet Pressure 0.07 - 0.20 MPa (10 - 30 psia)
Discharge Pressure 0.69 - 6.90 MPa (100 - 1000 psia)
Maximum Discharge Pressure 8.28 MPa (1200 psia)

Inlet Fluid Temperature 15.5-32.2°C (60 - 90°F)

Duty Cycle Continuous operation

Operating Life 10,000 hr



Operating Environment

Weight Limitation 36.3 Kg (80 LBM)
Size Limitation 1.5 cubic feet
Power Limitation 1.0 KW Peak
Fluid Mixture
Nitrogen 60.0%
Argon 19.3%
Oxygen | 3.0%
Air 11.3%
Carbon Dioxide 1.9%
Krypton 1.8%
Xenon 0.6%
Helium 0.2%
Trace Reductants <0.1%
Trace Contaminants <1.8%
Inlet Dew Point -30°F

3.0 INTERFACE DEFINITIONS

3.1 Fluid Connections

The inlet and discharge compressor working fluid lines are both 3/8 inch (EIS 4.2.7 Line
Sizes) and the compressor will be welded into the fluid lines (EIS 3.1.1.1 Fluid). For the prototype
compressor, the fluid fittings are O-ring sealed SAE straight thread fittings (7/16 - 20 thread).

3.2  Cooling Fluid Connections

No specific requirements for line size, temperature or flow rate are given in the EIS (see
EIS 3.1.2.5). The prototype compressor is designed to use a 1/4-inch line connection of 10°C (50°F)
cooling fluid. The heat rejection rate to the cooling fluid depends on the compressor operating
conditions, but is estimated to be about 200 watts.

3.3 Electrical Interface

The only electrical connections required for the prototype compressor are for the drive motor
and controller. This hardware is not being flight tested or qualified, but is being used to demonstrate
that the commercially available brushless motor is capable of properly powering the compressor.
The electrical interface requirements in the EIS are therefore not being implemented for the
prototype. Details on the motor and controller are given in Section 7.3.



34 Mechanical Interface

The compressor will be bolted (EIS 3.1.1.2) to the mounting structure with 12 1/4-20 UNC
bolts. The blind tapped mounting holes are located on both sides of the compressor case and the
bottom face (see detailed drawing of case in Appendix A) for flexibility of installation.

4.0 DESIGN ANALYSIS
4.1  Conceptual Design

The compressor conceptual design is based on detailed performance modeling and
breadboard testing (outlined in Section 5.1) to verify the model. The comprehensive digital time
domain model includes cycle thermodynamics, real gas properties, in cylinder heat transfer, valve
dynamics, ring leaks, piston friction, attached piping acoustic effects, and piston inertial effects.
Besides predicting the compressor performance, the simulation model also provides prediction of
several mechanical components such as: actuator bearing B-10life, seal ring wear, actuator interface
contact stress/life, valve stress/life, return spring stress/life, and piston loading.

The basic design, shown in Figure 1, is a 3-cylinder, two stage reciprocating piston type
compressor with pressure actuated check valves. The pistons are follower actuated by eccentrically
mounted anti-friction bearings. The piston is held in contact with the actuator with a preloaded
spring. The following list presents the prototype compressor design parameters:

First Stage Second Stage

Number of Cylinders 2 1
Cylinder Bore (inches) 0.875 0.500
Compressor Nominal Speed (RPM) 650-1000 650-1000
Piston Displacement (cu. inches/cylinder) 0.288 0.049
Stroke (inches) 0.48 0.25
Clearance Volume (%) 6 10
Number of Suction Valves 2 1
Diameter of Suction Ports (inches) 0.125 0.094
Number of Discharge Ports 1 1
Diameter of Discharge Ports (inches) 0.125 0.094
Piston Guide Bore (inches) 1.250 1.250
Return Spring Preload (LB) 15 15
Return Spring Rate (LB/inch) 60 60
Actuator Bearing Size 206 106
Crank Main Bearing Size 207

Motor Peak Rated Torque (o0z.-in.) 400

Motor Power at Rated Peak Torque (watts) 510

Maximum Continuous Output Power (watts) 560
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The above outlined design was based on a number of competing design requirements and
represents areasonable trade-off between performance, reliability and life requirements. The design
is simple with few moving parts, and based on component wear and life predictions, is free of sudden
catastrophic failure modes. Both compressor stages are driven from a single drive motor and crank
assembly resulting in fewer mechanical components and lighter weight compared with separate
stages. The integration of both stages also simplifies installation since manifolding between the
two stages and the pulsation bottles is incorporated into a single head assembly.

The three cylinder design is balanced to eliminate primary and residual secondary shaking
forces. While the three cylinder design is somewhat more complicated than other possible designs,
the ability to limit shaking forces is very important. The option of an unbalanced compressor with
compensating hardware (active or passive devices) was investigated and determined to be
unacceptable for a variable speed compressor.

4.2  Mechanical Design
4.2.1 Overall Design Layout

Each of the major mechanical subassemblies will be described in this section. Along with
the descriptions, some of the rationale behind the design and some of the major design trade-offs
will be discussed. Material properties of each of the components is discussed in Section 4.3. Each
of the compressor components is labeled in the layout drawing shown in Figure 1. Appendix A
contains the detailed fabrication drawings for each of the components discussed in this section.

4.2.2 Crankcase

The crankcase subassembly is shown in Figure 2 and consists primarily of the crankcase
housing and the twoend caps. Several other components are contained in the crankcase subassembly
in order to retain the motor and crank main bearings and provide for the motor wire feedthrough.
The piston cylinders are bolted to the top face of the crankcase and recesses cut into the case allow
the cylinder to protrude below the case surface. This reduces the required piston length and weight
by closely coupling the base of the piston to the actuator. Three sets of blind taped holes are provided
on the case to allow the compressor to be mounted in any orientation.

The primary design constraint affecting the crankcase design is the case must withstand a
burst pressure of 250% (2500 psi) of the maximum discharge pressure. This requirement results
in a thick case wall, thick end caps and requires large bolts for attaching the end caps. Sufficient
case stiffness could be attained with substantially less weight if the case design pressure was reduced
since the case pressure is vented to the compressor suction port.



FIGURE 2. CRANKCASE DESIGN
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4.2.3 Crankshaft

The crank subassembly is shown in Figure 3 and consists of the piston actuator bearings,
crank main bearings, the crank itself and the mount for the motor rotor. The compound crankshaft
consists of 6 mating parts that slide onto the crankshaft and are held in place by end bolts. The
bearings are lightly press-fit onto the crankshaft and are securely held in place by shoulders on
either side of the inner bearing race. When the crank assembly is placed into the crankcase, the
main bearings are held in place by one fixed shoulder and a retainer ring acting on the bearing outer
race. The spring preload on the actuator bearing keeps the main bearings firmly seated on the

bottom of the case.

The bearings selected for the prototype compressor are standard grease filled bearings with
52100 races and balls, phenolic cages, and elastomeric seals. The following table lists the bearings
and their size. The bearing size requirements were dictated by the required piston stroke, which
results in more than adequate load ratings. The predicted minimum life rating for the bearings at
the design conditions is 250,000 hours. The selection of ball type bearings was based on their ability
to tolerate slight misalignments and handle both radial and axial loads.

Pant # [DxOD x W (in,)
Main Bearings 207 1.378 x 2.835 x 0.67
First Stage Actuator 106 1.181 x 2.165 x 0.51
Second Stage Actuator 206 1.181 x 2.441 x 0.63

The primary design requirements that dictated the crank design were: minimization of
vibration, reliability and long life, ease of assembly and disassembly, timing between stages must
be maintained (eliminate the possibility of slipping between crank components) and to provide as
compact and lightweight a design as possible. To accomplish these design~requinements, a cam
follower design was selected over other candidates because of simplicity, reliability, and elimination

of shaking forces.

Considerable effort went into counterbalancing the relatively large, eccentrically mounted
actuator bearings to eliminate vibration. Each individual component of the compound crank was
carefully designed to balance the crank with the least possible weight addition. To eliminate the
possibility of relative movement between crank components, the components were made to precisely

mate in only one orientation.
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4.2.4 Pistons

The compressor pistons are composed of the piston with integral upper and lower guide
rings, seal rings, and the cam follower. The first stage piston is shown in Figure 4 and is sized for
a 0.875 inch diameter bore while the second stage is 0.500 inch. Both pistons have a 1.125 inch
diameter lower guide ring that provides lateral piston support in addition to a shoulder for the return
spring to act on. Inserted in the base of each piston is a cam follower that provides a long life wear
surface in contact with the outer bearing race used as an actuator.

In order to balance the shaking forces between the first and second stage pistons (which
operate 180 degrees out of phase), the second stage piston weighs approximately four times one of
the first stage piston assemblies. In order to accomplish this, the first stage piston assemblies are
as light as possible while a weighted cam follower is provided for the second stage. The pistons
are made of Torlon 4301 material to provide a strong, lightweight piston with side walls that provide
integral guide rings. Tests have shown that separate guide rings made of Rulon F (Dixon) or Turcite
(Shamban) may be superior to the Torlon (Amoco) for wear resistance and long life.

After reviewing and testing several seal designs, it became apparent the requirements for
long life, no lubrication, mixed gas environment, and high pressure and velocity conditions
precluded the use of commercially available seals. The seal design needed to have a thick wear
surface for long useful life, a spring to keep the seal in contact with the cylinder, a low spring rate
(tominimize the seal pressure on the cylinder) with large deflection, an overall low seal dead volume,
low leakage, ease of installation, and must be made of low wear stable material. The seal design
selected consists of a simple Rulon F ring that is O-ring energized. Detailed drawings of the seals
and springs are given in Appendix A and Section 5.2 describes the seal testing.

The cam follower for the first stage pistons is made of 440-C stainless steel hardened to 55
Rc. The second stage cam follower is made of tungsten which provides a hard contact surface in
addition to the high density required for the counterweight. The cam followers and pistons have
vent holes through them to allow the spring cavity to vent to the crankcase.

4.2.5 Cylinders

The compressor’s three cylinders are individually machined cylinders that are bolted to the
top of the crankcase. The first stage cylinders are shown in Figure 5 and have an upper bore of
0.875 inches and a lower bore of 1.125 inches to accommodate the return spring. The second stage
cylinder has a0.500 inch upper bore and a 1.125 inch lower bore. The cylinders are made of 6061-T6
aluminum with a Tiodize Hardtuf X20 surface treatment for low wear and compatibility with the
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gas mixture. This treatment produces a low friction, hard, corrosion resistant, and wear resistant
surface. The process is similar to aluminum anodizing, but a fluorocarbon polymer is infused into
the surface.

The decision to use individual cylinders instead of a "block" provided a lighter design and
simplified manufacturing and assembly. Individual cylinders also allowed a simple cooling jacket
to provide uniform cooling fluid distribution over the cylinder. This design eliminated the need for
sleeves in the compressor and the associated sealing issues. The use of aluminum with a thin surface
treatment allowed good heat transfer through the cylinder wall to the cooling fluid.

4.2.6 Valves

The compressor valve assemblies consist of an aluminum valve plate (as shown in Figure
6), the stainless steel check valves (as shown in Figure 7), seals, and aluminum valve retainers.
Once assembled, the valve subassembly can easily be installed and removed from the compressor.
Face seals are used between the cylinder and valve plate and between the valve plate and the head.
The suction and discharge passages through the valve plate are also separated by face seals.

To enhance heat transfer within the cylinder, the first stage contains two suction valves
oriented to produce swirl in the cylinder. The smaller second stage cylinder has room for only one
suction and one discharge valve, but the surface area to volume ratio in the second stage allows
good gas contact with the cooled cylinder walls. As with the second stage, the first stage has one

discharge valve.

To produce a long life, low pressure drop, reliable pressure actuated check valve design, the
valves were made relatively long to reduce stress levels and pressure drop. With a long valve and
the low clearance volume, the valve retainers had to be recessed into the valve plate so they would
clear the piston. A recess could not be cut into the piston for clearance since the piston is free to
rotate. A "sheet valve" design was considered, but due to the close tolerance on valve alignment,
low piston to head clearance (thermally induced bowing), and the need for large seals above and
below each sheet valve, individual valves were selected. The selection of individually mounted
valves will provide the most reliable valve design and allow easy compressor assembly.

4.2.7 Cylinder Head

The cylinder head (as shown in Figure 8) contains the pulsation bottles, cooling passages,
and gas manifolding to all three cylinders. The pulsation bottles are sized 20 times the swept piston
volume to filter pulsation from passing into the attached piping and reduce pressure fluctuations
that adversely affect compressor performance. By integrating the bottle into the head, the piping

12
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lengths were shortened which reduces pressure drop and more closely couples the bottles to the
cylinders. Cooling channels in the head provide cooling for the gas as it passes through the manifold
and bottles.

The head is made of 6061-T6 clear anodized aluminum that is a lightweight, strong material
with high thermal conductivity. The compressor inlet and discharge lines connect to one end of
the pulsation bottles, and the other end is closed with an aluminum plug retained with a snap ring.
The cooling fluid channels are located next to the discharge and inner-stage bottles to remove heat
generated in the compressor. The cooling fluid used in the prototype compressor is ethelyene glycol,
but other fluids that are compatible with anodized aluminum can be used.

4.2.8 Cooling Jacket

The cooling jacket is shown in Figure 9 and fits over the top portion of the cylinders and
provides a passage for the cooling liquid. The fluid flows from a first stage cylinder to the second
stage cylinder and then to the other first stage cylinder. Because the heat rejection rate is relatively
low (less than 200 watts), the temperature gradient in the fluid will be negligible. The cooling jacket
is made of 6061-T6 clear anodized aluminum for high thermal conductivity, good strength,
lightweight and ease of machining.

4.3 Material_Specifications
4.3.1 Compressor Materials

Table I presents the Material Identification and Usage List and is a summary of the materials
used in the prototype compressor. The materials in the drive motor and controller are not included
for reasons discussed in Section 7.3.

4.3.2 Trace Contaminates
4.3.2.1 Approach

The trace contaminates trade study consists of a series of tables which summarize the
engineering review of the material compatibility for the Space Station waste gas compressor. This
review was based on the assumption that the following environmental conditions applied:

Temperature Range - 60° - 120°F (Temperatures up to 250°F were considered in the

review)

Pressure Range - 10 - 30 psia (Suction, 1¥ stage)
100 - 1200 psia (Discharge, 2™ stage)

16
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Atmosphere - A mixture of the species listed in Group 1.2 (Oxidizing Gas Mixture)
and in Group 2.0 (Space Station IWFS Potential Trace Contaminants)
of Appendix 2: "Entrained Vapors and Trace Contaminants"”, of the
EIS - Revision 1.32.

The materials considered during this compatibility study were those proposed for the primary
compressor components which will be exposed to the gas path. The components considered and
the materials of construction were as follows:

Compressor Cylinder

The prototype compressor unit is fabricated from a 6061-T6 aluminum cylinder,
which has been given a Hardtuf™ X20 surface treatment (a registered trademark of Tiodize
Co., Inc.). This treatment involves anodizing of the aluminum pieces followed by
impregnation of the porous anodized layer with Teflon (PTFE). Toaccount for the possibility

that the Teflon may eventually be pulled out of the anodized layer over time, due to wear,
the compatibility of both PTFE and aluminum with the waste gas flow stream was evaluated.

Compressor Rings
+ Polyamide-Imide (Torlon®, a product of Amoco Chemicals Corp.)
+ PTFE (Rulon®)

Compressor Piston

» Hardtuf™ Treated Aluminum
» Polyamide-Imide (Torlon®)

Yalves
+ Stainless Steel Type 302
4.3.2.2 Method of Evaluation

The compatibility of the various materials with the waste gas flow stream was evaluated by
utilizing data from the open literature, vendor supplied information, and personal experience of the
Institute Staff. The potential effects of the individual waste gas flow stream species were assessed,
and each material/species combination was rated as being compatible, incompatible, or as having
insufficient data available. The synergistic effects of a combination of two or more species, or the
compatibility of the materials with new species which may result from a reaction between two or
more components within the flow stream, were not considered. Toevaluate the potential detrimental
effects of these higher order reactions would require a much more extensive effort, and most likely
a laboratory testing program.
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4.3.2.3 Results
The results of the material compatibility study are presented in Tables II-V.
4.3.2.4 Discussion

The literature available for assessment of the compatibility between a material and potential
waste gas flow stream species is generally data from testing in relatively high concentrations of the
subject species as compared to the concentrations expected in the Space Station Waste Gas System.
In excess of 95% of the flow stream is expected to be inert gases. The dilution effect by this high
mass percentage of inert species should reduce the corrosive nature of most of the species ranked
as incompatible, and in fact allow them to be handled with no resulting damage to the compressor.

A number of the species ranked as incompatible are relatively benign unless there is water
present. The most likely scenario for corrosion damage to the compressor involves the formation
of free condensed water. Most of the incompatible vapor species will tend to be absorbed by, and
concentrated in any liquid water phase which forms, allowing active corrosion to occur. The most
severe corrosion would be expected to occur during any down time in the compressor’s duty cycle,
when the residence time of any condensed species could be relatively long. Since many of the
waste gas species are obviously vapors from aqueous solutions, it would most likely be unrealistic
to dehydrate the flow stream. It may, however, be advantageous to purge the compressor by running
dried inert gases through it prior to any down portions of the cycle.

The fine dust particles listed were evaluated based on their potential for causing corrosion
damage. If particles of the dust were able to penetrate the Hardtuf™ layer, and become imbedded,
forming a metallic contact with the cylinder, it is probable that a number of the species could cause
pitting of the aluminum. All of the metallic species except beryllium and cadmium would most
likely be significantly cathodic to the aluminum, and could cause pits due to galvanic effects. The
metal/halide compounds, if imbedded and in the presence of water, could act as a source of free
halide ions, which are known to cause localized attack of both aluminum and most stainless steel

alloys.
4.3.2.5 Summary

In general, the majority of the species which are possible in the waste gas flow stream are
not aggressive to the materials of construction of the compressor. The most corrosive species are
the halide gases, ammonia, and the vapors from the strong acids and bases. Even these species are
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expected to cause minimal damage due to the dilution effects from the large volume of inert gases
which are expected to comprise over 95% of the flow stream. Even the potential for material
degradation due to the synergistic action of mixtures of the more hazardous species should be
minimized by the dilution effects.

The corrosive potential of most of the aggressive species can be dramatically increased by
the presence of condensed water. It will be important to minimize the potential for water formation.
It is also recommended that the compressor be purged with dry inert gas, especially prior to any
down periods in the duty cycle. This will effectively minimize the residence time of any liquid
water phase in which aggressive waste gas species could dissolve.

5.0 RESULTS FROM SUBASSEMBLY TESTING
5.1 Breadboard Test Article
5.1.1 Performance Testing Objectives

The objective of the Breadboard Test Article (BTA) activity is to investigate the effect of
active cooling of the compressor cylinder wall on overall compressor performance. Secondary
parameters investigated are the effect of compressor valve location and pulsation control. The data
obtained in these tests helped verify and update the cylinder heat transfer models used in the
compressor simulation code, which is the primary compressor design tool.

5.1.2 Performance Test Apparatus

The BTA is shown in Figure 10 and is a modified prime mover with the cylinder and head
layout illustrated in Figure 11. Two different valve configurations were tested to look at the effects
of increased cylinder swirl on performance. The first valves tested have one inlet and one discharge
port with no attempt in the valve design to increase mixing and heat transfer rates. The first set of
valves tested are flat Reed valves with three inlet and three discharge valves. These valves are
located near the wall to increase turbulence and heat transfer to the wall. The second set of valves
tested also are Reed valves with three inlet and three discharge valves (in the same location as
above), but the valves are positioned to impart a radial swirl to the incoming gas in an attempt to
further increase heat transfer. Both valve types are shown in Figure 12.

Cylinder cooling is accomplished by flowing cooled compressed air around the outside of
the cylinder jacket. The compressoris driven with a variable speed DC motor capable of a maximum
speed of 4000 RPM. The motor is mounted in a fixture to allow torque measurements and a shaft
encoder is incorporated onto the drive shaft to measure angular position of the compressor crank.
Additional instrumentation is provided to measure suction and discharge pressure and temperature,
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flow rate, in-cylinder pressure, and compressor speed. An automated analog to digital data
acquisition system digitized the sensor signals at the trigger times provided by the encoder. The
digitized data was then plotted on the computer screen in a parameter (pressure Or temperature)
versus crank angle form. The measured data could also be input to the digital simulation model
for comparison to the predicted compressor performance at the same operating conditions.

5.1.3 Performance Testing Results

Tests were performed by first selecting the desired suction pressure, discharge pressure,
coolant temperature and compressor speed. The compressor was then set at these conditions and
allowed to come to thermal equilibrium. After the sensors were checked at the warmed condition,
data was taken for several cycles and stored in a computer file. The file was then plotted on the
computer screen and visually checked. Many different test runs were performed over the range of
operating conditions outlined below:

Suction Pressure (psia) 10-15
Discharge Pressure (psia) 50-500
Pressure Ratio 4.7 -40
Compressor Speed (RPM) 4 - 4000
Suction Temperature (°F) 70 - 200
Discharge Temperature (°F) 350 - 1200
Flow Rate (PPH) 04-238

A summary of the test pressure conditions are shown in Table VI.

The primary results of the compressor performance testing were improvements and
validation of the compressor simulation model. The simulation model was then used to perform
trade-off studies for the prototype compressor. The parameters studied included stroke, bore,
number of stages, power requirements, and heat rejection rates. The simulations showed that by
enhancing heat transfer in the cylinders, higher pressure ratios and fewer stages can be employed.
Example P-V (Pressure-Volume) cards for the regular valve and high swirl valve configurations
are shown in Figures 13 and 14, respectively. This validated model was then used as the design

tool to size the prototype compressor.
5.2  Subassembly Wear Testing
5.2.1 Wear Testing Objectives

The objective of this subassembly test program is to obtain wear data on candidate seal and
guide ring materials for the prototype compressor. The data aided in the material selections for the
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125 ¢ SUMMARY (NPUT DRTA
COMPRESSOR OATA. . ............ e NASA
GRS . oo AIR
RPH. o e 4990090
SUCTION PRESSURE (PSIR> . .. ... .. ............. 13.7891
1.00 Pworh SUCTION TEMPERATURE (DEG FY................ . .. 70.5000
DISCHARGE PRESSURE (PSIAY . ... . ... .......... .. 213.%000
DISCHARGE TEMPERATURE (DEG F). . . .. e 1152000
\SENTROP IC DJ}SCHARGE TEMPERATURE <(DEG F). . ... . 706. 1936
OUTPUT DATA
73 SUCTION UOLUMETRIC EFFICIENCY. . ... ............ 6327
THEP . ottt e e 36.%176
p PREPS . . .ottt .24083
A PHEPD . . oot e .0288
€ IMOICATED HORSEPOMER . . ... ... ......covoeorouen.. 0558
s PUMPING HORSEPOMER . . . ... .. ... oonenanrnn. .. 0004
s 50 INDICATED POMER (HATTS) ... ... .. .............. 41,2127
g PUNPING POWER CHATTS) . .. .......cooovnovnnon.n. .3073
E PERCENT SUCTION LOSS.........oovneennnnnn . .6579
PERCENT DISCHRAGE LOSS. . . ..........cooveuenn-n. .0788
COMPRESS ION AUERAGE POLYEX. . . .. . . ............ 1.308S
EXPANS |ON AVERAGE POLYEX. .. ... ... ............. 1.354S
25 OBSERVED FLOH (PPHY .. . .........coooreno .. 6371
POMER INDEX CHATTS/PPH). . . ... ... . ....c.oooo.. 65,4729
00
R 17 13 50 87 8 1.00
VOLUME

FIGURE 13. TEST RESULTS FOR BTA COMPRESSOR WITH REGULAR VALVES
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SURMARY INPUT DATA
COMPRESSOR ODATA. . .. ... i MASA
GRS . e e AIR
AP . e e S0 . 0000
AAA SUCTION PRESSURE (PSIR> ... ... .. .. .......... 1S 3287
1.00 M SUCTION TEMPERATURE CDEG F> .. ................ 72 7000
DISCHARGE PRESSURE (PSIAY. . ......... e 2174000
DISCHARGE TEMPERATURE (DEG F)> .. ... ... ........ 92.9000
ISENTROP IC DISCHRRGE TEMPERATURE (DEG F). .. ... 681.9220
OUTPUT OATR
75
SUCTION UOLUMETRIC EFFICIENCY. . .. ...... ... ... 6452
THEP . 37 4514
P PHEPS. . . . . ... e 2279
2 PHEPD . .. oot 0684
s INDICATED HORSEPOMER. ... ..................... o57S
s PUMPING HORSEPOMER. ... . ... ... .......... .. ... 0005
u s r INDICATED POWER (HATTS). .. ... .. .. ... .. ..... 42,8650
2 PUMPING POMER C(HATTS). .. ... ... ... ............... 3391
PERCENT SUCTION LOSS . ... .. ... ......... R 6085
PERCENT DISCHARGE LOSS. ... ............ . AU 1826
COMPRESS ION AUERAGE POLYEX. ... . ............... 1.2667
25t EXPRNS 10N AVERAGE POLYEX...... ....... ....... 1.3309
OBSERUVED FLOW (PPH). . . ...................... 7801
POMER INDEX CHATTS/PPH) ... ... ............... 54,9447
00
.25 e — o -
00 17 33 50 67 83 1.00

VOLUME

FIGURE 14. TEST RESULTS FOR BTA COMPRESSOR WITH HIGH SWIRL VALVES
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prototype design and predicating compressor operating life. Although the wear test apparatus is
primarily developed for seal and guide ring testing, information on the performance of the cam
follower, actuator bearing and valves was also obtained.

5.2.2 Wear Test Apparatus

The tests were conducted on a single piston compressor designed similar to the prototype
compressor. The piston is actuated by an eccentrically mounted bearing acting on an insert in the
piston base. The piston is kept in contact with the bearing outer-race by a set of coil springs. Simple
pressure actuated check valves are used on both the suction and discharge ports. The following
table presents the subassembly test rigs specifications:

Cylinder Bore (inches) 1.125
Lower Guide Bore (inches) 2.282
Piston Stroke (inches) 0.65
Suction Pressure (psia) Atmospheric
Discharge Pressure (psig) 100
Compressor Speed (RPM) 1000

This Subassembly Test Article (STA) was designed so the various seal and guide ring
materials could easily be interchanged and new cylinder sleeves inserted in the compressor.
Compressed air was circulated around the outside of the cylinder to keep the assembly cool. During
wear testing the compressor speed, discharge pressure, and the discharge gas temperature (in the
pulsation bottle) were monitored. During the course of testing, several different seal designs were
evaluated so several different piston designs were required to accommodate the various seals.

5.2.3 Wear Testing Results

Priortoassembly of the STA, the seals, guide rings, and cylinder were weighed and measured.
The compressor was then run and periodically disassembled for inspection and measurements. For
several of the tests, simply inspecting the seals and the quantity of wear products was all that was
necessary and then the compressor was reassembled and restarted. At the end of each test, the seals
were remeasured to quantify the wear rate. The initial surface finish on the cylinder walls for all
of the testing was 16 RMS. Seven different wear tests were performed. The materials for each are
summarized in Table VII and the results are discussed below.
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TABLE VII. WEAR TEST MATERIALS
I TEST # Reciprocating Seal | Guide Ring Cylinder Material I|
1 O-ring energized Turcite-42 band, 0.072" Clear anodized 6061-T6 |
Turcite-42 band, 0.072" length aluminum
Length
2 Spring energized graphite | Torlon 4301 band, 0.25" | Hardtuf X20 on 6061-T6
fiber reinforced PTFE length aluminum
with molybdenum
disulfide "U" seal.
Bal-Seal
415LB-212-GFPM
3 Spring energized PTFE Torlon 4301 band, 0.25" | Hardtuf X20 on 6061-T6
with molybdenum length aluminum
disulfide "U" seal.
Variseal
§32241-119-W-99S
4 Variseal Torlon 4301 band, 0.25" | Hardtuf X20 on 6061-T6
S$32241-119-W-998 length aluminum
5 Torlon 4301 step cut seal | Torlon 4301 band, 0.25" | Hardtuf X20 on 6061-T6
run with and without length aluminum
expander ring. 0.120"
length
6 Hydlar-ZT step cut seal Torlon 4301 band, 0.25" | Hardtuf X20 on 6061-T6
run with and without long aluminum
expander ring. 0.120"
length
7 Rulon-F step cut seal, Rulon F band, 0.25" long | Hardtuf X20 on 6061-T6
with expander ring. aluminum
0.120" length

5.2.3.1 Test#1 Results

The compressor was run for 8 hours at 1000 RPM with the discharge pressure set at 120
psig. When the compressor was disassembled, a white powdery material covered the cylinder and
valve assembly. The cylinder walls were lightly scoured below the seal ring path. The material
removed from the cylinder was apparently the source of the powder. The cylinder wall opposite
the guide ring showed material transfer from the guide ring and no apparent wear.

The seal was assembled following the manufacturer’s guideline and appears to run too tight
for non-lubricated applications. The clear anodized aluminum 6061-T6 material did not provide
an adequate cylinder wall material. Because of concemns relating to O-ring set in the present seal
design over long term, testing of metal spring energized seals was started. The cylinder was also
changed to a Tiodize Hardtuf X20 coating on 6061-T6 cylinder.
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5.2.3.2 Test #2 Results

The compressor piston was modified for a Bal-Seal seal ring and a Torlon 4301 guide ring
and a Tiodize Hardtuf X20 cylinder was installed. The compressor was run for a total of 500 hours
with the compressor stopped and the seals weighed at 100, 200, 433, and 500 hours. The compressor
discharge pressure was 100 psig, suction pressure was atmospheric pressure, and the compressor
speed was 1000 RPM. Because of the seal design, only weight change could be monitored (the
soft seal could not easily be measured with a micrometer). The Torlon guide ring varied in both
weight and size during the test as did a second Torlon guide ring (it was not run in the compressor,
but was placed in a plastic bag and only removed during weight checks) used as a weight check.
The variations were caused by water absorption.

Each time the compressor was disassembled, the wear products from the seal were visible
as dust on the cylinder and valves. The compressor ran fine for the duration of the test and was
shut down to try other materials. The design of this commercially available seal does not allow
much wear since it has only a thin amount of material covering the canted coil spring and limited
spring travel. The material combination of "GFPM" and Tiodize X20 seemed to work well. No
wear could be measured on the cylinder. The following table summarizes the weight loss of the
seal during the test (seal start weight was 1.445 gm). As indicated above, the Torlon weight and
size varied during the test (probably due to water absorption) so no detailed information is available
on the Torlon wear. From a qualitative point of view, the surface of the Torlon appeared polished
and no significant wear was evident.

Time (1 : cumulative Weight | o
100 0.0060
200 0.0091
433 0.0149
500 0.0176

5.2.3.3 Test #3 Results

The same test conditions as above were run with a finger spring energized PTFE "U" seal
that contained molybdenum disulfide lubricant. The same cylinder was used. The test only ran
about one hour before maximum pressure dropped to 40 psig. The compressor was disassembled
and the seal showed severe wear and the test was stopped.

5.2.3.4 Test #4 Results

Test #3 was repeated using a new seal and allowing an 8-hour break-in period with no back
pressure on the compressor. After the 8-hour break-in period, the compressor was disassembled
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and the seal inspected. The seal had again worn severely (for such a short test) and a considerable
amount of wear products were on the cylinder and valve plate. The test was stopped at this point
to try a seal design that has the potential for longer life. The unfilled PTFE appears to be too soft

for use in an unlubricated environment.
5.2.3.5 Test #5 Results

The compressor piston was again modified so a step cut seal ring could be used. This test
used a Torlon 4301 seal ring and guide ring. The initial testing was done without an expander ring
under the seal ring. After 69 hours of testing, an expander spring was installed. The total test
duration was 282 hours with the compressor shut down and inspected at the 69, 116, 188, and 282
hour points. The wear on the Torlon was even and only a relatively small amount of wear products

accumulated in the cylinder.

The Torlon wear was excessive for such a short duration test. It is difficult to determine a
wear rate for this test because of the changes during testing and the relatively large uncertainty in
the small wear measurements. The post-break-in wear rate with the expander ring was about
0.032"/1,000 hours and without the expander 0.034"/1,000 hours.

5.2.3.6 Test #6 Results

Test #5 was repeated (same seal design and cylinder) with the seal made of Hydlar-ZT
material. The test was run for a total of 133 hours. At the 42 hour mark, an expander ring was
installed under the Hydlar seal ring. At this point there was fine dust particles on the valve plate,
cylinder and piston. By hour 62, the maximum pressure (with flow valved off) was 75 psig so the
compressor was disassembled and inspected. It is believed the wear particles may have lodged
under the valve seats and caused the valves to leak. The compressor was reassembled and restarted
after some minor modifications. The compressor finished the duration of the test with the discharge
pressure at 100 psig. The total radial wear on the ring was 0.005 inches over 133 hours (for a wear
rate of 0.038"/1,000 hours).

§5.2.3.7 Test #7 Results

This test was performed with a Rulon F seal (same design as Test 5 and 6) and Rulon F
guide ring. A new cylinder sleeve was installed in the compressor because the old one was showing
score marks from the previous tests. The new cylinder was also made of aluminum with a Tiodize
"Hardtuf X20" coating. An expander ring was also installed under the seal. The seal was run for
a 1 hour break-in period with no back pressure and then the back pressure was increased to 100
psig. The following table presents the seal wear data over the 1800 hour test. The cylinder inside
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diameter increased between 0.0006 to 0.0014 inches over the duration of the test. The wear was
greatest in the plane of the actuator bearing because of the radial loads imparted by the piston
actuator.

The following table gives the measured seal thickness during the testing. As with the other
tests, the cylinder bore diameter was 1.125 inches and this seal contact length with the cylinder was
0.120 inches.

Test Time Seal Thickness Cumulative Loss
(Hours) (Inches) (Inches)
0 0.0770 0
26 0.0767 0.0003
212 0.0745 0.0025
378 0.0741 0.0029
544 0.0737 0.0033
879 0.0715 0.0055
1213 0.0694 0.0076
1836 0.0664 to 0.0685 0.0106 to 0.0085

The seal thickness data presented is an average of five measurements evenly spread around
the circumference. The last data point, however, exhibited a "flat-spot”. Upon examination of the
test rig the lower guide ring had worn through and the piston was not centered. This failure of the
test rig occurred sometime between the 1200 hour point and the 1800 hour point. The cumulative
loss from the 1800 hour point is somewhere in the range of 0.0106 inches (average for all five
locations) and 0.00835 inches (average for four locations by eliminating the flat-spot). If the testrig
failure had not occurred it is our judgement that the actual loss would be between the "worst-case”
condition and optimum condition.

5.2.3.8 STA Test Observatioils

In addition to the above information gathered on the seals and guide rings, inspection of the
cam follower, actuator bearing outer race and valves provided the following:

Cam Follower: The cam follower was made of 4340 hardened to 50 Rc and then ground
flat. Throughout the duration of all the wear testing, the cam follower showed no visible
signs of wear or failure. Based on the first few tests, it appears the piston does not rotate
(there is nothing to prevent the piston from spinning in the cylinder) from the position it is
inserted in the cylinder. The contact marks on the follower showed a single strip of contact

and not a circular region.
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6.0

Actuator Bearing: No significant wear of the bearing outer race in contact with the cam
follower was visible. No sliding contact on the bearing outer race (due to slipping of the
cam follower over the race) was evident. No apparent problems, noise or vibration were
evident from the bearing during the testing.

Check Valves: The compressor check valves suffered no failures during testing, but some
performance degradation was noted during testing that was attributed to leakage in the valves.
The wear test apparatus used a head assembly (containing the valves) from the breadboard
performance testing. There were 3 suction valves and 3 discharge valves, each 0.188 inches
in diameter in the head assembly. During testing, it appears some of the seal wear products
would accumulate in the valve seats resulting in valve leakage and a decrease in compressor
flow or outlet pressure. By plugging two suction and two discharge valves, the problem
either went away or became less noticeable. Whether the increased gas velocity through
the remaining valves transported the wear products away or there was less area for leakage
is not clear. Slight leakage was also noticed between the ground and lapped (no elastomer
face seals) valve plates.

DETAILED DESIGN DRAWINGS

Detailed design drawings are contained in Appendix A for each of the compressor

components. The following is a list of the drawing numbers and drawing titles that are contained

in the appendix.

DRAWING NUMBER DRAWING NAME
2529001 Design Layout, Type II Mixed Gas Compressor
2529002 Flange, Front
2529003 Spacer, Bearing
2529004 Retainer, Motor
2529005 Washer, Motor
2529006 Flange Assembly
2529007 Crankshaft Balance Information Sheet
2529008 Retainer, Front Bearing
2529009 Retainer, Rear Bearing
2529010 Spacer, Crankshaft
2529011 Bearing Support, Front
2529012 Crankshaft Assembly
2525013 Bearing Support, Rear
2529014 Main Shaft
2529015 Housing Assembly
2529016 Feedthrough, Electrical
2529017 Nut, Feedthrough
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DRAWING NUMBER DRAWING NAME

2529019 Cylinder, Second Stage

2525020 Piston, First Stage

2529021 Piston, Second Stage

2529022 Follower, First Stage Piston
2529023 Follower, Second Stage Piston
2529024 Drawing List

2529025 Seat, Piston Spring

2529026 Pin, Piston Locating

2529027 Retainer, First Stage Outlet Valve
2529028 Retainer, First Stage Outlet Valve
2529029 Nut, First Stage Inlet Valve Retainer
2529030 Retainer, Second Stage Outlet Valve
2529031 Retainer, Second Stage Inlet Valve
2529032 Valve Plate, First Stage

2529033 Valve Plate, Second Stage

2529034 Manifold, Cylinder Cooling Fluid
2529035 Pulsation Chamber Assembly (Sheet 1)
2529035 Pulsation Chamber Assembly (Sheet 2)
2529036 Piston Ring, First Stage

2529037 Piston Ring, Second Stage

2529038 Cooling Plate, Motor

7.0 PROCUREMENT SPECIFICATIONS
7.1  Piston Return Spring

The piston return spring provides the force for drawing gas into the cylinder during the
suction portion of the cycle and keeps the cam follower in contact with the actuator. Both the first
and second stages use the same return springs. The spring is designed to survive 10’ cycles with a
15 LB preload, 0.48 inch stroke and 60 LB/inch spring rate. The following specifications define
the spring geometry and materials.

Wire Diameter (inches) 0.135
Inside Diameter (inches) 0.890 +0.015
Free Length (inches) 2.20 10.03
Spring Rate (LB/in) 60

Total Coils 9.3

Active Coils 7.3

Helix Direction Right Hand
Shot-peened YES
Material 30288

End Closed and Ground YES
Squareness (degrees) 3
Parallelism (degrees) 3
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72 Static Seals

Static face seals are used in the compressor for sealing the case, cylinders, pulsation bottles
and the cooling jacket. Spring energized "C" ring seals were selected to provide long life, reliable
seals. The 301 stainless steel spring provides compatibility with the gas mixture and is not as prone
to creep, set, or thermal degradation as an all elastomer seal. The material selected for the seal itself
is PTFE. This inert material provides excellent compatibility with the gas mixture, long shelf life,
and is rated for use from -320°F to 450°F.

7.3 Drive Motor and Controller

The drive motor in the prototype compressor is a high torque brushless DC motor. The
motor was selected because it provides high torque and low weightin a small package. The brushless
design will also provide a long service life and will not produce wear products associated with brush
wear. The performance specification and dimensional information on the motor and controller are
contained in the manufacturer’s literature reproduced in Appendix B. The motor and controller
part numbers are Inland Motor RBE-01804-X00 and BLM1-02820H0X, respectively. The power
supply required for the motor controller is 28 VDC at 20 ADC.

It should be noted that this motor and controller are not being tested as flight hardware, but
rather to demonstrate them as generic devices capable of properly powering the compressor.

7.4 Fasteners

All nuts, bolts, and washers used in the compressor are made of 304SS. All of the threads
taped into the aluminum case and motor housing have 302SS Heli Coil self-locking threaded inserts.
These inserts strengthen the taped threads by uniformly distributing the loading and also increase
thread life. The threads on the crankshaft ends and motor electrical feedthrough were self-locking
spiral lock threads.

8.0 FABRICATION NOTES

Material specifications and fabrication notes are contained in the detailed drawings in
Appendix A.
9.0 PROPOSED MODIFICATIONS TO END ITEM SPECIFICATION

In general, the EIS represents a good specification for flight hardware. There are a few
sections that can be improved for the specific application of an on-orbit compressor. The sections

that should be modified are: Surface Wear (3.2.2.3), Lubricants (3.3.1.5), Performance (4.2.2 &
4.2.4), Proof Pressure (4.2.2.2), and Service Life (4.2.5).
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9.1 Surface Wear

The current EIS states that, ". . . shall not introduce contaminant into the fluid flow
path . ..". Each compressor type has a different application, and the effect of wear particles is
different. Specifically, a realistic acceptable number and size of wear particle for the waste gas
compressors should be stated.

9.2. Lubricants

The current EIS states that, ". . . do not introduce contamination by entering the fluid flow
path." As indicated above for wear particles, a realistic acceptable level of lubricant transfer
downstream for the waste gas compressor should be stated.

9.3 Performance

The current EIS provides inlet and outlet pressure ranges and a flow rate range independent
of each other. Since the flow rate is not independent of inlet and outlet pressure, specific combined
operating conditions should be stated. As an example, at an inlet (suction) pressure of 10 psia and
an outlet (discharge) pressure of 1000 psia, the fluid flow rate shall be 0.25 Ibm/hr. The performance
of a compressor is best illustrated in the form of a discharge pressure versus fluid flow rate curve
at a given inlet pressure and rotational speed. The performance curve can be specified by three
points: the pressure at zero flow rate (i.e., deadhead pressure), the flow rate at zero pressure rise
(i.e., flow rate when suction pressure equal to discharge pressure), and a nominal flow rate at a
nominal pressure. This approach to specifying performance assumes a constant compressor
rotational speed. Each rotational speed will have a different curve with adifferent deadhead pressure
(i.e., maximum pressure) at no flow and zero-pressure-rise flow rate (i.e., maximum flow rate at
no pressure rise). The control strategy for motor speed is also important. A constant speed
compressor greatly simplifies the control system, but a variable speed system provides more
flexibility in pressure versus flow rate combinations. Since the waste gas application is to pump
up a reservoir from 100 psia to 1000 psia, the important issue is the flow rate. At a constant speed,
the flow rate will be high at 100 psia, i.e., the beginning of the cycle and gradually decline as the
vessel pressure approaches 1000 psia. If a constant flow rate is required over the entire range of
discharge pressures, then a variable speed is required. This capability will result in a more complex
control system and a larger capacity unit. Once you have determined how you intend to operate
the unit, then a more specific performance specification can be written with the above guidelines

in mind.
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9.4 Proof Pressure

The current EIS requires that the entire compressor be subjected to a proof pressure of 1.5
times the maximum discharge pressure for five minutes and designed for a burst pressure of 2.5
times the maximum discharge pressure. Since the case is vented to suction pressure, the requirement
that the case withstand this proof pressure results in a significantly heavier case than if the case
proof pressure was 1.5 times the highest pressure it would experience (i.e., suction pressure). To
be more specific, the design burst pressure for the case is 2.5 times the maximum discharge pressure
or 2500 psia. However, this is a hundred times the maximum suction pressure. A more realistic
requirement would greatly reduce the weight of the case and total weight of the compressor.

9.5  Service Life

The current EIS requires 10,000 operating hours of continuous duty. This life requirement
with an unlubricated compressor is severely pushing the state-of-the-art (SOA). As the program
proceeded, the objective of maximizing life potentially up to 10 years (876,000 hours) was
recommended which is beyond the SOA. Two specific modifications are recommended for the
waste gas compressor. The first is to identify a realistic duty cycle, and the second is to allow a
lubricated unit. A realistic duty cycle can result in significant factors of life extension, i.e., if the
compressor is realistically only on 1/4 of the time the life can be extended by a factor of 4 for dry
seals. For lubricated seals, the life prediction is more complex because wear is not only a factor of
operating life but also the number of starts. The life prediction for a lubricated unit, also, has the
complexity of the life of the lubricant. However, even with these added complexities in life
prediction, the life of lubricated units is significantly longer than unlubricated units. The
specification should be modified to include operating hours and duty cycle.

10.0 FAILURE MODES AND EFFECTS ANALYSIS

The Failure Modes and Effects Analysis (FMEA) serves to identify possible compressor
failure modes, failure causes, and the effect each failure mode has on the system operation. Once
the failure modes and effects are defined, they can be used to guide design decisions, safety analyses,
and hardware test and inspection plans.

The process of conducting the FMEA consists of analyzing each hardware item for each
possible failure mode and for the "worst case" effects of the failures. The analysis includes the
interrelationships between control systems, operating environments, external interfaces, and the
operating hardware. By looking at the interrelationships, the effect of a component failure on the
overall system operation can be determined.

The FMEA in the following tables contains the item name, functional description, failure
mode and cause, failure effects, failure detection, and corrective action required.
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APPENDIX A - DETAILED FABRICATION DRAWING PACKAGE
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Frameless Motor

M e T oo T =

ST | PR < Dm
hgh-018C0- 00 ) 275 (7.0) T (i1.8) | 938 (237)
ROE-01801-.00 | 600 (15.2) | .780 (190.8) | 1.260 (32.0)
RBE~01802-_00 | 910 _(233) |1.090 (27.7) |1.570 (39.9)
RBE~01803-_00 | 1.210 (30.7) | 1.390 (35.3) | 1.870 (47.5)
ABE-01804—_00 | 1.500 (38.1) | 1.880 (42.7) | 2.160 (S54.¢
ROE-01805~_00 | 1.820 (48.2) { 2.000 (50.8) | 2.480 (83.0)

000 1850 905 R. MIN.
- 2.940 2.890 . (23.0)
-.002 DIA. OIA, OlA. _ 1

2.991 MAX. MAX MIN.

(78.0) T d (47.0)

-
i
3
]

NOTES:

1 - MOTOR SUPPLIED AS TWO SEPARATE

COMPONENTS, MAGNET ASS'Y
ARMATURE & SENSOR ASS'Y.

AND

2 - DIAMETERS A" AND "B" TO BE

CONCENTRIC WITHIN .002
WHEN MOUNTED.

3 ~ MOUNTING SURFACE BETWEEN
2.991 AND 2.940 DIAMETERS
ON BOTH SIDES.

i b 035 MTG. DIM.
+£.010( '

“A" —b———‘a————— 400

DIM. MAX.

(10.2)
C" DIM——=

MAX,

TS~ MAGNET ASS'Y

"~ —ARMATURE AND N

— LEADWIRE - TEFLON COATED
[ TYPE °E° PER MIL-W—16878/4
! 6° MINIMUM LENGTH
A) MOTOR: #18 AWG. (RED, WHMT, BLK)
| 8) SENSOR: #28 AWG. (BLU, BRN. ORG,
i YEL, GRN)

SENSOR ASS'Y — s
(12.7)
NOTE: DIMENSIONS IN
PARENTHESIS
REPRESENT
MILLIMETERS

Housed Motor

MODEL LENGTH
ROEH—01800-- 00 [ 1.700 (432
REEH-01801-_00 | 2.023 (314 ADWRE - TEFLON COATED —
= 0z3_(31.4) |
ROO4-01802- 00 | 2.338 (583 PER MIL—W—16878/4
ROEH-0160)-_00 | 2.635 (64.9) 6" MINIMUM LENGTH.
RBEH-01804— 00 [ 2.928 (74 3) A) MOTOR: M8 AWG. (RED, WHT, BLX)
AREH-01808—- 00 | 3.245 (824) 8) SENSCR: $28 AWG (BLU. BAN, CRG,

YEL GRN)
H
< 00— L — S
~.0003 |
4008 |
(2 i
= I
|
018 1
080 == =— :
20 | i
. 1
2.028 i £.023
—== 1.000 LENGTH — 1.2%0 —
(28.4) MAX. (31.8)

NOTE: DIMENSIONS IN

PARENTHESIS
REPRESENT - NO.10- J2UNF-28
MILLIMETERS THO. X .18 MIN. DP.

4 HOLES EQ. SPACED

ON A 2.950 DIA. B.C.
(749
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SIZE CONSTANTS

MODEL NQ. RBE- RBE- RBE- RBE- RBE- ABE-
PARAMETERS UNITS 01800 01801 01802 01803 01804 01805
0zin 290 595 874 1130 1390 1667
Pgak Rated Torque, +25% Nm 20 42 6.2 8.0 5.8 118
rower & Peak Raea Torgud Waste blg | 798 966 2 1257 1457
oz 58 12 154 191 230 262
Max. Continuous Stall Torgue, T, Nm 0.41 0.79 1.09 1.35 1.62 1.85
Max, Continuous Output Power Watts 102.5 143.7 168.1 186.4 210.1 217
ozin/ W 18 212 28.2 36.5 38.1 431
Motor Constant, = 15%, Km Nm/ W 0.083 0.150 0.199 0.258 0.269 0.304
TPR, = 15% + (°CIW) 2.9 26 24 23 2.1 2.0
w oo F oz-in-/RPM Tix10-° ] 2.1x10- | 29x10-* | 3.7x10-* | 4.5x10-3 5.3x10°
scous Damping, F, Nm/RPM 7.8x10-¢ 1.5x10-3 2.0x10-? 2.6x10-3 3.:10-° 3.7x10-3
0z4n 1.46 2.86 4.10 5.18 6.34 754
Hysteresis Drag Torque, T, Nm 0.010 0.020 0.029 0.036 0.045 0.053
. oz-in 3.0 4.0 53 7.0 8.0 3.0
Max. Cogging Torque Nm 0.021 0.028 0.037 0.049 0.057 0.064
nertia. Qz-in-sec? S1x10-7 | B87x10-3 | 1220-7 | 155x10-7 | 18.8x10-* | 22.3x10-
Frameless | INerta, Jy Kg-m? 3.6x10-¢ 6.1x10-3 86x10-5 | 109x10-3 | 13.3x10-% | 15.7x10-3
Mator Weiaht 0z 94 178 25.6 33.0 400 48.0
9 gm 266 505 726 936 134 1361
nerta. J oz-in-sec? Sox10-7 | 88x10-0 | 12.4x10-> | 158x10-* | 19.1x10-3 | 22.7x10-
Housed 3, u Kg-m? 37104 | 6.2x10-5 | 8.7x10-s | 11.1x10-s | 13.5x10-% | 16.0x10-°
Motor Weight oz 27.0 35.2 429 50.6 578 65.7
9 gm 765 998 1216 1434 1638 1862
No. of Poies 12 12 12 12 12 12
24 VOLT ‘A’ WINDING CONSTANTS  Aaiternate Windings Available
ozin 183 360 552 730 873 1061
Peak Torque, = 25%, T, Nm 1.29 2.54 3.90 5.16 6.17 7.49
Peak Current, = 15%, 1, Amps 10.0 12.0 16.0 20.0 21.8 25.3
. ozin/Amp 18.3 30.0 345 3.5 40.0 42.0
Torque Sensitivity, = 10%, Ky Nm/Amp 0.129 0212 0.244 0.258 0.282 0.297
No Load Spesd, = 10% RPM 1700 1030 900 850 780 740
V/Rad/sec 0.129 0.212 0.244 0.258 0.282 0.297
Voitage Constant, = 10%, K, V/KRPM 13.53 22.18 2550 26.98 2957 31.05
Terminal Resistance, + 12%. R, onms @ 25°C 2.4 2.0 15 1.2 11 0.95
Terminai Inductance, + 30%. L, mH 24 2.3 23 17 1.7 1.5
Power Watts 48.6 585 72.5 87.8 9.8 106.3
Max. Continuous | - ozin 55.1 106.7 1461 1793 215.9 2451
Output Power orque Nm 0.39 0.75 1.03 1.26 153 1.73
Speed RPM 1192 740 670 662 606 586
+TPR assumes housed motor mounted to 45 x 4.5 x .25 aluminum heat sink or equivalent.
PERFORMANCE CURVES CONTINUOUS DUTY CAPABILITY FOR 75°C RISE
Design Features of RBE(H)

g 8 ¢ ¢# & ¥ # 8 %

Brushless Motors

« High torque to weight and inertia ratios

« Samarium cobalt rare earth magnets

+ 3 phase delta or wye connection

. Housed or frameless designs

. Stationary outer stator winding
rotating inner permanent magnet rotor

. Stainless steel shafts (housed versions)

« All motors built to MIL-Q-9858A

. Encapsulated windings available for harsh
environments

« Built-in Hall effects for electronic
commutation
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VOLTAGE & CURRENT RATING COMBINATIONS
A 28 voits 20 amps
B. 70voits 12 amps
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J ES g c iz OPTION
8.00 200 1 1312 18 PN | CURRENT LOOP
2.50 1.72 1852 25 PN | VELOCITY LOOP
FEATURES
¢ Cument Loop Operation « Modular Package Size: 8" x 4" x 2°
« Velocity Loop Operation with Tachometer, « Adjustabie Cument Limit
Hall Devices, or Encoder « Complete Short-circuit Protection
+ Frequency Locked Loop Operation » Basepiate Conduction Cooling
¢ 20 KHz PWM Frequency « Greater than 90% Efficient
« EMI, RA Environment Protection « Four Quadrant Operation
» Opfically Isoiated Enable/Reset Line
SPECIFICATIONS
POWER OUTPUT
A B C D £
28 volits/20 amps | 70 voits/12 amps
MAX VOLTS 40 0
AMPS CONT. 20 12
AMPS PEAK 20 12
WAITTS CONT. 800 1080
WAITS PEAK 800 1080
POWER INPUT
BUS VOLTAGE 5-45VDC 5-95 VDC
CURRENT 0-20A 0-12A
CONTROL VOLTAGE 20-32VDC 20-30 VDC
CURRENT 400 mA 400 mA
LOAD
[ MIN. INDUCTANCE 1 mH 1 mH
MECHANICAL
SIZE 8"x4"x2" 8" x4"x2"
WEIGHT 261b 26b
SIGNAL CONNECTOR OBM 15P DBM 15P
POWER CONNECTOR Term. Strip Term. Strip
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COMMUTATION: Six Sequence

CONTROL CONFIGURATIONS
COMMAND EXTERNAL
INPUT FEEDBACK ADJUSTMENTS
CURKRENI LOOP v RS Commana Scating
cumrent Limit
OC Offset
VELOCITY LOCP =10V Brush Command Scaling. OC Offset
(BRUSH TACH) Tach Feedback Scaling, AC Gain
DC Gain, Cument Limit
VELOCITY LOOP * =10v Brushiess Command Scaling, DC Offset
(BRUSHLESS TACH) Tach Feedback Scaling, AC Gain
DC Gain, Cument Limit
VELOCITY LOOP* =10V Encoder Command Scaling, DC Offset
(ENCODER) Feedback Scaling. AC Gain
DC Gain, Current Limit
VELOCTTY LOOP* =10V Hall Command Scaling. OC Offset
(HALL SENSORS) Sensors Feedback Scaling. AC Gain
DC Gain, Cument Limit
FREQUENCY LOCKED Ref. Freq. Hali Sensors
VELOCITY LOOP* Or Encoder (Factory Pre-set)
* Consult Factory For These Options
BLOCK DIAGRAM OF SERVO DRIVE SYSTEM
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ORBIT COMPRESSOR TECHNOLOGY
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1.0 INTRODUCTION

The Verification Program Report describes the methods used to verify that the compressor
meets the design requirements outlined in the End Item Specification (EIS) Sections 3.0 and 4.2.
The Verification Program is broken into three sections based upon the verification method employed.
The first section describes the verification of EIS items by development testing. The second section
consists of verification by analysis, and the third section consists of verification by assessment. The
following section presents a brief outline of the compressor design.

2.0 COMPRESSOR DESCRIPTION

The basic design, shown in Figure 1, is a 3-cylinder, two stage reciprocating piston type
compressor with pressure actuated check valves. The two outer pistons are the First Stage and the
smallercenter pistonis the Second Stage. The pistons are follower actuated by eccentrically mounted
anti-friction bearings. The piston is held in contact with the actuator with a preloaded spring. The
following list presents the prototype compressor design parameters:

TableI. Prototype Compressor Design Parameters

First Stage Second Stage

Number of Cylinders 2 1
Cylinder Bore (inches) 0.875 0.500
Compressor Nominal Speed (RPM) 650-1000 650-1000
Piston Displacement (cu. inches/cylinder) 0.288 0.049
Stroke (inches) 0.48 0.25
Clearance Volume (%) 6 10
Number of Suction Valves 2 1
Diameter of Suction Ports (inches) 0.125 0.094
Number of Discharge Ports 1 1
Diameter of Discharge Ports (inches) 0.125 0.094
Piston Guide Bore (inches) 1.250 1.250
Return Spring Preload (LB) 15 15
Return Spring Rate (LB/inch) 60 60
Motor Peak Rated Torque (0z.-in.) 400

Motor Power at Rated Peak Torque (watts) 510

Maximum Continuous Output Power (watts) 560

The above outlined design was based on a number of competing design requirements and
represents areasonable trade-off between performance, reliability and life requirements. The design
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is simple with few moving parts, and based on component wear and life predictions, is free of sudden
catastrophic failure. Both compressor stages are driven from a single drive motor and crank assembly
resulting in fewer mechanical components and lighter weight compared with separate stages. The
integration of both stages also simplifies installation since manifolding between the two stages and
the pulsation bottles is incorporated into a single head assembly.

The three cylinder design can be balanced to eliminate primary and residual secondary
shaking forces. While the three cylinder design is somewhat more complicated than other possible
designs, the ability to limit shaking forces s very important. The option of an unbalanced compressor
with compensating hardware (active or passive devices) was investigated and determined to be
unacceptable for a variable speed compressor.

3.0 DEVELOPMENT TEST PLAN

In order to ensure that the compressor meets the design requirements in the EIS, some detailed
testing of compressor components and the compressor assembly is necessary. Development testing
is done to substantiate designs, measure performance, and assure the design is suitable for initiation
of formal flight hardware development. Since development testing is not intended to provide flight
certification, the formal requirements of controlled design, formal certification, formal retest, and
flight type hardware are not required.

The EIS contains design requirements common to all compressor applications in Section
3.0 of the EIS and the design requirements specific to Type II compressor in Section 4.2 of the EIS.
This portion of the Verification Plan contains only those items in EIS Sections 3.0 and 4.2 that
require testing to verify the design requirements are met. The EIS items not requiring verification
by testing are verified by analysis or assessment and are discussed in Sections 4.0 and 5.0 of this
document.

A description of the test objective and test plan for each EIS item to be verified by test is
listed in Table I

3.1  Strength Testing
3.1.1 Design Requirement: EIS 3.2.2.1 Strength

The components shall have sufficient strength at the design temperature to withstand both
limit loads and pressures without loss of operational capability for the life of the component, and
the proof loads and pressures at the design temperatures without functional failure during testing.



Table II. Verification By Test

EIS Section No. & Title h rifi

3.2.2.1 Strength Exempt Except For Proof
Pressure - Test

3223 Surface Wear Analysis & Test

3.2.25 Weight Test

3.2.2.6 Envelope Test

3.3.1.13 Cleanliness Verification Test

3.3.1.20 Surface Texture Assessment & Test

42.2.1 Operating Pressures Test

4222 Proof Pressure Test

423 Fluid Operating Temperatures Test

42.4 Fluid Flow Rate Test

42.5.1 Operating Life Test & Analysis

42.6 Power Limitations Test

3.1.2 Test Item
Prototype compressor assembly is d_escribed in the Prototype Final Design Report.

3.1.3 Test Description

The compressor assembly was subjected to the proof pressure of 10.35 MPa (1500 psi) for
a period of five minutes. During the application of the proof pressure the compressor was not
operating. The proof pressure was applied at the suction and discharge ports of the compressor
with the compressor at room temperature (75 £5°F). The test gas was nitrogen.

After the proof pressure was relieved, the compressor performance was verified to ensure
the performance specifications outlined under EIS 4.2 were still met. The testing was performed
on the test assembly and under the same operating conditions outlined under EIS 4.2.

3.1.4 Test Equipment

Pressure Gage — for measuring proof pressure.
Manufacturer: Wika Instruments Corp.
Model: 232.33
Range: 0 - 1500 psig
Calibration Points—0%, 25%, 50%, 75%, and 100% of Full Scale

Dead Weight Pressure Calibrator—for pressure gage calibration.
Manufacturer: Ashcroft (Dresser)
Model: Dead Weight Tester 2HH-286S1
Range: 0- 10,000 psi



3.1.5 Test Results

Prior to applying proof pressure, a leak check with soap solution revealed a minor leak in
the case vent fitting that was corrected by tightening the fitting. After the unit was free of leakage,
the five minute proof test was initiated. No problems occurred during the proof test. After the
proof pressure was relieved, the compressor performance was tested at 650 RPM and sevendifferent
flow rates. The results of the performance test after the application of the proof pressure were the
same as the performance testing prior to proof testing. The compressor passed the proof test without
any degradation in performance, leakage, or breakage.

3.2  Surface Wear Testing
3.2.1 Design Requirement: EIS 3.2.2.3 Surface Wear

The wear and attendant particle generation at any dynamically interfacing surfaces
(contacting surfaces under relative motion) shall not introduce contaminant into the fluid flow path
and shall not impair the function of that specific interface, the compressor as a whole, or the user
system for the life of the compressor.

3.2.2 Test Item
Subassembly Test Article (STA) is described in the Prototype Final Design Report.
3.2.3 Test Description

The surfaces subject to wear in the compressor are the piston seals and guide rings, the outer
bearing race acting on the cam follower, the bearing races on the balls, and the check valves motion
against the valve seat.

Wear testing was performed on the STA which is a single piston compressor. The STA
design is modeled after the prototype compressor and contains a piston seal ring, upper and lower
guide rings, eccentrically mounted bearing acting on a cam follower, and the fluid check valves.
The primary purpose for wear testing in the STA is to provide wear data on the piston seal.
Information on the guide rings, bearing, valves and cam follower were also obtained but only from
visible observations of the wear surfaces.

The STA piston seal and guide rings were weighed and dimensions measured prior to
assembly to determine starting conditions. The compressor was then assembled and the compressor
run for 8 hours at 1000 RPM with the inlet at atmospheric pressure (temperature of 75°F) and the
discharge at 100 psig. The test gas was air. At the end of the 8 hours, the compressor was
disassembled and the wear surfaces remeasured to record the initial break-in wear rate. The
compressor was reassembled and run for an additional 1800 hours. The unit was disassembled
weekly to determine the post break-in wear rate as a function of time.



3.2.4 Test Equipment
Scale—for weighing the piston seal and guide rings.
Manufacturer: Metter
Model: H6T
Range: 0 - 160 grams
Resolution: 0.0001 grams
Calibration: Texas Scales Co. calibration certificate

Micrometer—for measuring piston seal and guide rings.
Manufacturer: Mitutoyo
Model: 293-765 (8116910)
Resolution: 0.00005"
Calibration: standard calibration blocks prior to use

Internal micrometer—for measuring piston bore.
Manufacturer: Mitutoyo
Model: 168-207
Range: 0.8"-1"
Resolution: 0.0002"
Calibration: ring gage prior to use

Internal micrometer—for measuring piston bore.
Manufacturer: Mitutoyo
Model: 368-204
Range: 0.5" - 0.65"
Resolution: 0.0002"
Calibration: ring gage prior to use

Caliper—for measuring piston OD in seal grooves.
Manufacturer: Mitutoyo
Model: 505-626
Resolution: 0.001"
Calibration: micrometer standards



3.2.5 Test Results

The test results of wear testing on the STA are documented in the Prototype Final Design
Report and summarized in Figure 2 (see Section 4.3 for a discussion of the life prediction based on
the wear data). Wear and particle generation on the cam follower bearings, and check valves was
not measurable and particulate could not be observed. These items completed over 2500 hours of
run time while several different piston seals were evaluated. The piston seal wear is the only area
of concern for particle generation since it has the potential to migrate with the compressed gas.
With the piston seals made of inert Teflon compounds, the particulate migration is of minimal
concern. During STA testing, the seal wear products were found in the cylinder, on the valve plate
and a very small amount around the discharge valve port. These particles may collectin the pulsation
bottle where their transport rate will be greatly reduced because of the very low gas velocity in the
pulsation bottle. These wear products will not impair the function of the compressor since the
quantity of wear products is very small. A filter installed in the compressor discharge line will
prevent the particulate migration into downstream equipment. The wear data presented in Figure
2 is an average of five measurements evenly spread around the circumference of the seal ring. The
last data set, however, exhibited a "flat-spot”. Upon examination of the test rig the lower guide
ring had worn through and the piston was notcentered. This failure of the test rig occurred sometime
between the 1200 hour point and the 1800 hour point. The cumulative loss from the 1800 hour
point is somewhere in the range of 0.0106 inches (average for all five locations) and 0.0085 inches
(average for four locations by eliminating the flat-spot). If the test rig failure had not occurred it
is our judgement that the actual loss would be between the "worst-case” condition and optimum

condition.
3.3  Weight
3.3.1 Design Requirement: EIS 3.2.2.5 Weight
Minimum weight shall be a design objective. The weight shall not exceed 36.3 kg (80 1bs.)
3.3.2 Test Item
Prototype compressor assembly.
3.3.3 Test Description

This test was conducted to verify that the compressor prototype meets the above requirement.
The assembly weighed consisted of the compressor prototype, coolant lines, inlet and outlet gas
fittings, and the mounting baseplate. This entire assembly was placed ona standard balance scale.
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3.3.4 Test Equipment

The test equipment is a standard balance beam scale.
Manufacturer: Ohaus
Model: Heavy Duty Solution Balance
Range: 0-45 lbs.

3.3.5 Test Results

The total assembly weight was 30.1 Ibs. The assembly minus the coolant lines, fittings, and

baseplate weight was 26.9 lbs.
3.4 Envelope Volume
34.1 Design Requirement: EIS 3.2.2.6 Envelope

Minimum envelope volume shall be a design objective. The maximum envelope shall be
1.5 cubic feet.

3.4.2 Test Item
Prototype compressor assembly.
3.4.3 Test Description

The overall dimensions of the compressor prototype assembly were measured using a
standard mechanical scale. Those overall dimensions included mounting bolts, fitting and electrical
wiring such that the entire assembly would fit into an envelope of inner dimensions provided.

3.4.4 Test Equipment
The test equipment is a standard mechanical scale.
3.4.5 Test Results

The overall envelope is:
12.6 inch length
7.0 inch width
9.9 inch height
The overall volume is 873.18 cubic inches or 0.505 cubic feet.

3.5 Cleanliness Verification Testing
3.5.1 Design Requirement: EIS 3.3.1.13 Cleanliness Verification

Following precision cleaning, unless otherwise specified, each item shall be rinsed using
100 milliliters of unused precision cleaning solvent for each square foot of critical surface. Rinsing



shall be accomplished by agitation, sloshing, or by spraying the test solvent over the critical surface
in such a manner as necessary to obtain a reliable test solution. The test solvent shall be drained
immediately to prevent particle redeposition on the test surface. Particulate determination shall be
made in accordance with SEA-ARP-598. NVR determination shall be made in accordance with
ASTM D2109-78. Allowables shall be in accordance with EIS 3.3.1.12.

3.5.2 Test Item
Prototype compressor components.
3.5.3 Test Description

Precision cleaning is not required for any surfaces on the compressor. The compressor
components will be cleaned in an ultrasonic cleaner immediately prior to assembly.

3.5.4 Test Equipment
None Required.
3.5.5 Test Results
The compressor components were cleaned prior to assembly.
3.6  Surface Texture Measurement
3.6.1 Design Requirement: EIS 3.3.1.20 Surface Texture
Surface texture limitations shall be in accordance with ANSI B46.1-78.
3.6.2 Test Item
Prototype compressor components.
3.6.3 Test Description

Surface texture for critical mating surfaces will be determined in accordance with ANSI
B46.1-78.

3.6.4 Test Equipment
None Required.
3.6.5 Test Results

As each compressor component was manufactured, its surface texture was checked to make
certain it complied with the design requirements. Because extremely smooth surfaces (< 16 RMS)

were not required, machined finishes were verified with visual and tactile comparisons.
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3.7 Compressor Performance Testing
3.7.1 Design Requirement: EIS 4.2 Type I Compressor Application Requirements
The following design requirements must be met for the Type II compressor.

The bulk working fluid will consist of an oxidizing gas mixture as specified in Appendix
2, paragraph 1.2 of the EIS. Trace contaminants potentially mixed with the bulk gas mixture are
specified in Appendix 2, Section 2.0 of the EIS. Potential phase change or chemical reaction issues
that exist with the compression of this gas mixture include, but are not limited to, the following:

) condensation of CO, at low temperatures (below O°F and 300 psia)

(2) a possible reaction between fuels (C;H,, NH;, C,H,, C,H;, etc.) and oxygen at elevated
temperatures.

Operating pressures range as follows:
(a) Inlet: 0.07 to 0.20 MPa (10 to 30 psia)
(b) Outlet:  0.69 to 6.9 MPa; 8.28 MPa max (100 to 1000 psia; 1200 psia max).

Proof pressure shall be 1.5 times the operating pressure, approximately 10.35 MPa (1500
psia) as a minimum, for a duration of at least 5 minutes.

Fluid inlet temperature range is as follows:
(a) Maximum: 32.2°C (90°F)
(b) Minimum: 15.5°C (60°F)

Flow rates during compressor operations are as follows:
(a) Nominal:  0.11 Kg/hr (0.25 LBm/hr)
(b) Maximum: 0.50 Kg/hr (1.1 LBm/hr)
3.7.2 Test Item

Prototype compressor assembly.

3.7.3 Test Description

Performance testing on the prototype compressor was conducted to verify the above
requirements were met. The tests to be performed encompass the required operating pressures,
temperatures, and flow rates. All of the tests were performed with the compressor at room
temperature (75°F) and at steady operating conditions. The working fluid was nitrogen.

11



3.7.4 Test Equipment

Temperature Sensors—for fluid temperature measurements.
Manufacturer: Omega
Model: TMQSS-062U-6
Signal Conditioner Manufacturer: Fluke
Range: 0- 100°F
Calibration: ASTM Thermometer Set, Ice Point

Pressure Sensors—for gas pressure measurements. (inlet, inner-stage, discharge)
Manufacturer: Wika Instruments Corp.
Model: 232.33
Range: 30 in Hg-0-15 psi, 0 - 300, O - 400, 0 - 1500 psig
Calibration: Dead weight tester at 0%, 25%, 50%, 75%, and 100% FS

Dead Weight Pressure Calibrator—for pressure sensor calibration.
Manufacturer: Ashcroft (Dresser)
Model: 10,000 psi Dead Weight Tester, Ser # 2HH-286S1

Multimeter Meter—to measure motor power consumption.
Manufacturer: Hewlett-Packard
Model: 3465A

Shunt Resistor—to measure compressor speed.
Range: 0 - 1000 amps
Resistance: 0.0001

Flow Meter—to measure fluid flow rate.
Manufacturer: Aalborg Instruments
Model: PRO34/1-082-03C, PRO34/1-102-05C
Range: 0-5.18,0-22.8, SCFH
Calibration: Wet Test Meter

Counter—to measure compressor speed.
Manufacturer: Tektronix
Model: DC-505 Universal Counter/Timer

3.7.5 Test Results

Tocharacterize the compressor performance, testing was performed at three different suction
pressures. The test results are summarized in Tables III through V and Figures 3 through 5. The
tables show the measured parameter such as pressure, flow rate, and temperature. The figures show

12
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plots of flow rate versus discharge pressure for each different suction pressure. As expected, the
plots show flow rate increases with decreasing discharge pressure. The discharge pressure and flow
rate increase with increasing compressor speed. Because the compressor motor controller was being
repaired when the above described tests had to be performed, an externally mounted motor was
used to drive the compressor during these tests. After the motor controller was repaired, the
performance curve shown in Figure 3 at 15 psia was rerun and there was no change in compressor

performance.

The performance tests verify the compressor meets the required flow, pressure and
temperature specifications. All of these tests were performed with the coolant fluid temperature at
20°C.

3.8  Operating Life Testing
3.8.1 Design Requirement: EIS 4.2.5.1 Operating Life

Minimum useful on-orbit operating life at the duty cycles specified in Section 4.2.5.2 shall
be 10,000 operating hours. The compressors shall be refurbishable for a minimum of an additional
10,000 operational hours of on-orbit service.

3.8.2 Test Item
Subassembly Test Article.
3.8.3 Test Description

Because the compressor is designed to provide long life, it is impossible to base useful
operating life predictions on short term (100 hour) tests (since little wear has occurred in this time).
For this reason, the life tests outlined under Section 3.2 are used for life predictions discussed in
Section 4.3.

3.8.4 Test Equipment
Equipment listed under Surface Wear Testing.
3.8.5 Test Results

The results of testing are given in Section 3.2 and life predictions are given in Section 4.3.
In addition to the STA testing, long term testing of the compressor is planned at NASA-J SC. The
results of this testing will provide a much more accurate life prediction.
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4.0 VERIFICATION BY ANALYSIS

Table VI lists the EIS items that require verification by analysis. Verification by analysis
is primarily used where simulated design conditions cannot be met, test data must be extrapolated
beyond the test parameters, and where articles of similar design have been verified to equivalent

requirements.

A description of the analysis objectives, analysis description, and analysis results for each
EIS item to be verified by analysis is given below.

Table VI. Verification By Analysis

EIS Section No, & Title rification
3223 Surface Wear Analysis & Test
4223 Burst Pressure Analysis )

425.1 Operating Life Test & Analysis

4.1  Surface Wear
4.1.1 Design Requirement: EIS 3.2.2.3 Surface Wear

The wear and attendant particle generation at any dynamically interfacing surfaces
(contacting surfaces under relative motion) shall not introduce contaminant into the fluid flow path
and shall not impair the function of that specific interface, the compressor as a whole, or the user
system for the life of the compressor.

4.1.2 Analysis Description

Surface wear tests conducted on the Subassembly Test Article (STA) and the prototype
compressor. The results of these limited duration tests were used to predict compressor operating
life. The critical wear surfaces to be analyzed were the piston seal and guide rings, cam follower,
compressor valves, and the bearings.

4.1.3 Analysis Results

Based on the results of wear tests on the STA and the prototype compressor, the wear and
particle generation of the cam followers, bearings, and check valves are not significant. Wear
products are generated by the piston seals and piston guide (the portion of the piston that contacts
the cylinder wall). As part of the piston seal and guide "break-in," material is transferred to the
cylinder wall and some particulate is generated. This particulate is primarily confined to the cylinder
above the piston, the spring cavity, and some particulate migration into the case and through the

20



valves into the pulsation bottles. Since the wear products are inert, soft, self-lubricating materials
(and the quantity generated is very small, that is, the wear rates are very low) the operation of the
compressor is not impaired by their presence.

The one area of concern is the cylinder discharge check valves. If the wear products
accumulate at this location in a non-uniform manner, they could possibly cause the valve to remain
partially open and leakage could occur. The experience from the wear testing is that this has not
been a problem. Some wear products are seen on and around the valve seats, but since the material
is soft, it has not caused valve leakage. The high valve forces on the seat will cause these soft
materials to flatten out and provide a good smooth seat face.

The wear products that move into the discharge pulsation bottles will not cause any blockage
orinterfere with the gas flow simply because the volume of the wear products is miniscule compared
with the pulsation bottle volume.

4.2  Burst Pressure
4.2.1 Design Requirement: EIS 4.2.2.3 Burst Pressure

Burst pressure shall be 2.5 times the maximum operating pressure, approximately 17.3 MPa

(2500 psia) as a minimum.
4.2.2 Analysis Description

The engineering design calculations were performed using conservative estimates to assure
safe operations. Each part was analyzed assuming the required burst pressure of 2500 psi and the
resultant load or stress was then compared to the strength of the material used. Three types of
analysis were performed. The first analysis was for cylindrical pressure vessels using the standard
Barlow Formula for pressure tubes where maximum sizes are equal to internal pressure times inner
diameter divided by two times the wall thickness. The three parts analyzed in this manner are the
pulsation bottles, compression cylinders and the crankcase housing. The pulsation bottles are simple
cylinders internally with a more complex shape externally. The pressure vessel analysis used the
minimum wall thickness of the part, but most of the cylinder walls are in excess of this minimum
for mounting. The crankcase housing, however, is acomplex part witha number of wall penetrations
and threaded holes for end cap mounting. The selected wall thickness for all three vessels is between
four and five times that required for a simple cylinder. The second analysis was for the end caps
for the crankcase housing and pulsation bottles. These end caps/flanges were analyzed as flat, thin,
circular plates. The third analysis was for the screws used to fasten the crankcase end caps, the
cylinder flange to housing, and the cylinder flange to pulsation bottles.
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4.2.3 Analysis Results

The Pressure Vessel Analysis Results are:

Max. Calculated Stress  Yield Strength Safety Factor
(for simple tube)
Pulsation Bottles 8600 psi 40,000 psi 4.6
Compression Cylinders 7800 psi 40,000 psi 5.1
Crankcase Housing 8900 psi 40,000 psi 4.5

(equivalent cylinder)
The Screw Bolt Strength Analysis Results are:

Screw _
Pressure Force Clamp Load Screw Tensile Strength
Valve Plate/Pulsation Suct. 5185 1bs. 6000 Ibs. 10,800 lbs.
(4 each, .250-28 UNF)
Cylinder Flange/Housing 6447 1bs. 6000 1bs. 10,800 1bs.
(4 each, .250-28 UNF)
Rear Flange End Cap 24,050 lbs. 36,200 1bs. 65,000 lbs.
(10 each, .375-24 UNF)
Front Flange End Cap 22,365 lbs. 28,960 lbs. 52,000 1bs.
(8 each, .375-24 UNF)
The Flange/Flat Plate Analysis Results are:
Max, Calculation Stress  Yield Strength ~ Safety Factor*
Rear Flange End Cap 13,250 psi 40,000 psi 3
Front Flange End Cap 38,150 psi 40,000 psi 1.1

The pulsation bottle retainer ring force due to pressure was calculated to be 3712 Ibs. with a material
groove yield strength of 5458 1bs.

*Calculation neglects reinforcing webs. The actual part does have four webs which add an
additional factor of safety.

4.3  Operating Life
4.3.1 Design Requirement: EIS 4.2.5.1 Operating Life

Maximum useful on-orbit operating life at the duty cycles specified in EIS Section 4.2.5.2
shall be 10,000 operating hours. The compressors shall be refurbishable for a minimum of an

additional 10,000 operational hours of on-orbit service.
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4.3.2 Analysis Description

The minimal useful compressor life is limited by the surface wear of the piston seals. Seal
wear tests are described in Section 3.2 and those results used to predict seal life.

4.3.3 Analysis Results

The seal life analysis is based on the methods given in the ASME Design Manual on PTFE
Seals in Reciprocating Compressors [American Society of Mechanical Engineers, "Manual of
Material Selection, Design and Operating Practices, PTFE Seals in Reciprocating Compressors,"
ASME, New York, NY 10017, 1975.] The calculation method is as follows:

Predicted Life (Tpy) in Hours
Tows = (RMN ) L
PuVi Jor |
where:
K = (_RN
( PV, T )w
Rime = % loss of ring thickness
N = number of rings
Py = n a-t
(2 polon ]
n =  ratio of gas specific heats
Vv, = stroke x RPM/6

The life prediction for the compressor is based on the STA seal wear test data presented in
Figure 2 of Section 3.2 above. After the initial break-in period, the data shows a constant wear rate.
If we use this wear rate and account for the material loss during the break-in period, the above
procedure can be used to predict life. Based on assumed nominal pressure conditions, speeds, and
50% ring thickness loss, the predicted second stage seal life is 9500 hours. This predicted life,
within the uncertainty of the STA data, meets the requirement for minimum compressor life.
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50 VERIFICATION BY ASSESSMENT

Table VII lists the EIS items that will be verified by assessment. Verification by assessment
requires the careful review and evaluation of design drawings or visual inspections. Verification
of EIS requirements by the assessment method is commonly used for verification of surface finishes,
tolerances, identification, and items requiring visual inspection.

A list of the EIS design requirement that will be verified by Assessment along with the
assessment description is given below.

5.1  Mechanical
5.1.1 Design Requirement: EIS 3.1.1.2 Mechanical
The component shall be attached to a structure by bolting.
5.1.2 Assessment Results
Twelve tapped and threaded bolt holes on the compressor case provide mounting attachment.
5.2  Electrical
5.2.1 Design Requirement: EIS 3.1.1.3 Electrical

The component shall interface electrically through connectors meeting specification
requirements found in EIS Section 2.0.

5.2.2 Assessment Results

Since the compressor motor and controller are not being flight qualified, and they are the
only electrical components, this requirement is not applicable.

5.3  Lubrication
5.3.1 Design Requirement: EIS 3.1.2.2 Lubrication

Minimization of lubricants is a design objective. The lubricants used shall comply with EIS
Section 3.3.1.5.

Table VII. Verification By Assessment

EIS Section No. & Title ification
3.1.1.2 Mechanical Assessment
3.1.13 Electrical Assessment
3.1.2.2 Lubrication Assessment
323 Safety, Reliability and
Quality Assurance Assessment
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3241 Transportation Assessment
3242 Storage in Protected Areas Assessment
325 Transportability Assessment
3.3.1.1 Matenals and Processes Assessment
33.1.2 Prohibited Materials Assessment
3.3.13 Fluids Assessment
3314 Material Compatibility Assessment
33.15 Lubricants Assessment
3.3.1.6 Dissimilar Metals Assessment
3.3.1.7 Platings and Castings Assessment
3.3.18 Protective Treatment Assessment
3.3.1.11 Non-Destructive Evaluation Assessment
3.3.1.12 Cleanliness Assessment
33.1.15 Assembly Cleanliness Assessment
3.3.1.16 Parts Standardization Assessment
3.3.1.17 Threads and Fasteners Assessment
3.3.1.18 Locking Threaded Parts Assessment
3.3.1.19 Prohibited Retaining Methods Assessment
3.3.1.20 Surface Texture Assessment & Test
3.3.1.21 Dimensioning and Tolerancing Assessment
42.1 Fluid Assessment
427 Line Sizes Assessment

5.3.2 Assessment Results

The only lubricant used in the compressor was in the crank main bearings and the actuator
bearings. No other lubricants were used.

54  Safety, Reliability, and Quality Assurance
5.4.1 Design Requirement: EIS 3.2.3 Safety, Reliability, and Quality Assurance

The safety, reliability, and quality assurance provisions for the components shall be tailored
from NHB-5300.04 (1D-2).

5.4.2 Assessment Results

The safety, reliability, and quality assurance provisions are addressed in the Failure Modes
and Effects Analysis (FMEA) presented in the Final Design Report.

5.5 Transportation
5.5.1 Design Requirement: EIS 3.2.4.1 Transportation

The compressor must be able to survive the environmental extremes encountered during
transportation. The EIS Section 3.2.4.1 outlines the environmental conditions encountered for both
air and ground transportation. Exposure to these conditions shall not result in damage, deterioration,
or otherwise impair the capability of the component to meet the compressor operating performance

requirements.
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5.5.2 Assessment Results

Each compressor component can withstand the environmental conditions outlined in EIS
3.2.4.1 since the compressor operating conditions (of pressure, temperature, vibration, ...) are much
more severe than the transportation environment.

5.6  Storagein Protected Areas
5.6.1 Design Requirement: EIS 3.2.4.2 Storage in Protected Areas

The compressor must survive exposure to the environment encountered during storage
without damage or deterioration. The environmental conditions are listed under EIS 3.2.4.2.

5.6.2 Assessment Results

Each compressor component can withstand the environmental conditions outlined in EIS
32.4.2 since the compressor operating conditions are much more severe than the storage

environment.
5.7  Transportability
5.7.1 Design Requirement: EIS 3.2.5 Transportability

The compressor shall be designed to be capable of being handled and transported to user
facilities without damage or degradation while utilizing available methods of transportation with
the item prepared for shipment in accordance with EIS Section 7.0 requirements. The equipment
design shall be compatible with the planned packaging and transportation system to the extent that
loads induced in the equipment during transportation shall not produce stresses, internal loads, or
deflections resulting in damage to the equipment.

5.7.2 Assessment Results

The compressor design requirement dictated a strong/durable compressor design that would
preclude damage from loads encountered in handling and transportation.

5.8 Materials and Processes
5.8.1 Design Requirement: EIS 3.3.1.1 Materials and Processes

Materials and processes for the compressor shall be selected in accordance with SE-M-0096,
JSC-08962-U, JISC-09604-B, JSC-30233, and NHB-1014.
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5.8.2 Assessment Results

Material selection during the prototype compressor design were based on areview of loading,
environmental considerations, and life expectancy. JSC-09604-B was utilized to screen candidate
materials for safety hazard/contamination problems. Since the prototype compressor is notintended
for flight qualification, all of the above specifications are not applicable.

5.9 Prohibited Materials
5.9.1 Design Requirement: EIS 3.3.1.2 Prohibited Materials

The following materials are prohibited from use unless specifically approved by the
Government:

(@) Cadmium, Zinc, or selenium except internal to hermetically sealed devices.
(b))  Unalloyed, electro-depositioned tin unless subsequently fused or reflowed.-

()  Corrosive solder fluxes unless detailed cleaning procedures are specified along with
appropriate verification methods to ensure removal of residual contaminants.

(d)  Mercury and compounds of mercury.

(¢)  Teflon, vinyl, and polyvinylchloride as insulation for electrical hookup wiring. (Does not
apply to Teflon insulated coaxial cables.)

® Materials which exhibit natural radioactivity such as uranium, radium, thorium and/or any
alloys thereof.

5.9.2 Assessment Results

The above listed materials are not utilized in the compressor.
510 Fluids
5.10.1 Design Requirement: EIS 3.3.1.3 Fluids

Procurement and use of fluids shall be controlled to the extent specified in SE-5-0073 unless
otherwise specified.

5.10.2 Assessment Results

Fluids used in the prototype compressor manufacturing and testing do notrequire any special

control.
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5.11 Material Compatibility
5.11.1 Design Requirement: EIS 3.3.1.4 Material Compatibility

Materials and any lubricants used in the construction of the compressor shall be suitable for
use with the fluids as specified in Section EIS 4.0 at the temperatures and pressures defined in that

section.
5.11.2 Assessment Results

The materials and lubricants selected for use in the compressor are compatible with the
conditions stated in EIS 4.0. A material compatibility study for the compressor components is
presented in the Prototype Final Design Report.

5.12 Lubricants
5.12.1 Design Requirement: EIS 3.3.1.5 Lubricants

Minimization of lubricants is a design objective. The compressor designs may employ the
use of lubricants provided that they comply with the following for the life of the component:

(a) Meet the requirements in EIS 3.3.1.
(b) Do not introduce contamination by entering the fluid flow path.

©) Are not lost and/or degraded as a result of exposure to the working fluids, exposure to the
environments of EIS 3.2.4, or from the operation of the component over its entire life, such
that the ability of the component to meet the requirements specified herein is impaired.

5.12.2 Assessment Results

This specification will be assessed under EIS 3.1.2.2 (Section 5.4).
5.13 Dissimilar Metals
5.13.1 Design Requirement: EIS 3.3.1.6 Dissimilar Metals

When dissimilar metals are used for parts that come in contact with each other, the materials
selected shall comply with MIL-STD-889.

5.13.2 Assessment Results

The only dissimilar metals used in the prototype are stainless steel and high carbon steel
that are in contact with anodized aluminum. Since the anodized aluminum is an insulator, these
dissimilar metals pose no problems.
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5.14 Platings and Castings
5.14.1 Design Requirement: EIS 3.3.1.7 Platings and Castings

The plating of materials which will be in contact with operational fluids are restricted from
use. The use of castings is prohibited.

5.14.2 Assessment Resuits

No casting will be employed in the compressor. For the prototype compressor, some platings
(on bearing races) are employed for availability reasons. These will be eliminated in the final design
of the flight hardware.

5.15 Protective Treatment
5.15.1 Design Requirement: EIS 3.3.1.8 Protective Treatment

The use of any protective coating that will chip, crack, abrade, peel, or scale with usage,
age, or extremes of climatic and environmental conditions is restricted from use.

5.15.2 Assessment Results

No protective coatings that will chip, crack, abrade, peel, or scale are used in the compressor.
5.16 Non-Destructive Evaluation
5.16.1 Design Requirement: EIS 3.3.1.11 Non-Destructive Evaluation

The contractor shall consider the development and potential use of non-destructive
evaluation inspection techniques in the design and construction of the compressor.

5.16.2 Assessment Results
No destructive evaluation methods were required.
5.17 Cleanliness
5.17.1 Design Requirement: EIS 3.3.1.12 Cleanliness
Significant surfaces of the compressor shall be cleaned to Level 100A.
5.17.2 Assessment Results

This requirement is verified under EIS 3.3.1.13.
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5.18 Assembly Cleanliness
5.18.1 Design Requirement: EIS 3.3.1.15 Assembly Cleanliness

Compressor piece parts shall be individually cleaned prior to assembly and maintained clean
during the assembly process. The entire assembly shall be verified cleaned at the completion of

assembly.

5.18.2 Assessment Results
This requirement is verified under EIS 3.3.1.13.

5.19 Parts Standardization

5.19.1 Design Requirement: EIS 3.3.1.16 Parts Standardization
Standardization parts utilization shall be based upon:

(a)  Selection of qualified parts.

(b)  Proper derating and application.

(¢)  Minimizing the number of parts.

5.19.2 Assessment Results

Very few standardized parts are employed in the prototype compressor. The only
standardized parts are fasteners, snap rings, and O-rings.

5.20 Threads and Fasteners

5.20.1 Design Requirement: EIS 3.3.1.17 Threads and Fasteners
Screw threads shall be in accordance with FED-STD-H28.

5.20.2 Assessment Results

All of the threaded fasteners used in the prototype compressor are 304SS material and
standard thread patterns.

5.21 Locking Threaded Parts
5.21.1 Design Requirement: EIS 3.3.1.18 Locking Threaded Parts

Threaded parts shall be positively locked. Preferred locking methods, in order of preference,
are as follows:

(@) Safety wiring in accordance with MS-33540.
(b) Self-locking nuts.
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() Castellated nuts and cotter pins.

(d Screw locking screw thread inserts.

(e) Self-locking bolts or screws and lock washers.
5.21.2 Assessment Results

Self-locking Helicoil inserts and Spiralock self-locking tapped threads were used throughout
the compressor with the exception of the valve retainers which do not have a positive locking
method. This was done in the prototype to allow disassembly and reassembly for inspection and
parts replacement. Many threaded fasteners would be eliminated (by welding the parts together)
in flight hardware.

5.22 Prohibited Retaining Methods
5.22.1 Design Requirement: EIS 3.3.1.19 Prohibited Retaining Methods

Staking, press fits, or crimping shall not be used as a primary means of retaining detail parts
or subassemblies.

5.22.2 Assessment Results

No components on the compressor require staking, press fits, or crimping.
523 Surface Texture
5.23.1 Design Requirement: EIS 3.3.1.20 Surface Texture

Surface texture limitations shall be in accordance with ANSI ﬁ46.1-78.
5.23.2 Assessment Results

Surface texture limitations are in accordance with ANSI B46.1-78.
5.24 Dimensioning and Tolerancing
5.24.1 Design Requirement: EIS 3.3.1.21 Dimensioning and Tolerancing

All dimensioning and tolerances shall be in accordance with ANSI Y14.5M-82 and
DOD-STD-100.

5.24.2 Assessment Results
Dimensioning and tolerancing are in accordance with ANSI Y14.5M-82 and DOD-STD-100.
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525 Fluid
5.25.1 Design Requirement: EIS 4.2.1 Fluid

The bulk working fluid will consist of an oxidizing gas mixture as specified in Appendix 2,
paragraph 1.2 in the EIS. Trace contaminants potentially mixed with the bulk gas mixture are
specified in Appendix 2, Section 2.0 in the EIS. The compression of this gas mixture presents the
following potential phase change or chemical reaction issues:

(1)  condensation of CO, at low temperatures (below 0°F and 300 psia)

(2)  a reaction between the fuels (C,H,, NH,, CH,, CiHs, etc.) and oxygen at elevated
temperatures.

5.25.2 Assessment Results

Because the quantity of CO, in the gas is so low (1.9%), and the compressor clearance
volume is relatively large, the condensation of CO, will not be a problem. The presence of a small
amount of liquid in the compressor cylinder will not present any major problem. The compressor

will also not operate below O°F.

The chemical reaction outlined above would be a concern if the "fuel” gas concentration
was significant. Because the "fuel" gas concentration is less than 2%, the effect of areaction during
compression would have no major effect on the compressor operation.

526 Line Sizes

5.26.1 Design Requirement: EIS 4.2.7 Line Sizes
Line Sizes are as follows:

(a) Inlet: 0.01 m (3/8 inches)

(b)  Outlet: 0.01 m (3/8 inches)

5.26.2 Assessment Results
The compressor line sizes are 3/8 inch.

6.0 CONCLUSIONS

The verification program has documented that the on-orbit compressor prototype meets the
requirements of the End Item Specification (EIS) relevant to prototype hardware. The prototype
compressor is 3/8 of the allowable weight (30 lbs. versus 80 Ibs.), 1/3 of the allowable volume (0.5
cu. ft. versus 1.5 cu. ft.), and 1/2 of the allowable power (500 watts versus 1000 watts). The
performance requirements of flow rate, discharge pressure, and suction pressure were independently
verified. At a suction pressure of 27 psia and a compressor speed of 650 RPM, the prototype
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developed a deadhead pressure of 1210 psia, a 0.124 LBm./hr. flow rate at a 1000 psia discharge,
a nominal flow rate of 0.24 LBm./hr at 800 psia discharge and 1.827 LBm/hr. flow rate at zero
pressure rise. This performance clearly meets the EIS requirements of an outlet pressure range of
100 to 1000 psia (1200 psia maximum), and a nominal flow rate of 0.25 LBm/hr (1.1 LBm/hr.
maximum). The one area of marginal performance is the life of the second stage piston seals. With
the current Space Station interest in significantly longer life than the EIS requirement of 10,000
hours, we recommend that this area be further developed. We specifically recommend that a
lubricated seal ring technology be developed for significant life extension.

The overall conclusion is that we have developed compressor technology for on-orbit
applications. This technology balances all of the complex design requirements and is provided
within a time frame consistent with the support of the Space Station Fluid Systems Development.
The verification program has documented that the performance of the prototype waste gas
compressor does indeed meet the EIS requirements. »
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