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Abstract

We consider domain walls generated through a cosmological phase transition,

which interact non-gravitationally with light neutrinos (m,, ._ O(1)eV). At a redshift

z > 104 the network grows rapidly and is virtually decoupled from the matter. As the

friction with the matter becomes dominant, a comoving network scale close to that

of the comoving horizon scale at z ,- 104 gets frozen in. During the later phases, the

walls produce matter wakes of thickness d ,-., lOh-lMpc, that may become seeds for

the formation of the large scale structure (30 - 130h-lMpc) observed in the Universe.
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The discoveries of supergalactic structures at a scale comparable to lOOh-lMpc

and of an intergalactic medium already ionized at z ,-, 5 prompted new interest in

models of galaxy formation alternative to the standard cold dark matter (CDM)

scenario. 1'_ As is well known, the CDM model finds it difficult to generate the very

large clustering scales we observe, given the constraints from the microwave back-

ground. This model also predicts that most of the galaxy formation should take

place at a redshift z < 2, and can hardly explain the production of big quantities of

ionizing radiation at early times. An alternative class of models is based on the fact

that cosmological phase transitions could give rise to highly concentrated pockets of

energy, that may become seeds for baryonic infall and lead to galaxy and structure

formation earlier than what the standard model postulates.

Cosmological phase transitions can result from the spontaneous breaking of a sym-

metry associated with "Higgs-like" scalar fields. The symmetry breaking is usually

considered to take place at a temperature close to the electroweak or the grand-

unification (GUT) energy scales. The phase transitions can give rise to topological

defects. Depending on the choice of the scalar fields one may, in particular, gener-

ate 1-d or 2-d objects like "strings" or "domain walls", formed of a "false vacuum"

phase. As many studies show, these solitons can be associated with galactic and

supergalactic scales and generate fluctuations in the distribution of matter. Typi-

cally, the defects move at relativistic speeds and create matter fluctuations by their

gravitational action. 3

In the first model dealing with cosmological domain walls, Zel'dovich et a1.(1974) 4

considered a phase transition taking place at the GUT scale. The main results of

the paper were discouraging. The walls produced were far too heavy, giving rise to

unphysically large distortions of the microwave background radiation. The idea was

therefore abandoned until a possible mechanism was found to form domain walls at



a much lower transition temperature.5It wasfound6 that the surfaceenergydensity

cr of the walls is compatible with the constraints of the microwave background, by re-

quiring a < IOMeV 3, but still gravitationally significant, if a ,,_ IOMeV 3. Numerical

simulations r's showed in detail that the typical scale associated with the network is

always close to that of the horizon, provided that the walls freely stretch under their

surface tension.

In a recent publication, 9 1 discussed a variation of the previous domain wall models

that could possibly generate both the large scale structure and give rise to a very

early galaxy formation (at z --, 10 -30). A simple non-gravitational Lagrangian

coupling was introduced between the scalar field associated with the walls and a

component of the dark matter. We assumed that the domain walls gave rise to a

symmetric potential barrier for the dark matter, resulting in elastic scattering. 1° As a

simplifying assumption, the barrier was taken to be high enough to reflect elastically

all the incident particles, regardless of their impact energy. The result of such an

interaction is to keep the velocity of the walls to very non relativistic values (typically

v -_ 10 -2-10-3c). Therefore, the network just stretches with the universal expansion,

the comoving scale of the system being frozen. Summarizing the results, for this to

occur, flwalls/flDM "" 10 -3. The walls, by pushing ahead the dark matter, create a

void region behind them and a high density wake in front of them, whose thickness

can be of order d ,._ lOh-lMpc.

In the present paper, we modify the assumptions of the previous work. We consider

the effects of a finite barrier height Eo for the particle reflection. 1° We assume that

particles hitting the domain wall with a relative kinetic energy E < Eo are scattered,

and for E _> Eo they pass through the barrier. As we show in ref.10, this is always a

good approximation, in the limit Eo << m, where m is the mass of the dark matter

particles. We are going to limit our calculations to such a limit. In considering the
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dark matter as a fermion gasin thermal equilibrium, wewill find a rink betweenthe

comovingscaleof the network f and the massm of the particles.

We begin by deriving the equation of motion of the walls, under the assumption

that they move through a homogeneous medium formed by a fermion gas in thermal

equilibrium. The action of the dark matter gives rise to a pressure P! on the domain

walls. Deriving P! is the first step of our calculation.

If we define as the z-axis the normal to the moving surface, the momentum ex-

change between wall and incident particles is Ap _ 2mT(v-v.) (notice that, for the in-

teraction to occur, (v-v.) << 1, since Eo << m), where v. is the normal component of

the particle thermal speed in the background frame and 7 "=- (1 -v2) -1/_ .v (1 -vx)2 -1/2.

The hit rate is given by n(v - v.), where n is the particle number density. It is con-

venient to introduce the dimensionless variables y - mTv/T and y_: =__p./T (where

p_ is the x-momentum of the particles in the rest frame and T is the temperature).

We now introduce the thermal distribution f(y.) of the particles in the momentum

component p. (averaging over the other directions)2 This function is defined so that

f¢-_oof(Y_) d(y_) = 1. Since the particles are fermions,

1 foo_ y±dy±f(yx) (1)
3 (3) + + 1

where ya. =- p±/T (where p]. = p2 _ p_ and p is the particle momentum). Recalling

that the reflections only occur if (v - v_) << 1, the pressure P! is

(2)

where yo is a limiting value simply related to Eo. In fact, in the rest frame of the

wall, the maximum value of the incident particle momentum giving rise to reflection

is approximately po = _ (since Eo << m). By boosting such value back to the

universal rest frame we find Yo = 7_/T to a good approximation.
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The first integral in eq.(2) is the momentum exchanged per unit time and area

between the wall and the particles in front of it, while the second integral refers to

particles hitting the wall from the back. P! can be rewritten, by changing the variable

of integration, as

(3)

by introducing yl -= Y - yz in the first and yx _- Y_ - Y in the second integral of

eq.(2).

The range 3,Vr_-'_o >> T (yo >> 1) corresponds to the high barrier limit, that we

already calculated in ref.9. In this limit, 19I can be written as follows:

P! = 12mnv 2

= 3-vT4

my >> T,Eo > mv2/2

my << T, Eo > my2�2

my >> T, Eo < my2�2,

(4)

(5)

(6)

where v is the physical speed of the wall through the medium.

We now want to study the limit 7_ << T (yo << 1), since we are interested

in the behavior of the network at high z. It will turn out that the friction is ineffective

at very early times, so that the network initially evolves only subject to its surface

tension. Expanding f in power series around y, if 7_/T << 1 we get

Pl=-47nT2f'(v)/m[ff*v_dyx] .

The function if(y) is given by:

2+ v yv dy 

+ y_[exPv/-_ + Y_ + 1]2

(7)

1 fo°°if(Y) =" 3 3)

Substituting eq.(8) into eq.(7) gives

_ , tu. 2m2E_v ,,/4

P/= -47nT_/mf (Y) /o y_dy, = _-i e;_ 1"

1 y (8)
= 3ff(3) eV + 1"

(9)
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For y > 1 (recall that y - mvT/T), the pressure gets exponentially small. Physically,

when v :>> 0ther,_ >> (2Eo/m) 1/:, the walls behave like virtually decoupled from the

matter (see eq.9).

In the limit y <:< 1, the T-independence of eq.(9) comes from the fact that the

number of particles reflected by the walls is constant during the expansion, while the

momentum exchanged is Apo ~ (Eo/m) 1/2.

The equation of motion of the domain walls, describing an infinitesimal wall seg-

ment of curvature 1//_ (in physical coordinates), is given by

+ + = __1 (10)
a _ /_'

where a is the surface energy density of the kinks. The derivatives are taken respect

to the universal time t. This equation is valid if the wall thickness 2x << R, which

becomes valid soon after the phase transition. Eq.(10) is just the relativistic gener-

alization of Newton's second law divided by _,a, where a is the energy density of the

walls. The damping term 3(a/a)v derives from the universal expansion, while the

r.h.s, is the tension that drives the motion of the walls.

It is useful to recall the results of the limit P] _ O, that has been already studied

in several works. 4'_'s It was shown that the network reaches a scaling regime of growth,

the scale of the system being given by /_ = 2_t=/3, with _ = cons_. _., O(1), and

a _ 1. A very small percentage of the network reaches highly relativistic speeds, and

the average physical speed is constant.

During the early stage of the wall evolution, there could be a phase during which

T ::_ _ is satisfied. In this regime, P! < m2E_v/r 2 for most of the network

(_, ,_ 1). The cosmological damping term, instead, is 3av/a ,_ t-iv. Consequently,

if the transition temperature Tc > _ and t_-_ > m2E_/r 2 (where t¢ is the age
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of the Universeat the phasetransition), the initial phaseof the network evolution is

frictionlessand rapid• Underadditional conditions that wewill discuss,the comoving

scaleof the network freezesin at the value it had at the time t ... (m=E_/r2) -1.

Solving the general form of the equation of motion in the regime T >>

is a difficult task, since the expression for P! is quite involved. There is, however, a

wide range of parameters such that eq.(10) can be simplified. Given the assumption

that 7my < T we can write the approximate expression:

• m2E2ov I (1 1)33_) + 3a-v + = -_,
a 7t"20" R

This equation can be studied analytically, provided that virtually all of the network

obeys it. The linear dependence of PI in v ensures a selfsimilar evolution throughout

the process.

With the onset of the friction, the walls slow down, until they stop evolving and

just stretch conformaUy with the expansion. If P! becomes dominant at z ,,_ 104 or so

for all of the network, the freeze in gives a comoving scale of the order 10 - 102Mpc,

comparable to the horizon scale at that time.

Since the network evolves self-similarly, we can perform an averaging procedure to

transform eq.(11) into an equation describing the evolution of the average "interwaU"

distance. Such a procedure is analogous to the one used when dealing with domain

walls in condensed matter physics, n

Multiplying eq.(ll) by v and averaging over the surface of the network we get

rn2 E_ _ 2(_).

Du_ingtheperiodin whichP_isnegligible,(V_,_-v) = (_,.,_)= d((v_))/dt= O.

WhenP_dominates,since_,/v~ -a/a, weset(,;. v) _ -ala(,_;). Thistermcanbe

always safely neglected.
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It is convenientto expressthe parametersin comovingcoordinates(/_ - a? and

v =_ a÷). From simple geometry, it follows u that (v/R) = (÷/_) = e-_d(e2)/dt, where

is defined as the average comoving "interwall" distance, related to the average

curvature of the walls by the relation BIF = (1/_2) 1/2. Therefore we get,

--_- 3 +_ =_-_.
(12)

where B = 3 if there is one wall per horizon during the uncoupled phase. In what

follows we will suppose that the dark matter is constituted by only one particle species.

For an open Universe, the solution to eq.(12) can be written in the approximate form

= 5h-'_Kln'/2(1 + Ktss/2)Mpc,
(13)

where we introduced K = (m/IOeV)2(Eo/IO-%V)_(_r/1MeV3) -' for convenience,

since typically K ~ 1 (see fig.(1)). The reason for the choice of the normalization of

K respect to Eo and a will be clear soon. The quantity tsl is the time of equivalence

of matter and radiation: ts! = (t,q,,_,,/t(z = 10s)). After equivalence, the evolution of

the network virtually stops. The values of the parameters involved indicate that the

largest scales are obtained for small m. This is consistent with an open Universe, if

the only forms of matter are neutrinos and baryons.

The assumptions we have made in calculating _ are selfconsistent if the network

remains always confined to a range of speeds where P! ,,_ v. This is approximately

true if the network remains confined to the region where P! is not exponentially

suppressed) 2 Assuming that the distribution of the curvatures is roughly Gaussian,

all but a negligible fraction (1%) of the wall sections have a comoving curvature

_-_ < 2.5f---'i', and the condition above translates to a bound on K, namely K <

1.5(m/lOeV) 2. For K > 1.5(m/lOeV) 2 our analytical approach is invalid, since part

of the network is decoupled and part is strongly coupled. In this complicated regime,

a numerical simulation would be needed to determine the evolution of the network.



Considerations about the later evolution of the network can help us in further

constraining the parameters. Up to this point we have calculated the evolution of

the walls at T > (mEo) 1/2. As soon as the Universe cools down below T _ (rnEo) _/_,

eq.(4) holds. P! decreases rapidly, due to its steep T dependence, and v starts in-

creasing. Shortly, v becomes bigger than the thermal velocity of the neutrinos and the

walls are in the regime described by eq.(5). During this phase, as shown preliminarly

in ref.9, the walls deplete the volume they sweep of dark matter, generating a matter

wake in front of them. The speed of the walls increases at a slower rate: v -,, a.

The details of the evolution through these different regimes are being investigated

numerically. 13 Some order of magnitude estimate is already possible. The walls de-

couple again as soon as v > (2Eo/m) 1/2. By that time (define it as ta), the comoving

distance the walls have swept is roughly d/t_ _ VdQ/ad = vd = (2mEo) 1/2 (where

t= is the present age of the Universe, vs ==-v(Q) and as =- a(td)). If we consider

rn = 1 - lOeV and d = 5 - 20h-_Mpc, we get Eo = 10 -s's - 10-3"SeV. From the con-

straint on K, we also obtain a < (Eo/IO-4eV)/1.5MeV 3 for our analytical approach

to hold. The wall "re-decoupllng" typically takes place at as ,-, O(10-1). Since the

network rapidly reaches relativistic speeds, we expect one or few walls to be within

our present horizon. However, the wakes generated at t < Q should have gravitation-

ally collapsed, in that involving also the baryon component. This collapse may been

responsible for the formation of a first generation of protogalaxies at a z higher than

the values predicted by the CDM model.

The distortions of the cosmic microwave background radiation (CMBR) generated

by walls and by the dark component of the wakes are beyond the present capability

of detection. We give a fairly detailed analysis of the problem in ref.(9), and therefore

we limit the present discussion to a brief summary of the main results.

The biggest source of distortion associated wth walls and neutrinos is the grav-
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itational potential of the matter wakes generated by the wall motion. Because of

the Reese-Sciama effect, 14 these wakes give rise to a microwave background temper-

ature distortion AT/T .., Gpd3R-l/2t_ 1/2 ,,, 10 -r. An additional effect is due to the

domain walls themselves, through the same mechanism. Since today there should

be roughly one stretched and relativistic infinite wall within our horizon (plus col-

lapsing wall bubbles), we expect AT/T ,,_ Gat_ ,,, 10 -6, for a ,., 1Mev 3, as shown

in previous work. 6 Both the effects are lower than the current limit AT/T __ 10 -5.

The effects on the CMBR due to the baryons have not yet been treated. We expect

that a major contribution to the distortions is due to the Zeldovich-Sunyaev effect, 15

which is the scattering of low energy photons by free and hot electrons. This kind of

CMBR distortion is typical of any model dealing with early formation of protogalactic

objects.
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Figure caption

The comoving scale of the network f in h-lMpc units, as a function of a. The

friction begins to slow down the network at a __ 10 -s. The curves refer to different

values of the parameter K and the neutrino mass m. For each value of m we take

the limiting value K = 1.5(m/lOeV) 2. We also take/3 = 3 (see eq.(13)).
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