
cl_ t%_'_4G t o( I

w

CAGE CODE 25500

=
= =

= =

[:

" T

l

DEFENSE SYSTEMS DIVISION

LORAL CORPORATION

AKRON, OHIO 44315

3D LASER RADAR VISION PROCESSOR SYSTEM

FINAL REPORT

CONTRACT #NAS9-18187

SUBMITI'ED TO:

NASA JOHNSON SPACE CENTER

FROM:

LORAL DEFENSE SYSTEMS - AKRON

OCTOBER 1990

Prepared by:

Systems Engineer

Approved by:
D. L. Rohrbacher

Project Engineer

https://ntrs.nasa.gov/search.jsp?R=19910015584 2020-03-19T18:05:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42817777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


U

&._

H

m

w

i

Urn--

HI

W

L

W

7

m

TABLE OP CONTENTS

1.0 INTRODUCTION ...................... 1

2.0 HARDWARE DESCRIPTION .................. 2

3.0 SOFTWARE OVERVIEW ................... 4

3.1 INTRODUCTION ................... 4

3.2 SOFTWARE EXECUTIVE OVERVIEW ............ 6

3.2.1 MASTER EXECUTIVE .............. 8

3.2.2 SLAVE EXECUTIVE ............. Ii

4.0 ALGORITHM OVERVIEW ................... 13

4.1 INTRODUCTION ................... 13

4.2 OBJECT DETECTION ................. 14

4.2.1 INTRODUCTION ................ 14

4.2.2 INTENSITY DETECTION ............ 15

4.2.3 RANGE VARIATION DETECTION ......... 16

4.3 ORIENTATION .................... 17

4.3.1 INTRODUCTION ................ 17

4.3.2 DEFINITION ................. 18

4.3.3 PLANAR BOUNDARY DETECTION ......... 19

4.3.4 PLANAR REGION GROWING ........... 20

4.3.5 PLANAR ORIENTATION DETERMINATION ...... 21

4.3.6 OBJECT ORIENTATION DETERMINATION ...... 25

4.4 OBJECT CLASSIFICATION ............... 25

4.4.1 INTRODUCTION ................ 25

4.4.2 TARGET SHELL GENERATION .......... 26

4.4.3 TARGET SHELL MATCHING ............ 28

4.5 OBJECT TRACKING .................. 30

5.0 SAMPLE RUN ....................... 32

w

E ¸

B

6.0 RECOMMENDATIONS .................... 35

i



LIST OF FIGURES

m

r

w

!i--
m

k

m

_L

_E

2.0-1

2.0-2

2.0-3

3.1-1

3.2-1

3.2-2

3.2.1-1

3.2.1-2

3.2.2-1

3.2.2-2

4.1-1

4.2.1-1

4.2.3-1

4.3.1-1

4.3.2-1

4.3.2-2

4.4.1-1

4.4.2-1

4.5-1

5.0-1

5.0-2

5.0-3

PC Host Hardware ................. 2

Hardware Logical Connection ............ 3

B008 Transputer Board .............. 4

Algorithm Software Partition ........... 5

B008 Board Link Configuration ........... 7

Top Level Data Flow Diagram ............ 9

Executive State Transition Diagram ........ 8

Start Up Messages State Transition Diagram .... 8

Subordinate Slave Data Flow Diagram ........ ii

Slave Top Level State Transition Table ...... 12

3-D Object Recognition and Tracking Functional

Block Diagram ................... 13

Object Detection Functional Block Diagram ..... 14

Object Formation ................. 16

Object Orientation Functional Block Diagram .... 18

Coordinate System Definition ........... 19

Target Attitude Definition ............ 20

Object Classification Functional Block Diagram . . 26

Shell Model Generation Functional Block Diagram . . 27

Object Tracking Functional Block Diagram ..... 30

Odetics 3-D Mapper Coordinate System Definition . . 32

Odetics Range/Reflectance Imagery of an EVA

Wrench ...................... 33

Odetics Detected Objects/Range Imagery of an EVA

Wrench ...................... 34

ii



LIST OF TABLES

System Command and Response Definition ......

0detics Laser Specification ...........

I0

32

[]

r

m

E

E

iii



w
1.0 INTRODUCTION

z

LDS-Akron has developed a 3D Laser Radar Vision Processor system

capable of detecting, classifying, and identifying small mobile

targets as well as larger fixed targets using 3-dimensional laser

radar imagery for use with a robotic type system. This processor

system is designed to interface with NASA Johnson Space Center in-

house EVA Retriever robot program and provide to it needed

information so it can fetch and grasp targets in a space-type

scenario.

w

i

w

1



=

2.0 H_RDWARE DESCRIPTION

The 3D Laser Radar Vision Processor system is an IBM-XT compatible

computer with an INMOS board containing four transputers inserted

in one of the IBM-XT expansion slots. This hardware is illustrated

in Figure 2.0-1. The logical connection of the hardware is shown

in Figure 2.0-2.

w

w

_zm

m

W

TRANSPUTER BOARD CONTAINS 4 MODULES

T800 - 20 T800 - 20 T800 - 20 T800 - 20
with with with with
2M RAM 2M RAM 2M RAM 2M RAM

IMS BO08
TRANSPUTER
BOARD

ABCDE FGH

FLOPPY DISK
CONTROLLER

HARD DISK

CONTROLLER

POWER
SUPPLY

FLOPPY
DISK &
HARD
DISK

w

E

Figure 2.0-1. PC Host Hardware

.............i""The dei_vered hardware

.:}..::.:.;}}., 2 .... Transputer ..,add-].:t_::: boa rd " f or "_hle}::::i:.:::i..

The computer system is an IBM-XT compatible computer which serves

as a stand-alone development system for the 3D Laser Radar Vision



L_

L_

640 KBYTES [

RAM

EXECUTIVE
CONTROLLER

TRANSPUTER
#1

PC-XT

VGA ]DISPLAY

EVA SUBSYSTEM CONTROLLER

I TRANSPUTER I#2

/ \
TRANSPUTER TRANSPUTER

#3 #4

Figure 2.0-2. Hardware Logical Connection
w

L •

_r
w

rE--

_--___

w

Processor. This computer includes the following: a 10Mhz XT

motherboard, 40 MBytes hard disk, one 360K floppy, case, 150W power

supply, keyboard, VGA monitor, and VGA display card.

The heart of the Loral's 3D Laser Radar Vision Processor is an

IMSB008 Transputer board populated with four IMSB404 modules. The

IMSB008 Transputer board is an add-in board for the IBM PC, which

takes up one slot in the PC and provides support for up to ten

INMOS Transputer modules. This support includes a communication

link between the XT and the transputer's network and the

interconnection network between the transputers. The transputer

interconnection network is provided by an on-board IMS C004 link

switch. The IMS C004 allows the user to specify transputer

interconnections without doing any physical wiring. Controlling

the IMS C004 is an on-board T212 processor.

3

r_

w



_c. i
w

r
H__=

m

w

i=m

w

m

Figure 2.0-3. B008 Transputer Board

The transputer module that will be used with the IMSB008 Transputer

board is the IMS404 module. The IMS404 module contains one 20 MHz

INMOS T800 Transputer along with 2 MBytes of dynamic RAM memory.

The T800 transputer is a 32-bit floating point RISC processor. An

integral part of the T800 Transputer is its ability to communicate

with up to four other transputers via high speed (2.35 MBytes)

serial link.

N

3.0 SOFTWARE OVERVIEW

3.1 INTRODUCTION

In this section a description of the real time 3-D Laser Radar

Vision Processor software will be given. The purpose of this

software is to perform three main functions: to provide a human

interface for supplying commands and system parameters; to provide

a machine interface for communication with the main host system;

and to detect, classify, and track targets and objects.

4

w



E_

U

U

To accomplish this, there are over 12 concurrent parallel processes

executing on over five processors. Four of the five processors are

capable of operating at over ten million operations per second.

The following are the five processors: four INMOS T800 transputers

and one INTEL 8088 microprocessor. The INTEL 8088 processor

performs the first function which is to provide a human interface

for supplying commands and system parameters. The remaining four

processors, the transputers, perform all the tasks needed to

detect, classify and track targets. A portion of the duty

assignments of one of the transputer is also to provide the machine

interface for communication with the system's host.

To accomplish target detecting, classifying and tracking in real

time, the algorithm functional block diagram (Figure 3.1-1) is

.m
w

m

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiill

w

i

w

m

Figure 3.1-1. Algorithm Software Partition

partitioned into software tasks as shown. The rationale in

choosing this particular partition is so that the initial object

detection can be done by one processor while the more computational

complex task of classifying the targets can be divided among many

processors.

For each of the five processors in the system, the real time

software can be classified into two main categories: algorithm

specific software and non algorithm specific software (executive

software). Algorithm specific software performs any of the tasks

relevant to detecting, classifying, and tracking of targets. The

5

u



non-algorithm specific software performs the task of being the

software executive.

3.2 SOFTWARE EXECUTIVE OVERVIEW

w

w

w

Contained in each of the five processors in the system is a

software executive. The software executive can be thought of as

the glue which holds all the algorithm tasks together. It provides

to the system an operating environment in which the algorithm tasks

can execute efficiently their tasks isolated from the hardware and

from each other, and in which all the necessary system timing and

task scheduling are provided so that targets can be detected,

classified and tracked on a continuous basis. Other important

duties provided by the software executive are the following:

processing system commands, updating system parameter, obtaining

the radar sensor image frames, providing the various algorithm

tasks with the appropriate input information, handling the results

of the algorithm tasks and the displaying of the final system

results.

The 3D Laser Radar Vision Executive provides an OCCAMmulti-tasking

shell that is wrapped around the FORTRAN Object Detection and

Classification core. This executive is hosted on an INMOS B008

motherboard with four (4) T800 transputer modules inter-connected

to form the topology of a right sided 'T', as shown in

Figure 3.2-1. The base of the 'T' contains the Master Executive

L.J

6



w

u

w

=

t

mw

_=_

@

r_
W

Figure 3.2-1. B008 Board Link Configuration

which wraps around the Object Detection software. The top of the

'T' topology supports the Slave Executive which wraps around the

Object Classification software and is composed of the three (3)

remaining transputers.

Real Time laser data and initialization parameters are input to the

Master transputer and unclassified objects are detected. The

detected objects are passed to the Slave transputers where they are

compared against the prestored shells and are then classified. The

classified objects are then passed back to the Master transputer to

be sent to the Mapper interface as Blob Structures, see

Figure 3.2-2. The blob structures describe the blobs form and the

reliability of a match to a selected model.

m

E

I

7

ORIGINAL PAGE IS
OF POOR QUALITY



h

|

I POWER UP I FIESET /

I _-_.Hu,--M. /

Figure 3.2.1-1. Executive State Transition Diagram

3.2.1 MASTER EXECUTIVE

The Master executive, depicted in Figure 3.2.1-1, provides a11 of

the real-time communication with the Mapper interface as well as

the user through the PC. During initialization, see

Figure 3.2.1-2, the Master executive establishes communication

[]

m

r_

w

w

_m

L
o_ DAY F_CM _

I "° iGK3<30 DAY. L_rn

I
AR E_Yi_.I_H ERE_TO{_Ay

1
I "_° i

8 EN ° FF_JULTT__8_rA_

I "_++ jH EAJ_TH IITA'I_I_I

I "_ IeE'r TIME

1

I

1

B Figure 3.2.1-2.

ORIGINAL PAGE IS

OF POOR QuAUTY

Start Up Messages State Transition Diagram

8



===

i

= _

D

N=

i

between the slaves and the Master transputer by sending and

receiving a pre-defined message string. The Master executive then

reads the pre-stored parameters and shell models passing them to

the slaves. Communication is then established with the Mapper

interface using the same pre-defined message string. Status

information is displayed on the PC to provide step-by-step

information on initialization progress. After proper, error free,

initialization the Master executive tasks off the Detector and

Tracker as well as other Master support functions.

The executive changes the display resolution from 80x25 to 320x240

for Mapper interface command processing. The increased resolution

allows the Master executive to display range and intensity/blob

information on the PC's VGA display. If DEBUG is turned on,

commands are scrolled at the bottom of the screen. Pertinent blob

information is displayed on the right side of the display for every

frame of laser data.

Commands sent between the Mapper Interface the Master executive are

shown in Table 3.2.1-1. These commands provide the protocol

DETECT

BLOBS

PARSE CLASSIFY

MESSAGES BLOBS

TRACK

BLOBS

Figure 3.2-2. Top Level Data Flow Diagram

9



L]

r_

INTERFACE COMMAND EXECUTIVE RESPONSE ALTERNATE RESPONSE

RESET

GOOD DAY FROM TGWN?I GOOD DAY, EH?I

ARE YOU HERE TODAY I AM HERE TODAY

SEND HEALTH STATUS HEALTH STATUS

SET TIME

ENABLE

BLOB_DETECT (AUTO) MAPPER_XFER_FRAME_OF

BLOB TRACK (AUTO} MAPPER_XFER FRAME_OF

SENDING RAW MAPPER D SENDING BLOBS NO BLOBS FOUND

TARGET ACQ MANUAL SENDING BLOBS NO BLOBS FOUND

TARGET ACQ AUTO SENDING BLOBS NO BLOBS FOUND

STOP BLOB TRACK

DETERMINE GRASP NO GRASP REGIONS

MONITOR GRASP

DISABLE

! -=

Table 3.2.1-I System Command and Response Definition

required to set the mode of operation, laser frame requests and

other miscellaneous operations between each frame of laser data.

The commands are decoded by the Master executive and the required

operation is performed.

k-

L

Z

Each blob detect/track cycle begins with a request for laser data.

After the laser data is received the executive displays the range

and intensity data. The executive then passes the data to the

detector along with prestored parameters for detection adapted to

8 or 9 bit laser data.

The Detector extracts blobs from the image and provides the extents

of the blobs as well as the blob object array. This data is then

compressed and sent to the Slave executive for Classification

processing. After receipt of classified blobs, the executive

returns the blob structures to the Mapper interface.

i0



_L_

w

The cycle of requesting laser data and returning blob structures

occurs on a single cycle for Target Acquisition Manual and

Automatic where Blob Detect and Track produce multiple request for

frame data.

L

: i

m

BLOB LOCATIONS

m .,

BLOB REQUESTS &

DEBUG

i-

L_

z

Figure 3.2.2-I. Subordinate Slave Data Flow Diagram

3.2.2 SLAVE EXECUTIVE

The Slave executive, depicted in Figure 3.2.2-1, provides all of

the real-time communication with the Master interfaces. During

initialization, see Figure 3.2.2-2, the Slave executive establishes

communication between the slaves and then the Master transputer by

sending and receiving a pre-defined message string. The Slave

executive then reads the pre-store parameters and shell models

passed to it from the Master Executive.

After proper, error free, initialization the Slave executive tasks

off the Classifier in all three slave transputers, see

Figure 3.2-1. The Slave executive then waits for detected blob

information. When detected blobs are received, they are passed one

blob at a time to whichever slave is currently idle. If all of the

slaves are currently working on blobs, the remaining blobs are

buffered to wait for the next available slave.

ii



__=

+
h

POWER UP / RESET

T
DOWNLOAD PROGRAM

V
b

INITIALIZE HARDWARE I SOFTWARE I

;V

TRANSFER START UP MESSAGE

¥
b

ACCEPT MASTER COMMANDS B

t
CLASSIFY BLOBS

V
h

RETURN BLOBS or REQUESTS |

I

qi=

Figure 3.2.2-2. Slave Top Level State Transition Table

As blobs are classified, they are returned to the Master executive

to be tracked. Once all the objects are processed by the tracker,

they are formatted and sent to the host system via the Mapper

interface and also to the IBM PC XT computer for displaying of the

results. The blobs are returned over a separate link to increase

blob bandwidth.

12



N

v

i

w

R

j

w

4.0 ALGORITHM OVErViEw

4. 1 INTRODUCTION

In fulfillment of the SOW requirements for the 3-D Laser Radar

Vision Processor program, LDS-Akron developed and tested a system

that detects and classifies targets present in laser radar imagery

for a robotics system type application.

Our approach used to perform this task is a model-based vision

approach. A model vision approach stores the model representation

of the intended target for the robotics system in the processor

memory. Each model consists of a surface shell which implicitly

stores the 3-D shaped of each target, along with ancillary data.

The processor compares what the robot's ladar eye sees to the

stored models. Once the processor recognizes the shape and

orientation of a object, the robot can then safely act on it. A

model-based vision approach for target detection and classification

is very versatile since: the target model depends on the sensor

characteristics; mission planning is reduced significantly;

training sets are not required; target models can be added to the

target set quickly.

As illustrated in Figure 4.1-1, the model-based vision algorithms

consists of four functional stages: object detection, object

l

i
Bi

m

D
U

m
mi Figure 4.1-1. Functional Block Diagram

m

B
m

i--

orientation, object classification and object tracking. Prior to

the operation of the robot, the target models for the particular

mission are selected from a pool of target models. After a frame

13



= =

L_

| .q

.3
i"

E

of data is received, the data is handed off to the object detection

stage. The object detection stage examines all of the pixels of

the frame of data and determines which of them are object pixels.

Once objects are identified, they are passed on to the object

orientation stage for determination of the object pose. Using this

information, the object classification stage will then orient and

match each of the objects against the prestored target models.

Once the identities of the objects are known (i.e. type of target

or non-target (object blob)), the object tracker stage will take

over and predict object movement. This information will then be

pass back to the robot for possible evaluation and retrieval.

4.2 OBJECT DETECTION

4.2.1 INTRODUCTION

The object detection stage, the first stage, locates areas of

interest (object cores) and then grow these object cores into

objects. Two object detection techniques are employed to do this

function: intensity detection and range variation detection. This

is illustrated in Figure 4.2.1-1. The intensity detection

technique,

E

F"T'LLTv-"LT'LLT'L?.ULLULUT-SUT-L?.T.T5.TTL?5v,.L_.v.T.Sv.LT.T.5.5.T.T,LT.LT.T.L.-_UC[.LL_

"',-Z-:" 5 ZC.[. ".5[-Z.[<-Z.[ .Z. [-[C.[-[ .[.[.Z<-[-Z<.[.[-[-[[ [<-[-[-Z-[./-_-_:ZC. "-ZC.5[-[-5[c[I[[[[Z[[[[_Z[J

•.'.'.'.'.'c. ".'.'." ......... j

I!:i:!:i:!:!:!: Intens ty :i:i:i:i:i !:i:i:!:i:i:!:J
!!!iiiii_ Dectection _ .... '_._" !!?ii!!iJ

[:::::::::::::il Detection ::::::::::::::'!i!i!i!i!i!ii................... I_t_..De.tee. !i.°n... [!i!i!i!i!i!i!

r..............._......_.._._.._._......_._._.._..._._.._._._._._._._._.._._._._.:.:.;:.h;:i_hhhhhL_j

i

u

m

Figure 4.2.1-1. Functional Block Diagram

while simpler computationally, is less accurate than the range

variation technique. Each of these detection techniques with

their advantages and disadvantages could be used independently to

determined and defined objects of interests, but when used

together, can also do it more rapidly and accurately. The object

detection stage starts out by searching for objects using the

14



M

m

m
w

m

i==

_W

!
i

W

w

intensity detection techniques. This technique is employed to

rapidly determine areas of concentration (object cores) for the

more accurate but more complex range variation detection technique.

once an object core is determined, it is then verified and grown

using the range variation technique into the final object for the

next stage of target classification processing, the object

orientation stage. The result of this region growing process are

objects that are completely represented by a group of pixels.

4.2.2 INTENSITY DETECTION

The intensity detection technique examines each pixel in the image,

and then, based on the intensity differences between object and

background at a given range, determines if it belongs to an object

or not. This technique assumes that object intensity is lighter

than the background intensity. That is_ an object appears lighter

than the background. This assumption is justified for the

application of a space based system since most of the background

pixels will be bad returns. If, by chance, a background pixel was

falsely identified as belonging to an object, it would then be

filtered out in the latter stages of processing. Based on this

assumption, an adaptive threshold can be made to determined if a

pixel - Pi0] belongs to an object or not. That is,

IF

l_,>kIthre.hola(Rp_._) then Pi,j belongs to an object

otherwise, Pi0j belongs to the background

where

I_,_ - pixel intensity at row, column location (i,j)

R_,> - pixel range at row, column location (i,j)

It_eshold( ) -- intensity threshold function

The program uses a table lookup with the range value indexing it

to compute the intensity threshold function. The entries in the

table are generated by experimentally determining the intensity

15

I



w
threshold at various range locations and then interpolating and

extrapolating to generate the rest of the entries at remaining

range locations.

w

4.2.3 RANGE VARIATION DETECTION

After the objects are detected by the intensity threshold

technique, the objects are either verified or rejected using the

range variation detection technique. The range variation detection

technique tries to grow an arbitrary selected intensity detected

object pixel, core pixel, into an object. The 'growth' process

clusters neighboring pixels using the range data. The process is

initiated by testing the core pixel and each of its neighboring

pixels for inclusion in to the object core (object cores are grown

into objects). All pixels which are added to the object core are

likewise tested. When no added pixels remain to be tested, the

growth is complete. The details of this algorithm are presented in

this section.

m

=

IN

Consider a portion of a laser radar image array as portrayed in

Figure 4.2.3-1:

i-i 8 1 2

i 7 0 3

i+l 6 5 4

j -I j j+l

FIGURE 4.2.3-1. Object Formation

Each such portion of the array is termed a neighborhood of the

center pixel p(i,j). The center pixel is referred to as a test

pixel. The objective of the object formation algorithm is to

determine those pixels in the neighborhood which lie on the same

object as the test pixel.

16



h

r--

_=_

w

l
w

E

Each neighbor pixel is first checked to see if it has already been

added to another object. If it has, the neighbor pixel is ignored.

Otherwise, it is tested for inclusion as part of the same object as

the test pixel. The test applied depends on whether the two pixels

share a common row, column, or diagonal. These cases are numbered

1 through 8 as shown in Figure 4.2.3-1. In each case, the range

difference is computed and the difference is compared to the

appropriate threshold. The test given for each of the cases are:

CASE 1 •

CASE 2 :

CASE 3 :

CASE 4 :

CASE 5 :

CASE 6 :

CASE 7 :

CASE 8 :

Ax___.9 = Ixi__oj- xi.jl_ A R_owth_ho1_

A Xi,j+1 = IXi,j÷l- Xi,jl_ ARco1__nr_sno1_

A Xi÷l.j+1 = IXi+l,j+l- xi.jl_ ARzow__h_esnold

AXi+l, j = IXi+l,j- Xi.jl < ARrow_threshold

AXi+I,j_ I = IXi+1.j_1- Xi,jl < ARzow__nreshold

Axi,J-1 = Ixi.J-1 - xi,Jl < ARco1__hresnold

Axi_l,j_ I = IXi_l,j_l-Xi,jl < A Rzow__nreshold

The determination of the thresholds ARrow=hreshold and

_Scol_threshold depends on the laser radar parameters

determined heuristically.

and can be

For each object created, a table of characteristics is filled out.

Then every time a pixel is added to the object, the table is

updated. This table is used in the subsequential processing of the

object.

4.3 ORIENTATION

4.3.1 INTRODUCTION

If areas of constant gradients (planar surfaces) can be identified

from the measured gradients of the laser data then the objects yaw,

pitch and roll angles can be determined. The orientation procedure

assumes that an object has a primary plane and that the orientation

of the object is such that the orientation of the primary plane is

17



=

[ i

the orientation of the object. The orientation procedure is a four

step process as shown by Figure 4.3.1-1.

L

m

i _ ......... L_.....

.... "li iii ,..-,,,,,,,,,,i ilili| o  oT i !!i

liiiii!.................H liiii t !:,:.iiii! I  iiiit  !iiiiit

m

E_

w

D

W

lil

W

Figure 4.3.1-i. Functional Block Diagram

Once an object has been detected and defined, the orientation

process takes over. The orientation process starts by doing an

edge detection of the detected object. This step of the process

tries to determine planar region boundaries. Once these boundaries

are determined, planar regions are grown. Planar regions are

define as regions in which the gradients are constant or near to

being constant with a reasonable level of variance. For each

planar region, the gradient values are entered into the primary

plane orientation formulas and the plane's orientation is

determined. Only for the primary plane will the primary plane

orientation equations yield the correct object orientation. Once

all the object planes' orientations are calculated, the size of the

planes can be determined. This information is used to resolved the

primary plane from the rest of the planes. Once the primary plane

orientation is known, then the object orientation is also known.

4.3.2 DEFINITION

When the object is in an unrotated state (yaw, pitch and roll are

zero degrees), the primary plane is situated such that the sensor

coordinated system's (SCS) x value is equal to a constant and that

the longest axis of this plane is parallel the SCS y axis. When the

object is rotated, the rotation occurs about the object center of

mass. A local coordinate system, called the object coordinate

18



system (OCS) is defined as a translated SCS with origin at the

object center of mass. Figure 4.3.2-1 illustrates this coordinate

system. When the object is rotated, the order of rotation will be

m

Sensor

X Axis )

""+"" "',,.., +++ . .++.

Sensor .......
Coordinate .......

System (scs) ".++

OBJECT

_X Axis •

Object
Coordinate
System (ocs)

w

===

_w

====

r_

Figure 4.3.2-1. Coordinate System Definition

defined to be in the order of yaw, then pitch and then roll. Yaw,

pitch and roll angles are defined to be the clockwise rotation

about the z axis, y axis and x axis respectively. This is

illustrated by Figure 4.3.2-2. To limit processing time, a current

requirement of the algorithm is that the primary plane must always

be in the field of view.

4.3.3 PLANAR BOUNDARY DETECTION

The object orientation process starts by first determining

locations of planar region boundaries interior to each of the

detected objects. To accomplish this, the algorithm does an edge

detection. For this edge detection process, the algorithm scans

the object, column by column and then row by row, searching for

global minimum range values. Each column and row of the object's

19



=

E

w

PITCH _ YAwCW

Figure 4.3.2-2. Target Attitude Definition

image is allowed to have only one global minimum range value. Once

a global minimum ranged value is found, the pixel at that location

is labeled as such. A distinction is made in the labeling so as to

indicate either a row global minimum, a column global minimum or

both a column and row global minimum. To simplify algorithm

complexity and ultimately to reduced processing time, the algorithm

searches only for global extremes instead of local extremes. The

benefit of this is to eliminated the need for edge thinning. Edge

thinning is used to eliminate unwanted edges cause by sensor

behavior or error and the unwanted variations in object surface

reflectively. Unfortunately, a drawback in searching only for

global minimum, is that there might exist pixels which should have

been labeled as edge pixels but was not. This problem is

eliminated in the planar region growing step of the orientation

procedure.

4.3.4 PLANAR REGION GROWING

Once the planar boundaries are determined, the planar regions are

grown. The planar region growing portion of the algorithm starts

by picking an unlabeled pixel interior to the object. This pixel

is called the test pixel. All pixels adjacent to this test pixel

20



_2

L_

L J
w

D

w .

W

are then compared against this pixel. If the adjacent pixel has

not been assigned to a planar region and if it is not a planar

boundary pixel, then the planar growing conditions has passed and

the adjacent pixel is assigned to the same planar region as the

test pixel. Once all neighboring pixels are tested, the same

procedure is applied to each of the newly assigned planar region

pixels. The testing procedure repeats continually until no new

pixels can be added to the planar region. When this occurs, the

current planar region is finished growing and a new planar region

is started. A planar region is started by picking a new

unlabeled, unassigned pixel and then applying the same planar

growing procedures. The planar region growing process is concluded

when all pixels in the object have either been assigned to a planar

region or have been labeled a boundary pixel.

When a plane grows into a boundary region, the algorithm is robust

enough not to rely solely on edge pixel labeling. Missing edge

labeled pixels might exist in the boundary. The algorithm uses the

heuristic of a plane boundary to generate a decision tree for

determining where a plane boundary might be.

Once all of the object's planar regions are determined, tests are

performed so as to select the planes of acceptable size. Only

planes of adequate size are used in next step, plane orientation

calculation, of the orientation procedure.

4.3.5 PLANAR ORIENTATION DETERMINATION

After planar regions of acceptable sizes are identified, the

orientation angles are then calculated for each of these planes.

This is done by using the primary plane orientation equations. The

primary plane orientation equations are equations which are used to

calcuiated the yaw, pitch and row orientation angles. Only for the

primary plane will the primary plane orientation equations yield

the correct orientation values. For all other planes, the

orientation calculated will be off by the angular difference

21



L :

_.ur

= •

m

u

w

z

[]

W
m_

H
w

between the planar region of interest and the primary plane. The

primary plane orientation equation for yaw (_), pitch (8) and

roll (#) angles are expressed below:

yaw=@= -tan-Z(_)

pitch=@ = tan-Z(_ cos_)

roll _ _ i tan_Z I 2cos0[cos@_y/z/-sin@_x/z/] )2 __z2+cos@[cos2_y/2+sin2_x/2_2cos_sin_x/y/] 2

where

ax
dx_ _Iz=cons_ant

dx _ ax Idz _z y-constant

x1=x-x Iplane

Y/=Y-Ylplane

Z/= Z--_plane

The formula for the roll angle yields two solutions. The correct

solution is the solution that yields a larger E 2 for the following

equation :

E--_= cos2_ z/_ + F2sin2_ - Fzsin2 _
Ncos28

where

=co 0(cos z'y'sin z'x')
F2 :cos2@(cos2,_y/2 +sin2,_ x '2 -sin2, _ x'y z)

N=number of pixels in the plane

Once this formula is computed, the metric length and width of the

planes can then be calculated. The metric length and width are

22



U

w

w

m_

U

H

_H
Jg

J

w

calculated by

-_ z/2
Length = 2V_(E )=ax

-_ i12
Width = 2v_(E )mln

To utilize these

transformed and

coordinates into a quantized cartesian (x,y,z) coordinates.

the pixels are transformed, the following formulas are used:

equations, the pixels in the plane must be

remapped from the sensor spherical (R,_,_)

When

X = /COS _ COS

y= rsin_ cos_

z=rsin_

To calculate _ and $, the formulas are given by

a=HFO_I+ COLINDEX-I 1MAX_COL_rNDEX-i

_=VFO_!+ ROW rNDEX-1 ]
[2 MAX_ROW_rNDEXJ

where

HFOV is the horizontal field of view of the sensor,

VFOV is the vertical field of view of the sensor,

ROW_INDEX is the row location of the pixel,

COL_INDEX is the column location of the pixel,

MAX_ROW_INDEX is the number of rows in the image,

MAX_COL_INDEX is the number of columns in the image

When the transformation process is done, the x, y and z mean

values, the sums and the sums of squares are also then computed.

To compute the yaw and pitch angles, the derivatives
dx dx

and

must be calculated. To do this, the derivatives are approximated

23



w

U

W

by a first order difference equation:

dx --

dy

row stop

_I _ i =row start
z = cons tan t zow_s top

i. row_start

Xi , col_s tar t)

Yi, col_stair)

dx _ ax I -
dz _ ly=constant

col_s top

(Xi,row stop -

i=col start
Xi ,row_start)

col_s top

( Zi, row_stop -- Zi, row_start)

i-col start

where

col_start = first column of the object

col_stop = last column of the object

row_start = first row of the object

row_stop = last row of the object

u

-= i

B

m

±

Ilii

u

To make these equations valid, the x values must be such that x is

a function of only y when the pixel location is varied in the

column direction but not in the row direction, and likewise, that

x is a function of only z when the pixel location is varied in the

row direction but not in the column direction. This is achieved by

remapping the x values into a two dimensional 'yz' histogram. The

bin size for this histogram is determined by the angular resolution

of the sensor. The bin sizes of this histogram for both column and

row directions are given by

y_bin_size =

B

R HFOV

CO1 size- I

z bin size=
-R VFOV

row size-i

where

= average range value in the plane

VFOV = vertical field of view of the sensor (in radians)

HFOV = horizontal field of view of the sensor (in radians)

row_size = total row size of the live image

col_size = total column size of the live image

24



= =

r

l

z_

The indices into this histogram are given by

o

y_index = INT Y-Ymin + 2 y bin size

y_bin_size

z_index = INT [

1
z - zmln + _ z_bin_size

z bin size

+I

+I

I

1

m

E

E

E

_ i

If two or more x values are mapped into a bin, then the average of

the x values are taken for the bin.

4.3.6 OBJECT ORIENTATION DETERMINATION

As mentioned before, the orientation of the primary plane is

defined to be the orientation of the object. Once the orientation

is calculated for each of the planes, the metric length and width

of these planes can then be calculated. As part of the shell model

data base, the length and width of the primary plane is given for

each of the system target set. The algorithm uses this information

along with all of the calculated planes' lengths and widths and

tries to find the plane which best matches the primary planes of

the prestored target set. The plane that best matches the primary

plane of that particular target model is labeled the primary plane

of the object for that target model. If none of the planes on the

object matches a primary plane for a particular target, the shell

is eliminated from any further processing consideration.

4.4 OBJECT CLASSIFICATION

4.4.1 INTRODUCTION

After the objects have been detected and their orientations have

been calculated, they are passed onto the object classifier stage

for identification. The classifier stage consists of two major

functions: target shell generation and target shell matching. This

is illustrated in Figure 4.4.1-1.

25



5_
i

!7
L_

I::: : : :: ::: : ::i: :i:: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

SHELL _ SHEU_ ;}}!'}:
(:i:!:!:!:::GENERATION MATCHING :i:!:!:i_

E

m

Iiii
B

r

iI

i

Ii

|

U

I

Figure 4.4.1-I. Functlonal Block Diagram

This stage does the object identification by first forming a

hypothesis, preparing a target prediction, and then testing the

hypothesis by comparing the prediction to the object. To implement

this, the processing stage tries to constructed a set of target

model shells for each detected objects from a selective list of

prestored target model information. Only the target model shell in

which the model's primary plane matches a detected plane for each

of the objects will be used. For the other target models, they

will be ignored. For each of the detected objects, a comparison is

made against a selective list of target candidates for that

particular object. The object is identified when a target model

best matches the object, and the match is also in acceptable

tolerance.

4.4.2 TARGET SHELL GENERATION

Once a target is identified as a possible candidate for a

particular object, a shell model is generated. To generate the

shell model and to get it ready for the target matching stage, a

four step process is performed. First the shell model is scale and

oriented to matched that of the object, then the visible surfaces

are determined, next a high resolution image array is generated of

the shell model and then finally, the elements of the high

resolution image array are integrated together to form lower

resolution (i.e., sensor resolution) image array. The target shell

generation process steps are shown in Figure 4.4.2-1.

26

m
I



=

U

_i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:7:7:!:!:!:!:!:!:i:!:7:!:!:!:i:i:i:i:i:i:i:i:!:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:!:i:!:i:i:!:!:i:i:i:i:i:i:i:i:i:i:i:i:i:i:ii:i:iiiiiiiiiiiiiiiliiiii!!iiiiiiiii_iiiiiiiiiiiiiii!iii!iiiiiiiii7_!_iiiiiiiiiii!iii!iiiiii_ii_ii_!i_i_iii!iii_!_!iiiiiiiiiiiiii!iiiiiiiiiii_i_i_ii_!_i_i_i!i_i_ii_i!_i!iii
i- !iil lii: il liil

o.,_.__ _.Y._.___ _OL_,O. H ,._x_ _--_

m

m

!--!

!-

Figure 4.4.2-1. Functional Block Diagram

Each target model consists of a three-dimensional (3-D) surface

shell, along with ancillary data. These surface shells, which are

polygonal representations of the outer surface of each target, are

generated from scale drawings or photographs. They are stored in

a Computer Aided Design (CAD) representation in the processor

memory. In this format, each surface shell is represented by a

number of vertices in a local coordinated system and the four-sided

polygons defined by these vertices. The advantage of this is that

a complex target model (i.e., on the order of couple hundred

polygons) can be stored in a relatively small amount of memory.

In order to perform the match process, the surface shell model must

be oriented and scaled to match the orientation and range of the

object (i.e., transformed to the sensor coordinate system). First,

the visible polygons of the surface shell are determined by

calculating the dot product of the vector to the object with the

normal of each polygon. The vertices of the visible polygons are

rotated in the local coordinate system to match the orientation of

the detected object. These vertices are also translated in (X,Y,Z)

to match the range, azimuth angle and elevation angle of the

object.

Next, a high-resolution range array is created from the target

shell model. The image array is index by a row, column address

which corresponds to a unique angle, angle location on the object.

The formation of this array is started by positioning each of the

27



m

=

m

I
m

m

W

m
_m

u

i

w

shell model vertices into it. The proper bin address is determined

by the vertices' (X,Y,Z) values. To fill the array, a fine grid

of squares (i.e., approximately 0.I inches per side in a plane

perpendicular to the line of sight for a target approximately six

feet from the sensor) is projected onto the visible polygons of the

shell. Each pixel of the object has a unique (angle, angle)

position and is associated with the grid element closest to that

position. To simulate the manner in which the sensor operates, the

range value (i.e., the distance from the sensor to the grid

element) of the grid element associated with a pixel is averaged

with the range values of grid elements in the immediate

neighborhood of the grid element to be average. The number of grid

elements in the average is determined by the size of the sensor

pixel, thus nine grid elements might be averaged together to form

a sensor pixel. This averaging process simulates the way the laser

radar produces a range return; when the laser radar scans two

surfaces, the range return will be the average of the two surfaces,

weighted by the ratio of the areas scanned. Averaging the high-

resolution grid elements simulates the averaging effect of the

laser radar since the range values of a sensor-resolution grid

element is maybe from more than one polygon. If portions of two

visible polygons lie along the same line of sight they will have

certain high-resolution bins in common. In this case, the smaller

range value is chosen since this corresponds to the surface

actually visible from the fixed origin. In this manner, edges,

surfaces, partial pixels (pixels that are averages of returns from

two or more surfaces) are predicted to occur at precise locations

in space.

4.4.3 TARGET SHELL MATCHING

After the high-resolution bins have been integrated to form sensor-

resolution bins, the surface shell array is registered with the

object array. The left and right boundaries of both the surface

shell array and the object array are compared by a weighted

averaging technique to register the two arrays in the azimuth

28

m

m
B
i
J



k.-

L

direction. After registering the two arrays in the azimuth

direction they are registered int elevation direction to produce

the initial overlay point.

_=!:

w

M

i __

m

!--

=

Z

Since the object and the surface shell are now represented in the

same reference frame they can be compared directly. A normalized

difference algorithm sums the weighted variances between the shell

and the object features, divided by the expected variances, to

yield a test difference (TD). If the expected variances are

correctly estimated, a correct object/surface shell match will

produce a TD approximately equal to i00, while an object/surface

shell mismatch will produce a TD much less than i00.

The TD calculation has two components, 3-D shape and silhouette.

The shape region is defined as all bins with both object and

surface shell present. An estimate of the shape similarity is

measured by calculating the variance between the range values of

the surface shell and the range values of the object on a bin-by-

bin basis. The expected range variance is a function of the

scanner pointing-angle accuracy, the scanner range precision, and

the object orientation. The silhouette region is defined as all

bins with either object or surface shell present, but not both.

Surface shell/object matches will generally have small silhouette

regions, while mismatches will generally produce large silhouette

regions. A technique has been implemented for grouping bins in the

silhouette region. Groups that have a large number of bins,

signify a surface shell/object mismatch. The expected silhouette

variance is a function of the expected pointing angle accuracy.

The two variance measurements are weighted by the number of pixels

in each region to produce the TD Value.

Once the TD value for the target shell model is calculated, the

value is retained. After all of the selective target models are

processed and the TD values are calculated for each detected

object, they are compared. The model with the highest TD value is

29



selected as the model with the best match. If the TD value for

this model has a acceptable match level, then model target type is

declared to be the identity of the object in question.

-==

4.5 OBJECT TRACKING

The next and final processing stage of the algorithm is the object

tracking stage. Once a object is detected and identified (i.e.,

type of target or object blob) it is then tracked. If the object

is identified in more than one image frame, then the velocity of

the object is predicted. The tracker consist of four functional

stage as shown by the block diagram in Figure 4.5-1.

•".'.'.'.'.'.'.'.',','.'.'.'.'.".................................. ... -..'..•...,,'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.:.:.:.:.:°:°:.:.:.:,:i

!:i:':l INnAu_no_ l::il MATCHINGli:_l PREDICTIONI_L l::':!:i!"
"'' ..'.I,iii :l !iiiil...........l-iil
_._:_`....._....._...._......._.._.._........_................__.__.._.`.__._.._._.._._.._..`................_....._....__._..._._.._..._._.```_.__`__.__.____
i,...-....,...,,....,..... ,...................... ....... ..... .... .<<-.'.-,.'.','.'.',o.'..'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.',I

i:':':':':':':': ::::::::::::::::::::: O.BJECT::;.T:RACK!NGI. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::I

__

Figure 4.5-1. Functional Block Diagram

The tracker is based around a track data base manager. When the

tracker receives an object, it is then assigned to the track data

base manager for disposition. The track data base is a double link

list of records. Each record consists of many data fields

describing an object. One record exists for each object. The

track data base manager compares the received object against all

the track records and their current predicted locations contained

within the data base. If a match exists, then the track record is

updated and the velocity is estimated. Otherwise, a new record is

created and added to the track list data base.

At the end of a image cycle, the track data base manager updates

the track list data base. If any record was not matched in a user

specified number of image cycles, then it is removed from the data

base track list. Otherwise, the predicted object location field

for the track record is updated. The object location field of the

30



L_

L

[]

track record is used for track record comparisons. Kalman

filtering techniques were investigated, but until better sensor

statistics are available, a more non-statistical approach will be

used. This approach uses the object's current centroid location

and tries to make prediction based upon the object's current

velocity and error uncertainties. Geometrically this approach can

be thought of as enclosing the centroid within an ellipsoid. The

volume within the ellipsoid is the location with uncertainty that

the object is expected to be in the next image cycle. The axes of

the ellipsoid are determined by the x,y and z velocities multiplied

by an error weighting constant. The placement of the foci of the

ellipse favors the direction in which the object is moving. For

each cycle in which the record is matched, the uncertainty in the

object location is reduced and, therefore, the error weighting

constant can also be decreased. That is, the more the object is

matched the more elliptical the uncertainty region is.

k-

E== 31

W



L

.t

B

5.0 SAMPLE RUN

The final real time 3-D Laser Radar Vision system was tested on

radar imagery obtained from the Odetics 3-D Mapper which is part of

the EVA Retriever robot. This imagery consists of both radar range

and intensity reflectance. The specification for this image data

is given in Table 5.0-1 and by Figure 5.0-1.

Field of dew:. 60 deg. horizontal x 60 deg. vertical

Frame formal: 128 x 128 pfxels raster scan

Frame rate: 835 msec/frame, continuous cycling

Range resolution: 1.44 in. (8-bit) or 0.72 n, (9-bit)

Ambiguity interval: 30.74 ft.

Minimum range: 1.5 ft,

Laser:. CW diode laser 820 nm. 0-50roW output

Video: 8/7 bit reflectance, logarithmic scale

Table 5.0-1. Odetics Laser Specification

• All positions relative to Mapper boreslght
with respect to a person standing behind
Mapper

+X - Axis In front of Mapper

+Y " Axis to the rl_a_pe+Z - AXIs below r

- ELEVATION

ELJEVATION

- AZIMUTH + AZIMUTH

m +Z

i

W

i

Figure 5.0-1. Odetics 3-D Mapper Coordinate System Definition

32



w

An example of an Odetics 3-D Mapper test image of an EVA wench is

illustrated by Figure 5.0-2. The left side of the image is

reflectance and the right side is range.

ORIG!N._,L PAGE

BLACK AND WHITE PHOTOGRAPH

,===
w

Figure 5.0-2. Odetics Range / Reflectance Imagery of an
Eva Wrench

An example of output imagery of the object detection stage of the

algorithm is shown in Figure 5.0-3.

33

m

_m

W



= :

T

F1

E

w

F

Figure 5.0-3. Odetics Detected objects / Range Imagery
of an Eva Wrench

ORIGINAL PAGE

BLACK AND WHfTE PHOTOGRAPH

m

34



6.0 RECOMMENDATIONS

R

w

w

The system, as delivered, provides the basic capabilities

required by the program. It also provides a structure that

will readily permit enhancements to be incorporated. The

following is a list of recommended enhancements:

IMPROVED 3D ORIENTATION

Improvements in the 3D orientation software will provide the

single greatest improvement in system performance. Both the

selection of the appropriate models and the actual comparison

with sensor data is greatly influenced by the accuracy

obtained from the software that determine the object's

orientation and measurements. The routines that will provide

the greatest performance improvement are edge detection and

plane growing.

;MPROVED OPERATOR INTERFAC_

==

m
w

There are a number of operator features that would be highly

desirable for the current development environment. These

improvements include the ability to display intermediate

results such as the object shells and matching results.

Images also could be displayed at a higher resolution than the

current 320 x 200.

ADDING OF MODELS

The current method of adding target models is operator

intensive. A more user friendly method of adding models and

displaying model shells is desirable. The existing set of

models should be expanded to include a wider variety of

targets of interest.

3S



PROCESSING SPEED-UP

Significant improvements can be achieved in the speed of

processing the laser radar data. Changes in the data formats

will permit more rapid transfer from one transputer to

another. The software that allocates detected objects can be

modified to permit better utilization of the available

transputers resources.

ADAPT TO NEW SENSOR

E

The Odetics 3D Mapper has limitations that will be eliminated

with the new sensor currently being developed. The software

should be modified to take advantage of the full range of

capability resident in the new sensor. Included in the new

capabilities will be higher resolution images, wider field of

view and much more flexibility in sensor control.

L

H
l

W

36


