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INTRODUCTION 

This bibliography contains references from the NASA Scientific andTechnical Information 
Database, available on RECON, on the exploration of Mars. The citations include NASA 
reports as well as journal articles and conference proceedings. Historical references 
are cited for background. 

The Scientific and Technical Information Program of NASA is pleased to contribute this 
comprehensive bibliography to the International Space University’s 1991 session as 
evidence of NASAs continuing interest and support. 

k@ . Gerald Director, Soffen Off ice of University Programs 

NASA Goddard Space Flight Center 

Member, ISU Board of Directors 

Gladys A. Cotter 
Director 
NASA Scientific and Technical Information Program 
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N MICROFICHE i"l 
4CCESSION NUMBER - N90-26499'# 

Design Group. 

AUTHORS -TIMOTHY HANSMANN, ed. & comp.. GARY T. MOORE, ed. & 
comp., DIN0 J. BASCHIERA, JOE PAUL FIEBER, and JANlS 
HUEBNER MOTHS 11Jun. 1990 119 p 

AILABILITY SOURCE -Avail: NTlS HC AO6/MF A01 CSCL 05H - 

Wisconsin Univ., Milwaukee. Space Architecture- CORPORATE sc 
TITLE A G E N E S I S  LUNAR OUTPOST CRITERIA AND DESIGN 

CONTRACT NUMBER -(Contract NASW-4435) PUBLICATION D, 
REPORT NUMBERS (NASA-CR-186831; NAS 1.26:186831; R90-1; ISBN-0-938744-69-0) COSATI CODE 

N 
This design study--the third in the space architecture series- 

focused on the requirements of an early stage lunar outpost. The 
driving assumptions of the scenario was that the base would serve 
as a research facility and technology testbed for future Mars missions, 
a habitat supporting 12 persons for durations of up to 20 months, 
and would sustain the following five experimental facilities: Lunar 
surface mining and production analysis facility, construction 
technology and materials testbed, closed environmental life support 
system (CELSS) test facility, lunar farside observatory, and human 
factors and environment-behavior research facility. Based upon the 
criteria set forth in a previous programming document, three 
preliminary lunar base designs were developed. Each of the three 
schemes studied a different construction method and configuration. 
The designs were then evaluated in terms of environmental response, 
human habitability, transportability, constructability, construction 
dependability and resilience, and their suitability in carrying out the 
desired scientific research. The positive points of each scheme were 
then further developed by the entire project team, resulting in one 
integrated lunar outpost design. Author 

PRICE CODE 

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT 

NASASPONSORED 

CORPORATE SOURCE 

I I  
:CESSION NUMBER - A91-27353' Duke Univ., Durham, NC. 

TITLE - A DEPLOYABLE HIGH TEMPERATURE SUPERCONDUCTING 

MAGNETIC SHIELDS AGAINST BOTH SOLAR FLARE AND 
GALACTIC RADIATION DURING MANNED INTERPLANETARY 

COIL (DHTSC) - A NOVEL CONCEPT FOR PRODUCING 

MISSIONS I AUTHORS' AFFlLl 
AUTHOR - F. HADLEY COCKS (Duke University, Durham, NC) British- JOURNAL TITLE 

Interplanetary Society, Journal (ISSN 0007-084X), vol. 44, March 
1991, p. 99-102. refs 

ONTRACT NUMBER -(Contract NASW-4453) 
Copyright 

The discovery of materials which are superconducting above 
100 K makes possible the use of superconducting coils deployed 
beyond the hull of an interplanetary spacecraft to produce a magnetic 
shield capable of giving protection not only against solar flare 
radiation, but also even against Galactic radiation. Such deployed 
coils can be of very large size and can thus achieve the great magnetic 
moments required Using Only relatively low currents. Deployable high- 
temperature-superconducting coil magnetic shields appear to offer 
very substantial reductions in mass and energy compared to other 
concepts and could readily provide the radiation protection needed 
for a Mars mission or space colonies. Author 

X 
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A87-53091' National Aeronautics and Space Administration. 
Lyndon B. Johnson Space Center, Houston, TX. 
MARTIAN SElTLEMENT 
BARNEY B. ROBERTS (NASA, Johnson Space Center, Houston, 
TX) IN: The human quest in space; Proceedings of the 
Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar. 
20, 21, 1986. San Diego, CA. Univelt, Inc., 1987, p. 227-235; 
Discussion, p. 236, 237. 
(AAS PAPER 86-1 17) Copyright 

The rationale for a manned Mars mission and the establishment 
of a base is divided into three areas: science, resource utilization, 
and strategic issues. The effects of a Mars mission on the 
objectives of near-term NASA programs, and the applications of 
these programs to a Mars mission are examined. The use of 
extraterrestrial resources to supply space settlements and thereby 
reduce transportation costs is studied; the development of systems 
for extraterrestrial materials processing will need to be researched. 
The possibility of a joint U.S./Soviet Mars mission is discussed by 
the symposium parbcipants. I.F. 

A88-22044'# Martin Marietta Corp., Denver, CO. 
HUMAN EXPLORATION OF MARS 
BENTON C. CLARK (Martin Marietta Planetary Sciences 
Laboratory, Denver, CO) AIA4, Aerospace Sciences Meeting, 
26th, Reno, NV, Jan. 11-14, 1988. 6 p. refs 
(Contract NAS8-37126) 

A systems study is underway of astronaut missions to Mars 
that could be accomplished over the next four decades. In addition 
to an emphasis on the transportation and facility infrastructure 
required for such missions, other relevant technologies and mission 
constraints are also being considered. These induce on-orbit 
assembly, trajectory type, launch opportunities, propellant storage, 
crew size, cabin pressure, artificial gravity, life-support systems, 
radiation hazards, powerlenergy storage, thermal control, human 
factors, communications, abort scenarios, landing techniques, 
exploration strategies, and science activities. A major objective of 
the study is to identify enabling and significantly enhancing 
technologies for accomplishing the goal of the human exploration 
of Mars. Author 

(AIAA PAPER 88-0064) Copyright 

A8641289 
TPANS?ORTAT:CN APPiiCAiiONS OF EiE2iRi f 
PROPULSION 
GRAEME ASTON (Electric Propulsion Laboratory, Inc.. Tehachapi, 
CA) IN: Visions of tomorrow: A focus on national space 
transportation issues; Proceedings of the Twenty-fifth Goddard 
Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987. San Diego, 
CA, Univelt, Inc., 1987, p. 223-228, 231-245; Discussion. p. 

A comprehensive account is given of the nature and current 

228-230. 
( U S  PAPER 87-128) Copyright 
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development status of high specific impulse electric propulsion 
systems for spacecraft application in earth orbit, lunar settlement, 
planetary science, manned Mars mission, and interstallar travel. 
Electrostatic, electrothermal, and electromagnetic systems are 
possible; attention is presently given to electrostatic ion, 
electrothermal arcjet, and magnetoplasmadynamic thrusters. 
Lightweight solar and nuclear space power systems are key 
enabling technologies for electric propulsion; nuclear propulsion's 
use will be demonstrated by the Space Nuclear Power Source 
Reference Mission. O.C. 

A88-52345' 
MANNED MARS MISSION PROGRAM CONCEPTS 
E. C. HAMILTON, P. JOHNSON, J. PEARSON, and W. TUCKER 
(SRS Technologies, Huntsville, AL) IN: Space Congress, 25th, 
Cocoa Beach, FL, Apr. 26-29, 1988. Proceedings. Cape Canaveral. 
FL, Canaveral Council of Technical Societies, 1988, p. 7-1 to 7-5. 
NASA-sponsored research. 
Copyright 

This paper describes the SRS Manned Mars Mission and 
Program Analysis study designed to support a manned expedition 
to Mars contemplated by NASA for the purposes of initiating human 
exploration and eventual habitation of this planet. The capabilities 
of the interactive software package being presently developed by 
the SRS for the mission/program analysis are described, and it is 
shown that the interactive package can be used to investigate 
the impact of various mission concepts on the sensitivity of mass 
required in LEO, schedules, relative costs, and risk. The results, 
to date, indicate the need for an earth-to-orbit transportation system 
much larger than the present STS, reliable long-life support 
systems, and either advanced propulsion or aerobraking 

I Spectra Research Systems, Inc., Huntsville, AL. 

technology. I.S. 

A8845451 # 
INTERNATIONAL MANNED MISSIONS TO MARS AND THE 
RESOURCES OF PHOBOS AND DEIMOS 
BRIAN O'LEARY (Institute for Security and Cooperation in Outer 
Space, Phoenix, AZ) IAF, International Astronautical Congress, 
39th, Bangalore, India, Oct. 8-15, 1988. 14 p. refs 
(IAF PAPER 88-591) Copyright 

The potential for a joint manned mission to the moons of 
Mars with a possible sortie to the Martian surface is examined. 
The advantages of landing on the Martian moons include 
accessibility, location. the potential for in-situ processing, and the 
minimization of mission propulsion requirements. The dangers of 
dust storms on the Martian surface are obviated, and the application 
of the Space Shuttle external tank (ET) to such a mission is 
addressed. The use of the ET for volatile processing at the moons 
of Mars is discussed. A four-mission program toward developing 
the bases on the Martian moons is discussed, taking the 
igquiiemefits and economics inio account. C.D. 

A89- 1939 1 

STEP IS MARS, TOGETHER 
BURTON I. EDELSON and JOHN L. MCLUCAS 

Copy right 
The history of U.S. and Soviet lunar and planetary exploration 

efforts is recalled, and arguments in favor of a joint program to 

US AND SOVIET PLANETARY EXPLORATION - THE NEXT 

Space Policy 
(ISSN 0265-9646), VOl. 4, NOV. 1988, p. 337-349. 
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explore Mars are presented. The competitive nature of the previous 
and current space programs is discussed; the technological fields 
in which the U.S. or USSR has an advantage are indicated; and 
the need to follow up on the 1986 Soviet proposal of a joint 
mission is stressed. The first steps recommended to the U.S. 
administration are (1) establishing a bilateral or international Mars 
program concept, (2) setting robotic exploration in the late 1990s 
and manned exploration in the next century as goals, and (3) 
convening an international group of engineers and scientists to 
make detailed plans. T.K. 

A89-37799' Stanford Univ., CA. 
USE OF MARTIAN RESOURCES IN A CONTROLLED 
ECOLOGICAL LIFE SUPPORT SYSTEM (CELSS) 
DAVID T. SMERNOFF (Stanford University, CA) and ROBERT D. 
MACELROY (NASA, Ames Research Center, Moffett Field, CA) 
British Interplanetary Society, Journal (ISSN 0007-084X), vol. 42, 
April 1989, p. 179-184. refs 
Copyright 

Possibile crew life support systems for Mars are reviewed, 
focusing on ways to use Martian resources as life support materials. 
A system for bioregenerative life support using photosynthetic 
organisms, known as the Controlled Ecological Life Support System 
(CELSS), is examined. The possible use of higher plants or algae 
to produce oxygen on Mars is investigated. The specific 
requirements for a CELSS on Mars are considered. The exploitation 
of water, respiratory gases, and mineral nutrients on Mars is 
discussed. R.B. 

A89-43365. 
Marshall Space Flight Center, Huntsville, AL. 
A MANNED MARS ARTIFICIAL GRAVITY VEHICLE 
DAVID N. SCHULTZ. CHARLES C. RUPP, GREGORY A. HAJOS, 
and JOHN M. BUTLER, JR. (NASA, Marshall Space Flight Center, 
Huntsville, AL) IN: Space tethers for science in the space station 
era; Proceedings of the Second International Conference, Venice, 
Italy, Oct. 4-8, 1987. Bologna, Societa ltaliana di Fisica, 1988, p. 

Data are presented on an artificial-gravity vehicle that is being 
designed for a manned Mars mission, using a 'split-mission' 
concept, in which an unmanned cargo vehicle is sent earlier and 
stored in a Mars orbit for a rendezvous with a manned vehicle 
about 1.5 years later. Special attention is given to the vehicle 
trajectory and configuration, the tether design, and the vehicle 
weight and launch requirements. It is shown that an artificial-(; 
vehicle for a manned Mars missions is feasible technically and 
programmatically. Using an artificial-G vehicle instead of a zero-G 
vehicle for the piloted portion of a split mission provides 
physiological and human-factor-related benefits, does not eliminate 
requirements for zero-G countermeasures research (since zero-G 
is an abort mode), and could possibly reduce some life science 

National Aeronautics and Space Administration. 

320-335. 
Copyright 

activities. Diagrams are included. I.S. 

A89.45833 
POTENTIAL APPLICATION OF SPACE STATION 
TECHNOLOGY IN LUNAR BASES AND MANNED MARS 
MISSIONS 
J. M. GARVEY and M. M. MANKAMYER (McDonnell Douglas 
Astronautics Co., Space Station Dw., Huntington Beach, CA) IN: 
Engineering, construction, and operations in space; Proceedings 
of the Space '88 Conference, Albuquerque, NM, Aug. 29-31, 1 988. 
New York, American Society of CMI Engineers, 1988, p. 
1308-1319. refs 
Copyright 

To meet the goals of its Space Station program, NASA is 
developing a large set of improved space systems capabilities. In 
areas such as power generation and distribution, on-board data 
management, and l e  support, Station technology will represent a 
major advance over current SySt~ms. Given the substantial 
investment required to create these capabilities, it is worthwhile 
to consider other potential uses for them. This paper constitutes 

an early attempt to assess such followon applications. particularly 
in manned space exploration initiatives such as a lunar base and/or 
manned Mars expedition. Author 

A89-47067# 
MANNED MARS MISSION OVERVIEW 
BRUCE M. CORDELL (General Dynamics Corp., Space Systems 
Div., San Diego, CA) AIAA, ASME, SAE, and ASEE, Joint 
Propulsion Conference, 25th, Monterey, CA, July 10-1 3, 1989. 32 
p. refs 
(AIAA PAPER 89-2766) Copyright 

The mission strategies and concepts, technologies and Systems. 
and program stragegies and implications associated with manned 
Mars missions and with establishment of bases on Mars are 
discussed. The results of an overview of the existing information 
and technologies indicate that the human exploration of Mars and 
the establishment of settlements is technologically feasible. It is 
suggested that an initial manned base on Phobos may be the 
most efficient and inexpensive way to begin the human exploration 
of Mars. The propulsion issues and the mission concepts are 
discussed with special consideration given to nuclear systems and 
extraterrestrial propellant production, as well as to space 
infrastructures, systems, and operations necessary for the support 
of manned Mars missions. Attention is also given to political and 
social issues that will influence the decision and the starting time 

I.S. of the human exploration of Mars. 

A8854248 
TO MARS AND BEYOND 
BEN BOVA Air and Space (ISSN 0886-2257), vol. 4, 0ct.-Nov. 
1989, p. 4248. 

The development of propulsion systems with the ability to allow 
for human exploration of Mars and further into the solar systems 
is discussed. Various types of rocket engines, such as chemical, 
nuclear, and electrical, are examined in terms of fuel efficiency 
and specific impulse. Consideration is also given to laser propulsion, 
a solar sail, and fusion. I.F. 

Copyright 

A90-13570'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
AN INTERNATIONAL MARS EXPLORATION PROGRAM 
DONALD G. REA, GLENN E. CUNNINGHAM (JPL, Pasadena, CA), 
MARK K. CRAIG (NASA, Johnson Space Center, Houston, TX), 
and HAROLD L. CONWAY (NASA, Washington, DC) IAF, 
International Astronautical Congress, 40th, Malaga, Spain, Oct. 

(IAF PAPER 89-493) Copyright 
The scientific reasons for a Mars exploration program are 

reviewed, and the robotic phase of such a program is examined. 
The functions and requirements of the rovers, surface stations 
and penetrators are addressed, as are those of the imaging and 
communications orbiters. The navigational functions which support 
the aerocapture and landing vehicles are examined. C.D. 

7-13, 1989. 7 p. 

A90-16528 

MARS 
TllNA O'NEIL. DANIEL THURS, MICHAEL NARLOCK, and SHAWN 
M T S C H  IN: The case for Mars 111: Strategies for exploration - 
Technical. San Diego, CA, Univelt, Inc., 1989, p. 13-28. refs 

The societal, engineering, and scientific aspects of a manned 
mission to Mars are investigated, as part of a NASAIUniversity of 
Wisconsin sponsored high school student contest. The societal 
concerns cover the economic perspective of a multinational venture 
providing more resources, ideas, and personnel than a unilateral 
effort. Engineering issues consist of ship design, propulsion, and 
Support systems; propelled by liquid rockets, the Mars Transit 
Vehicle (MTV) is conceived as a modular craft composed of several 
pods; the space crew would inhabit the first two pods. The scientific 
aspect concerns the major questions, means, and requirements 
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to be answered for a manned Mars mission, with objectives that 
would include the determination of location and potability of Martian 
water deposits. C.E. 

A90-16548 
MARS MISSION AND PROGRAM ANALYSIS 
EDWARD E. MONTGOMERY and JAMES C. PEARSON. JR. 
(Spectra Research Systems, Inc., Huntsville, AL) IN: The case 
for Mars 111: Strategies for exploration - Technical. San Diego, CA, 
Univelt, Inc., 1989, p. 293-309. refs 

The total initial mass required in the Space station orbit is 
estimated for several difterent operational scenarios culminating 
in the retrieval of Mars Space Vehicle stages to the space station 
for refurbishment and reuse. Interplanetary and planetary VelOCtty 
change requirements are calculated for a 2003 high thrust 
conjuction class direct stopover mission to Mars and subsequently 
employed in mass fraction equations to estimate mass of the 
Mars vehicle and OTVs. The implications on ET0 vehicle payload 
capacity and launch rate are also presented parametrically. 
Evaluations include the effects of aerobraking, propellant boiloff, 
and recovery trajectory. Author 

A90-16560 
MANNED MARS MISSIONS AND EXTRATERRESTRIAL 
RESOURCE ENGINEERING TEST AND EVALUATION 
STEWART W. JOHNSON (BDM Corp.. Albuquerque, NM) and 
RAYMOND S. LEONARD (Ad Astra, Ltd., Santa Fe, NM) IN: 
The case for Mars 111: Strategies for exploration - Technical. San 
Diego, CA, Univelt, Inc., 1989, p. 455468. Research supported 
by BDM Corp. and Ad Astra, Ltd. refs 

This paper emphasizes the importance of early involvement of 
the test and evaluation perspective and approach in the engineering 
analysis, design. and development of capabilities for a manned 
Mars mission that incorporates extraterrestrial resource extraction 
and use. The effectiveness and suitability of mission equipment 
and proposed resource extraction processes must be shown by 
test and evaluation involving analysis, simulation, ground test, and 
flight test. Facilities and resources for test and evaluation must 
be acquired in a timely fashion, and time allowed for test and 
evaluation. Author 

(AAS PAPER 87-249) Copyright 
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A90-16651 
Ames Research Center, Moffett Field, CA. 
THE CASE FOR MARS 111: STRATEGIES FOR EXPLORATION - 
GENERAL INTEREST AND OVERVIEW 
CAROL R. STOKER, ED. (NASA, Ames Research Center, Moffett 
Field, CA) San Dego. CA, Univelt, Inc. (Science and Technology 
Series. Volume 74). 1989, 743 p. For individual items see 

Copyright 
Papers on the possibilities for manned Mars missions are 

presented, covering topics such as space policy, space education 
and Mars exploration. economic issues, international moperation, 
life support, biomedical factors, human factors, the Mars Rover 
Sample Return Mission, and possible unmanned precursor missions 
to Mars. Other topics include the scientific objectives for human 
exploration of Mars, mission strategies, possible transportation 
systems for manned Mars flight, advanced propulsion techniques, 
and the ~ei!zetkr! e! Mars mixxurcas. Abditkmal s&jec;s include 
the construction and maintenance of a Martian base, possible 
systems for mobility on the Martian surface, space power systems, 
and the use of the Space Station for a Mars mission. R.B. 

AQ0-18652' National Aeronautics and Space Administration, 
Washington, DC. 
A STRATEGY FOR MARS THE CASE FOR MARS 111 - 
KEYNOTE ADDRESS 
JAMES C. FLETCHER (NASA, Washington, DC) IN: The case 
for Mars 111: Strategies for exploration - General interest and 
overview. San Diego. CA, Univelt, Inc.. 1989, p. 3-11. 

National Aeronautics and Space Administration. 

A90-16652 to A90-16690. 

(AAS PAPER 87-175) Copyright 

Plans for defining a Mars mission and developing the 
technologies needed for a Mars mission are discussed. The 
information about Mars obtained from the Viking mission is 
reviewed. The estaSlishment of a lunar base and the role of such 
a base in a manned mission to Mars are examined. The problems 
of a long-term mission in microgravity, the possible development 
of artificial gravity, the Mars Sample Return mission, and various 
scenarios for a manned mission to Mars are considered. R.B. 

A90-16653 
DECISIONS ON SPACE INITIATIVES 
RADFORD BYERLY, JR. (Colorado, University, Boulder) IN: The 
case for Mars 111: Strategies for exploration - General interest and 
overview. San Diego, CA, Univelt, Inc., 1989, p. 19-25. 

Issues related to the process of making decisions on major 
space initiatives are discussed. The decision-making processes 
for the Apollo, Space Shuttle, and Space Station programs are 
reviewed. Consideration is given to current political support for 
the Space Station and the question of whether the moon or Mars 
should be the next goal of the space program. R.B. 
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A90-16664' 
Washington, DC. 
PLANETARY PROTECTION AND BACK CONTAMINATION 
CONTROL FOR A MARS ROVER SAMPLE RETURN MISSION 
JOHN D. RUMMEL (NASA, Lae Sciences Dv., Washington, DC) 
IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA, Univelt, Inc., 1989. p. 

A commitment to avoid the harmful contamination of outer 
space and avoid adverse changes in the environment of the earth 
has been long reflected in NASA's Planetary Protection policy. 
Working under guidelines developed by the Committee on Space 
Research (COSPAR), NASA has implemented the policy in an 
interactive process that has included the recommendations of the 
U.S. National Academy of Sciences. Measures taken to prevent 
the contamination of earth during the Apollo missions were perhaps 
the most visible manifestations of this policy, and provided 
numerous lessons for future sample return opportunities. This paper 
presents the current status of planetary protection policy within 
NASA, and a prospectus on how planetary protection issues might 
be addressed in relation to a Mars Rover Sample Return mission. 

Author 

National Aeronautics and Space Administration, 

259-263. 
(AAS PAPER 87-197) Copyright 

A90-16667' National Aeronautics and Space Administration, 
Washington, DC. 
LIFE SCIENCES INTERESTS IN MARS MISSIONS 
JOHN D. RUMMEL and LYNN D. GRlFFlTHS (NASA, Life Sciences 
Div., Washington, DC) IN: The case for Mars 111: Strategies for 
exploration - General interest and overview. San Diego, CA, Univelt, 
Inc., 1989, p. 287-294. 

NASA's Space Life Sciences research permeates plans for 
Mars missions and the rationale for the exploration of the planet. 
The Space Life Sciences program has three major roles in Mars 
mission studies: providing enabling technology for piloted missions, 
conducting scientific exploration related to the origin and evolution 
of life, and protecting space crews from the adverse physiological 
&:eciS of space iiighi. This paper presents a rationale for 
exploration and some of the issues, tradeoffs, and visions being 
addressed in the Space Life Sciences program in preparation for 
Mars missions. Author 

(AAS PAPER 87-200) Copyright 

A90-16668' Martin Marietta Corp.. Denver, CO. 
MANNED MARS SYSTEMS STUDY 
BENTON C. CLARK (Martin Marietta Planetary Sciences 
Laboratory. Denver, CO) IN: The case for Mars 111: Strategies 
for exploration - General interest and overview. San Diego, CA, 
Univelt, Inc., 1989. p. 297-307. 
(Contract NAS8-37126) 
(AAS PAPER 87-201) Copyright 
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A study is underway to determine attractive system options, 
perform trade studies, and provide comparative data for astronaut 
missions to Mars. Because of an emphasis in this work on deriving 
requirements and candidates for the transportation and facility 
infrastructure for such missions, all relevant technologies and 
mission constraints are also being considered. These include 
on-orbit assembly, trajectory type, launch opportunities. propellant 
storage, crew size, cabin pressure, artificial gravity, life-support 
systems, radiation hazards, powerlenergy storage, thermal control, 
human factors, communications, abort scenarios, landing 
techniques, exploration strategies and science activities. It is 
planned to scope several example missions and to identify enabling 
and significantly enhancing technologies for accomplishing the 
goals of the human exploration of Mars. Author 

A90-16669 
PILOTED SPRINT MISSIONS TO MARS 
JOHN C. NIEHOFF and STEPHEN J. HOFFMAN (Science 
Applications International Corp., Schaumburg, IL) IN: The case 
for Mars 111: Strategies for exploration - General interest and 
overview. San Diego, CA, Univelt, Inc., 1989, p. 309-324. 

This paper describes a piloted mission to Mars early in the 
21st century, using near-term technology; results from a mission 
study are presented. A trajectory option is identified that allows 
piloted round-trip missions to be completed within approximately 
one year. These flights are called sprint missions. Study results 
show that two vehicles would be required to complete the mission. 
The first is an automated cargo vehicle, which has an initial mass 
of 600 metric tons (including injection stage) in LEO. The second 
vehicle is the piloted spacecraft, which has an initial mass (including 
injection stages) of 750 metric tons LEO. Aerobraking is used by 
both the cargo and piloted vehicles at Mars and by the piloted 
vehicle upon earth return. Key milestones in support of the 
proposed mission scenario are identified. Author 

AW-16670 
MARS 1999 - A CONCEPT FOR LOW COST NEAR-TERM 
HUMAN EXPLORATION AND PROPELLANT PROCESSING ON 
PHOBOS AND DEMOS 
BRIAN O'LEARY (Future Focus, Scottsdale, AZ) IN: The case 
for Mars 111: Strategies for exploration - General interest and 
overview. San Diego, CA. Univelt. Inc., 1989, p. 353-372. refs 

This study shows that a mission to the moons of Mars with a 
sortie option to the Martian surface during 1998-99 is technically 
feasible provided a political decision is made by 1990. A number 
of reasons favor the 1999 opportunity, including small delta-V 
values, low probability of planet-obscuring dust storms, and 
near-zero solar flare activity. The space shuttle external tank can 
be adapted as a cryogenic propellant and cargo launcher to low 
earth orbit (LEO), as a Mars mission module transfer vehicle, and 
as a cryogenic storage facility onorbit and at Phobos/Deimos 
(PhD). A synergistic four mission program is proposed wherein 
1O.OOO metric tons of water extracted from PhD could be delivered 
to LEO and the surfaces of Mars and the moon by 2005. As a 
result, Mars and lunar bases could be established, and a space 
industrial infrastructure cwld grow more rapidly than in other space 
development scenarios. The scientific, political and economic 
incentives for PhD warrant increased attention in manned Mars 
mission, program, and system studies. Author 

A@0-16671 Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
EARTH ORBITAL PREPARATlON FOR MARS EXPEDITIONS 
ROBERT L STAEHLE (JPL. Pasadena; World Space Foundation, 
South Pasadena, CA) IN: The case for Mars 111: Strategies for 
exploration - General interest and overview. Sen Diego, CA, Univelt, 
lnc., 1989, p. 373-396. refs 

Consideration is given to the facilities in earth orbit that would 
be required to prepare for a manned mission to Mars. It is suggested 
that the facilities required for the development of technology for a 
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Mars mission include the Space Station, a variable gravity research 
station, and an assembly dock, in addition to ground facilities. 
The types of research that would be conducted at each of these 
facilities are examiied. R.B. 

A90-16672' National Aeronautics and Space Administration. 
Lyndon B. Johnson Space Center, Houston, TX. 
TECHNOLOGY FOR MANNED MARS FLIGHT 
BARNEY 8. ROBERTS (NASA, Johnson Space Center, Houston, 
TX) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA, Unive!!. Inc., 1989, p. 
399-41 1. refs 

It is important for NASA to begin development of the 
technologies and strategies necessary to support a Mars mission. 
Most of the technologies required are long lead time items and 
must be started now to preserve the option for Mars landings at 
the turn of the century. It is a common assumption that a piloted 
mission to Mars could be accomplished with current technology. 
Although this is probably true to some degree, the mass in low 
earth orbit would be so large that the mission would be impractical 
and maybe impossible. Technologies for advanced propulsion, 
advanced life support systems, aerobraking, and utilization of in 
situ resources can greatly enhance the ability to execute this class 
of mission. Author 

(AAS PAPER 87-206) Copyright 

A90-16686' Utah State Univ., Logan. 
BALLOON-BORNE CHARACTERIZATION OF THE MARTIAN 
SURFACE AND LOWER ATMOSPHERE 
F. J. REDD (Utah State University, Logan), R. J. LEVESQUE, and 
G. E. WILLIAMS IN: The case for Mars 111: Strategies for 
exploration - General interest and overview. San Diego, CA, Univelt, 
Inc., 1989, p. 633-645. Research supported by NASA. 

A recent NASA-sponsored design course at Utah State 
University (USU) has focused upon a Mars Lander/Rover system 
designed to descend from a Martian orbit and deploy both surface 
and balloon-borne instruments to examine the Martian surface and 
lower atmosphere. The latter stages of the USU design effort 
placed major emphasis on the design of the balloon rover. This 
paper presents the results of that emphasis by discussing the 
payload requirements, identification of the design parameters, 
surface vs. descent deployment, design tradeoff studies, 
site-influenced departures from the baseline design, the final design 
concept, and the resulting balloon performance. A single hydrogen 
superpressure balloon is selected for use in the design mission. 
The paper concludes that characterization of the Martian surface 
and lower atmosphere by a descentdeployed, balloon-borne rover 
is a viable concept that should be actively pursued. Author 

AW-17806 
EMERQING VIEWS ON A JOINT SOVIET-US. MARS MISSION 
VADlM VLASOV (Moskovskii Aviatsionnyi Institut. Moscow, USSR) 
and MICHAEL POTTER (Egan Group; Georgetown University, 
Washington. DC) Space Policy (ISSN 0265-9646), vol. 5, Nov. 

Copyright 
Political and space policy developments in the U.S. and in the 

USSR are evaluated, focusing on the way in which these 
developments might influence the possibility of a joint U.S./USSR 
mission to Mars. Consideration is given to economic issues and 
political support for space programs in the two countries. A strategy 
for working towards a joint Mars mission is proposed. R.B. 

AOl-1 W52# 
PLANNING FOR HUMAN VOYAQES TO MARS 
ERNST STUHLINGER AIM, Space Programs and Technologies 
Conference, Huntsville, AL. a p t .  25-27. 1990. 7 p. 

Proposals for manned voyages to Mars were made repeatedly 
during the past hundred years, based on chemical, electric, and 
nuclear rocket systems. Some of the more recent studies offWed 
detailed design and engineering data for Mars missions. President 
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Bush's Space Exploration Initiative in 1989 resulted in extended 
compilations of data concerning the Martian surface and 
environment; steps toward the establishment of a master plan for 
a manned Mars mission should now be taken. A concept for a 
Mars mission with a nuclear-electric propulsion system is proposed 
in the present paper. Author 

A91-10143'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
MARS EXPLORATION MISSIONS 
GLENN E. CUNNINGHAM (JPL, Pasadena, CA) AIAA, Space 
Programs and Technologies Conference, Huntsville, AL, Sept. 
25-27, 1990. 7 p. refs 

Several robotic exploration missions to Mars that are proposed 
for inclusion in the Space Exploration Mission are reviewed. The 
missions discussed range from remote sensing orbital missions to 
landed missions, such as simple surface stations and roving 
vehicles. The discussion covers engineering and science 
objectivess of the missions, data acquisition strategy, mission 
sequence, types of missions, and a brief description of each of 
the missions. V.L. 

(AIAA PAPER 90-3779) Copyright 

A91-10157'# National Aeronautics and Space Administration, 
Washington, DC. 
TECHNOLOGY AND MARS EXPLORATION 
JOHN C. MANKINS (NASA, Washington, DC) and CORINNE M. 
BUONI (Science Applications International Corp., Washington, 
DC) AIM,  Space Programs and Technologies Conference, 
Huntsville, AL. Sept. 25-27, 1990. 10 p. 

The currently envisioned technology needs of the Space 
Exploration Initiative are surveyed. Earth-toorbit transportation 
technology requirements are summarized. Space transportation 
needs regarding aerobraking, space-based engines, autonomous 
landing, autonomous rendezvous and docking. vehicle structures 
and cryogenic tankage, artificial gravty, nuclear propulsion, nuclear 
thermal propulsion, and nuclear electric propulsion. For in-space 
operations, cryogenic fluid systems, in-space assembly and 
construction, and vehicle processing and servicing are addressed. 
For surface operations on the moon and Mars, space nuclear 
power, resource utilization, planetary rovers, surface solar power, 
and surface habitats and construction are discussed. Regenerative 
life support, radiation protection, extravehicle activity, are 
considered along with factors pertaining to scientific activii in 
space and information systems and communications. C.D. 

A91-10193'# National Aeronautics and Space Administration. 
Lyndon B. Johnson Space Center, Houston, TX. 
OVERVIEW OF THE SURFACE ARCHITECTURE AND 
ELEMENTS COMMON TO A WIDE RANGE OF LUNAR AND 
MARS MISSIONS 
JOHN F. CONNOLLY (NASA, Johnson Space Center, Houston, 
TX) and LARRY D. TOUPS (Lockheed Engineering and Sciences 
Co., Houston, TX) AIAA, Space Programs and Technologies 
Conference. Huntsville, AL, Sept. 25-27, 1990. 10 p. 
(AIAA PAPER 90-3847) Copyright 

NASA has studied future missions to the moon and Mars 
since the 1960% and most recently during the studies for the 
Space Exploration Initiative chartered by President Bush. With these 
most recent studies, the !mer a_nd Mars Explore!& P q r m  
Office is looking at a number of possible options for the human 
exploration of the solar system. Objectives of these options include 
science and exploration, testing and learning centers, local 
planetary resowce development, and self sufficient bases. To meet 
the objectives of any particular mission, efforts have focused 
primarily in three areas: (1) space transportation vehicles, (2) the 
assodated space infrastructure to support these vehicles, and (3) 
the necessary infrastructure on the planet surface to carry out the 
mission objectives. This paper looks at work done by the Planet 
Surface Systems Office at JSC in the third area, and presents an 
overview of the approach to determining appropriate equipment 
and elements of the surface infrastructure needed for these mission 

(AIAA PAPER 90-3797) Copyright 

alternatives. It describes the process of deriving appropriate surface 
architectures with consideration of mission objectives leading to 
system concepts, designation of elements and element 
placement. Author 

A91-10220# 
TRANSPORTATION APPROACHES FOR MANNED MARS 
MISSIONS 
BRUCE M. CORDELL (General Dynamics Corp., Space Systems 
Div., San Diego, CA) AIAA, Space Programs and Technologies 
Conference, Huntsville, AL, Sept. 25-27, 1990. 10 p. refs 

This paper describes the Space Exploration Initiative (SEI) 
objectives, as well as some strategies and scenarios which 
emphasize program viabili, crew safety, efficient transportation 
systems, the use of space resources, and the human settlement 
of Mars. The space propulsion options which can be easily 
accommodated into the SEI program and a SEI strategy featuring 
the search for water on Mars are described. Special attention is 
given to an example (Exofuel) of possible commercial strategy 
involving the Martian moons. In one of several possible Exofuel 
scenarios, a water extractor and an in situ propellant production 
plant on Deimos produce propellants that are retrieved to a high 
elliptical earth orbit, from which they are transferred via a space 
tanker vehicle to LEO where they are used to fuel lunar or planetary 
spacecraft. A summary is presented of the performance and cost 
data generated during the initial analysis of the potential of the 

I.S. 
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Martian moons for commercial development. 

A91-13752'# National Aeronautics and Space Administration, 
Washington, DC. 
TECHNOLOGY NEEDS OF THE EXPLORATION INITIATIVE 
ARNOLD ALDRICH, ROBERT ROSEN, MARK CRAIG, and JOHN 
C. MANKINS (NASA, Office of Aeronautics, Exploration and 
Technology, Washington, DC) IAF. International Astronautical 
Congress, 41st, Dresden, Federal Republic of Germany, Oct. 6-12, 
1990. 11 p. refs 
(IAF PAPER 90-032) Copyright 

An overview of the U.S. Space Exploration Initiative (SEI) is 
presented. The two primary objectives of the initiative are a return 
to the moon to create a permanent lunar base and a human 
mission to Mars. Even though mission architectural concepts are 
not yet defined, previous studies indicate that the SEI will require 
developments in numerous areas, including advanced engines for 
space transportation, in-space assembly and construction to 
support permanent basing of exploration systems in space, and 
advanced surface operations capabilities including satisfactory 
levels of power and surface roving vehicles, and technologies to 
safely support human space operations of long duration. The 
process of mission definition has begun and it is shown that it is 
possible to identify a family of fundamental functional building 
blocks from which all SEI mission architectures will be 
constructed. R.E.P. 

A91-13067# 
CONCEPTS FOR SHORT DURATION MANNED MARS ROUND 
TRIP 
C. L. DAILEY and J. L. HlEATl (TRW Space and Technology 
Group, Redondo Beach, CA) IAF, International Astronautical 
Cknprsss, 4ist, Dieden, Fderai Fiepubiic oi Germany, Oct. 6-12, 
1990. 5 p. 

For the first missions to Mars a stay time of 30 to 60 days is 
desired. Nuclear electric propulsion offers this capability at a 
significant reduction in total mass required in low earth orbit 
compared to either thermal nuclear or chemical propulsion 
concepts. Further, nuclear electric propulsion vehicles can be 
designed for maintenance and reuse. This paper summarizes the 
comparison of a single vehicle mission to Mars with the use of 
two vehicles, a manned transport and a freighter. The results 
indicate that the use of two vehicles provides a significant 
advantage in terms of weight to low earth orbit, and that there is 
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a distinct possibility of designing an efficient single vehicle which 
can be used to cany either man or cargo. Author 

A91-14015# 
THE MOON/MARS ADVENTURE - WHICH ROLE AND WHICH 
IMPACTS FOR EUROPE? 
FRANCIS THElLLlER and PATRICK EYMAR (Aerospatiale, Division 
Systemes Strategiques et Spatiaux, Les Mureaux, France) IAF, 
International Astronautical Congress, 41 st, Dresden, Federal 
Republic of Germany, Oct. 6-12, 1990. 10 p. 
(IAF PAPER 90-411) Copyright 

The major results of a study performed by Aerospatiale on the 
potential role for Europe in an interplanetary manned mission are 
summarized. The scientific, utilitarian, political, and humanitarian 
objectives of such a mission are discussed, emphasizing the 
importance of those activities which would lead to better knowledge 
of the solar system, would scientifically or industrially utilize the 
advantage of vacuum, lack of electromagnetic noise, and planet 
resources, and benefit outpost and space transportation node 
aspects. The dates, deadlines, and duration considered for such 
missions, their degree of automation, and the degree of autonomy 
provided surface bases are all discussed. A number of scenarios 
concerning Europe's role in a space program are considered. A 
scenario is examined in which Europe would postpone for an 
indefinite period the exploration and colonization of the moon and 
Mars should cooperative agreements fail to be reached. L.K.S. 

A91-14019'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
ROBOTIC MISSIONS TO MARS - PAVING THE WAY FOR 
HUMANS 
D. S. PIVIROTTO, R. D. BOURKE, G. E. CUNNINGHAM, M. P. 
GOLOMBEK, F. M. STURMS (JPL, Pasadena, CA), R. C. KAHL, 
N. LANCE (NASA, Johnson Space Center, Houston, TX), and J. 
S. MARTIN (NASA, Washington, DC) IAF, International 
Astronautical Congress, 41 st, Dresden, Federal Republic of 
Germany, Oct. 612, 1990. 8 p. 
(IAF PAPER 90-416) Copyright 

NASA is in the planning stages of a program leading to the 
human exploration of Mars. A critical element in that program is a 
set of robotic missions that will acquire information on the Martian 
environment and test critical fmctions (such as aerobraking) at 
the planet. This paper presents some history of Mars missions, 
as well as results of recent studies of the Mars robotic missions 
that are under consideration as part of the exploration program. 
These missions include: (1) global synoptic geochemical and 
climatological characterization from orbit (Mars Observer). (2) global 
network of small meteorological and seismic stations, (3) sample 
returns, (4) reconnaissance orbiters and (5) rovers. Author 

A91-14037# 
ANALYSIS OF ALTERNATIVE INFRASTRUCTURES FOR 
LUNAR AND MARS EXPLORATION 
MICHAEL C. SIMON and PAUL H. BIALLA (General Dynamics 
Corp., Space Systems Dv., Sen Diego, CA) IAF, International 
Astronautical Congress, 41 st, Dresden, Federal Republic of 
Germany. Oct. 6-12, 1990. 11 p. refs 
(IAF PAPER 90-442) Copyright 

This paper reports on an ongoing study to examine alternative 
infrastructures for lunar and Mars exploration. This study was 
initiated immediately after the July 20, 1989 announcement by 
President Bush that the U.S. would undertake manned missions 
to the moon and Mars. The first step was to identify four alternative 
options: (1) lowest cost, (2) least risk, (3) greatest science and 
technology benefits, and (4) maximum human presence in space. 
For each option, lunar and Mars surface elements and space 
transportation elements were identified which were consistent with 
the option's underlying philosophy. These four cases were then 
compared on the basis of such data as transportation element 
flights rates, element mass and cost estimates, program schedules, 
and funding profiles. Finally, a recommended strategy was 
synthesized, based on the attributes found to be most desirable 
within these four options. Features of this recommended scenario 

6 

include early missions to the moon and Mars, achievement Of 
frequent milestones to sustain public interest, and provisions for 
international cooperation in meeting objectives. Author 

A91-14132# 
MARS DIRECT - HUMANS TO THE RED PLANET BY 1999 
ROBERT M. ZUBRIN and DAVID A. BAKER (Martin Marietta 
Astronautics Group, Denver, CO) IAF, International Astronautical 
Congress, 41st, Dresden, Federal Republic of Germany, OCt. 6-12, 
1990. 17 p. refs 

Both the initial and evolutionary phases of the Mars Direct 
plan, including mission architecture, vehicle designs, and 
exploratory strategy leading to the establishment of a 48-person 
permanent Mars base are discussed. Mars Direct is an approach 
to the Space Exploration Initiative which would initiate a program 
of manned Mars exploration as early as 1999. The initial phase 
would utilize only chemical propulsion, sending four persons on 
conjunction class Mars exploratory missions. Two heavy lift 
boosters launches are required to support each mission, with the 
first launch delivering an unfueled earth return vehicle to the Martian 
surface, where it would fill itself with methaneloxygen bipropellant 
manufactured primarily out of indigenous resources. A second 
launch would deliver the crew to the prepared site after propellant 
production is completed. The crew would then conduct a 1.5-year 
regional exploration and return directly to earth in the prepared 
vehicle. L.K.S. 

A91-21463'# Martin Marietta Corp., Denver, CO. 

ARCHITECTURE FOR THE SPACE EXPLORATION INITIATIVE 
ROBERT M. ZUBRIN, DAVID A. BAKER (Martin Marietta Corp., 
Astronautics Group, Denver, CO), and OWEN GWYNNE (NASA, 
Ames Research Center, Moffett Field, CA) AIAA, Aerospace 
Sciences Meeting, 29th, Reno, NV. Jan. 7-10, 1991. 28 p. refs 

Both the Martian and lunar forms of implementation of the 
Mars Direct architecture are discussed. Candidate vehicle designs 
are presented and the means of performing the required in situ 
propellant production is explained. The in situ propellant process 
is also shown to present very high leverage for a Mars Rover 
Sample Return mission flown as a scaled down precursor version 
of the manned Mars Direct. Methods of coping with the radiation 
and zero g r a m  problems presented by a manned Mars mission 
are discussed. Prime objectives for surface exploration are outlined 
and the need for substantial surface mobility is made clear. 
Combustion powered vehicles utilizing the in situ produced 
methaneloxygen are proposed as a means for meeting the surface 
mobility requirement. Nuclear thermal rocket propulsion is 
SUggf3Sted as a means to improve mission capability. L.K.S. 

A91-21464# 
HUMAN PLANETARY EXPLORATION STRATEGY FEATURING 
HIGHLY DECOUPLED ELEMENTS AND CONSERVATIVE 
PRACTICES 
BENTON C. CLARK (Martin Marietta Corp.. Astronautics Group, 
Denver, CO) AIAA, Aerospace Sciences Meeting, 29th, Reno, 
NV, Jan. 7-10, 1991. 13 p. 

Mission designs which are fundamentally in accordance with a 
lowest common denominator approach as well as more ambitious 
enhancements to the core design are discussed. This approach 
is based upon a modular vehicle design which is straightforwardly 
assembled by docking maneuvers and intra-vehicular outfiiing. An 
overall strategy for parallel development of transportation vehicles 
and associated capabi l is  for human travel to Mars and the moon 
is presented which accomodates the desired characteristics. It is 
noted that this strategy builds upon and emulates the proven 
Success of the Apollo Program strategies including the division of 
the mission into discrete. self-contained elements with 'clean' 
interfaces; the incorporation of conservative design using 
redundancy and independent fall-back modes; and the parallel 
developments of hardware elements. L.K.S. 

(IAF PAPER 90-672) Copyright 

MARS DIRECT - A SIMPLE, ROBUST, AND COST EFFECTIVE 

(AIAA PAPER 91-0329) Copyright 

( A I M  PAPER 91-0328) Copyright 
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A91-25832 
HUMANS TO MARS - CAN WE JUSTIFY THE COST? 
CARL SAGAN (Cornell University, Ithaca, NY) Planetary Report 
(ISSN 0736-3680), vol. 11, Jan.-Feb. 1991, p. 4-7. 
Copyright 

The argument over the justification of human space exploration, 
with reference to the goals stated in SEI, is outlined. It is noted 
that NASA currently estimates SEI to cost $500 billion over the 
next 30 years and that this would essentially double NASA's present 
budget. A number of arguments commonly used to justify this 
expenditure are reviewed. These include increased knowledge of 
planetary geology and environmental sciences, spin-off technology, 
and educational incentives. It is suggested that, while the value 
of committing enormous anounts of funding to any of these projects 
is currently under debate, a number of 'less-tangible' benefits 
provide a persuasive argument for the pursuit of such programs 
at a time of budgetary constraints and competing social needs. 

L.K.S. 

A91-27566 
CAN SPACE EXPLORATION SURVIVE THE END OF THE 
COLD WAR? 
BRUCE MURRAY (California Institute of Technology, Pasadena) 
Space Policy (ISSN 0265-9646), vol. 7, Feb. 1991, p. 23-34. 
Copyright 

The achievements in space exploration since 1986 are reviewed. 
It is argued that the first age of space exploration was driven by 
competition between the U.S. and the USSR. With the apparent 
close of the Cold War, it is possible that a necessary shift of 
attention to domestic issues in most nations will cause a hiatus in 
space exploration. It is thus suggested that a future space 
exploration program of proper proportion will only be achieved if 
international cooperation is achieved on a large scale and backed 
by the necessary political will. It is also suggested that a Mars 
mission can provide a focus for space exploration well into the 
next century. L.K.S. 

A91-27578 
ECONOMICAL SPACE EXPLORATION SYSTEMS 
ARCHITECTURES 
GORDON R. WOODCOCK (Boeing Aerospace and Electronics, 
Huntsville, AL) IN: Engineering, construction, and operations in 
space II; Proceedings of Space 90, the Second International 
Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York, 
American Society of Civil Engineers, 1990, p. 19-32. 
Copyright 

Economical initial architectures are derived by zero-basing and 
the comprehensive application of hardware and software 
commonality. It is noted that there is much inheritance from lunar 
systems to Mars systems, as well as significant inheritance from 
transpretation systems to surface systems. Of the advanced 
propulsion technologies applicable to Mars missions, electric 
propulsion seems to be more cost effective than high-thrust nuclear 
propulsion. Electric propulsion trip times are found to be competitive 
and to support a crew rotation and resupply operations mode for 
Mars which is supportable by high-thrust systems only in the 
opposition profile model. It is concluded that strategic provisions 
for growth and evolution will yield sustainable architectures, making 
it possible to look forward to a sufficiently large human presence 
on other planets to accomplish thorough exploration and start 
permanent settlements. B.J. 

ARTIFICIAL GRAVITY RESEARCH FACILITY OPTIONS 
SUSAN K. ROSE and TIMOTHY L. STROUP (Lockheed Missiles 
and Space Co., Inc.. Sunnyvale, CA) IN: Engineering, construction, 
and operations in space II; Proceedings of Space 90, the Second 
International Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 
2. New York, American Society of Civil Engineers, 1990, p. 
1354-1 363. refs 

On a long duration manned mission to Mars, the physiological 
changes caused by microgravlty may be counteracted by artificial 

A91-27710 

Copyright 

gravity. This paper evaluates several different classes of research 
options - a centrifuge, a free-flying animal facility, and a rotating 
manned spacecraft. Relative comparisons are made based on the 
initial constraints imposed on the facility, the operational restrictions 
for maintaining a healthy crew, based on research to date, and 
the science research requirements. The science requirements focus 
on the three primary physiological systems altered by microgravity - cardiovascular deconditioning, calcium loss, and muscle 
degradation. Significant design drivers, as well as high priority 
research areas and a recommended design approach are 
identified. Author 

N89-29409# Joint Publications Research Service, Arlington, VA. 
JUSTIFICATION FOR MANNED MARS MISSION, TECHNICAL 
OPTIONS FOR FLIGHT 
V. GLUSHKO, YU. SEMENOV, and L. GORSHKOV ln its JPRS 
Report: Science and Technology. USSR: Space p 28-31 18 
Jan. 1989 Transl. into ENGLISH from Pravda, (Moscow, USSR), 
24 May 1988 p 3 
Copyright Avail: NTlS HC A04/MF A01 

Justifications are presented for and against manned exploration 
of Mars. Responses are given to a letter published in Pravda by 
a Soviet professor by the Soviet citizentry. The kinds of technical 
possibilities at USSR disposal are examined, along with the kind 
of spacecraft which could deliver man from planet to planet. 

E.R. 

N90-26026'# Maryland Univ., College Park. Dept. of Aerospace 
Engineering. 
PROJECT EXODUS Final Report, 23 Jan. - 14 May 1990 
RODNEY BRYANT, comp. and ed., JENNIFER DILLON, comp. 
and ed., GEORGE GREWE, comp. and ed.. JIM MCMORROW, 
comp. and ed., CRAIG MELTON, comp. and ed., GERALD RAINEY, 
comp. and ed., JOHN RINKO, comp. and ed., DAVID SINGH, 
comp. and ed., and TZU-LIANG YEN, comp. and ed. May 1990 
200 p 
(Contract NGT-21-002-800) 

UMAERO-90-28) Avail: NTlS HC AO9/MF A02 CSCL 22A 
A design for a manned Mars mission, PROJECT EXODUS is 

presented. PROJECT EXODUS incorporates the design of a 
hypersonic waverider, cargo ship and NlMF (nuclear rocket using 
indigenous Martian fuel) shuttle lander to safely carry out a three 
to five month mission on the surface of Mars. The cargo ship 
transports return fuel, return engine, surface life support, NlMF 
shuttle, and the Mars base to low Mars orbit (LMO). The cargo 
ship is powered by a nuclear electric propulsion (NEP) system 
which allows the cargo ship to execute a spiral trajectory to Mars. 
The waverider transports ten astronauts to Mars and back. It is 
launched from the Space Station with propulsion provided by a 
chemical engine and a delta velocity of 9 kmlsec. The waverider 
performs an aero-gravity assist maneuver through the atmosphere 
of Venus to obtain a deflection angle and increase in delta velocity. 
Once the waverider and cargo ship have docked the astronauts 
will detach the landing cargo capsules and nuclear electric power 
plant and remotely pilot them to the surface. They will then descend 
to the surface aboard the NlMF shuttle. A dome base will be 
quickly constructed on the surface and the astronauts will conduct 
an exploratory mission for three to five months. They will return 
to Earth and dock with the Space Station using the waverider. 

Author 

N90-26027'# Maryland Univ.. College Park. Dept. of Aerospace 
Engineering. 
TERRAPIN TECHNOLOGIES MANNED MARS MISSION 
PROPOSAL Report, 23 Jan. - 14 May 1990 
MICHAEL AMATO. HEATHER BRYANT, RODNEY COLEMAN, 
CHRIS COMPY, PATRICK CROUSE. JOE CRUNKLETON, EDGAR 
HURTAW, ERIK IVERSON, MIKE KAMOSA, LAURl KRAFT, ed. 
and comp. et al. May 1990 208 p 
(Contract NGT-21-002-800) 

(NASA-CR-186836; NAS 1.26~186836 ENAE-412; 

(NASA-CR-186838; NAS 1.26:186838; ENAE-412; 
UM-AERO-90-27) Avail: NTlS HC AlOIMF A02 CSCL 22A 
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A Manned Mars Mission (M3) design study is proposed. The 
purpose of M3 is to transport 10 personnel and a habitat with all 
required support systems and supplies from low Earth orbit (LEO) 
to the surface of Mars and, after an eight-man surface expedition 
of 3 months, to return the personnel safely to LEO. The proposed 
hardware design is based on systems and components of 
demonstrated high capability and reliability. The mission design 
builds on past mission experience, but incorporates innovative 
design approaches to achieve mission priorities. Those priorities, 
in decreasing order of importance, are safety, reliability, mi?' I imum 
personnel transfer time, minimum weight, and minimum cost. The 
design demonstrates the feasibility and flexibility of a Waverider 
transfer module. Author 

N91-18138.# Maryland Univ.. College Park. 
PROJECT EXODUS 
ln USRA, Proceedings of the 6th Annual Summer Conference: 
NASAIUSRA University Advanced Design Program p 105-1 10 
Nov. 1990 
Avail: NTlS HC/MF A14 CSCL 22A 

Project Exodus is an in-depth study to identify and address 
the basic problems of a manned mission to Mars. The most 
important problems concern propulsion, life support, structure, 
trajectory, and finance. Exodus will employ a passenger ship, cargo 
ship, and landing craft for the journey to Mars. These three major 
components of the mission design are discussed separately. Within 
each component the design characteristics of structures, trajectory, 
and propulsion are addressed. The design characteristics of life 
support are mentioned only in those sections requiring it. Author 

N91-18139'# Maryland Univ., College Park. 
MANNED MARS MISSION 
In USRA, Proceedings of the 6th Annual Summer Conference: 
NASA/USRA University Advanced Design Program p 11 1-1 16 
Nov. 1990 
Avail: NTlS HC/MF A14 CSCL 22A 

Tenapin Technologies proposes a Manned Mars Mission design 
study. The purpose of the Manned Mars Mission is to transport 
ten people and a habitat with all required support systems and 
supplies from low Earth orbit (LEO) to the surface of Mars and, 
after an expedition of three months to return the personnel safely 
to LEO. The proposed hardware design is based on systems and 
components of demonstrated high capability and reliability. The 
mission design builds on past mission experience but incorporates 
innovative design approaches to achieve mission priorities. These 
priorities, in decreasing order of importance, are safety, reliability, 
minimum personnel transfer time, minimum weight, and minimum 
cost. The design demonstrates the feasibility and flexibility of a 
waverider transfer module. Information is given on how the plan 
meets the mission requirements. Author 
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ASTRODYNAMICS 

Includes powered and free-flight trajectories; and orbital and 
launching dynamics. 

AB630240 
AEROBRAKING AND AEROCAPTURE FOR MARS MISSIONS 
J. R.  FRENCH IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA, 
Univelt, Inc., 1984, p. 245-250. refs 
Copyright 

The technique of 'aerobraking' uses drag during successive 
passes through the upper atmosphere to circularize a highly 
elliptical orbit. A relatively low amount of energy is removed per 
pass. 'Aerocapture' transfers a vehicle into a closed stable orbit 
from a hyperbolic flyby trajectory. This technique eliminates all 
the energy in one pass. It requires, however, a higher degree of 

technology than the first technique, because of the precise control 
requirements involved. Details regarding the use of both techniques 
in Mars missions are discussed. It is found that aerocapture has 
a number of substential advantages. The mass delivered to low 
circular orbit is increased substantially. It is concluded that the 
use of modern technology in aerodynamic braking offers great 
potential in the reduction of launch mass requirements for Mars 
missions. G.R. 

A S 1  1016*# National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
ATMOSPHERIC ENVIRONMENT DURING MANEUVERING 
DESCENT FROM MARTIAN ORBIT 
MICHAEL E. TAUBER, JEFFREY V. BOWLES (NASA. Ames 
Research Center, Moffett Field, CA), and LILY YANG (Sterling 
Software, Inc., Palo Alto, CA) Journal of Spacecraft and Rockets 
(ISSN 0022-4650), vol. 26, Sept.-Oct. 1989, p. 330-337. refs 
Copyright 

This paper presents an analysis of the atmospheric maneuvering 
capability of a vehicle designated to land on the Martian Surface, 
together with an analysis of the entry environment encountered 
by the vehicle. A maximum lift/drag ratio of 2.3 was used for all 
trajectory calculations. The maximum achievable lateral ranges 
varied from about 3400 km to 2500 km for entry velocities of 5 
km/s (from a highly elliptical Martian orbit) and 3.5 km/s (from a 
low-altitude lower-speed orbit), respectively. It is shown that the 
peak decelerations are an order of magnitude higher for the 5-km/s 
entries than for the 3.5-kmIs entries. The vehicle entering at 3.5 
km/s along a gliding trajectory encountered a much more benign 
atmospheric environment. In addition, the glider's peak deceleration 
was found to be only about 0.7 earth g, making the shallow flight 
path ideal for manned vehicles whose crews might be physically 

I.S. weakened by the long voyage to Mars. 
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GROUND SUPPORT SYSTEMS AND FACILITIES 
(SPACE) 

Includes launch complexes, research and production facilities; 
ground support equipment, e.g., mobile transporters; and 
simulators. 

A8639239 
SURFACE SAMPLING SYSTEMS 
0. S. CROUCH (Martin Marietta Aerospace, Denver, CO) IN: 
The case for Mars; Proceedings of the Conference, Boulder, CO, 
April 29-May 2, 1981. San Diego, CA, Univelt, Inc., 1984, p. 

In the future, missions concerned with sampling operations of 
the Martian surface will include a search for resources necessary 
to support the potential manned colonization of the planet. The 
present investigation has the objective to provide a summary of 
the capabilities of sampling systems which have been previously 
used during lunar and Mars missions. Suggestions are also made 
regarding additional systems which could be employed for future 
missions, both manned and unmanned. The lunar surveyor 
spacecraft is considered along with the Apollo lunar surface drill, 
Apollo lunar surface drill components, a lunar sub-surface sample 
from a three-meter core hole, Luna 16 and 20 lunar surface 
samplers (Russian), mass Viking surface sampler subsystem 
components, and a Luna 24 lunar surface sampler (Russian). 
Surface samplers considered for future Mars missions are related 
to a surface roving vehicle for the collection of samples in 
connection with sample return missions. G.R. 

A8&16006# 
LIFE SCIENCE TECHNOLOGY FOR MANNED MARS MISSIONS 
THOMAS R. MEYER (Boulder Center for Science and Policy, CO) 

233-244. 
(AAS PAPER 81-245) Copyright 
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IAF, International Astronautical Congress, 38th, Brighton, England, 
Oct. 10-17, 1987. 10 p. refs 
(IAF PAPER 87-437) 

The paper discusses existing life science technology and 
ongoing R 8 D a c t i e s  applicable to the support of manned 
Mars missions. Emphasis is placed on the technologies which 
can utilize the resources (water, oxygen, and a buffer gas composed 
of nitrogen and argon) that can be obtained from the Mars 
environment. It is noted that the availabiltty of local resources 
would provide inputs to closed life support systems, easing the 
requirements and effects of total closure and compensating for 
leakage due to crew egress and ingress. K.K. 

A0945763 
CANDORCHASMACAMP 
ETHAN WILSON CLIFFTON IN: Engineering, construction. and 
operations in space; Proceedings of the Space '88 Conference, 
Albuquerque, NM, Aug. 29-31, 1988. New York, American society 
of Civil Engineers, 1988, p. 457-464. refs 
Copyright 

The paper proposes a camp on Mars, in the Coprates region 
of the Valles Marineris rift, just below the equator on Candor 
Mensa, 6 deg 12 min S, 73 deg 30 min W. Options for survival 
technology are discussed, with attention given to energy and 
equipment requirements. Successful mission strategy requires the 
participation of civil engineers to create adaptive planning and 
technology for an expanding network of camps among the plateaus 
and valleys of Mars. B.J. 

A90-16601 
BUILDING MARS HABITATS USING LOCAL MATERIALS 
BRUCE A. MACKENZIE IN: The case for Mars 111: Strategies for 
exploration - General interest and overview. San Diego, CA, Univelt, 
Inc., 1989, p. 575-586. refs 

The basic problems that will be encountered in building and 
living on Mars are outlined, and various kinds of habitats that 
may be utilized are described. Barrel vaults are examined as first 
habitats, and the brick, mortar, fill, scrap, imported materials, glass 
blocks, and fiberglass used in their construction are discussed. 
The design of more advanced, multistory condominiums on Mars 
is addressed. C.D. 

(AAS PAPER 87-216) Copyright 

A90-16602' 
Lyndon B. Johnson Space Center, Houston, TX. 
THE USE OF INFLATABLE HABITATION ON THE MOON AND 
MARS 

National Aeronautics and Space Administration. 

MICHAEL ROBERTS (NASA, Johnson Space Center, Houston, 
TX) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. Sen Diego, CA, Univelt, Inc., 1989, p. 
587-593. 
(AAS PAPER 87-217) Copyright 

A recurring element in futuristic lunar and Mars base scenarios, 
the inflatable dome has some clear advantages over rigid modules: 
low mass, high volume, and good packing efficiency at launch. 
This paper explores some of the engineering issues involved in 
designing such a structure. Author 

A90-16684' 
TOOL AND EQUIPMENT REQU!I?EMEN?S FOR HUMAN 
HABITATION OF MARS 
MICHAEL G. THORNTON (Martin Marietta Corp., Denver, CO) 
IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. Sen -0, CA, Univelt. lnc.. 1989, p. 
607-616. 
(Contract NAS8-37126) 

This paper presents an examination of requirements and design 
considerations for tools and equipment to establish a continuous 
human presence on Mars. Specific problems addressed include; 
manufacturing in zero gravity conditions, with or without an 
atmosphere, temperature considerations. and use of tools by 

Martin Marietta Corp., Denver, CO. 

(AAS PAPER 87-219) Copyright 

astronauts on Mars or while traveling to or from Mars. A design 
for a salvage concept for equipment landed on Mars is 
presented. Author 

A90-16605 
AN OVERVIEW OF MARS SURFACE MOBILITY 
JUSTIFICATION AND OPTIONS 
JAMES R. FRENCH (World Space Foundation, South Pasadena, 
CA) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA, Univelt, Inc., 1989, p. 
61 9-632. refs 
(AAS PAPER 87-220) Copyright 

A brief overview of various Mars mobility options is presented. 
The vehicle concepts addressed include surface rovers, aircraft, 
and ballistic or boost-glide vehicles. Power sources for mobility 
are also considered. C.D. 

A90-16607 
MARS GLOBAL EXPLORATION VEHICLE 
J. MARK MCCANN, MARK J. SNAUFER, and ROBERT J. 
SVENSON IN: The case for Mars 111: Strategies for exploration - 
General interest and overview. San Diego, CA, Univelt, Inc., 1989, 
p. 647-663. refs 

Any establishment of a permanent base on Mars will require a 
transportation system to facilitate the logistical support of the base 
and the scientific exploration of the planet. The design of such a 
system of transportation wil require innovative approaches to 
powering the vehicles and providing l i e  support. Power, l i e  support, 
and vehicle components are analyzed and a possible vehicle 
configuration proposed. Emphasis is placed on design criteria and 
physical data needed to fulfill the global requirements of such a 
system. Author 

A90.30094 
DEVELOPMENT OF AUTONOMOUS SYSTEMS 
TAKE0 KANADE (Camegie-Mellon Universrty, Pittsburgh, PA) IN: 
Applications of artificial intelligence VII; Proceedings of the Meeting, 
Orlando, FL, Mar. 28-30, 1989. Part 1. Bellingham, WA. Society 
of Photo-Optical Instrumentation Engineers, 1989, p. 569-573. 
refs 
Copyfight 

Two autonomous land vehicles are discussed: (1) the 'navigation 
laboratory', or Navlab commercial van-based vehicle for 
navigational artificial vision research, which carries an extensive 
sensor and instrumentation suite, together with human monitors; 
and (2) the Autonomous Mobile Exploration Robot, or 'Ambler', 
which is a walking robot for prospective Mars exploration that 
employs six legs joined coaxially at the fulcrum of their shoulder 
joints. Each leg of the Ambler consists of two shoulder and elbow 
joints that move in a horizontal plane to the position of the leg, 
and a prismatic joint at the end of the elbow link which effects a 
vertical telescoping motion for foot extention or retraction. O.C. 

A90-49300' National Aeronautics and Space Administration. 
Langley Research Center, Hampton, VA. 
SPACE RADIATION SHIELDING FOR A MARTIAN HABITAT 
LISA C. SIMONSEN, JOHN E. NEALY, LAWRENCE W. 
TOWNSEND, and JOHN W. WILSON (NASA, Langley Research 
Center, Hampton, VA) SAE, Intersociety Conference on 
tr.* LII.IrvVlllll~llal rr...r..* I Sys:aris, 2Sh, Wiiiam&urg, V k ,  iuiy 9-12, 1990. 
10 p. refs 
(SAE PAPER 901346) Copyright 

Radiation shielding analyses are performed for a candidate 
Mars base habitat. The Langley cosmic ray transport code and 
the Langley nucleon transport code are used to quantity the 
transport and attenuation of galactic cosmic rays and solar flare 
protons through both the Martian atmosphere and regolith shielding. 
Doses at the surface and at various altitudes were calculated in a 
previous study using both a high-densty and a lowdensity Mars 
atmosphere model. This study extends the previous lowdensity 
results to include the further transport of the ionizing radiation 
that reaches the surface through additional shielding provided by 

(AAS PAPER 87-222) Copyright 
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Martian regolith. A fourcompound regolith model, which includes 
Si02. Fe203, MgO, and CaO. was selected based on the chemistry 
of the Viking 1 Lander site. The spectral fluxes of heavy charged 
particles and the corresponding dosimetric quantities are computed 
for a series of thicknesses in the shield media after traversing the 
atmosphere. These data are then used as input to algorithms for 
a specific shield geometry. The results are presented as the 
maximum dose received in the center of the habitat versus various 
shield thicknesses for a base at an altitude of 0 km and 8 km. 

Author 

A91-10147'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
SITE CHARACTERIZATION ROVER MISSIONS 
DONNA SHIRLEY PlVlROTTO (JPL, Pasadena, CA) AIAA. Space 
Programs and Technologies Conference, Huntsville, AL, Sept. 
25-27. 1990. 15 p. refs 

Concepts for site characterization rovers capable of efficient 
operation on Mars with human supervision from eatth are 
discussed. In particular, attention is given to strategies for 
developing and evaluating the necessary technology for 
implementing the roving vehicles and process technologies required 
for a systematic and integrated implementation of technologically 
advanced rovers. A vehicle testbed program is also described. 

V.L. 

(AIAA PAPER 90-3785) Copyright 

A91-20230 
DEVELOPMENT OF A MARTIAN SURFACE MODEL FOR 
SIMULATION OF VEHICLE DYNAMICS AND MOBILITY 
DONALD H. CRONQUIST, JR., LOUIS S. MCTAMANEY (FMC 
Corporate Technology Center, Santa Clara, CA), and JOHN J. 
NITAO IN: Mobile robots IV; Proceedings of the Meeting, 
Philadelphia, PA, Nov. 6, 7, 1989. Eellingham, WA, Society of 
Photo-Optical Instrumentation Engineers, 1990, p. 157-167. 
Copyright 

A high resolution Mars surface model is being developed for 
simulation of vehicle dynamics, mobility and navigation capabilities. 
The model provides a topological representation of surface features 
and is suitable for interface with dynamic simulations of Mars 
Rover vehicles including models for wheel-soil interaction and vision 
systems. Portions of the surface model have been completed and 
can be interfaced with other portions of an overall vehicle 
performance assessment system also being developed for the 
Mars Rover program. Author 

A91-20231 
COMPUTER MODELLING - A STRUCTURED LIGHT VISION 
SYSTEM FOR A MARS ROVER 
DONALD H. CRONQUIST, JR. (FMC Corporate Technology Center, 
Santa Clara, CA) and JOHN J. NITAO IN: Mobile robots IV; 
Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989. 
Bellingham, WA. Society of Photo-Optical Instrumentation 
Engineers, 1990, p. 168-1 77. 

A computer model has been developed as a tool for evaluating 
the use of structured light systems for local navigation of the 
Mars Rover. The system modeled consists of two laser sources 
emanating flat, widened beams with a single camera to detect 
stripes on the tenain. The tenain elevation extracted from the 
stripe information goes to updating a local tenain map which is 
processed to determine impassable regions. The system operates 
with the beams and cameras fixed except. now and then, the 
beams are vertically panned to completely refresh the local map. 
An efficient surface removal algorithm determines the points on 
the terrain surface hit by rays in the bundle. The power of each 
reflected ray that falls on each pixel of the camera is computed 
using well-known optical laws. Author 

A91-26619' Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
AUTONOMOUS NAVIGATION AND CONTROL OF A MARS 
ROVER 

Copyright 

D. P. MILLER, D. J. ATKINSON, E. H. WILCOX. and A. H. MlSHKlN 
(JPL, Pasadena, CA) IN: Automatic control in aerospace; IFAC 
Symposium, Tsukuba, Japan, July 17-21, 1989, Selected Papers. 
Oxford, England and New York, Pergamon Press, 1990. P. 
111-114. refs 
Copyright 

A Mars rover will need to be able to navigate aUtOnOmOUSlY 
kilometers at a time. This paper outlines the sensing, perception, 
planning, and execution monitoring systems that are Currently being 
designed for the rover. The sensing is based around stereo vision. 
The interpretation of the images use a registration of the depth 
map with a global height map provided by an orbiting Spacecraft. 
Safe, low energy paths are then planned through the map, and 
expectations of what the rover's articulation sensors should sense 
are generated. These expectations are then used to ensure that 
the planned path is correctly being executed. Author 

AB1-27615 
A PRELIMINARY EVALUATION OF EXTRATERRESTRIAL 
BUILDING SYSTEMS 
PHILIP J. RICHTER and RICHARD M. DRAKE (Fluor Daniel, InC., 
Irvine, CA) IN: Engineering, construction, and operations in space 
II; Proceedings of Space 90, the Second International Conference, 
Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York, American 
Society of Civil Engineers, 1990, p. 409-418. 

The general purpose of this paper is to conduct a preliminary 
examination of the concepts for habitats to be used for lunar and 
Martian bases in the intermediate stage of base occupancy and 
development. Four basic structural system types encompassing 
six concepts are examined and evaluated. The contribution of the 
work discussed is to help develop evaluation methodology, to set 
up straw man concepts for purposes of identifying trade studies, 
and to set the stage for further evaluations, which it is suggested 
take place, at least partially, in a workshop format. Author 

refs 
Copyright 

AQl-27622 
A LUNAR OUTPOST SURFACE SYSTEMS ARCHITECTURE 
L. A. PlENlAZEK and L. TOUPS (Lockheed Engineering and 
Sciences Co., Houston, TX) IN: Engineering, construction, and 
operations in space II; Proceedings of Space 90, the Second 
International Conference, Albuquerque, NM, Apr. 22-26. 1990. Vol. 
1. New York. American Society of Civil Engineers, 1990, p. 
480489. 
Copyright 

A concept has been developed that defines mission objectives, 
system concepts, surface elements, and outpost layout using a 
systematic approach for a lunar outpost surface architecture. NASA 
has been studying possible options for the human exploration of 
the solar system that involve outposts for the moon and Mars. 
These include elements that support mission objectives directly 
such as science equipment and elements that support of the base 
itself such as habitation, communications, power, and space 
transportation. The development of appropriate architectures for 
planet surface systems is discussed, focusing on toplevel structure 
and integration. The outpost facilities can also take care of the 
collection, reduction and transmission of data from monitoring 
equipment. In addition, human factors and biomedical research 
can demonstrate the capability of humans to perform on 
extraterrestrial surfaces prior to committing to risky endeavors. 

R.E.P. 

A91-27650 
HUMAN OPERATIONS, RESOURCES AND BASES ON MARS 
BRUCE M. CORDELL (General Dynamics Corp.. Space Systems 
Div., Sen Diego, CA) IN: Engineering, construction, and operations 
in space II; Proceedings of Space 90, the Second International 
Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York, 
American Society of CMl Engineers, 1990, p. 759-768. refs 

This paper discusses various activities involving the 
establishment and operation of surface facilities on Mars to support 
habitation, surface explorations, laboratory science. and resource 

Copyright 
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use. After a review of a number of relevant atmospheric and 
surface environmental parameters, strategies for Mars exploration 
are presented. Several sites on Mars, based on known geology 
and topography are evaluated for potential use as human base 
sites. Water and other usable resources stored in the Mars 
atmosphere are described as well as their extraction processes 
and possible products. Magnesium and/or iron appear to be 
available as construction metals. The atmosphere and surface of 
Mars are discussed in the context of base construction 
operations . R.E.P. 

A91-27692 
ANTARCTIC TESTBED FOR EXTRATERRESTRIAL 
OPERATION AND TECHNOLOGY 
LARRY BELL and DEBORAH J. NEUBEK (Houston, University, 
TX) IN: Engineering, construction, and operations in space II; 
Proceedings of Space 90, the Second International Conference, 
Albuquerque, NM, Apr. 22-26, 1990. Vol. 2. New York, American 
Society of Civil Engineers, 1990, p. 1188-1197. 
Copyright 

It is proposed that the physical similarities between the Antarctic 
environment and the moon and Mars environments as well as 
parallels between the general nature of crew activities be used in 
the planning of moon and Mars missions. Emphasis is placed on 
operational and technological areas such as operations and 
logistics; facility planning; design and construction; utility systems; 
and the selection, design, and development of automatic and 
telerobotic systems. An international research and technology 
demonstration facility in Antarctica is planned by the Saskawa 
lnternatonal Center for Space Architecture. The Antarctic Planetary 
Testbed (APT) program will provide a basis for new insights into 
planning for moon and Mars missions. O.G. 

A91-27702' New Mexico Univ., Albuquerque. 
PRELIMINARY ASSESSMENT OF THE POWER 
REQUIREMENTS OF A MANNED ROVER FOR MARS 
MISSIONS 
MOHAMED S. EL-GENK, NICHOLAS J. MORLEY (New Mexico, 
University, Albuquerque), ROBERT CATALDO. and HARVEY 
BLOOMFIELD (NASA, Lewis Research Center, Cleveland, OH) IN: 
Engineering, construction, and operations in space II; Proceedings 
Of Space 90, the Second International Conference, Albuquerque, 
NM, Apr. 22-26. 1990. Vol. 2. New York, American Society of 
Civil Engineers, 1990. p. 1278-1287. refs 
(Contract NAG3-992) 

A preliminary study to determine the total mass and power 
requirements of a manned Mars rover IS presentea. Estimates of 
the power requirements for the nuclear reactor power system are 
determined as functions of the number of crew members, the 
emergency return trip scenario in case of a total malfunction of 
the reactor system, the cruising speed and range of the vehicle, 
and the specific mass of the p e r  system. It is shown that the 
cruising speed of the vehicle and the soil traction factor Significantly 
affect the traversing power requirement and therefore the mass 
of the nuclear power system. The cruising speed of the vehicle 
must be limited to 14.5 and 24 km/hr for power system specific 
masses of 150 kg/kWe and 50 kg/kWe, respectively, for the 
nuclear power system mass not to exceed 50 percent of the total 
mass of the rover. R.E.P. 

Copyright 
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LAUNCH VEHICLES AND SPACE VEHICLES 

Includes boosters; operating problems of launch/space vehicle 
systems; and reusable vehicles. 

A90-16673 
MARS LANDING AND LAUNCH REQUIREMENTS AND A 
POSSIBLE APPROACH 
JAMES R. FRENCH (World Space Foundation, South Pasadena, 
CA) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA. Univelt, Inc., 1989, p. 
413-420. refs 

A design for a Mars aerocapture and landing vehicle is described 
and some of the rationale behind the concept is presented. The 
vehicle is a bent biconic shape which will deliver a lift over drag 
ratio between 0.6 and 1.5 depending upon trim angle of attack. 
Given sufficiently accurate approach navigation, this vehicle can 
reduce landing errors to the order of Mars map errors (say 5 km), 
a substantial improvement over previous vehicles. Author 

(AAS PAPER 87-207) Copyright 

A90-16674' 
Marshall Space Flight Center, Huntsville. AL. 
HEAW LIFT VEHICLES FOR TRANSPORTATION TO A LOW 
EARTH ORBIT SPACE STATION FOR ASSEMBLY OF A 
HUMAN TO MARS MISSION 
FRANK E. SWALLEY (NASA, Marshall Space Flight Center, 
Huntsville, AL) IN: The case for Mars 111: Strategies for exploration 
- General interest and overview. San Diego, CA, Univelt. Inc., 
1989, p. 421-431. refs 

Heavy l i  vehicle configurations are proposed which will meet 
the requirements for transporting the elements of a Human to 
Mars Mission to a low earth orbit Space Station for assembly. 
Both near term derivative type vehiles as well as advanced 
technology vehicles are considered. The capability of these vehicles 
to accommodate the precursor missions are also examined. The 
implications on launch vehicle payload accommodation design and 
orbital operations are discussed. Author 

National Aeronautics and Space Administration. 

(AAS PAPER 87-208) Copyright 

A91-10034*# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
A NETWORK OF SMALL LANDERS ON MARS 
JAMES D. BURKE and ROBERT N. MOSTERT (JPL. Pasadena, 
CA) AIAA, Space Programs and Technologies Conference, 
Hunisviiie. Ai, %pi. 25-27, i9%. 7 p. 

This paper describes a class of small landers that could form 
part of a global network of scientific instrumentation on Mars. 
Two types of landers are considered: penetrators thst implant 
instruments a few meters beneath the surface, and rough landers 
that may hit the surface at speeds up to tens of mlsec and 
survive through the use of impact-limiting techniques. Because 
some scientific objectives, such as seismic and meteorological 
investigations, require durations of months and years lander designs 
giving long lifetimes in the Martian environment are needed. This 
paper describes both past and more recent work at JPL toward 
this goal. Author 

reis 
(AIAA PAPER 90-3577) Copyright 
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SPACE TRANSPORTATION 

Includes passenger and cargo space transportation, e.g., shuttle 
operations; and space rescue techniques. 

N@O-26036'# 
Langley Research Center, Hampton, VA. 
THE EFFECT OF INTERPLANETARY TRAJECTORY OPTIONS 
ON A MANNED MARS AEROBRAKE CONFIGURATION 
ROBERT D. BRAUN, RICHARD W. POWELL, and LIN C. 
HARTUNG Washington Aug. 1990 79 p 
(NASA-TP-3019; L-16661: NAS 1.60:3019) Avail: NTlS HC 
A05IMF A01 CSCL 228 

Manned Mars missions originating in low Earth orbit (LEO) in 
the time frame 2010 to 2025 were analyzed to identify preferred 
mission opportunities and their associated vehicle and trajectory 
characteristics. Interplanetary and Mars atmospheric trajectory 
options were examined under the constraints of an initial manned 
exploration scenario. Two chemically propelled vehicle options were 
considered: (1) an all propulsive configuration, and (2) a 
configuration which employs aerobraking at Earth and Mars with 
low IiftIdrag (LID) shapes. Both the interplanetary trajectory options 
as well as the Mars atmospheric passage are addressed to provide 
a coupled trajectory simulation. Direct and Venus swingby 
interplanetary transfers with a 60 day Mars stopover are considered. 
The range and variation in both Earth and Mars entry velocity are 
also defined. Two promising mission strategies emerged from the 
study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0 
to 2.5 year direct mission. Through careful trajectory selection. 11 
mission opportunities are identified in which the Mars entry velocity 
is between 6 and 10 kmlsec and Earth entry veloclty ranges 
from 11.5 to 12.5 km/sec. Simulation of the Earth return 
aerobraking maneuver is not performed. It is shown that a low 
LID configuration is not feasible for Mars aerobraking without 
substantial improvements in the interplanetary navigation system. 
However, even with an advanced navigation system, entry corridor 
and aerothermal requirements restrict the number of potential 
mission opportunities. It is also shown that for a large blunt Mars 
aerobrake configuration, the effects of radiative heating can be 
significant at entry velocities as low as 6.2 kmIsec and will grow 
to dominate the aerothermal environment at entry velocities above 
8.5 km/sec. Despite the additional system complexity associated 
with an aerobraking vehicle, the use of aerobraking was shown to 
significantly lower the required initial LEO weight. In comparison 
with an all propulsive mission, savings between 19 and 59 percent 
were obtained depending upon launch date. Author 

National Aeronautics and Space Administration. 
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SPACECRAFT DESIGN, TESTING AND 
PERFORMANCE 

Includes satellites; space platforms; space stations; spacecraft 
systems and components such as thermal and environmental 
controls; and attitude controls. 

A84-99229 
MANNED MARS MISSION LANDING AND DEPARTURE 
SYSTEMS 
D. 8. CROSS and A. J. Bulls (Martin Marietta Aerospace, Denver, 
CO) IN: The case for Mars: Proceedings of the Conference, 
Boulder, CO, April 29-May 2, 1982. Sen Diego, CA. Univelt, Inc., 
1984, p. 75-82. 

The implementation of the Mars landing and departure strategies 
considered to date would require large amounts of propellants. 

(AAS PAPER 81-233) CoPYnght 

For this reason, these strategies do not appear efficient enough 
to support manned Mars exploration missions. An investigation is 
conducted of the involved systems and their relation to other 
elements of the M2rs mission, taking into account possibilities 
for saving energy. Attention is given to the impact of sample size 
on system design, landing and departure modes, an aerobraking 
concept sequence, drag polars, lifting vehicle concepts, a Mars 
airplane, and a Mars ascent vehicle. It appears that considerable 
advantages to manned exploration can be obtained from Orbiting 
stations at both earth and Mars. Continued development of 
aerocapture and aeromaneuvering vehicles offers the greatest 
potential in efficient energy usage for orbit insertion, circularization, 
and landing in planetary atmospheres. The manufacture Of 
propellants on the surface of Mars would provide for large Wings 
in energy. G.R. 

A8439231 

SHUTTLE EXTERNAL TANK FOR EARTH TO MARS TRANSIT 
T. C. TAYLOR IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA, 
Univelt, Inc., 1984, p. 109-127. refs 
(AAS PAPER 81-236) Copyright 

The developments occurring in the case of the Prudhoe Bay 
field on the North Slope of Alaska are compared to a situation 
which might arise if economically valuable resouces would be found 
on Mars. The necessity to develop an oil field in the Arctic 
wasteland as economically as possible had led to the reuse of 
packing crates at the remote base. A similar situation might develop 
if, for instance, a valuable mineral urgently needed on earth should 
be found on Mars. Approaches are discussed by which the External 
Tank (ET) of the Space Shuttle might provide an aid of particular 
cost-effectiveness in the processes required for large scale 
resource development of Mars. Attention is given to ET as a raw 
material resource, the ET use in facility construction, and ET as a 
component in interplanetary vehicles. G.R. 

A91-27711 National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
VARIABLE GRAVITY RESEARCH FACILITY - A CONCEPT 
PAUL F. WERCINSKI, MARCIE A. SMITH, ROBERT G. 
SYNNESTVEDT, and ROBERT G. KELLER (NASA, Ames Research 
Center, Moffett Field, CA) IN: Engineering, construction, and 
operations in space II; Proceedings of Space 90, the Second 
International Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 
2. New York, American Society of Civil Engineers, 1990, p. 

Copyright 
IS human exposure to artificial gravity necessary for Mars 

mission success, and if so, what is the optimum means of achieving 
artificial gravity7 Answering these questions prior to the design of 
a Mars vehicle would require construction and operation of a 
dedicated spacecraft in low earth orbit. This paper summarizes 
the study results of a conceptual design and operations scenario 
for such a spacecraft, called the Variable Gravity Research Facility 
WRF) .  Author 

N90.17667'# National Aeronautics and Space Administration. 
Langley Research Center, Hampton, VA. 
PRELIMINARY INVESTIGATION OF PARAMETER 
SENSITIVITIES FOR ATMOSPHERIC ENTRY AND 
AEROBRAKING AT MARS 
MARY C. LEE and WILLIAM T. SUIT Sep. 1989 30 p 
(NASA-TM-101607; NAS 1.15:101607) Avail: NTlS HC A03IMF 
A01 CSCL22B 

The proposed manned Mars mission will need to be as weight 
efficient as possible. A way of lowering the weight of the vehicle 
by using aeroassist braking instead of retro-rockets to slow a 
craft once it reaches its destination is discussed. The two vehicles 
studied are a small vehicle similar in size to the Mars Rover 
Sample Return (MRSR) vehicle and a larger vehicle similar in 
size to a six-person Manned Mars Mission (MMM) vehicle. 
Simulated entries were made using various coefficients of lift (C 

THE EXTERNAL TANK SCENARIO - UTILIZATION OF THE 

1364-1373. 
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20 SPACECRAFT PROPULSION AND POWER 

sub L). coefficients of drag (C sub D), and lift-to-drag ratios (LID). 
A range of acceptable flight path angles with their corresponding 
bank angle profiles was found for each case studied. These ranges 
were then compared, and the results are reported here. The 
sensitivity of velocity and acceleration to changes in flight path 
angle and bank angle is also included to indicate potential problem 
areas for guidance and navigation system design. Author 

20 

SPACECRAFT PROPULSION AND POWER 

Includes main propulsion systems and components, e.g., rocket 
engines; and spacecraft auxiliary power sources. 

A84-39230 
SOLAR ELECTRIC PROPULSION STAGE AS A MARS 
EXPLORATION TOOL 
S. KENT (Delta Vee, Inc., San Jose, CA) IN: The case for Mars; 
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981. 
San Diego, CA, Univelt, Inc., 1984, p. 83-89. 

It is pointed out that the Solar Electric Propulsion System (SEPS) 
is an extremely flexible space transportation system capable of 
performing high energy and/or extended operations missions. SEPS 
will utilize ion propulsion produced by the electrostatic expulsion 
of mercury ions with exhaust velocities of over 30,000 meters per 
second, compared to a maximum of 5,000 meters per second 
with chemical propulsion. The required power will be obtained 
from the SEPS solar array wings. Space missions utilizing SEPS 
could include the International Comet Mission, a Saturn Orbiter 
with dual probes, a close solar probe, an asteroid multiple 
rendezvous mission, and earth orbital missions. Informal analyses 
have been conducted regarding the employment of SEPS as a 
Mars exploration tool. Attention is given to trip times from six to 
nine months delivering 2.000-4,OOO kg into Mars parking orbit, or 
alternatively, a sample return with over 50 kg of Martian rock. 

G.R. 

A90-16675 
PROPULSION SYSTEM CONSIDERATIONS/APPROACH FOR 
FAST TRANSFER TO MARS 
PAUL A. HARRIS and FRANK J. PERRY (Rockwell International 
Corp.. Rocketdyne Div., Canoga Park, CA) IN: The case for 
Mars 111: Strategies for exploration - General interest and overview. 
San Diego, CA, Univelt, Inc., 1989. p. 433-448. refs 

The advantages of shorter transit times are discussed, including 
impact on vehicle design, and crew physiological and psychological 
effects. A hybrid propulsion system combining nuclear thermal and 
nuclear electric propulsion is proposed to achieve shorter transit 
times and provide abundant electrical power at Mars. Preliminary 
comparisons of this hybrid propulsion option with other options 
indicate the existence of significant advantages of bimodal nuclear 
propulsion/power. Propulsion system options for the Manned Mars 
Mission are examined parametrically to provide an estimate of 
earth departure (Low Earth Orbit, LEO) mass as a function of 
transit time to Mars. Author 

A90-16676' National Aeronautics and Space Administration. 
Lewis Research Center, Cleveland, OH. 
NUCLEAR PROPULSION - A VITAL TECHNOLOGY FOR THE 
EXPLORATION OF MARS AND THE PLANETS BEYOND 
STANLEY K. BOROWSKI (NASA, Lewis Research Center, 
Cleveland, OH) IN: The case for Mars 111: Strategies for exploration 
- General interest and overview. San Diego, CA, Univelt. Inc., 
1989, p. 451-494. Previously announced in STAR as N89-10944. 
refs 

The physics and technology issues and performance potential 

(AAS PAPER 81-234) Copyright 

(AAS PAPER 87-209) Copyright 

(AAS PAPER 87-210) Copyright 

of various direct thrust fission and fusion propulsion concepts are 
examined. Next to chemical propulsion the solid core fission thermal 
rocket (SCR) is the only other concept to be experimentally tested 
at the power (apprex 1.5 to 5.0 GW) and thrust levels (approx 
0.33 to 1.11 MN) required for manned Mars missions. With a 
specific impulse of approx 850 s, the SCR can perform various 
near-earth, cislunar and interplanetary missions with lower mass 
and cost requirements than its chemical counterpart. The gas core 
fission thermal rocket, with a specific power and impulse of approx 
50 kW/kg and 5000 s offers the potential for quick courier trips 
to Mars (of about 80 days) or longer duration exploration cargo 
missions (lasting about 280 days) with starting masses of about 
1000 m tons. Convenient transportation to the outer Solar System 
will require the development of magnetic and inertial fusion rockets 
(IFRs). Possessing specific powers and impulses of approx 100 
kW/kg and 200-300 kilosecs, IFRs will usher in the era of the 
true Solar System class spaceship. Even Pluto will be accessible 
with roundtrip times of less than 2 years and starting masses of 
about 1500 m tons. Author 

A90-16677 

PROPELLENT PRODUCTION AT MARS 
W. MITCHELL CLAPP (USAF, Test Pilot School, Edwards AFB, 
CA) and MICHAEL P. SCARDERA (USAF, Falcon AFB, CO) IN: 
The case for Mars 111: Strategies for exploration - General interest 
and overview. San Diego, CA, Univelt, Inc., 1989. p. 513-537. 
refs 
(AAS PAPER 87-212) Copyright 

Liquid carbon monoxide and liquid oxygen can be manufactured 
from the Martian atmosphere. Various energy conversion devices 
using this fueVoxidizer resource are introduced and evaluated, 
including fuel cells, diesel cycle engines, gas turbines, and rocket 
engines. The performance of these engines in a variety of different 
vehicles suitable for travel at Mars is discussed. Finally, possible 
missions are shown for vehicles which use in situ manufactured 
propellants. Author 

APPLICATIONS OF IN-SITU CARBON MONOXIDE-OXYGEN 

A90-16688' 
Lewis Research Center, Cleveland, OH. 
POWER CONSIDERATIONS FOR AN EARLY MANNED MARS 
MISSION UTILIZING THE SPACE STATION 
MARTIN E. VALGORA (NASA, Lewis Research Center, Cleveland, 
OH) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego. CA, Univelt. Inc., 1989, p. 

(AAS PAPER 87-223) Copyright 
Power requirements and candidate electrical power sources 

were examined for the supporting space infrastructure for an early 
(2004) manned Mars mission. This two-year mission (60-day stay 
time) assumed a single six crew piloted vehicle with a Mars lander 
for four of the crew. The transportation vehicle was assumed to 
be a hydrogenloxygen propulsion design with or without large 
aerobrakes and assembled and checked out on the LEO Space 
Station. The long transit time necessitated artiiicial gravity of the 
crew by rotating the crew compartments. This rotation complicates 
power source selection. Candidate power sources were examined 
for the Lander, Mars Orbiter, supporting Space Station, co-orbiting 
Propellant Storage Depot, and, alternatively, a co-orbiting Propellant 
Generation (water electrolysis) Depot. Candidates considered were 
pnotovoiiaics wiin regeneraiive iuei ceiis or batteries, soiar 
dynamics, isotope dynamics, and nuclear power. Author 

A90-16689' Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 

MARS EXPLORATION MISSIONS 
LON ISENBERG (JPL, Pasadena, CA) and JACK A. HELLER 
(NASA, Lewis Research Center, Cleveland, OH) IN: The case 
for Mars 111: Strategies for exploration - General interest and 
overview. San Diego, CA, Univelt, Inc., 1989, p. 681-695. 
(AAS PAPER 87-224) Copyright 

This paper argues that many of the power requirements of 

National Aeronautics and Space Administration. 

667-679. 

THE SP-100 SPACE REACTOR AS A POWER SOURCE FOR 

refs 
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complex, relatively long-duration space missions such as the 
exploration of Mars may best be met through the use of power 
systems which use nuclear reactors as a thermal energy source. 
The development of such a power system, the SP-100, and its 
application in Mars mission scenarios is described. The missions 
addressed include a freighter mission and a mission involving 
exploration of the Martian surface. C.D. 

A90-16890' National Aeronautics and Space Administration. 
Langley Research Center, Hampton, VA. 
LASER POWER TRANSMISSION CONCEPTS FOR MARTIAN 
APPLICATIONS 
R. J. DE YOUNG, E. J. CONWAY, W. E. MEADOR, and D. H. 
HUMES (NASA, Langley Research Center, Hampton. VA) IN: 
The case for Mars 111: Strategies for exploration - General interest 
and overview. San Diego, CA, Univelt. Inc., 1989. p. 697-708. 
refs 
(AAS PAPER 87-225) Copyright 

Long-term, highly reliable, flexible power will be required to 
support many diverse activities on Mars and for rapid development 
of the Mars environment. The potential of laser power transmission 
for supporting science, materials processing, transportation. and 
human habitats is discussed. Some advantageous locations for 
laser power stations in Mars orbit are developed. Author 

N8913492'# National Aeronautics and Space Administration. 
Lewis Research Center, Cleveland, OH. 
POWER CONSIDERATIONS FOR AN EARLY MANNED MARS 
MISSION UTILIZING THE SPACE STATION 
MARTIN E. VALGORA 1987 15 p Presented at Case for 
Mars 3. Boulder, Colo.. 18-22 Jul. 1987; sponsored by American 
Aeronautical Society, JPL, Los Alamos National Lab., Ames 
Research Center, Lyndon E. Johnson Space Center, George C. 
Marshall Space Flight Center, Planetary Society 
(NASA-TM-101436; E4472; NAS 1.15:101436) Avail: NTlS HC 
AO3lMF A01 CSCL 1OB 

Power requirements and candidate electrical power sources 
were examined for the supporting space infrastructure for an early 
(2004) manned Mars mission. This two-year mission (60-day stay 
time) assumed a single six crew piloted vehicle with a Mars lander 
for four of the crew. The transportation vehicle was assumed to 
be a hydrogenloxygen propulsion design with or without large 
aerobrakes and assembled and checked out on the LEO Space 
Station. The long transit time necessitated artificial gravity of the 
crew by rotating the crew compartments. This rotation complicates 
power source selection. Candidate power sources were examined 
for the Lander, Mars Orbiter, supporting Space Station. co-orbiting 
Propellant Storage Depot, and alternatively. a co-orbiting Propellant 
Generation (water electrolysis) Depot. Candidates considered were 
photovoltaics with regenerative fuel cells or batteries, solar 
dynamics, isotope dynamics, and nuclear power. Author 

N89-26041'# National Aeronautics and Space Administration. 
Lewis Research Center, Cleveland, OH. 

SPACE PHOTOVOLTAIC POWER 
GEOFFREY A. LANDIS, SHEllA G. BAILEY, and DENNIS J. 
FLOOD 1989 29 p Presented at the International Conference 
on Space Power, Cleveland, OH, 5-7 Jun. 1989; sponsored by 
the International Astronautical Federation 
(NASA-TM-102017; E4734; NAS 1.1 5:102017) Avail: NTIS HC 
AO3lMF A01 CSCL 10A 

The present stature and current research directions of 
photovoltaic arrays as primary power systems for space are 
reviewed. There have recently been great advances in the 
technology of thin-film solar cells for terrestrial applications. In a 
thin-film solar cell the thickness of the active element is only a 
few microns; transfer of this technology to space arrays could 
result in ultralow-weight solar arrays with potentially large gains in 
specific power. Recent advances in thin-film solar cells are 
reviewed, including polycrystalline copper-indium selenide 
(CulnSe2) and related I-Ill-VI2 compounds, polycrystalline cadmium 
telluride and related 11-VI compounds, and amorphous 

ADVANCES IN THIN-FILM SOLAR CELLS FOR LIOHTWEIQHT 

14 

si1icon:hydrogen and alloys. The best experimental efficiency on 
thin-film solar cells to date is 12 percent AM0 for Culn Se2. This 
efficiency is likely to be increased in the next few years. The 
radiation tolerance cf thin-film materials is far greater than that of 
single-crystal materials. Culn Se2 shows no degradation when 
exposed to 1 MeV electrons. Experimental evidence also suggests 
that most of all of the radiation damage on thin-films Can be 
removed by a low temperature anneal. The possibility of thin-film 
multibandgap cascade solar cells is discussed, including the 
tradeoffs between monolithic and mechanically stacked cells. The 
best current efficiency for a cascade is 12.5 percent AM0 for an 
amorphous silicon on CulnSe2 multibandgap combination. Higher 
efficiencies are expected in the future. For several missions. 
including solar-electric propulsion, a manned Mars mission, and 
lunar exploration and manufacturing, thin-film photovolatic arrays 
may be a mission-enabling technology. Author 

N90-18480'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
ELECTRIC PROPULSION FOR MANNED MARS EXPLORATION 
BRYAN PALASZEWSKI ln Johns Hopkins Univ., The 1989 
JANNAF Propulsion Meeting. Volume 1 p 421-435 
Avail: NTIS HC A25/MF A04 CSCL 21H 

Advanced high-power electric propulsion systems can 
significantly enhance piloted Mars missions. An increase in the 
science payload delivered to Mars and the reduction of the total 
Earth-departure mass are the major system-level benefits of electric 
propulsion. Other potential benefits are the return of the cargo 
vehicle to Earth orbit and the availability of high power in Mars 
orbit for high-power science and communications. Parametric 
analyses for sizing the cargo mission vehicle for Mars exploration 
missions are presented. The nuclear-electric propulsion system 
thruster size, power level, mass, propellant type and payload mass 
capability are considered in these system-level trade studies. 
Descriptions of the propulsion system selection issues for both 
ion and MPD thruster technologies are also discussed. On a 
manned Mars mission, the total launch mass for an unmanned 
cargo vehicle in low earth orbit (LEO) can be reduced by up to 
50 percent over the baseline oxygenlhydrogen propulsion system. 
Because the cargo vehicle is sent to Mars prior to the manned 
mission. the trip time for the vehicle is not a critical factor. By 
taking advantage of the high specific impulse ( I  sub sp) of an ion 
or a Magneto-Plasma-Dynamic (MPD) thruster system, the total 
LEO mass is reduced from 590,000 kg for the oxygenlhydrogen 
propulsion system to 309.000 kg for the MPD system and 295,000 
kg for the ion system. Many factors must be analyzed in the 
design of a electric propulsion Mars cargo vehicle. The propellant 
selection, the number of thrusters, the power level and the specific 
impulse are among the most important of the parameters. To fully 
address the electric propulsion system design, trade studies for 
the differing ion and MPD propulsion system configurations (thruster 
power levels, number of thrusters, propellants and power systems) 
must be conducted. Author 

May 1989 
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CHEMISTRY AND MATERIALS (GENERAL) 

A S 1 8 6 7 8  
DURICRETE AND COMPOSITES CONSTRUCTION ON MARS 
ROBERT C. BOYD, PATRICK S. THOMPSON, and BENTON C. 
CLARK (Martin Marietta Planetary Sciences Laboratory, Denver, 
CO) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. Sen Diego, CA, Univelt, Inc.. 1989, p. 
539-550. refs 

An experimental program to investigate manufacturing 
processes and product qualities of duricretes, as Well as composites 

(AAS PAPER 87-213) Copyright 
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formed by combining such material with high-strength fibers 
(man-made and biogenic) has begun. Other source materials that 
may serve as components include various pigments, such as 
powdered C (black), MgO (white), and ferric oxide (red); binders 
and sealers, such as elemental and polymeric S; and metallic 
coatings and fibers, such as Mg. Carbon can be produced by the 
Bosch process for C02 reduction to 0 2  and C; water distilled 
from indigenous ice; and the other products converted from MgS04 
in the soil salts. Applications of the construction materials include 
habitat enlargement, greenhouse fabrication, solar thermal 
absorption structures, storehouses/tanks, utensils, solar flare storm 
shelters, towers, and transportation construction. A Mars sample 
return mission will provide a more detailed understanding of the 
chemical properties of Martian soil, allowing better preparation of 
Pilot study experiments for the first astronaut mission. Author 

A90-16679 
THE HYDROGEN PEROXIDE ECONOMY ON MARS 
BENTON C. CLARK (Martin Marietta Planetary Sciences 
Laboratory, Denver. CO) and DONALD R. PElTIT (Los Alamos 
National Laboratory. NM) IN: The case for Mars 111: Strategies 
for exploration - General interest and overview. San Diego, CA, 
Univelt, Inc., 1989, p. 551-557. refs 
(AAS PAPER 87-214) Copyright 

Hydrogen peroxide, H202, could serve as a multipurpose 
chemical storehouse of breathing oxygen, water, and energy for a 
Martian base. Made from indigenous water and electricity from a 
central power facility, it could function also as an energetic fluid 
to power mobile operations away from the base. Hydrogen peroxide 
is a monopropellant (as well as a bipropellant oxidizer) for rocket 
engines, a fuel for producing shaft work from turbines, and a high 
explosive that could find uses in construction, mining, and seismic 
studies. At the ambient conditions on Mars,it can be handled and 
stored not much differently than many hydrocarbon fuels are on 
earth. Hydrogen peroxide can serve many other useful functions 
such as an antifreeze solution in heat exchangers, a disinfectant, 
and a host of manufacturing applications in metallurgy, cements, 
and ceramics. H202 could well be the single most valuable 
commodity made on Mars, giving rise to a hydrogen peroxide 
economy. Author 

31 

ENGINEERING (GENERAL) 

Includes vacuum technology; control engineering; display 
engineering; cryogenics; and fire prevention. 

A9946663 
FIRE PROTECTION FOR A MARTIAN COLONY 
ROBERT M. BEAlTIE. JR. (Boeing Military Airplanes, Wichita, 
KS) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. Sen Dego, CA, Univelt, Inc., 1989, p. 
595-605. refs 
(AAS PAPER 87-218) Copyright 

The fire prevention failures that occurred in Apollo 1 and 
Challenger accidents are reviewed and used to discuss fire 
protection measures that should be taken in a Martian COlOnY. 
Fire detection systems, classes of fire, and suppression agents 
are described. The organization of fire fighting personnel 
appropriate for Mars is addressed. C.D. 

33 

ELECTRONICS AND ELECTRICAL ENGINEERING 

Includes test equipment and maintainability; components, e.g., 
tunnel diodes and transistors; microminiaturization; and integrated 
circuitry . 

A91-27353' Duke Univ., Durham, NC. 
A DEPLOYABLE HIGH TEMPERATURE SUPERCONDUCTING 
COIL (DHTSC) - A NOVEL CONCEPT FOR PRODUCING 
MAGNETIC SHIELDS AGAINST BOTH SOLAR FLARE AND 
GALACTIC RADIATION DURING MANNED INTERPLANETARY 
MISSIONS 
F. HADLEY COCKS (Duke University, Durham, NC) British 
Interplanetary Society, Journal (ISSN 0007-084X), vol. 44, March 
1991, p. 99-1 02. refs 
(Contract NASW-4453) 
Copyright 

The discovery of materials which are superconducting above 
100 K makes possible the use of superconducting coils deployed 
beyond the hull of an interplanetary spacecraft to produce a 
magnetic shield capable of giving protection not only against solar 
flare radiation, but also even against Galactic radiation. Such 
deployed coils can be of very large size and can thus achieve 
the great magnetic moments required using only relatively low 
currents. Deployable high-temperature-superconducting coil 
magnetic shields appear to offer very substantial reductions in 
mass and energy compared to other concepts and could readily 
provide the radiation protection needed for a Mars mission or 
space colonies. Author 

N87-1?795'# National Aeronautics and Space Administration. 
Marshall Space Flight Center, Huntsville, AL. 
ELECTRICAL POWER SYSTEMS FOR MARS 
ROBERT J. GlUDlCl ln its Manned Mars Mission. Working Group 
Papers, V. 2, Sect. 5, App. p 873-887 May 1986 
Avail: NTlS HC A24/MF A04 CSCL 09C 

Electrical power system options for Mars Manned Modules and 
Mars Surface Bases were evaluated for both near-term and 
advanced performance potential. The power system options 
investigated for the Mission Modules include photovoltaics, solar 
thermal, nuclear reactor, and isotope power systems. Options 
discussed for Mars Bases include the above options with the 
addition of a brief discussion of open loop energy conversion of 
Mars resources, including utilization of wind, subsurface thermal 
gradients, and super oxides. Electrical power requirements for 
Mission Modules were estimated for three basic approaches: as a 
function of crew size; as a function of electric propulsion; and as 
a function of transmission of power from an orbiter to the surface 
of Mars via laser or radio frequency. Mars Base power requirements 
were assumed to be determined by production facilities that make 
resources available for follow-on missions leading to the 
establishment of a permanently manned Base. Requirements 
include the production of buffer gas and propellant production 
plants. Author 
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MECHANICAL ENGINEERING 

Includes auxiliary systems (nonpower); machine elements and 
processes; and mechanical equipment. 

N90-29069'# Texas Univ., Austin. Dept. of Computer Science. 

ROVER 
AKlRA HAYASHI and THOMAS DEAN (Brown Univ., Providence, 

SATELLITE-MAP POSITION ESTIMATION FOR THE MARS 

15 
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RI.) 
Conference on Space Telerobotics, Volume 2 p 275-282 
Jan. 1989 Sponsored in part by ARPA 
(Contract F49620-88-C-0132; NSF lRl-86-12644) 
Avail: NTlS HC A17/MF A03 CSCL 131 

A method for locating the Mars rover using an elevation map 
generated from satellite data is described. In exploring its 
environment, the rover is assumed to generate a local 
rover-centered elevation map that can be used to extract 
information about the relative position and orientation of landmarks 
corresponding to local maxima. These landmarks are integrated 
into a stochastic map which is then matched with the satellite 
map to obtain an estimate of the robot's current location. The 
landmarks are not explicitly represented in the satellite map. The 
results of the matching algorithm correspond to a probabilistic 
assessment of whether or not the robot is located within a given 
region of the satellite map. By assigning a probabilistic interpretation 
to the information stored in the satellite map, researchers are 
able to provide a precise characterization of the results computed 
by the matching algorithm. Author 

ln JPL, California Inst. of Tech., Proceedings of the NASA 
31 
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ENERGY PRODUCTION AND CONVERSION 

Includes specific energy conversion systems, e.g., fuel cells; global 
sources of energy; geophysical conversion; and windpower. 

N89-20545'# National Aeronautics and Space Administration. 
Lewis Research Center, Cleveland, OH. 
MARS MANNED TRANSPORTATION VEHICLE 
MARLA E. PEREZ-DAVIS and KARL A. FAYMON Jul. 1987 
12 p Presented at the Case for Mars 111, Boulder, CO, 18-22 
Jul. 1987; sponsored in part by American Astronautical Society; 
Jet Propulsion Lab.; NASA, Ames Res. Ctr.; NASA, Johnson Space 
Ctr; NASA, Marshall Space Flight Ctr.; and The Planetary Society 
(NASA-TM-101487; E-4627; NAS 1.15:101487) 
A03lMF A01 CSCL 13F 

A viable power system technology for a surface transportation 
vehicle to explore the planet Mars is presented. A number of 
power traction systems were investigated, and it was found that a 
regenerative hydrogen-oxygen fuel cell appears to be attractive 
for a manned Mars rover application. Mission requirements were 
obtained from the Manned Mars Mission Working Group. Power 
systems weights, power, and reactants requirements were 
determined as a function of vehicle weights for vehicles weighing 
from 6,000 to 16,000 Ib (2,722 to 7,257 kg), (Earth weight). The 
vehicle performance requirements were: velocity. 10 km/hr; range, 
100 km; slope climbing capability, 30 deg uphill for 50 km; mission 
duration, 5 days; and crew, 5. Power requirements for the operation 
of scientific equipment and support system capabilities were also 
specified and included in this study. The concept developed here 
would also be applicable to a Lunar based vehicle for Lunar 
exploration. The reduced gravity on the Lunar surface, (over that 
on the Martian surface), would result in an increased range or 
capability over that of the Mars vehicle since many of the power 
and energy requirements for the vehicle are gravity dependent. 

Author 

Avail: NTlS HC 
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LIFE SCIENCES (GENERAL) 

A8639233 
ECOLOGICAL PROBLEMS AND EXTENDED LIFE SUPPORT 
ON THE MARTIAN SURFACE 
E. MAGUIRE, JR. (Texas, University, Austin, TX) IN: The case 
for Mars; Proceedings of the Conference, Boulder, CO, April 29-May 
2, 1981. San Diego, CA, Univelt, Inc., 1984. p. 163-171. refs 
(AAS PAPER 81-238) Copyright 

Questions regarding the expansion of life from its planet Of 
origin are considered. taking into account the colonization of Mars 
from earth. The advantages of Mars are related to the possession 
of gravity, and (apparently) the relatively ready availability of all 
the major and minor elements which take part in the functioning 
of biological ecosytstems. It is pointed out that in any 
human-supporting, extraterrestrial ecosystem, an essentially 
complete cycling of all of the important elements must occur unless 
supplies external to the community are (sufficiently) readily 
available. Attention is given to the results of laboratory work with 
some small but closed samples of agricultural ecosystems, the 
observed collapse of samples of ecosystems, the avoidance of 
the inclusion of plant disease organisms in a self-supporting closed 
ecosystem, and problems with respect to the microbial flora of 
self-sustaining extraterrestrial colonies. G.R. 

A90-16532' 
Langley Research Center, Hampton, VA. 
SPACE STATION ACCOMMODATION OF LIFE SCIENCES IN 
SUPPORT OF A MANNED MARS MISSION 
BARRY D. MEREDITH, KELLI F. WILLSHIRE, JANE A. HAGAMAN 
(NASA, Langley Research Center, Hampton, VA), and RHEA M. 
SEDDON (NASA, Johnson Space Center, Houston, TX) IN: The 
case for Mars 111: Strategies for exploration - Technical. San Diego, 
CA, Univelt, Inc.. 1989, p. 95-1 06. 
(AAS PAPER 87-233) Copyright 

Results of a life science impact analysis for accommodation 
to the Space Station of a manned Mars mission are discussed. In 
addition to addressing such issues as on-orbit vehicle assembly 
and checkout, the study also assessed the impact of a life science 
research program on the station. A better understanding of the 
effects on the crew of long duration exposure to the hostile space 
environment and to develop controls for adverse effects was the 
objective. Elements and products of the life science 
accommodation include: the identification of critical research areas; 
the outline of a research program consistent with the mission 
timeframe; the quantification of resource requirements; the 
allocation of functions to station facilities; and a determination of 
the impact on the Space Station program and of the baseline 
configuration. Results indicate the need at the Space Station for 
two dedicated life science lab modules; a pocket lab to support a 
4-meter centrifuge; a quarantine module for the Mars Sample 
Return Mission; 3.9 man-years of average crew time; and 20 
kilowatts of electrical power. C.E. 

National Aeronautics and Space Administration. 

ADO-16657. 
Ames Research Center, Moffett Field, CA. 
AN OVERVIEW OF SELECTED BIOMEDICAL ASPECTS OF 
MARS MISSIONS 
JOHN BILLINGHAM (NASA, Ames Research Center, Moffett Field, 
CA) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA, Univelt, Inc., 1989. p. 
157-169. refs 

There are major unresolved questions about changes in 
physiology of the crews of future zero-gravity manned Mars mission 
vehicles. This paper summarizes the changes induced by long 
duration weightlessness in different body Systems, and emphasizes 

National Aeronautics and Space Administration. 

(AAS PAPER 87-189) Copyright 
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the need for further research into these changes using animal 
and human subjects in space and in ground-based simulations. If 
the changes are shown not to be acceptable, it will be necessary 
to provide artificial gravity for the crew. Artificial gravity itself 
produces some physiological problems, and these also require 
extensive study. Both lines of research must be pursued with 
some urgency so that the major decision to have or not to have 
artificial gravtty can be made on the basis of adequate 
information. Author 
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AEROSPACE MEDICINE 

Includes physiological factors; biological effects of radiation; and 
effects of weightlessness on man and animals. 

A04-39234 
THE MEDICAL ASPECTS OF A FLIGHT TO MARS 
D. WOODARD and A. R. OBERG IN: The case for Mars; 
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981. 
San Diego. CA, Univelt, Inc., 1984. p. 173-180. 
(AAS PAPER 81-239) Copyright 

Perhaps the greatest problem concerning a manned flight to 
Mars is related to uncertainties regarding the effect of a number 
of flight-related factors on the physical health and well-being of 
the crew. Of particular importance appears the long duration of 
the flight, which is probably two and a half years. The flight would 
involve a long exposure to various forms of radiation. Other 
questions are related to the prospect of having to survive the 
debilitating effects of zero gravity, and the further complication of 
having to survive the g-forces of landings both on Mars and later 
again on earth. The medical problems of such a flight are 
considered, taking into account the overall response of the human 
body to a zerogravity environment, health countermeasures to 
reduce the worst side-effects of long-term space flight, design 
factors which can avoid health problems, and the medical supplies 
and facilities which might be needed to maintain health during the 
flight. G.R. 

A04-39235 
MODIFICATIONS OF CONVENTIONAL MEDICAL-SURGICAL 
TECHNIQUES FOR USE IN NULL GRAVITY 
R. M. BEATTIE, JR. IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. San D i o ,  CA, 
Univelt, Inc., 1984, p. 181-184. refs 

The possibility is considered that during the mission at least 
one person of the crew will experience clinical death by 
cardio-pulmonary arrest. Microgravity-related physical conditions 
will make all human resuscitative effors difficult. It is, therefore, 
recommended that the crew have well rehearsed standing orders 
for methods of clinical resuscitation. A Ready Area is to be prepared 
with mechanical chest compression, intermittent positive pressure 
ventilatory, and appropriate emergency adjective resuscitative 
equipment. Attention is given to details concerning the standing 
orders, and the equipment needed for the Ready Area. G.R. 

NO-16537 
ASTRONAUT INTERDISCIPLINARY AND MEDICAUDENTAL 
TRAINING FOR MANNED MARS MISSIONS 
HAROLD E. FILBERT (Martin Marietta Corp., Denver, CO) and 
DONALD J. KLEIER (Colorado, University. Denver) IN: The case 
for Mars 111: Strategies for exploration - Technical. San Diego, CA, 
Univelt, Inc., 1989. p. 161-170. 

This paper presents a general discussion of the medical and 
dental needs of astronauts on a manned Mars mission and a 
study of tradeoffs in meeting those needs. The discussion is based 
on the concept of interdisciplinary astronaut traininglskills for 

(AAS PAPER 81-240) Copyright 

(WS PAPER 87-238) Copyright 

prolonged manned space missions. The authors focus on the 
advantages of at least two years of intensive training in general 
medical practice and dentistry, with emphasis on space medicine 
and remote practice skills for all astronauts assigned to the mission. 
Existing, federally-funded training programs and facilities to 
accomplish the task are cited. Author 

A90-16658' 
Ames Research Center, Moffett Field, CA. 
ARTIFICIAL GRAVITY FOR LONG DURATION SPACEFLIGHT 
MALCOLM M. COHEN (NASA, Ames Research Center, Moffett 
Field, CA) IN: The case for Mars 111: Strategies for exploration - 
General interest and overview. San Diego, CA, Univelt, Inc., 1989, 

(AAS PAPER 87-190) Copyright 
This paper reviews the fundamental physical properties of 

gravitational and centrifugal forces, describes the physiological 
changes that result from long-term exposure to the nearly 
gravity-free environment of space, and explores the nature of these 
changes. The paper then cites currently employed and advanced 
techniques that can be used to prevent some of these changes. 
Following this review, the paper examines the potential use of 
artificial gravity as the ultimate technique to maintain terrestrial 
levels of physiological functioning in space, and indicates some 
of the critical studies that must be conducted and some of the 
trade-offs that must be made before artificial gravity can intelligently 
be used for long duration spaceflight. Author 

National Aeronautics and Space Administration. 

p. 171-178. 

A91-14071# 
RADIATION SHIELDING ESTIMATION FOR MANNED SPACE 
FLIGHT TO THE MARS 
V. E. DUDKIN, E. E. KOVALEV, A. V. KOLOMENSKII. V. A. 
SAKOVICH (Institut Mediko-Biologicheskikh Problem, Moscow, 
USSR), V. F. SEMENOV (AN SSSR, lnstitut Vysokikh Temperatur, 
Moscow, USSR) et al. IAF, International Astronautical Congress, 
41st, Dresden, Federal Republic of Germany, Oct. 6-12, 1990. 
4 p. refs 

The problem of shielding the crew from radiation during Mars 
missions is studied. Radiation hazards caused by Galactic cosmic 
rays (GCR) and solar cosmic rays (SCR) are considered, and it is 
noted that a radiation-proof shelter can reduce the hazards 
associated with SCR, while the shielding from multicharged GCR 
ions may be required for a habitation section of the spacecraft. 
The pulse operation of a nuclear rocket engine may also require 
some additional shielding of the crew and liquid-hydrogen tanks 
against reactor radiation. It is pointed out that any long-term 
residence within the earth radiation belt can be avoided by using 
certain combinations of space flight conditions, while Martian 
mission conditions may be attained by solving the problem of 
optimal distribution of the mass components for shadow shielding 
of the reactor and for shielding of the radiation-proof shelter and 
habitation section. The lowest estimate of the spacecraft mass 
including the radiation-shielding mass is found to be 500-550 
tons. V.T. 

(IAF PAPER 90-544) Copyright 
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BEHAVIORAL SCIENCES 

Includes psychological factors; individual and group behavior; crew 
training and evaluation; and psychiatric research. 

A90-16659' Anacapa Sciences, Inc.. Santa Barbara, CA. 
HABITABILITY DURING LONG-DURATION SPACE MISSIONS - 
KEY ISSUES ASSOCIATED WITH A MISSION TO MARS 
JACK STUSTER (Anacapa Sciences, Inc., Santa Barbara, CA) IN: 
The case for Mars 111: Strategies for exploration - General interest 
and overview. San Diego, CA, Univelt, Inc., 1989, p. 181-191. 
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(Contract NAS2-11690) 

Isolation and confinement conditions similar to those of a 
long-duration mission to Mars are examined, focusing on 14 
behavioral issues with design implications. Consideration is given 
to sleep, clothing, exercise, medical support, personal hygiene, 
food preparation, group interaction, habitat aesthetics, outside 
communications, recreational opportunities, privacy, waste disposal, 
onboard training, and the microgravity environment. The results 
are used to develop operational requirements and habitability 
design guidelines for interplanetary spacecraft. R.B. 

A90-16660 
CREW SELECTION FOR A MARS EXPLORER MISSION 
BENTON C. CLARK (Martin Marietta Planetary Sciences 
Laboratory, Denver, CO) IN: The case for Mars 111: Strategies 
for exploration - General interest and overview. San Diego, CA, 
Univelt, Inc., 1989. p. 193-203. 
(AAS PAPER 87-192) Copyright 

Issues related to the selection of crew members for a manned 
mission to Mars are discussed. The crew skills and character 
needed for a Mars mission are outlined and six basic types of 
crewmember skills needed for a mission are outlined. Consideration 
is given to the age and characteristics of crewmembers, safety, 
privacy, communication, and the issue of mission nomenclature. 

R.B. 

(AAS PAPER 87-191) Copyright 

A90-16661 National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
HUMAN ASPECTS OF MISSION SAFETY 
MARY M. CONNORS (NASA, Ames Research Center, Moffett Field, 
CA) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA. Univelt, Inc., 1989, p. 
205-213. refs 
(AAS PAPER 87-193) Copyright 

Recent discussions of psychology's involvement in spaceflight 
have emphasized its role in enhancing space living conditions 
and incresing crew productivity. While these goals are central to 
space missions, behavioral scientists should not lose sight of a 
more basic flight requirement - that of crew safety. This paper 
examines some of the processes employed in the American space 
program in support of crew safety and suggests that behavioral 
scientists could contribute to flight safety, both through these formal 
processes and through less formal methods. Various safety areas 
of relevance to behavioral scientists are discussed. Author 

A9 1 - 10023# 
ANTARCTIC ANALOGS OF HUMAN FACTORS ISSUES 
DURING LONG-DURATION SPACE MISSIONS 
LARRY BELL (Houston, University, TX) AIAA, Space Programs 
and Technologies Conference, Huntsville, AL, Sept. 25-27, 1990. 
7 p. refs 
(AIAA PAPER 90-3564) Copyright 

The Sasakawa International Center for Space Architecture 
(SICSA) has undertaken requirement definition and planning studies 
for an international research and technology testbed facility in 
Antarctica to support future space mission simulations. This paper 
discusses the relevance of such an antarctic facility as an analog 
for examining human factors issues and requirements for 
longduration space missions. It also highlights applications, 
benefits and limitations of other analogs from which important 
human factors lessons may be learned. Author 

AB1-10001'# National Aeronautics and Space Administration. 
Lyndon B. Johnson Space Center. Houston, TX. 
LONG DURATION MISSION SUPPORT OPERATIONS 
CONCEPTS 
T. W. EGGLESTON (NASA, Johnson Space Center, Houston, TX) 
AIAA. Space Programs and Technologies Conference, Huntsville, 
AL, Sept. 25-27, 1990. 8 p. refs 

It is suggested that the system operations will be one of the 
most expensive parts of the Mars mission, and that, in order to 

(AIAA PAPER 90-3682) Copytight 

reduce their cost, they should be considered during the Conceptual 
phase of the Space Exploration Initiative (SEI) program. System 
operations of Space Station Freedom, Lunar outpost, and Mars 
Rover Sample Return are examined in order to develop a similar 
concept for the manned Mars mission. Factors that have to be 
taken into account include: (1) psychological stresses caused by 
long periods of isolation; (2) the effects of boredom; (3) the 
necessity of onboard training to maintain a high level of crew 
skills; and (4) the 40-min time delays between issuing and receiving 
a command. which make real-time flight control inoperative and 
require long-term decisions to be made by the ground Support. 

B.P. 
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MAN/SYSTEM TECHNOLOGY AND LIFE 
SUPPORT 

Includes human engineering; biotechnology; and space suits and 
protective clothing. 

A84-39232' National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
EXTENDED MISSION LIFE SUPPORT SYSTEMS 
P. D. QUATTRONE (NASA, Ames Research Center. Moffett Field, 
CA) IN: The case for Mars; Proceedings of the Conference, 
Boulder, CO, April 29-May 2, 1981. San Diego, CA, Univelt, Inc., 
1984, p. 131-162. refs 
(AAS PAPER 81-237) Copyright 

The life support systems employed in manned space missions 
have generally been based on the use of expendables, such as, 
for instance, liquid oxygen. For the conducted space missions. 
such systems have advantages related to volume, weight, and 
economy of power consumption. However, this situation will change 
in connection with Shuttle Orbiter missions of extended duration, 
permanent manned facilities in low-earth orbit, and ultimately 
manned planetary vehicles. A description is given of suitable 
regenerative life support systems for such extended manned space 
missions. Attention is given to advanced life support systems 
technology, air revitalization, C02 reduction, oxygen generation, 
nitrogen generation, trace contaminant control, air revitalization 
system integration, controllmonitor instrumentation, water 
reclamation, solid waste management, manned testing and life 
support integration, an enhanced duration orbiter, a space 
operations center, manned interplanetary life support systems, and 
future development requirements. G.R. 

A84-39238' National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 

EXPLORATION AND SETTLEMENT OF MARS 
T. R. MEYER (Boulder Center for Science and Policy, Boulder, 
CO) and C. P. MCKAY (NASA, Ames Research Center, Space 
Science Div., Moffett Field, CA) IN: The case for Mars; 
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981. 
San Diego, CA, Univelt, Inc., 1984. p. 209-232. refs 
(AAS PAPER 81-244) Copyright 

This paper describes methods of processing the Mars 
atmosphere to supply water, oxygen and buffer gas for a Mars 
base. Existing life support system technology is combined with 
innovative methods of water extraction, and buffer gas processing. 
The design may also be extended to incorporate an integrated 
greenhouse to supply food, oxygen and water recycling. It is found 
that the work required to supply one kilogram of an argonlnitrogen 
buffer gas is 9.4 kW-hr. To extract water from the dry Martian 
atmosphere can require up to 102.8 kW-hr per kilogram of water 
depending on the relative humidity of the air. Author 

AW-16531' New York Univ., New York. 
THE CASE FOR CELLULOSE PRODUCTION ON MARS 

THE ATMOSPHERE OF MARS - RESOURCES FOR THE 
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TYLER VOLK (New York University, NY) and JOHN D. RUMMEL 
(NASA, Life Sciences Div., Washington, DC) IN: The case for 
Mars 111: Strategies for exploration - Technical. San Diego, CA. 
Univelt, Inc., 1989, p. 87-94. refs 
(Contract NCA2-101) 

From examining the consequences of not requiring that all 
wastes from life support be recycled back to the food plants, it is 
concluded that cellulose production on Mars could be an important 
input for many nonmetabolic material requirements on Mars. The 
fluxes of carbon in cellulose production would probably exceed 
those in food production, and therefore settlements on Mars could 
utilize cellulose farms in building a Mars infrastructure. Author 

A90-16534 
A ZERO4 CELSS/RECREATION FACILITY FOR AN 
EARTHMARS CREW SHUITLE 
ALICE EICHOLD (California, University. Berkeley) IN: The case 
for Mars 111: Strategies for exploration - Technical. San Diego, CA, 
Univelt, Inc., 1989, p. 129-138. refs 

This paper presents a zero-gravity architectural design for a 
module on an earth/Mars crew shuttle. Although in the early stages 
of development and of uncertain immediate cost-effectiveness, 
Controlled Ecological Life Support (CELSS) promises the most 
synergetic long-term means for providing food. air and water as 
well as accommodating 'homesickness'. In this project, plant growth 
units have been combined with recreation facilities to ensure that 
humans have daily opportunities to view their gardens. Furthermore, 
human exercise contributes toward powering the mechanical 
systems for growing the plants. The solution was anived at by 
the traditional architectural design process with an empirical 
emphasis. The solution consists of smaller volumes for exercise 
facilities and plant growth units contained within a large geometrical 
sphere. Moisture and heat-generating activities thus share facilities 
and favorable gas exchanges are exploited. Author 

A90-16656 Life Systems, Inc., Cleveland, OH. 
LIFE SUPPORT SYSTEM CONSIDERATIONS AND 
CHARACTERISTICS FOR A MANNED MARS MISSION 
FEROLYN T. POWELL (Lae Systems, Inc.. Cleveland, OH) IN: 
The case for Mars 111: Strategies for exploration - General interest 
and overview. San Diego, CA, Univelt, Inc.. 1989, p. 135-155. 
Research supported by NASA and Life Systems, Inc. refs 

Both the Low Earth Orbit (LEO) Space Station and future 
manned space missions require Environmental Control and Life 
Support Systems (ECLSS) that provide safe, comfortable 
environments in which humans can l i e  and work. The ECLSS 
functions and requirements (performance and design load) for these 
missions are defined. Options for closing the ECLSS cycle are 
discussed and the level of closure planned for the initial orbital 
capability (IOC) Space Station are quantified. The impacts of the 
remaining ECLSS expendables on advanced missions are 
discussed. Also discussed are the new ECLSS requirements related 
to generation of food (via plants, animals and/or fish). The paper 
focuses on the ECLSS design drivers associated with a manned 
Mars mission. These drivers include environmental, operational 
and interface drivers. Characteristics of the IOC Space Station 
ECLSS are given to provide a quantitative feeling of the magnitude 
of the ECLSS for a Mars mission. Author 

A90-49313' National Aeronautics and Space Administration. 
Lyndon B. Johnson Space Center, Houston, TX. 
ACTIVE THERMAL CONTROL SYSTEMS FOR LUNAR AND 
MARTIAN EXPLORATION 
MICHAEL K. EWERT, PATRICIA A. PETETE, and JOHN DZENlTlS 
(NASA, Johnson Space Center, Houston, TX) SAE, Intersociety 
Conference on Environmental Systems, 20th, Williamsburg, VA, 
July 9-12, 1990. 13 p. refs 
(SAE PAPER 901243) Copyright 

Several ATCS options including heat pumps, radiator shading 
devices, and single-phase flow loops were considered. The ATCS 

(AAS PAPER 87-232) Copyright 

(AAS PAPER 87-235) Copyright 

(AAS PAPER 87-188) Copyright 

MANBYSTEM TECHNOLOGY AND LIFE SUPPORT 

chosen for both lunar and Martian habitats consists of a heat 
pump integral with a nontoxic fluid acquisition and transport loop, 
and vertically oriented modular reflux-boiler radiators. The heat 
pump operates only during the lunar day. The lunar and Martian 
transfer vehicles have an internal single-phase water-acquisition 
loop and an external two-phase ammonia rejection system with 
rotating inflatable radiators. The lunar and Martian excursion 
vehicles incorporate internal single-phase water acquisition, which 
is connected via heat exchangers to external body-mounted 
single-phase radiators. A water evaporation system is used for 
the transfer vehicles during periods of high heating. Author 

A90-49430' National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
A METHODOLOGY FOR CHOOSING CANDIDATE MATERIALS 
FOR THE FABRICATION OF PLANETARY SPACE SUIT 
STRUCTURES 
GILDA JACOBS (NASA, Ames Research Center; Sterling Software. 
Inc., Moffett Field, CA) SAE, Intersociety Conference on 
Environmental Systems, 20th, Williamsburg, VA, July 9-1 2, 1990. 
9 p. refs 
(SAE PAPER 901429) Copyright 

A study of space suit structures and materials is under way at 
NASA Ames Research Center, Moffett Field, CA. The study was 
initiated by the need for a generation of lightweight space suits to 
be used in future planetary Exploration Missions. This paper 
provides a brief description of the Lunar and Mars environments 
and reviews what has been done in the past in the design and 
development of fabric, metal, and composite suit components in 
order to establish criteria for comparison of promising candidate 
materials and space suit structures. Environmental factors and 
mission scenarios will present challenging material and structural 
requirements; thus, a program is planned to outline the methodology 
used to idenMy materials and processes for producing candidate 
space suit structures which meet those requirements. Author 

A9 1- 10 159# 
ADVANCED EXTRAVEHICULAR ACtlVlM REQUIREMENTS IN 
SUPPORT OF THE MANNED MARS MISSION 
WILLIAM R. POGUE. GERALD P. CARR (CAMUS, Inc., Huntsville, 
AL), and NICHOLAS SHIELDS, JR. (RECCEN Corp., Huntsville, 
AL) AIAA, Space Programs and Technologies Conference, 
Huntsville, AL, a p t .  25-27, 1990. 8 p. refs 

The support requirements for an extended human exploration 
of the Martian surface by a crew of eight are examined. Emphasis 
is given to EVA activities at the base camp and to extended EVA 
and the environmental conditions impacting on the latter. The roles 
of hardware and machine system requirements in EVA are 
addresed. C.D. 

A91-12594' National Aeronautics and Space Administration. 
Ames Research Center, Moffett Field, CA. 
CREW SUPPORT FOR AN INITIAL MARS EXPEDITION 
YVONNE A. CLEARWATER (NASA, Ames Research Center, 
Moffett Field, CA) and ALBERT A. HARRISON (California, 
University, Davis) British Interplanetary Society, Journal (ISSN 
0007-084X), vol. 43, Nov. 1990, p. 513-518. refs 

Mars crews will undergo prolonged periods of isolation and 
confinemeni, iravei unprecedented distances f r m  aarth ai-id & 
subjected to formidable combinations of hardships and dangers. 
Some of the biomedical, psychological and social challenges of 
the first manned Mars expedition are reviewed and means of 
aligning humans, technology and space habitats in the interests 
of mission success are identified. Author 

A91-14737' National Aeronautics and Space Administration. 
Washington, DC. 
CONTROLLED ECOLOGICAL LIFE SUPPORT SYSTEM 
MAURICE M. AVERNER (NASA, Washington, DC) IN: Lunar 
base agriculture: Soils for plant growth. Madison, WI, American 
Society of Agronomy, Inc.. Crop Science Society of America, Inc., 

( A M  PAPER 90-3801) Copyright 

Copyright 
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and Soil Science Society of America, InC., 1989, p. 145-153. 
refs 
Copyright 

The NASA CELLS program is based upon the integration of 
biological and physiochemical processes in order to produce a 
system that will produce food, a breathable atmosphere, and 
potable water from metabolic and other wastes. The CELSS 
concept is described and a schematic system diagram is provided. 
Central to the CELSS concept is the Plant Growth Chamber, where 
green plant photosynthesis produces food, and aids in the 
production of oxygen and water. Progress to date at the Breadboard 
Facility at the Kennedy Space Center is summarized. The 
Breadboard Facility will implement the basic techniques and 
processes required for a CELSS based on photosynthetic plant 
growth in a ground-based system of practical size and results will 
be extrapolated to predict the performance of a full-sized system. 
Current available technology and near-future forecasts for plant 
growth techniques (focusing on maximum productivity), food 
sources (to select optimal CELSS plants), and waste management 
and contaminant control are discussed. L.K.S. 

A91-14738' National Aeronautics and Space Administration. John 
F. Kennedy Space Center, Cocoa Beach, FL. 
CELSS BREADBOARD PROJECT AT THE KENNEDY SPACE 
CENTER 
R. P. PRINCE and W. M. KNOTT. 111 (NASA, Kennedy Space 
Center, Cocoa Beach, FL) IN: Lunar base agriculture: Soils for 
plant growth. Madison, WI. American Society of Agronomy, Inc., 
Crop Science Society of America, Inc., and Soil Science Society 
of America, Inc., 1989, p. 155-163. 
Copyright 

The CELSS Breadboard Project is described, noting that it was 
initiated to study aspects of a CELSS for long-term space missions. 
Topics for extensive investigation included air and water 
regeneration, engineering control, and food production. The many 
options available for growing food crops in commercial plant growth 
chambers were investigated and the best of this information was 
translated to the Biomass Production Chamber (BPC). The chamber 
contains 20 sq m of crop growing area under 96 400 W HPS 
lamps; sixteen 0.25 sq m plant growth trays used on each of four 
growing shelves for a total of 64 trays; and one 256-L nutrient 
solution reservoir with the appropriate continuous-flow, thin-film 
plumbing for each shelf. A heating, ventilating, and air-conditioning 
system maintains atmospheric conditions and serves to distribute 
oxygen and carbon dioxide and maintain pressure at 12 mm of 
water. The control and monitoring subsystem, which uses a 
programmable logic controller, manages the BPC subsystems. 

L.K.S. 

refs 

A91-23461 
BIOGENERATIVE LIFE-SUPPORT SYSTEM - FARMING ON 
THE MOON 
FRANK B. SALISBURY (Utah State University, Logan) (IAA, 
IAF, AN SSSR. et al., Symposium on Man in Space, 8th, Tashkent, 
Uzbek SSR, Sept. 29-Oct. 3, 1990) Acta Astronautica (ISSN 
0094-5765), vol. 23, 1991, p. 263-270. refs 

Plants can be used to recycle food, oxygen, and water in a 
closed habitat on the moon, on Mars, or in a spacecraft. A variety 
of crops might be grown, probably in underground growth units to 
avoid harmful radiation and micrometeorites. Artificial light will be 
necessary. although some sunlight might be brought in via fiber 
optics. Transpired water will be condensed in coils exposed to 
space and shaded from sunlight. Oxygen and C02 levels will be 
maintained by controlling photosynthesis and waste oxidation. 
Plants will be grown hydroponically. Wheat has been produced at 
the rate of 60 g/sq m per day, which could feed a human 
continuously from a farm only of 13 sq m, but nearly continuous 
light equivalent to sunlight is required along with ideal temperatures, 
enriched CO2. suitable cultivars, etc. Author 

Copyright 

A91-23462 
REGENERATIVE LIFE-SUPPORT SYSTEM DEVELOPMENT 
PROBLEMS FOR THE MARS MISSION 
V. N. KUBASOV, E. N. ZAITSEV. V. A. KORSAKOV, A. S. 
GUZENBERG, and A. A. LEPSKll (NPO Energiia, MOSCOW. 
USSR) (IAA, IAF, AN SSSR, et al., Symposium on Man in Space, 
8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3, 1990) Acta Astronautica 

Copyright 
The advantages and disadvantages of physiochemical and 

biotechnological complexes of life support systems are discussed. 
These systems are each analyzed on the basis of technological, 
economic, and biomedical parameters. The complex of 
technological and economic parameters includes the mass, Power 
consumption, reliability. maintainability, and crew labor outlay both 
in the initial condition and under operating conditions. The most 
likely trends of manned cosmonautics development for the nearest 
decades are discussed. Analysis results show that the 
physiochemical complex is more advantageous than the 
biotechnological one for all cases considered. This conclusion is 
based on significant differences in energy utilization factors: 70-90 
percent for the PhChLSS and 5-10 percent for the BLSS. System 

L.K.S. selection is also discussed. 

(ISSN 0094-5765), vOI. 23, 1991, p. 271-274. 

AN-23463 
PROVIDING A SOUND HABITAT FOR MAN IN SPACE 
MARIA STRANGER-JOHANNESSEN (Centre for Industrial 
Research, Oslo, Norway) (IAA. IAF, AN SSSR, et al.. Symposium 
on Man in Space, 8th. Tashkent, Uzbek SSR, Sept. 29-Oct. 3. 
1990) Acta Astronautica (ISSN 0094-5765), vol. 23, 1991. p. 
275-277. refs 
Copyright 

The problem of microbial growth on materials in a closed 
environment is discussed, drawing inferences from analogous 
situations which occur in new buildings which are more tightly 
sealed and widely employ air conditioning. It is noted that the 
'sick building syndrome' has contributed to serious problems such 
as legionnaire's disease and that the potential of such 
microbiological hazards must be researched and guarded against 
in long-term space habitats. ESA has begun work on microbial 
contamination control measures and requirements. Procedures are 
being established as a basis for the microbiological cleanliness of 
the manned space environment and for the avoidance of 
microbiological growth on materials and equipment. Several testing 
techniques are being studied which will allow both a rapid screening 
of materials' resistance to microbiological growth and proper 
durability testing of materials and equipment to be used for up to 
30 years in space habitats. L.K.S. 

A91-23464 
MANNED EXPEDITION TO MARS - CONCEPTS AND 
PROBLEMS 
LIUBOV' B. STROGONOVA (Institut Mediko-Biologicheskikh 
Problem, Moscow, USSR) and LEONID GORSHKOV (NPO 
Energiia, Moscow, USSR) (IAA, IAF, AN SSSR, et al., symposium 
on Man in Space, 8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3, 
1990) Acta Astronautica (ISSN 0094-5765), vol. 23, 1991, p. 

Copyright 
The concept of long-term interplanetary flight is discussed, and 

some main criteria for interplanetary spacecraft are presented. 
The present state of space technology for interplanetary spacecraft 
is considered, and it is argued that the knowledge accumulated 
at present by cosmonauts is sufficient to begin preparation for a 
manned flight to Mars. An eight-stage program for such a flight, 
which is projected to have a duration of two years, is presented. 
The biomedical aspects of long-term interplanetary flight and the 
Complications arising due to lack of technical supply for the solution 
Of such problems are considered. The questions of the biological 
Security of the earth after the planetary flight and of international 
Cooperation in interplanetary expeditions are also addressed. 

L.K.S. 

279-287. 
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N90-%QQ'# Wisconsin Univ., Milwaukee. Space Architecture 
Design Group. 
GENESIS LUNAR OUTPOST CRITERIA AND DESIGN 
TIMOTHY HANSMANN, ed. & comp., GARY T. MOORE, ed. 8 
comp., DIN0 J. BASCHIERA, JOE PAUL FIEBER, and JANIS 
HUEBNER MOTHS 11 Jun. 1990 119 p 
(Contract NASW-4435) 

ISBN-0-938744-69-0) Avail: NTlS HC AO6/MF A01 CSCL 05H 
This design study--the third in the space architecture 

series--focused on the requirements of an early stage lunar outpost. 
The driving assumptions of the scenario was that the base would 
Serve as a research facility and technology testbed for future Mars 
missions, a habitat supporting 12 persons for durations of up to 
20 months, and would sustain the following five experimental 
facilities: Lunar surface mining and production analysis faciltty, 
construction technology and materials testbed, closed 
environmental life support system (CELSS) test facility, lunar farside 
observatory, and human factors and environment-behavior research 
facility. Based upon the criteria set forth in a previous programming 
document, three preliminary lunar base designs were developed. 
Each of the three schemes studied a different construction method 
and configuration. The designs were then evaluated in terms of 
environmental response, human habitability, transportability, 
constructability, construction dependability and resilience, and their 
suitability in carrying out the desired scientific research. The positive 
points of each scheme were then further developed by the entire 
project team, resulting in one integrated lunar outpost design. 

Author 

(NASA-CR-186831; NAS 1.26:186831; R90-1; 

N91-16570# Messerschmitt-Boelkow-Blohm G.m.b.H., Bremen 
(Germany. F.R.). 
COMMON APPROACH FOR PLANETARY HABITATION 
SYSTEMS IMPLEMENTATION 
FRANK STElNSlEK and UWE APEL 1990 11 p Presented at 
the 20th International Conference on Environmental Systems, 
Williamsburg, VA, 9-12 Jul. 1990 Previously announced in IAA 
as A9049425 Prepared in cooperation with Erno 
Raumfahrttechnik G.m.b.H. 
(MBB-UO-0115-90-PUB; ETN-91-98549) Avail: NTlS HC/MF 
A03 

Possible concepts for orbital. lunar and Martin habitations are 
based on ESA-European Manned Space lnfrastucture (EMSI) 
program philosophy are presented. The key requirements for the 
design of an orbital habitat were reviewed, such as atmospheric 
pressure, temperature, radiation and gravity levels. The human 
factors such as life cycle, ergonomy and psychological needs were 
examined. A common approach for these three cases may be to 
use as much available hardware in each step of the scenario as 
possible. The implementation of the habitation systems offers the 
possibility to work in an evolutionary way, starting with the EMS1 
Columbus based hardware. ESA 
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Includes exobiology; planetary biology; and extraterrestrial life. 

A8Q-51522' 
Ames Research Center, Moffett Field, CA. 
STABLE CARBON ISOTOPE FRACTIONATION IN THE 
SEARCH FOR LIFE ON EARLY MARS 
L. J. ROTHSCHILD and D. DESMARAIS (NASA, Ames Research 
Center, Moffett Fi ld,  CA) (COSPAR, Plenary Meeting, 27th, 
Topical Meeting and Workshops on the Life Sciences and Space 
Research XXlll(2): Planetary Biology and Origins of Life, 2Oth, 
21st. and 23rd. Espoo, Finland, July 18-29, 1988) Advances in 
Space Research (ISSN 0273-1177), vol. 9, no. 6, 1989, p. 

National Aeronautics and Space Administration. 

159-165. refs 
Copyright 

The utiltty of measurements of C13/C-12 ratios in organic vs 
inorganic deposits f3r searching for signs of life on early Mars is 
considered. It is suggested that three assumptions are necessary. 
First, if there was life on Mars, it caused the fractionation of 
carbon isotopes in analogy with past biological activity on earth. 
Second, the fractionation would be detectable. Third, if a 
fractionation would be observed, there exist no abiotic explanations 
for the observed fractionation pattern. I.S. 

A8Q-51523' Florida State Univ., Tallahassee. 

THERE) 
E. IMRE FRIEDMANN and ALI M. KORIEM (Florida State University, 
Tallahassee) (COSPAR, Plenary Meeting, 27th, Topical Meeting 
and Workshops on the Life Sciences and Space Research XXlll(2): 
Planetary Biology and Origins of Life, 20th, 21st, and 23rd, Espoo, 
Finland, July 18-29, 1988) Advances in Space Research (ISSN 
0273-1177), vol. 9, no. 6. 1989, p. 167-172. refs 
(Contract NSG-7337; NSF DPP-83-14180) 

Information available on Mars chemistry suggest that conditions 
on early Mars may have been suitable for life. This paper examines 
the possible events that led to the disappearance of life, assuming 
it existed, from the surface of Mars. The sequence of events 
leading to life extinction on early Mars assumes the following 
steps: (1) a decrease of temperature and humidity levels, leading 
to a selection of microorganisms for tolerance of low temperatures 
and arid conditions; (2) further deterioration of environment leading 
to withdrawal of cold-adapted organisms to protected niches under 
the surface; (3) further cooling producing heavy stresses in these 
organisms; and (4) further deterioration of the environment resulting 
in extinction. This sequence of events is considered parallel events 
documented for the microbial community in the Ross Desert of 
Antarctica, where TEM examinations of the material detected 

I.S. 

National Aeronautics and Space Administration. 

LIFE ON MARS - HOW IT DISAPPEARED (IF IT WAS EVER 

Copyright 

progressive stages of cell damage and death. 

A8Q-51527' 
Arms Research Center, Moffett Field, CA. 
PEROXIDES AND THE SURVIVABILITY OF 
MICROORGANISMS ON THE SURFACE OF MARS 
ROCCO L. MANClNELLl (NASA, Ames Research Center, Moffett 
Field, CA) (COSPAR. Plenary Meeting, 27th, Topical Meeting 
and Workshops on the Life Sciences and Space Research XXlll(2): 
Planetary Biology and Origins of Life, 20th, 21st. and 23rd. Espoo, 
Finland, July 18-29, 1988) Advances in Space Research (ISSN 
0273-1177). vol. 9, no, 6, 1989. p. 191-195. refs 

This paper discusses the possibility that any terrestrial 
microorganisms brought to Mars might survive the unhospitable 
environment of that planet, with special attention given to the 
effects of highly oxidizing material that is now known to cover the 
Martian surface. Data obtained by the gas exchange experiment 
on Viking indicate that, if all of the released oxygen is assumed 
to come from H202. the concentrations of H202 on Mars range 
from 25 to 250 ppm. Laboratory data indicate that certain soil 
bacteria are able to survive and grow to stationary phase at H202 
concentrations as high as 30,000, indicating that, if there is H202 
at the level of 250 ppm or even an order of magnitude greater on 
the Martian suriace, this iact aione wouia not make tire suriace 

copyright 

of Mars self-sterilizing. IS. 

AEQ-51528' 
Ames Research Center, Moffett Field, CA. 
PLANETARY PROTECTION ISSUES IN ADVANCE OF HUMAN 
EXPLORATION OF MARS 
CHRISTOPHER P. MCKAY (NASA, Ames Research Center, Moffett 
Field, CA) and WANDA L. DAVIS (Search for Extraterrestrial 
Intelligence Institute, Los Altos, CA) (COSPAR, Plenary Meeting, 
27th, Topical Meeting and Workshops on the Life Sciences and 
Space Research XXlll(2): Planetary Biology and Origins of Life, 
2Oth, 21st, and 23rd, Espoo, Finland, July 18-29, 1988) Advances 

National Aeronautics and Space Administration. 
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in Space Research (ISSN 0273-1177), vol. 9, no. 6, 1989, p. 
197-202. refs 
Copyright 

The major planetary quarantine issues associated with human 
exploration of Mars, which is viewed as being more likely to harbor 
indigenous life than is the moon, are discussed. Special attention 
is given to the environmental impact of human missions to Mars 
due to contamination and mechanical disturbances of the local 
environment, the contamination issues associated with the return 
of humans, and the planetary quarantine strategy for a human 
base. It is emphasized that, in addition to the question of indigenous 
life, there may be some concern of returning to earth the earth 
microorganisms that have spent some time in the Martian 
environment. It is suggested that, due to the fact that a robot 
system can be subjected to more stringent controls and protective 
treatments than a mission involving humans, a robotic sample 
return mission can help to eliminate many planetary-quarantine 
concerns about returning samples. IS. 
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Includes educational matters. 

A90-13598# 
TOGETHER TO MARS - AN INTERNATIONAL STUDENT 
CONTEST CULMINATING IN THE INTERNATIONAL SPACE 
YEAR 
LOUIS FRIEDMAN and TIMOTHY LYNCH (Planetary Society, 
Pasadena, CA) IAF, International Astronautical Congress, 40th, 
Malaga, Spain, Oct. 7-13, 1989. 6 p. 

Plans are presented for an international student contest on 
the human exploration of Mars to be conducted in the International 
Space Year, 1992. The rules of the contest, plans for awards, 
and types of entries that may be submitted to the contest are 
considered. Possible topics for the contest are presented, focusing 
on the theme of life support for humans for flight to and from and 
exploring Mars. R.B. 

(IAF PAPER 89-!543) Copyright 

A90-16654’ National Aeronautics and Space Administration, 
Washington, DC. 
A MANDATE FOR SPACE EDUCATION 
JESCO VON PUTTKAMER (NASA, Office of Space Flight, 
Washington, DC) IN: The case for Mars 111: Strategies for 
exploration - General interest and overview. San Diego, CA, Univelt, 
Inc., 1989, p. 57-72. 
(AAS PAPER 87-1 82) Copyright 

Issues related to public education in preparation for a manned 
Mars program are discussed. Consideration is given to the near- 
and long-term goals of the space program, the benefits of human 
expansion in space, and long-range planning for fundamental 
problem areas in space education. Important concerns for space 
educators are outlined. R.B. 
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ADMINISTRATION AND MANAGEMENT 

Includes management planning and research. 

A91-24875‘# 
Lyndon 8. Johnson Space Center, Houston, TX. 
QUALITY ASSURANCE PLANNING FOR LUNAR MARS 
EXPLORATION 

National Aeronautics and Space Administration. 

KAY MYERS (NASA, Johnson Space Center; Barrios Technology, 
Inc., Houston, TX) Total Quality Management Conference, Palm 
Springs, CA, Feb. 7, 8, 1991, Paper. 7 p. 

A review is presented of the tools and techniques required to 
meet the challenge of total quality in the goal of traveling to Mars 
and returning to the moon. One program used by NASA to ensure 
the integrity of baselined requirements .documents is configuration 
management (CM). CM is defined as an integrated management 
process that documents and identifies the functional and physical 
characteristics of a facility’s systems, structures, computer software, 
and components. It also ensures that changes to these 
characteristics are properly assessed, developed, approved, 
implemented, verified, recorded. and incorporated into the facility’s 
documentation. Three principal areas are discussed that will realize 
significant efficiencies and enhanced effectiveness, change 
assessment, change avoidance, and requirements management. 

R.E.P. 
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ECONOMICS AND COST ANALYSIS 

Includes cost effectiveness studies. 

A84-39243’ National Aeronautics and Space Administration. 
Lyndon 8. Johnson Space Center, Houston, TX. 
THE COST OF LANDING MAN ON MARS 
H. C. MANDELL, JR. (NASA, Johnson Space Center, Houston, 
TX) IN: The case for Mars; Proceedings of the Conference, 
Boulder, CO, April 29-May 2, 1981. San Diego, CA, Univelt, Inc., 

In a period where the space program budget is generally static 
at about 113 of the level reached during the Apollo program, 
manned planetary flight is not considered by NASA planners to 
be a realistic near term goal. Much of NASA’s current planning is 
based on the perception that manned planetary flight would be 
more costly than the Apollo lunar landing. This paper demonstrates 
that with current technological improvements in avionics, structure, 
and space transportation, the landing of an American on Mars 
would cost only 113 to 213 of the lunar landing; on a per capita 
basis such a program would cost less than $200. compared to 
Apollo’s $325 (all dollars in 1981 base). Given the fact that a 
manned Mars landing is the last such exploration feat left to this 
generation, the cost should clearly not be a major deterrent. 

Author 

1984, p. 281-292. 
(AAS PAPER 81-251) Copyright 

A90-16655 
FINANCING A MARS PROGRAM 
CHANDLER C. SMITH (Ball Corp., Ball Aerospace Systems Group, 
Boulder, CO) IN: The case for Mars 111: Strategies for exploration 
- General interest and overview. San Diego, CA, Univelt, Inc., 
1989, p. 83-106. refs 

The prospects for financing a Mars program are evaluated, 
including estimates of the approximate amount of money required 
to implement a program. The financial issues related to other 
large-scale efforts, such as the Apollo program, the Manhattan 
project, and the Tennessee Valley Authority are reviewed and 
compared with the financing of a Mars program. Consideration is 
given to economic base forecasts, government spending 
predictions, the impact of an aging population, and the possibility 
of nontraditional sources of revenue for a Mars program. R.B. 

(AAS PAPER 87-184) Copyright 

A91-14089iqt 
WHAT IS THE COST OF SEI? AN APPROACH TO 
ESTIMATING THE LIFE CYCLE COST OF THE SPACE 
EXPLORATION INITIATIVE 
RICHARD L. WEBB (General Dynamics Cop., Space Systems 
Div., Sen Diego. CA) IAF. International Astronautical Congress, 
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41st, Dresden, Federal Republic of Germany, Oct. 6-12, 1990. 
12 p. refs 

The paper presents an approach for estimating the Life Cycle 
Cost (LCC) of four alternative Space Exploration Initiative (SEI) 
program scenarios. SEI philosophy and goals are considered of 
primary importance in the cost estimation of the program. The 
following primary issues have been identified: the cost of system 
unreliability, the cost and benefits of international participation, 
methods for estimating 'new ways of doing business', quantification 
of cost risk, cost as a measure of milestone achievement, and 
'affordability.' It is pointed out that the possibilities for international 
participation present a significant challenge in the cost estimating 
of SEI with respect to divisions of responsibility, management 
organization, integration activities, and variations in currencies. 

B.P. 

(IAF PAPER 90-601) Copyright 

N87-17800'# National Aeronautics and Space Administration. 
Marshall Space Flight Center, Huntsville, AL. 
MANNED MARS MISSION COST ESTIMATE 
JOSEPH HAMAKER and KEITH SMITH ln its Manned Mars 
Mission. Working Group Papers, V. 2, Sect. 5, App. p 936-950 
May 1986 
Avail: NTIS HC A24/MF A04 CSCL 05C 

The potential costs of several options of a manned Mars mission 
are examined. A cost estimating methodology based primarily on 
existing Marshall Space Flight Center (MSFC) parametric cost 
models is summarized. These models include the MSFC Space 
Station Cost Model and the MSFC Launch Vehicle Cost Model as 
well as other modes and techniques. The ground rules and 
assumptions of the cost estimating methodology are discussed 
and cost estimates presented for six potential mission options 
which were studied. The estimated manned Mars mission costs 
are compared to the cost of the somewhat analogous Apollo 
Program cost after normalizing the Apollo cost to the environment 
and ground rules of the manned Mars missions. It is concluded 
that a manned Mars mission, as currently defined, could be 
accomplished for under $30 billion in 1985 dollars excluding launch 
vehicle development and mission operations. Author 

04 

LAW, POLITICAL SCIENCE AND SPACE POLICY 

Includes NASA appropriation hearings; aviation law; space law 
and policy; international law; international cooperation; and patent 
policy. 

A8449241 
LEGAL AND POLITICAL IMPLICATIONS OF COLONIZING 
MARS 
N. C. GOLDMAN (Texas, Universtty, Austin, TX) IN: The case 
for Mars; Proceedings of the Conference, Boulder, CO. April 29-May 
2, 1981. San Diego, CA. Univelt, Inc., 1984, p. 257-262. refs 

The effects of international space law, including four treaties 
and the proposed 'Moon' treaty, on the future of Mars are 
discussed. The decision to go will be made by a government or 
consortium of governments, since treaty law inhibits private 
enterprise in space and a mission to Mars would be extremely 
expensive. Since the surface of Mars cannot be claimed by any 
nation, any colony created there would have to be open to 
inspection by representatives of other .nations after giving 
reasonable advance notice. Nations would, however, own the 
structures that they erect on Mars. The treaty law governing the 
mining of ore on celestial bodies is ambiguous. Natural resources 
existing on Mars would not be the properly of any state until 
mined under licence from some supranational authority. C.D. 

! U S  PAPER 81-248) Copyright 

A89-12542 
LET'S GO TO MARS TOGETHER 
JOHN L. MCLUCAS and BURTON 1. EDELSON Issues in Science 
and Technology (ISSN 0748-5492). vol. 5, Fall 1988, p. 52-55. 
refs 
Copyright 

Arguments for cooperative U.S.-Soviet missions to Mars are 
presented. The history of space competition since the 1950s is 
briefly recalled; the current status is surveyed; and Soviet plans 
for Martian missions (including the Phobos probe launched in July 
1988, a heavy automated Mars lander with robotic rover for 1994, 
a sample-return mission for 1996-1998, and eventual manned 
missions) are described and contrasted with NASA planning, where 
the Mars Observer (1992) is the only firm program, although Mars 
exploration has been established as a policy goal. Concrete steps 
toward joint or international Mars missions are proposed, building 
on the 1986 US.-Soviet cooperative agreement (which includes 
four Mars-related projects): (1) defining a general concept of 
cooperation, (2) setting robotic exploration in the 1990s and 
manned exploration in the next century as primary goals, and (3) 
convening a joint planning team to assign tasks and set schedules 
in detail. T.K. 

SPACE SCIENCES (GENERAL) 

A91-25834 
WIND, SAND, AND MARS - THE 1990 TESTS OF THE MARS 
BALLOON AND SNAKE 
CHARLENE M. ANDERSON (Planetary Society, Pasadena, CA) 
Planetary Report (ISSN 0736-3680), vol. 11, Jan.-Feb. 1991, p. 

Copyright 
The observations of one member of the internationat team of 

Planetary Society members responsible for testing the Mars balloon 
and SNAKE are presented. The tests were held in the fall of 
1990 in Indio, California, and concluded successfully. The test 
team was made up of scientists and technicians from CNES 
observers from the Babakin Center; scientists from the Space 
Research Institute of the Soviet Academy of Sciences; engineers 
from the Jet Propulsion Laboratory; students from the University 
of Arizona, Utah State Universtty, UCLA, and Caltech; and Planetary 
Society volunteers. The chosen sites of study in this desert area 
were selected to simulate as neary as possible Mars-like conditions 
and included smooth ancient lake beds, jagged frozen lava flows 
and gently rolling sand dunes. L.K.S. 

12-15. 
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LUNAR AND PLANETARY EXPLORATION 

Includes planetology; and manned and unmanned flights. 

A8449226 
THE CASE FOR MARS; PROCEEDINGS OF THE 
CONFERENCE, UNIVERSITY OF COLORADO, BOULDER, CO, 
APRIL 29-MAY 2, 1981 
P. J. BOSTON, ED. (National Center for Atmospheric Research, 
Boulder, CO) Conference sponsored by the University of Colorado, 
Boulder Center for Science and Policy, American Institute of 
Aeronautics and Astronautics, et at. San Diego, CA, Univelt, Inc., 
1984, 347 p. 
Copyright 

The subjects investigated are related to mission strategy, 
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spacecraft design, life support, surface activities and materials 
processing, and social and political aspects. The humanation of 
Mars is discussed along with reasons for considering Mars as an 
object for human exploration, the Viking fund, ballistic opportunities 
to Mars, a short guide to Mars, and the future of Mars. Attention 
is given to new approaches to space exploration, a manned mission 
to Phobos and Deimos, manned Mars mission landing and 
departure systems, the solar electric propulsion stage as a Mars 
exploration tool, modifications of conventional medical-surgical 
techniques for use in null gravity, surface sampling systems. a 
retrospective look at the Soviet Union's efforts to explore Mars, 
the cost of landing man on Mars, the atmosphere of Mars, and 
the utilization of the Shuttle external tank for earth to Mars 
transit. G.R. 

A84-39227 
THE HUMANATION OF MARS 
L. W. DAVID (National Space Institute. Washington, DC) IN: The 
case for Mars; Proceedings of the Conference, Boulder, CO, April 
29-May 2, 1981. Sen Diego, CA, Univelt, Inc., 1984, p. 3-17. 
refs 
(AAS PAPER 81-227) Copyright 

Early developments related to human excursions to Mars are 
examined, taking into account plans considered by von Braun. 
and the 'ambitious goal of a manned flight to Mars by the end of 
the century', proposed at the launch of Apollo 11. In response to 
public reaction, plans for manned flights to Mars in the immediate 
future were given up, and unmanned reconnaissance of Mars was 
continued. An investigation is conducted concerning the 
advantages of manned exploration of Mars in comparison to a 
study by unmanned space probes, and arguments regarding a 
justification for interplanetary flight to Mars are discussed. Attention 
is given to the possibility to consider Mars as a 'back-up' planet 
for preserving earth life, an international Mars expedition as a 
world peace project, the role of Mars in connection with resource 
utilization considerations, and questions of exploration ethics. 

G.R. 

A84-39228' 
THE PH-D PROPOSAL - A MANNED MISSION TO PHOBOS 
AND DEMOS 
S. F. SINGER IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. San Diego. CA. 
Univelt. Inc.. 1984, p. 39-65. 
(Contract NASA ORDER H-27272-8; NASA ORDER H-343115-8) 
(AAS PAPER 81-231) Copyright 

The rationale for a manned mission to the satellites of Mars is 
discussed. The view has been expressed that NASA must define 
a major program to follow the Shuttle and to utilize it. However, 
such a program could not be initiated and proceed without public 
support, and to obtain this support, public interest would have to 
be excited. It is shown that, of a number of possible targets for 
manned exploration in the solar system, Mars appears to be the 
only possible candidate. Attention is given to a comparison of 
three Mars missions, a Mars 1984 mission, a manned landing on 
Mars surface, a manned landing on Phobos and Deimos (Ph-D 
project), putting men in Mars orbit, the capabilities of the Ph-D 
mission, a description of the spacecraft, a Ph-D project operations 
plan, and aspects of timing, technology, and costs. G.R. 

A84-39236 
MANNED EXPLORATION OF MARS - THE ROLE OF SCIENCE 
J. A. CUTTS IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. Sen Diego, CA, 
Univelt, Inc., 1984, p. 191-106. 

It is pointed out that the unmanned exploration of Mars 
motivated purely by science is essentially over. However. the rebirth 
of a Mars program in a new form is expected to occur within a 
few years. This paper is concerned with the history of the Mars 
program, the benefits to be derived by science from the new 
program, and the role of unmanned precursor vehicles in manned 
exploration and settlement. The role of man in scientific exploration 

(AAS PAPER 81-242) Copyright 

of Mars is examined, taking into account scientific objectives at 
Mars, the methods of investigation, requirements of surface 
mobility, the role of in situ science vs sample return, the need for 
precursor orbiter, and research needs. The case for a manned 
presence on Mars is briefly considered. G.R. 

A84-39237 
CHEMISTRY OF THE MARTIAN SURFACE - RESOURCES FOR 
THE MANNED EXPLORATION OF MARS 
B. C. CLARK (Martin Marietta Planetary Sciences Laboratory, 
Denver, CO) IN: The case for Mars; Proceedings of the 
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA, 
Univelt, Inc.. 1984, p. 197-208. refs 
(AAS PAPER 81-243) Copyright 

It is pointed out that Mars is a bonanza in useable natural 
resources, while the moon is impoverished. For this reason, on 
Mars, many materials and equipment will be more economically 
manufactured on site than transported from earth. A survey of 
natural resources is conducted, taking into account water, carbon 
atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, Sulfur 
and chlorine atoms, mineral concentrates, and heavy elements. 
Questions regarding the processing of raw materials are discussed. 
Problems of purification are examined along with suitable 
approaches to manufacturing, and the employment of solar 
irradiance, geothermal heat, nuclear fission reactors, and wind 
power as energy sources. The utilization of the obtained products 
is also considered, giving attention to construction, construction 
materials, the need for blasting explosives, approaches for 
producing rocket fuel and rover fuel, and the growing of food on 
Mars. G.R. 

A84-39242 
A RETROSPECTIVE LOOK AT THE SOVIET UNION'S 
EFFORTS TO EXPLORE MARS 
S. 8. KRAMER (U.S. Department of Energy, Washington, DC) IN: 
The case for Mars; Proceedings of the Conference. Boulder, CO. 
April 29-May 2, 1981. San Diego, CA. Univelt, Inc., 1984. p. 
269-279. refs 
(AAS PAPER 81-250) Copyright 

The history of USSR missions to Mars is reviewed on the 
basis of published reports and analysis of Soviet press accounts. 
The fourteen launches of the period 1960-1973 which were 
intended to reach Mars orbit, impact, or flyby are examined 
individually, and the basic parameters are listed in a table. Despite 
some partial successes, the overall program is considered to have 
given very meager results for its costs, which are estimated at 
over $4 billion. T.K. 

ABS37171 
MARS - PATHWAY TO THE STARS 
J. A. ANGELO, JR. (Florida Institute of Technology, Melbourne, 
FL) and D. BUDEN (Los Alamos National Laboratory, Los Alamos, 
NM) IN: New opportunities in space; Proceedings of the 
Twenty-first Space Congress. Cocoa Beach, FL, April 24-26. 1984. 
Cape Canaveral, FL, Canaveral Council of Technical Societies, 
1984, p. 7-89 to 7-106. 
Copyright 

Mars has and will continue to play a key role in our exploration 
and conquest of the Solar System. Within the context of the creation 
of humanity's extraterrestrial civilization, the major technical 
features of the following Mars programs are reviewed: the Mars 
Geoscience/Climatology Orbiier; the Mars Aeronomy Orbiter; the 
Mars airplane; the Mars Penetrator Network; Mars surface rovers 
and mobility systems; human exploration of Mars; and permanent 
Martian bases and settlements. Mars properly explored and utilized 
opens the way to the resources of the asteroid belt and the outer 
planets; supports the creation of smart machines for space 
exploration and exploitation; and encourages the creation of 
autonomous niches of intelligent life within heliocentric space. All 
of these developments, in turn, establish the technological pathway 
for the first interstellar missions. Author 
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A8920748 
THE WAY TO MARS 
V. GLUSHKO (AN SSSR, Moscow, USSR), L. GORSHKOV (AN 
SSSR, Sovet Interkosmos, Moscow, USSR), and Y. SEMENOV 
Planetary Report (ISSN 0736-3680). vol. 8. Nov.-Dec. 1988, p. 
4-8. 
Copyright 

An article from the Soviet newspaper, Pravda, is presented, 
which discusses issues related to missions to Mars. The type of 
vehicle needed for a Martian mission is examined, including the 
propulsion system, construction of the vehicle in earth orbit, living 
quarters, safety considerations, and the landing vehicle. Options 
for the mission route and ways of returning to earth are considered. 
Also, a proposal for a three phase program leading up to a manned 
mission to Mars is outlined. R.B. 

A90-12667 
ENERGETIC IONS IN THE CLOSE ENVIRONMENT OF MARS 
AND PARTICLE SHADOWING BY THE PLANET 
V. AFONIN, K. GRINGAUZ (AN SSSR, lnstitut Kosmicheskikh 
Issledovanii, Moscow, USSR), S. MCKENNA-LAWLOR (Saint 
Patrick's College, Maynooth, Republic of Ireland), K. KECSKEMETY 
(Magyar Tudomanyos Akademia, Kozponti Fizikai Kutato Intezet, 
Budapest, Hungary), E. KEPPLER (Max-Planck-lnstitut fuer 
Aeronomie. Katlenburg-Lindau, Federal Republic of Germany) et 
al. Nature (ISSN 0028-0836), vol. 341, Oct. 19, 1989, p. 616-618. 
Research supported by the Irish National Board for Science and 
Technology and BMFT. refs 
Copyright 

The twin-telescope particledetector system, SLED, aboard 
Phobos 2 recorded flux enhancements in the range 30-350 keV 
in the same general location in the close environment of Mars, 
over eight days at about 900 km altitude in three successive 
elliptical orbits. Here, possible interpretations of these observations 
are presented. Energy-related particle shadowing by the body of 
Mars was also detected, and the data indicate that this effect 
occurred in less than 20 percent of the 114 circular orbits around 
Mars because of the nutation of the spacecraft. The influence of 
magnetic fields in allowing particles to reach the detector under 
potentially screened conditions is discussed. Author 

A90-16662' Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
MARS ROVER SAMPLE RETURN MISSION STUDY 
ROGER D. BOURKE (JPL, Pasadena, CA) IN: The case for 
Mars 111: Strategies for exploration - General interest and overview. 
San Diego. CA, Univelt, Inc., 1989. p. 231-244. 

The Mars Rover/Sample Return mission is examined as a 
Precursor to a manned mission to Mars. The value of precursor 
missions is noted, using the Apollo lunar program as an example. 
The scientific objectives of the Mars Rover/Sample Return mission 
are listed and the basic mission plans are described. Consideration 
is given to the options for mission design, launch configurations, 
rover construction. and entry and lander design. Also, the potential 
for international cooperation on the Mars Rover/Sample Return 
mission is discussed. R.B. 

( U S  PAPER 87-195) Copyright 

A90-16663. National Aeronautics and Space Administration. 
eodciarci Space Flight Center, Greenbelt, MD. 
AN AERONOMY MISSION TO INVESTIGATE THE ENTRY AND 
ORBITER ENVIRONMENT OF MARS 
LARRY H. BRACE (NASA, Goddard Space Flight Center, 
Greenbelt, MD) IN: The case for Mars 111: Strategies for exploration 
- General interest and overview. San Diego, CA, Univelt, InC., 
1989, p. 245-257. refs 

The need for an aeronomy mission to Mars as a precursor to 
a manned Mars mission is discussed. The upper atmosphere and 
radiation environment of Mars are reviewed, focusing on the 
implications of the Martian atmosphere for a manned mission. 
Plans for an aeronomy mission to Mars are described, including 

(AAS PAPER 87-196) Copyright 

the Mars Aeronomy Observer and the EarthfMars Aeronomy 
Orbiter. R.B. 

A90-16665 
SCIENTIFIC OBJECTIVES OF HUMAN EXPLORATION OF 
MARS 
MICHAEL H. CARR (USGS, Menlo Park, CA) IN: The case for 
Mars 111: Strategies for exploration - General interest and overview. 
San Diego, CA, Univelt, Inc., 1989, p. 267-275. refs 
(AAS PAPER 87-198) Copyright 

The scientific problems that could be addressed by human 
exploration of Mars are examined. Consideration is given to the 
origin and evolution of solid planets, the evolution of the 
atmosphere, and biological objectives such as searching for 
evidence of indigenous life. The methods that could be used to 
study these problems are discussed. R.B. 

A90-16666' 
Pasadena. 
THE ROLE OF CLIMATE STUDIES IN THE FUTURE 
EXPLORATION OF MARS 
RICHARD W. ZUREK and DANIEL J. MCCLEASE (JPL, Pasadena, 
CA) IN: The case for Mars 111: Strategies for exploration - General 
interest and overview. San Diego, CA, Univelt. Inc., 1989, p. 

Three major reasons for the continued study of the weather 
and climate of Mars are: (1) the engineering support of future 
unmanned and manned missions, including operations on the 
Martian surface, (2) the comparative study of the climates of earth 
and Mars, and (3) the perspective provided by understanding what 
Mars is really like now and how it got that way. Together, the 
suite of national and international missions to Mars currently in 
progress and in the advanced planning stages could provide a 
credible data base for addressing many outstanding climatic 
questions, as well as greatly improving current engineering models 
of the Mars atmosphere and surface. Author 

Jet Propulsion Lab., California Inst. of Tech., 

277-285. 
(AAS PAPER 87-199) Copyright 

A90-16680' 
Ames Research Center, Moffett Field, CA. 
MARS SOIL - A STERILE REGOLITH OR A MEDIUM FOR 
PLANT GROWTH? 
AMOS BANIN (NASA, Ames Research Center, Moffett Field; San 
Francisco State University, CA Jerusalem, Hebrew University, 
Rehovot, Israel) IN: The case for Mars 111: Strategies for exploration 
- General interest and overview. San Diego, CA, Univelt, Inc., 
1989, p. 559-571. Research supported by the Hebrew University 
of Jerusalem. refs 

The mineralogical composition and the physical, chemical and 
mechanical properties of the Mars soil have been the subject of 
a number of studies. Though definitive mineralogical measurements 
are lacking, elemental-chemical analyses and simulation 
experiments have indicated that clays are major components of 
the soil and that iron is present as adsorbed ion and as amorphous 
mineral coating the clay particles (Banin, 1986). Whether this soil 
can support plant growth or food production, utilizing conventional 
or advanced cultivational technologies, is a question that has not 
been thoroughly analyzed, but may be of importance and usefulness 
!or !he !~ !se  expbrPticn o! Mars. Assuming !ha! !he proposed 
model of Mars soil components is valid, and drawing additional 
information from the analyses of the SNC meteorites believed to 
be ejected Mars rocks - the present contribution analyzes and 
evaluates the suitability of the soil as a medium for plant growth, 
attempting to identify the most critical limiting factors for such an 
undertaking and the possible remedies. Author 

National Aeronautics and Space Administration. 

(AAS PAPER 87-215) Copyright 

A90-47527' Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
A GOAL AND STRATEGY FOR HUMAN EXPLORATION OF 
THE MOON AND MARS 
DONNA SHIRLEY PlVlROTTO (JPL, Pasadena, CA) Space Policy 
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(ISSN 0265-9646), vol. 6, Aug. 1990, p. 195-208. refs 
Copyright 

Eventual settlement of the solar system, beginning with the 
moon and Mars, is proposed, and a strategy for the exploration 
of and initial settlement of the moon and Mars, based on the 
model of European settlement of the Americas, is discussed. 
Strategies suggest an allocation of functions between humans and 
telerobots to conduct the exploration and initial settlement. 

L.K.S. 

A90-48738 
OF MARTIAN ATMOSPHERES, OCEANS, AND FOSSILS 
H. L. HELFER (C.E. Kenneth Mees Observatory, Rochester, NY) 
lcarus (ISSN 0019-1035), vol. 87, Sept. 1990, p. 228-235. refs 
Copyright 

A scenario is presently developed in which a substantial 
resemblance between Martian conditions up to 1.5 Gyr ago and 
those of the ancient earth led to the development of rudimentary 
life in Mars, in stages and on timescales that may be broadly 
comparable to terrestrial ones. The warm Martian oceans would 
give rise to both aerobic and anaerobic photosynthesizing 
prokaryotes, as well as such structures as stromatolites, which 
could in due course have transformed the Martian atmosphere as 
profoundly as those on earth. It is anticipated that the fossil remains 
of these rudimentary organisms can be found along the fringes of 
the ancient Martian oceans, which currently take the form of 
northern lowland plains. O.C. 

A90-48751 
INTERNATIONAL CONFERENCE ON MARS, 4TH, TUCSON, 
Az, JAN. 10-13, 1989, PROCEEDINGS 
BRUCE M. JAKOSKY. ED. (Colorado, University, Boulder) 
Conference sponsored by the American Geophysical Union and 
Geological Society of America. Journal of Geophysical Research 
(ISSN 0148-0227), vol. 95, Aug. 30, 1990, 766 p. For individual 
items see A90-48752 to A90-48804. 
Copyright 

Topics discussed included early history and solid-body 
geophysics; bedrock geology; surficial geology and 
surface-atmosphere interactions; climate, atmosphere, and volatile 
system; and the upper atmosphere, magnetosphere, and solar-wind 
interactions. Papers were presented on thermal history of Mars 
and the sulfur content of its core; the rigid body obliquity history 
of Mars; constraints on early events in Martian history as derived 
from the cratering record; the nature of the mantling deposit in 
the heavily cratered terrain of northeastern Arabia, Mars; and the 
flank tectonics of Martian volcanoes. Attention is also given to 
the origins of Marslike spectral and magnetic properties of a 
Hawaiian palagonitic soil, an assessment of the meteoritic 
contribution to the Martian soil, observations of Martian surface 
winds at the Viking Lander 1 site, variations of Mars gravitational 
field and rotation due to seasonal C02 exchange, and plasma 
observations of the solar wind interaction with Mars. I.S. 

A90-48783' Hawaii Univ.. Honolulu. 

MODELS 
AARON P. ZENT, FRASER P. FANALE (Hawaii, University, 
Honolulu), and LADISLAV E. ROTH (JPL, Pasadena, CA) Journal 
of Geophysical Research (ISSN 0148-02271, vol. 95, Aug. 30, 1990, 
p. 14531-14542. refs 
(Contract NGT-50104; NAGW-538) 
Copyright 

The 1971 and 1973 Goldstone 12.6-cm radar Observations of 
Mars are separate data sets which include reflectivity as a function 
of latitude, longitude, and season. It has been argued that secular 
r e f l e c t i  variations of Mars' Surface are indicated by the data 
and that shallow subsurface melting is the causal mechanism most 
compatible with the observations; however, the melting hypothesis 
conflicts with accepted notions of the state and distribution of 
water on Mars. The data are examined to identify temporal and 
spatial domains within which statistically significant changes in 
measured reflectivity are clustered. Brines which might satisfy the 

POSSIBLE MARTIAN BRINES - RADAR OBSERVATIONS AND 

best supported reflectivity variations are out of equilibrium with 
the chemical megaenvironment. It is unclear whether such a brine, 
if emplaced in the Martian regolith at a depth shallow enough to 
affect the radar reflectivity, could survive even a single freeze-thaw 
cycle. Some combination of unique scattering properties or some 
as yet unidentified process other than melting is responsible for 
any genuine reflectivity variations. Author 

A90-48785' Washington Univ., Seattle. 
OBSERVATIONS OF MARTIAN SURFACE WINDS AT THE 
VIKING LANDER 1 SITE 
JAMES R. MURPHY, CONWAY B. LEOVY, and JAMES E. 
TILLMAN (Washington, University, Seattle) Journal of Geophysical 
Research (ISSN 0148-0227), vol. 95, Aug. 30, 1990, p. 
14555-14576. refs 

Copyright 
Martian surface winds at the Viking Lander 1 have been 

reconstructed using signals from partially failed wind 
instrumentation. Winds during early summer were controlled by 
regional topography, and then underwent a transition to a regime 
controlled by the Hadley circulation. Diurnal wind oscillations were 
controlled primarily by regional topography and boundary layer 
forcing, although a global mode may have been influencing them 
during two brief episodes. Semidiurnal wind oscillations were 
controlled by the westward-propagating semidiurnal tide from sol 
210 onward. Comparison of the synoptic variations at the two 
sites suggests that the same eastward propagating wave trains 
were present at both sites. C.D. 

(Contract NSG-7085; NAGW-1341; NAG9-243) 

A90-48789' Washington Univ., Seattle. 
NUMERICAL SIMULATIONS OF THE DECAY OF MARTIAN 
GLOBAL DUST STORMS 
JAMES R. MURPHY (Washington, University, Seattle), OWEN B. 
TOON, ROBERT M. HABERLE, and JAMES B. POLIACK (NASA. 
Ames Research Center, Moffett Field, CA) Journal of Geophysical 
Research (ISSN 0148-0227). vol. 95. Aug. 30, 1990, p. 
14629-14648. refs 
(Contract NGT-50231) 
Copyright 

The decay of Martian global (great) dust storms is investigated. 
One-dimensional (vertical, static atmosphere) and two-dimensional 
(latitude-height, steady state circulation) simulations carried out 
with an aerosol transport-microphysical model indicate that 
atmospheric motions play a significant role in the observed decay 
of global dust storms. Spacecraft observations (Mariner 9, Viking) 
of the 1971 and the two 1977 planet-encircling dust storms have 
provided suggestions about some characteristics of storm decay. 
Specifically, the dust particle size distribution is inferred to have 
remained essentially unchanged for particles with radii between 1 
and 10 microns during decay of the 1971 storm, and surface 
visible opacity declined quasi-exponentially with time in northern 
midlatitudes during the decay of the two 1977 storms. The results 
from this investigation indicate that two- and three-dimensional 
dynamical processes play a significant role the observed decay 
features of Martian global dust storms. The most important 
processes are the lofting of dust by vertical motions in the dust 
source region of the Southern Hemisphere subtropics and a 
continuing advective resupply of atmospheric dust into the dust 
sink regions of the Northern Hemisphere. This work has implications 
for Viking data analyses and future Mars observer observations 
and requires that the particle size distribution be treated as a 
time and latitude dependent quantity. Author 

A90-48791 
METEOROLOGICAL SURVEY OF MARS, 1969 - 1984 
JEFFREY D. BElSH (U.S. Naval Observatory. Miami, FL) and 
DONALD C. PARKER (Association of Lunar and Planetary 
Observers; Institute for Planetary Research Observatories, Miami, 
F L) Journal of Geophysical Research (ISSN 0148-0227), vol. 
95, Aug. 30, 1990, p. 14657-14675. Research supported by the 
Institute for Planetary Research Observatories. 
Copyright 

refs 

26 



91 LUNAR AND PLANETARY EXPLORATION 

Results of a survey of Martian blue, blue-white, white, and 
dust clouds contained in the observational archives of the 
Association of Lunar and Planetary Observers and in the personal 
files of the late C.F. Capen, Jr. are presented. A statistical analysis 
of data extracted from the records of 9650 visual and photographic 
observations of Mars made from 1969 through 1984 has been 
performed. Seasonal frequencies and trend analyses for each type 
of observed Martian meteorology are presented. Author 

A90-48792' Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
ICE HAZE, SNOW, AND THE MARS WATER CYCLE 
RALPH KAHN (JPL. Pasadena, CA) Journal of Geophysical 
Research (ISSN 0146-0227). vol. 95, Aug. 30. 1990, p. 
14677-14693. refs 
(Contract NAGW-660) 
Copyright 

Light curves and extinction profiles derived from Martian limb 
observations are used to constrain the atmospheric temperature 
structure in regions of the atmosphere with thin haze and to analyze 
the haze particle properties and atmospheric eddy mixing. 
Temperature between 170 and 190 K are obtained for three cases 
at levels in the atmosphere ranging from 20 to 50 km. Eddy 
diffusion coefficients around 100,000 sq cm/s, typical of a 
nonconvecting atmosphere, are derived in the haze regions at 
times when the atmosphere is relatively clear of dust. This 
parameter apparently changes by more than three orders of 
magnitude with season and local conditions. The derived particle 
size parameter varies systematically by more than an order of 
magnitude with condensation level, in such a way that the 
characteristic fall time is always about one Martian day. Ice hazes 
provide a mechanism for scavenging water vapor in the thin Mars 
atmosphere and may play a key role in the seasonal cycle of 
water on Mars. C.D. 

A90-48797'# 
Goddard Space Flight Center, Greenbelt, MD. 
VARIATIONS OF MARS GRAVITATIONAL FIELD AND 
ROTATION DUETOSEASONALC02EXCHANGE 
B. FONG CHAO and DAVID PARRY RUBINCAM (NASA, Goddard 
Space Flight Center, Greenbelt, MD) Journal of Geophysical 
Research (ISSN 0148-0227), vol. 95, Aug. 30, 1990, p. 
14755-14760. refs 

About a quarter of the Martian atmospheric mass is exchanged 
between the atmosphere and the polar caps in the course of a 
Martian year: C02 condenses to form (or add to) the polar caps 
in winter and sublimes into the atmosphere in summer. This paper 
studies the effect of this C02 mass redistribution on Martian rotation 
and gravitational field. Two mechanisms are examined: (1) the 
waxing and waning of solid C02 in the polar caps and (2) the 
geographical distribution of gaseous C02 in the atmosphere. In 
particular, the net peak-to-peak changes in J2 and J3 over a 
Martian year are both found to be as much as about 6 x 10 to 
the -9th. A simulation suggests that these changes may be detected 
by the upcoming Mars Observer under favorable but realistic 
conditions. Author 

A90-48798' Michigan Univ., Ann Arbor. 
A NUMERICAL SIMULATION OF CLIMATE CHANGES DURING 
THE OBLIQUITY CYCLE ON MARS 
L. M. FRANCOIS, J. C. G. WALKER, and W. R. KUHN (Michigan, 
University, Ann Arbor) Journal of Geophysical Research (ISSN 
0148-0227). vol. 95, Aug. 30, 1990, p. 14761-14778. refs 
(Contract NAGW-176) 

A one-dimensional seasonal energy balance climate model of 
the Martian surface is developed. The model shows the importance 
of using short-period diurnal and seasonal variations of solar 
irradiance instead of yearly-averaged quantities. The roles of 
meridional heat transport and greenhouse warming are shown to 
be important. The possible existence of hysteresis cycles in the 
formation and sublimation of permanent deposits during the course 
of the obliquity cycle is demonstrated. C.D. 

National Aeronautics and Space Administration. 
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A91-10160'# Jet Propulsion Lab., California Inst. of Tech., 
Pasadena. 
GEOLOGIC EXPLORATION OF MARS 
J. B. PLESCIA (JPL, Pasadena, CA) AIAA, Space Programs and 
Technologies Conference, Huntsville, AL, Sept. 25-27, 1990. 
10 p. 
(AIAA PAPER 90-3802) Copyright 

The scientific objectives and methods involved in a geologic 
exploration of Mars from a manned outpost are discussed. The 
constraints on outpost activities imposed by the limited crew size, 
limited amount of time available for science, the limited diversity 
of scientific expertise, and the competition between scientific 
disciplines are addressed. Three examples of possible outpost 
locations are examined: the Olympus Mons aureole, Mangala 
Valles/Daedalia Planum, and Candor Chasma. The geologic work 
that could be done at each site is pointed out. C.D. 

A91-10161'# Colorado Univ., Boulder. 

AVAILABILITY 
BRUCE M. JAKOSKY (Colorado, University, Boulder) AIAA. Space 
Programs and Technologies Conference, Huntsville, AL, Sept. 
25-27, 1990. 9 p. refs 
(Contract NAGW-552) 
(A IM PAPER 90-3803) Copyright 

An attempt is made to define the available deposits of water 
in the near-surface region of Mars which will be available to human 
exploration missions. The Martian seasonal water cycle is reviewed, 
and geochemical and geological constraints on the availability of 
water are examined. It is concluded that the only sure source of 
water in amounts significant as a resource are in the polar ice 
deposits. C.D. 

WATER ON MARS - VOLATILE HISTORY AND RESOURCE 

A91-10162'# 
Pasadena. 
MARTIAN WEATHER AND CLIMATE IN THE 21ST CENTURY 
RICHARD W. ZUREK (JPL, Pasadena, CA) AIAA, Space Programs 
and Technologies Conference, Huntsville, AL, Sept. 25-27, 1990. 
9 p. refs 

The historical interest in the weather and climate of Mars and 
current understanding of aspects of the present climate are 
addressed. Scientific research into the weather and climate of 
Mars in the next century is examined. The impact of the Martian 
weather of the 21st century on humans that may then be inhabiting 
the planet is considered. C.D. 

Jet Propulsion Lab., California Inst. of Tech., 
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A91-19130# 
WNATELLO - A PROPOSED MARS EXPLORATION 
INITIATIVE FOR THE YEAR 2050 
JOHN G. VANDEGRIFT and BRIAN H. KENDALL (Texas A 8 M 
University, College Station) AIAA, Aerospace Sciences Meeting, 
29th. Reno, NV, Jan. 7-10, 1991. 12 p. refs 

This paper presents a conceptual design for a futuristic 
superfreighter which will transport large numbers of people and 
supplies to Mars for the construction of a large-scale scientific 
and manufacturing complex. Code named Project Donatello, the 
freighter will be assembled at the first libration point (Ll) of the 

vehicles from earth and from OTVs from the large-scale lunar 
base. Donatello will utilize an antimatter propulsion system to 
reduce Mars trip time and fuel mass requirements. On arrival at 
Mars, two smaller transfer ships will carry boxcar-sized payload 
canisters into the Martian atmosphere and to the vicinity of the 
existing Mars outpost. The vehicles will also have VTOL capabilities 
when transporting fuselage canisters containing the Mars base 
personnel. Author 

(AIAA PAPER 91-0089) Copyright 
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J. R. FRENCH Spaceflight (ISSN 0038-6340), vol. 33, Feb. 1991, 
p. 62-66. refs 
Copyright 

The topics of space transport to Mars, and surface transport 
and surface operations on Mars are discussed in detail and new 
options for accomplishing these activities are presented. The 
question of maximizing the return on the investment in a Mars 
mission is addressed. One way to accomplish this is through 
reduction of propellant requirements by increasing the performance 
of the rocket engine, while another option is to make use of 
nuclear fuel. A technique discussed in detail would provide a means 
to manufacture fuel from Martian resources for both the return 
trip and for Mars surface exploration. Options for Mars surface 
transport include battery and nuclear powered rovers, solar 
powered automobiles, and either battery, nuclear or 
Mars-generated-propellant-powered aircraft specially designed to 
explore the Martian surface. The advantages and disadvantages 
of each of these options are considered, and the usefulness of a 
manned aircraft for both exploration and surface operational 
functions is discussed. L.K.S. 

A91-27649' 
Langley Research Center, Hampton, VA. 
IONIZING PROGRAM ENVIRONMENT AT THE MARS 
SURFACE 
LISA C. SIMONSEN. JOHN E. NEALY, LAWRENCE W. 
TOWNSEND, and JOHN W. WILSON (NASA, Langley Research 
Center, Hampton, VA) IN: Engineering, construction, and 
operations in space II; Proceedings of Space 90, the Second 
International Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 
1. New York, American Society of Civil Engineers, 1990, p. 
748-758. refs 
Copyright 

The Langley cosmic ray transport code and the Langley nucleon 
transport code are used to quantify the transport and attenuation 
of galactic cosmic rays and solar proton flares through the Martian 
atmosphere. Surface doses are estimated using both a low-density 
and a high-density carbon dioxide model of the atmosphere which, 
in the vertical direction, provide a total of 16 g/sq cm and 22 
g/sq cm of protection, respectively. At the Mars surface during 
the solar minimum cycle, a blood-forming organ (BFO) 
dose-equivalent of 10.5 to 12 remlyr due to galactic cosmic ray 
transport and attenuation is calculated. Estimates of the BFO 
dose-equivalents which would have been incurred at the surface 
from three large solar flare events are also calculated. Doses are 
also estimated at altitudes up to 12 km above the Martian surface 
where the atmosphere will provide less total protection. Author 

A9l-29587 California Inst. of Tech., Pasadena. 
PRELIMINARY ASSESSMENT OF TERMOSKAN 
OBSERVATIONS OF MARS 
B. MURRAY, B. H. BETTS, T. SVITEK (California Institute of 
Technology, Pasadena), M. K. NARAEVA, A. S. SELIVANOV 
(Institute for Space Devices, Moscow, USSR), D. CRISP, T. 2. 
MARTIN (JPL. Pasadena, CA) et 81. (Colloquium on Phobos-Mars 
Mission, Paris, France, Oct. 23-27, 1989, Proceedings. A91 -29558 
11-91) Planetary and Space Science (ISSN 0032-0633), vol. 39, 
Jan.-Feb. 1991, p. 237-265. refs 
(Contract NAGW-1426) 

The limited set of high-resolution observations of the 8-1 2 
micron thermal emission from Mars' equatorial regions by the 
Termoskan instrument onboard the Phobos '88 spacecraft in 
February and March of 1880 is considered. Observations were 
also simultaneously acquired In the 0.5 to 1.0 micron region. A 
combined U.S. and Soviet scientific team made a preliminary 
quantitative evaluation of about 25 percent of the entire data set. 
It is found that there is a close agreement with the Viking Infrared 
Thermal Mapper brightness temperatures, confirming the accuracy 
of the Termoskan system and calibration. A novel pattern of 
emission from particles was observed in the morning and assumed 
to be water or ice. Thermal emission from surface features is 
varied and distinct down to the limit of resolution. The presence 

National Aeronautics and Space Administration. 

Copyright 

of unusually insulating material has been detected in the uppermost 
fraction of a millimeter of the Martian surface in places where the 
shadow of Phobos briefly eclipsed by the surface. L.K.S. 

N90-15028'# Texas Univ., Austin. Dept. of Aerospace 
Engineering and Engineering Mechanics. 
M.I.N.G., MARS INVESTMENT FOR A NEW GENERATION: 
ROBOTIC CONSTRUCTION OF A PERMANENTLY MANNED 
MARS BASE Final Report 
JEFF AMOS, RANDY BEEMAN, SUSAN BROWN, JOHN 
CALHOUN, JOHN HILL, LARK HOWORTH, CLAY MCFADEN. 
PAUL NGUYEN, PHILIP REID, STUART REXRODE et al. 1 May 
1989 124 p 
(Contract NASW-4435) 
(NASA-CR-186224; NAS 1.26:186224) Avail: NTlS HC AO6/MF 
A01 CSCLO3B 

A basic procedure for robotically constructing a manned Mars 
base is outlined. The research procedure was divided into three 
areas: environment, robotics, and habitat. The base as designed 
will consist of these components: two power plants, communication 
facilities, a habitat complex, and a hanger, a garage, recreation 
and manufacturing facilities. The power plants will be self-contained 
nuclear fission reactors placed approx. 1 km from the base for 
safety considerations. The base communication system will use a 
combination of orbiting satellites and surface relay stations. This 
system is necessary for robotic contact with Phobos and any future 
communication requirements. The habitat complex will consist of 
six self-contained modules: core, biosphere, science, living quarters, 
galleyktorage, and a sick bay which will be brought from Phobos. 
The complex will be set into an excavated hole and covered with 
approximately 0.5 m of sandbags to provide radiation protection 
for the astronauts. The recreation, hangar, garage, and 
manufacturing facilities will each be transformed from the four 
one-way landers. The complete complex will be built by 
autonomous, artificially intelligent robots. Robots incorporated into 
the design are as follows: Large Modular Construction Robots 
with detachable arms capable of large scale construction activities; 
Small Maneuverable Robotic Servicers capable of performing 
delicate tasks normally requiring a suited astronaut; and a trailer 
vehicle with modular type attachments to complete specific tasks; 
and finally, Mobile Autonomous Rechargeable Transporters capable 
Of transferring air and water from the manufacturing facility to the 
habitat complex. Author 

N90-21709# Lawrence Livermore National Lab., CA. Special 
Studies Program. 
MARS IN THIS CENTURY THE OLYMPIA PROJECT 
RODERICK A. HYDE, MURIEL Y. ISHIKAWA, and LOWELL L. 
WOOD 1988 17 p Presented at the 4th National Space 
Symposium, Colorado Springs, CO. 12-15 Apr. 1988 
(Contract W-7405-ENG-48) 
(DE90-008356; UCRL-98567; CONF-8804105-2) Avail: NTlS HC 
A03/MF A01 

Manned exploration of the inner solar system, typified by a 
manned expedition of Mars, this side of the indefinite future involves 
fitting a technical peg into the political hole. If Apollo-level resources 
are assumed unavailable for such exploratory programs, then 
non-Apollo means and methods must be employed, involving 
greater technical and human risks, or else such exploration must 
be deferred indefinitely. Sketched here is an example of such a 
relatively high risk alternative, one which could land men on Mars 
in the next decade, and return them to earth. Two of its key 
features are a teleoperated rocket fuel generating facility on the 
lunar surface and an interplanetary mission staging space station 
at L(sub 4), which would serve to enable a continuing solar system 
exploratory program, with annual mission commencements to 
points as distant as the Jovian moons. The estimated cost to 
execute this infrastructure building manned Mars mission is $3 
billion, with follow on missions estimated to cost no more than $1 
billion each. DOE 
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N91-20615'# 
Lewis Research Center, Cleveland, OH. 
CHEMICAL APPROACHES TO CARBON DIOXIDE 
UTILIZATION FOR MANNED MARS MISSIONS 
ALOYSIUS F. HEPP. GEOFFREY A. LANDIS, and CLIFFORD P. 
KUBIAK (Purdue Univ., West Lafayette, IN.) 1991 22 p 
Presented at the 2nd Annual Symposium of the UAINASA Space 
Engineering Research Center, Tucson, AZ, 7-10 Jan. 1991 
(Contract NAS3-25266) 
(NASA-TM-103728; E-5962; NAS 1.1 5:103728) Avail: NTlS 
HC/MF A03 CSCL 038 

Use of resources available in situ is a critical enabling technology 
for a permanent human presence in space. A permanent presence 
on Mars, e.g., requires a large infrastructure to sustain life under 
hostile conditions. As a resource on Mars, atmospheric C02 is as 
follows: abundant; available at all points on the surface; of known 
presence; chemically simple; and can be obtained by simple 
compression. Many studies focus on obtaining 0 2  and the various 
uses for 0 2  including life support and fuel; discussion of CO, the 
coproduct from C02 fixation revolves around its uses as a fuel, 
being oxidized back to C02. Several new proposals are studied 
for C02 fixation through chemical, photochemical, and 
photoelectrochemical means. For example, the reduction of C02 
to hydrocarbons such as acetylene (C2H2) can be accomplished 
with H2. C2H2 has a theoretical vacuum specific impulse of approx. 
375 secs. Potential uses were also studied of C02, as obtained 
or further reduced to carbon, as a reducing agent in metal oxide 
processing to torrn metals or metal carbides for use as structural 
or power materials; the C02 can be recycled to generate 0 2  and 
co. Author 
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FEDERAL DEPOSITORY LIBRARY PROGRAM 
In order to provide the general public with greater access to US. Government publications, Congress 
established the Federal Depository Library Program under the Government Printing Off ice (GPO), 
with 51 regional depositories responsible for permanent retention of material, inter-library loan, and 
reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either 
in printed or microfiche format, is received and retained by the 51 regional depositories. A list of the 
regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These 
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