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SUMMARY

A time-domain finite element method is developed for optimal control prob-

lems. The theory derived is general enough to handle a large class of problems

including optimal control problems that are continuous in the states and controls,

problems with discontinuities in the states and/or system equations, problems with

control inequality constraints, problems with state inequality constraints, or prob-

lems involving any combination of the above. The theory is developed in such a way

that no numerical quadrature is necessary regardless of the degree of nonlinearity

in the equations. Also, the same shape functions may be employed for every prob-

lem because all strong boundary conditions are transformed into natural or weak

boundary conditions. In addition, the resulting nonlinear algebraic equations are

very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution

of very difficult optimization problems. The formulation is applied to launch-vehicle

trajectory optimization problems, and results show that real-time optimal guidance

is realizable with this method. Finally, a general problem solving environment is

created for solving a large class of optimal control problems. The algorithm uses

both FORTRAN and a symbolic computation program to solve problems with a

minimum of user interaction. The use of symbolic computation eliminates the need

for user-written subroutines which greatly reduces the setup time for solving prob-

lems.

xii



CHAPTER 1

INTRODUCTION

The calculus of variations was born at the very end of the seventeenth century

through the work of such great mathematicians as Newton and Leibniz. With

the birth of the calculus of variations came optimal control theory for continuous

systems. The newly discovered methods of differential calculus were used at once to

solve many important and practical maximum and minimum problems. The first

optimization problem solved by the calculus of variations was set up and solved

by Newton in 1686. The problem, of interest to aerospace engineers even today,

was to choose a nose shape for minimum drag in hypersonic flow [1]. Another

optimization problem was presented by John Bernoulli in 1696. Bernoulli posed

the classical brachistochrone problem defined as: Among all lines connecting two

given points, find the curve traversed in the shortest time by a material body under

the influence of gravity [2]. This problem was solved independently by John and

James Bernoulli, L'H6pital, Leibniz, and Newton. For years, work was done on

solving separate variational problems. However, the tremendous intellectual feat

of creating a single method for solving variational problems belongs to the great

Swiss mathematician Leonhard Euler. At the astonishingly young age of 25, Euler

published his work "General Solution of the Isoperimetric Problem Taken in Its

Most General Sense" [3].

Since the birth of the calculus of variations, optimization problems have been

a topic of research. The optimal control problem of interest in this thesis may

be described as follows. Consider a system that is completely defined by a finite



number of states, i.e., quantities that describe the current status of the system.

The status of the system is determined by a set of first-order ordinary differential

equations. The states are influenced by a finite number of control variables. The

optimization problem is to choose the control variables to satisfy the given boundary

conditions while minimizing (or maximizing) a given performance index, or cost

functional. Use of the calculus of variations results in a multi-point boundary-value

problem. Unfortunately, not many analytical solutions to these types of optimal

control problems have been found beyond that which the great minds of the 17 th

and 18 *h centuries solved. However, the appearance of practical, high-speed digital

computers in the 1950's revolutionized the field of optimal control. Computers and

numerous numerical methods are now the tools for dealing with the nonlinear and

complex systems of today. Still, with the ever-increasing attention given both space

exploration and space travel, even more reliable and efficient numerical methods

are required. This thesis deals with a new type of numerical method based on finite

elements in time for solving optimal control problems. Particular emphasis is given

to the computation of optimal trajectories for advanced launch vehicles.

1.1. Background

If the United States is to maintain its position as a world leader among space-

faring nations, then cheaper and more reliable means for transporting people and

cargo to and from space must be developed. The current Space Shuttle, as tech-

nically successful as it is, will not meet all the future needs of the United States.

Studies indicate that the projected transportation needs will be best served by a

mix of expendable and reusable vehicles. Specifically, the functions of one-way cargo

transport to orbit and two-way passenger transport should be separated [4].

The Air Force turned to industry in May of 1987 to help meet the goals of the

advanced launch system (ALS) program. The goals of the ALS program are to (1)

place large payloads (in excess of 100,000 pounds) into low Earth orbit and at an

order of magnitude lower cost per pound, and (2) make space launch operations,
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including the manufacturing, processing, and actual launch of booster vehicles,

significantly more routine comparedto present methods and procedures[5].

Currently, an extensiveamount of ground support (typically weeks)is required

to prepare the guidancesystem of the SpaceShuttle for launch. To meet the oper-

ational requirementsof the ALS program, ground support for pre-mission activities

must be drastically reduced. On-board algorithms must maximize system perfor-

manceas measuredby autonomy, missionflexibility, in-flight adaptability, reliabil-

ity, accuracy, and payload capacity. For real-time trajectory optimization to be

realizable, the algorithms must be computationally efficient, robust, self-starting,

and capableof functioning independentlyof ground control. Furthermore, the algo-

rithms must be designedwith the anticipation that the launch vehicle will undergo

evolutionary growth [6].

On-board, real-time trajectory optimization algorithms are required to meet

the needsof the ALS program. Such algorithms promise to (1) reduce the cost

of designing flight profiles, (2) reduce the time required to respond to changed

payload or missionrequirements,and (3) improve vehicleperformance. The diverse

mission requirementsof a general-purposelaunch vehicle requirenew approachesto

trajectory optimization. This work, conducted under NASA Grant NAG-I-939 of

which Dr. Daniel D. Moerder is the technical monitor, was chiefly concernedwith

the developmentof a method for calculating optimal trajectories of theseadvanced

launch vehicles.

1.2. Previous Work

There are scores of methods available for solving optimal control problems.

The method chosen is dependent upon, among other things, the type of problem to

be solved and the resources (in terms of both software and money) available to the

user. This section will give a brief outline of some of the methods now being used

to solve optimal control problems.
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1.2.1. The LQ Problem

One type of problem considered frequently is one in which the system is defined

by a set of linear differential equations while the performance index is a quadratic

functional. This is the so-called LQ (linear-quadratic) problem. Over the past

twenty years, a new technique has been established for the solution of LQ prob-

lems using orthogonal functions. The main characteristic of this technique is that

the differential equations involved in the problem are reduced to algebraic equa-

tions, thus greatly simplifying the problem solution. The technique calls for the

differential equations to first be converted to integral equations. Subsequently, the

various unknowns involved in the integral equation are approximated by truncated

orthogonal series. The key idea of this technique is to derive an integral operational

matrix to convert integral expressions into algebraic equations. The form of the

operational matrix is dependent upon the choice of orthogonal functions used. Var-

ious functions have been used to parameterize the system including Walsh functions

[7, 8], block-pulse functions [9, 10], Chebychev functions [11], Hermite series [12],

polynomial series basis vectors [13, 14], and Legendre polynomials [15].

Another approach to LQ problems is presented in [16]. The method transforms

the canonical equations to a set of algebraic equations and allows approximating

functions that need not satisfy the initial conditions a priori. This enlarges the

space from which the approximating functions can be chosen. Furthermore, a La-

grange multiplier technique is used to enforce the terminal conditions on the states.

Orthogonal polynomials are then used to solve the LQ problem. The idea of setting

up approximating functions that do not need to satisfy boundary conditions is one

of the key ideas in this current work, as will be seen in Chapter 2.

1.2.2. The Nonlinear Problem

Methods available for the solution of optimal control problems generally fall

into two distinct categories: direct and indirect. Direct techniques seek to directly



minimize the performance index, or cost functional, by prudent choices of the free

parameters in the system. Indirect techniques, on the other hand, seek to minimize

the performance index indirectly by satisfying the first-order necessary conditions

for optimality as established from the calculus of variations.

The direct approach to the solution of optimal control problems first requires

parameterization of the control and state time histories. The choice of parameteri-

zation schemes is not unique and success of the direct methods has been achieved

using Hermite polynomials [17], Chebychev polynomials [18, 19], single-term Walsh

series [20], splines [21], and the like.

Once the parameterization scheme is chosen, a parameter optimization algo-

rithm is then used to improve the initial guess of the free parameters. These algo-

rithms are in common use today and include variable metric techniques or quasi-

newton methods [22] and variations on gradient methods. Gradient methods [1,

23] were developed to surmount the "initial guess" difficulty associated with other

methods such as Newton-Raphson. They are characterized by iterative algorithms

for improving estimates of the control histories, in order to come closer to satis-

fying the optimality conditions and the boundary conditions. First-order gradient

methods usually show rapid improvements when sufficiently far from the optimal

solution. However, the rate of convergence drastically decreases in the neighbor-

hood of the solution. Second-order gradient methods have excellent convergence

characteristics near the optimal solution, similar to a Newton-Raphson method.

Conjugate gradient methods are very powerful because they combine the first-order

and second-order gradient methods. Ref. [24] contains a thorough description of

the gradient method and many other algorithmic methods in optimal control. It is

noted that direct methods have been successfully used to solve trajectory optimiza-

tion problems [17, 18, 25, 26].

The indirect approach to the solution of optimal control problems attempts to

satisfy the necessary conditions of optimality as derived from the calculus of varia-

tions. These conditions result in multi-point boundary-value problems. Analytical
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solutions to such problems are generally unobtainable except for the simplest of

problems. Therefore, numerical methods are usually employed.

The two main techniques for solving nonlinear multi-point boundary-value

problems are shooting methods and quasilinearization methods. Shooting meth-

ods [27, 28, 29] are frequently used and can be described as follows: The initial

conditions and the differential equations are satisfied at each stage of the process

while the final conditions are sacrificed somewhat. A nominal solution is generated

by guessing the missing initial conditions and forward integrating the differential

equations. The intent is to reduce the error in the final conditions at each itera-

tion. Quasilinearization techniques [1, 30] involve choosing nominal functions for

the states and costates that satisfy as many of the boundary conditions as possible.

The control is then found by using the optimality conditions. The system equations

and costate equations are then linearized about the nominal values and a succession

of nonhomogeneous, linear two-point boundary value problems are solved to modify

the solution until the desired accuracy is obtained. Other indirect techniques in-

clude the method of adjoints, Newton-Raphson methods, and continuation methods

[31, 32, 33]

1.2.3. Finite Element Methods

Finite element methods, which include the Rayleigh-Ritz and Galerkin methods

[21], as well as the method of collocation have been used to solve optimal control

problems [34]. Ref. [35] appears to be one of the first papers using finite elements

to solve optimal control problems. Therein, the authors considered the application

of a modified Ritz-Trefftz direct method to the so-called state regulator control

problem. This is an LQ problem and the method leads to an approximation of the

performance index of order h 7 where h is the time step involved. The modified Ritz-

Trefftz method used in [35] was later extended to include problems with terminal

conditions on the states [36]. Other examples of the use of the Ritz method can be

found in [37] and [38]. An application of the collocation method is found in [17].

6



Only afew of thesepapersare listed herebecausethesemethods, although very

accurate and useful, sufferfrom the samecomputational problems. Thesemethods

require that the approximating functions satisfy all the strong boundary conditions.

Thus, in practice, certain equations are eliminated depending on the boundary

conditions present for a particular problem. Another drawbackof thesemethods is

that numerical quadrature is required. This can introduce error and greatly increase

the computational effort required to solve a problem. The finite element method

describedin this thesisavoidsthesetwo pitfalls, yielding a computationally efficient

and versatile algorithm.

1.2.4. General Programs

In closing this section, a few of the commercially available programs for solving

optimal control problems are mentioned. The first three programs mentioned are

general-purpose problem solvers, whereas the last two are particularly designed to

optimize point-mass trajectories.

The Chebychev Trajectory Optimization Program (CTOP) has been found to

be useful in a wide variety of practical applications [18]. This program uses a direct

technique for solving problems and parameterizes the functions using Chebychev

polynomials. Penalty functions are used to enforce the equations of motion and

path constraints. The Nonlinear Programming for Direct Optimization of Trajecto-

ries (NPDOT) uses piecewise polynomials and collocation to satisfy the differential

equations. Results presented in [17] show that NPDOT runs much more quickly

than does CTOP. A FORTRAN program called MISER (the origin of the acronym

is unknown) is presented in [39]. This general-purpose software utilizes a unified

computational approach to solve a wide range of optimal control problems subject

to general constraints. This program appears very useful; however, a substantial

amount of user programming is involved. Specifically, the user must provide a

series of FORTRAN subroutines which evaluate the right-hand side of the state

7



and costate equations. Furthermore, the user must transform the problem into the

canonical form describedby the authors.

POST, or Program To Optimize Simulated Trajectories, provides the capability

to target and optimize point masstrajectories for a poweredor unpoweredvehicle

operating near a rotating oblate planet [40]. POST offers the solution to a wide

range of flight problems including aircraft performance, orbital maneuvers, and

injection into orbit. The user can select the optimization variable, the dependent

variables, and the independent variables from a list of more than 400 program

variables. POST is also operational on severalcomputer systems. Another much-

used program is OTIS, Optimal Trajectories by Implicit Simulation. OTIS is a

three degreeof freedom (point mass)simulation program for multiple vehicles [17].

The user can simulate a wide variety of vehiclessuch as aircraft, missiles,re-entry

vehicles, and hypervelocity vehicles. The methods used were chosento improve

speed,convergenceand applicability of OTIS over existing performanceprograms.

Both POST and OTIS are very reliable and accurate programs, but are limited in

scopeas comparedto the three programs listed above.

1.3. Present Approach

This thesis describes in detail a time-domain finite element approach for solving

optimal control problems. The so-called weak principle for optimal control problems

is based on Hamilton's principle, which has traditionally been used in analytical me-

chanics as a method of obtaining the equations of motion for dynamical systems.

Bailey [41] followed by several others [42, 43, 44] obtained direct solutions to dy-

namics problems using a form of Hamilton's principle known as the law of varying

action, thus opening the door for its use in computational mechanics.

More recently, it has been shown that expression of Hamilton's law as a weak

form (commonly referred to as Hamilton's weak principle or HWP) provides a pow-

erful alternative to numerical solution of ordinary differential equations in the time

8



domain [45, 46]. The accuracyof the time-marching procedure derived in [45, 46]

is competitive with standard ordinary differential equation solvers. Further com-

putational advantageswere obtained in so-called mixed formulations of HWP in

which the generalizedcoordinates and momenta appear as independent unknowns

[47]. Therein, an unconditionally stable algorithm emergesfor the linear oscilla-

tor with exact element quadrature. HWP also has shown to be an ideal tool for

obtaining periodic solutions for autonomoussystems,as well as finding the corre-

sponding transition matrix for perturbations about the periodic solution [48]. These

are complex two-point boundary value problems; its utility for theseproblemsand

its superior performance in mixed form strongly suggestthat it could be used in

optimal control problems.

Chapter 2 developsthe weak principle for optimal control theory for problems

in which the states and controls are continuous. In Chapter 3, the theory developed

in Chapter 2 is tested on a single-stagerocket trajectory optimization problem. The

weakprinciple is then extendedin Chapter 4 to handle problemswith discontinuities

in the states and system equations. A realistic two-stage rocket problem is then

solved in Chapter 5. The weak principle is further extended in Chapters 6 and 7

with the inclusion of control and state inequality constraints. A final demonstration

of the trajectory optimization capabilities of the weak principle is demonstrated in

Chapter 8.

Chapter 9 of this thesis gives a brief study of error estimates for the weak

principle. The subject of generating initial guessesto solvethe discretizedequations

is dealt with in Chapter 10. Chapter 11 is the main contribution of the work. It

describesa general codefor the solution of optimal control problems. Conclusions

and future researchare discussedin Chapter 12.

There are three appendicesto the thesis. Appendix A discussesthe solution

of dynamics problemsusing Hamilton's weak principle. Appendix B dealswith the

solution of initial-value ordinary differential equationsby using the weak principle.

9



Finally, Appendix C describeshow simple beam problems can be cast in the form

of optimal control problemsand solvedusing the weak principle.
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CHAPTER 2

WEAK PRINCIPLE FOR OPTIMAL CONTROL

It is desired to develop a solution strategy for optimal control problems based on

finite elements in time. Finite elements have been used in the past to solve optimal

control problems and two-point boundary-value problems in general (see [21] and

[35-38]); however, these methods all require numerical quadrature. In addition, a

different choice of shape functions must be made for each problem depending on

the strong boundary conditions to be enforced. These two obstacles are overcome

with the weak principle derived below.

A weak principle based on the variation of the performance index will be for-

mulated [49, 50]. When deriving this formulation, two things must be remem-

bered. First, the resulting formulation must satisfy the Euler-Lagrange equations

and boundary conditions that have already been established in optimal control the-

ory [1]. Second, in an attempt to make the solution scheme as general as possible

all strong boundary conditions will be transformed into natural or weak boundary

conditions.

The boundary conditions are all cast in the form of weak boundary conditions

so that the shape functions used for the test functions can be chosen from a less

restrictive class of functions. For example, if there is a strong boundary condition

on one of the states at the initial time (i.e., an initial condition) then the shape

function chosen for the variation of that state must equal zero at the initial time

[51]. It would be advantageous if one could choose the same shape functions for

11



every optimal control problem. This is possible if there are no strong boundary

conditions that must be satisfied by the shape functions.

The idea of transforming strong boundary conditions to natural boundary con-

ditions [52] revolves around adjoining a constraint equation to the performance

index with an unknown Lagrange multiplier. The variation of the performance in-

dex is then taken in a straightforward manner. Through appropriate integration

by parts, one may show that the Euler-Lagrange equations are identical to those

derived in classical textbooks [1] and that the boundary conditions are the same,

only stated weakly instead of strongly.

As is shown below, the weak principle for optimal control reduces the necessary

conditions for optimality to a set of nonlinear algebraic equations. These algebraic

equations can be derived prior to specifying the problem to be solved. It is this

feature in particular that makes the weak principle so powerful.

2.1. General Development

Consider a system defined by a set of n states x and a set of rn controls u.

Furthermore, let the system be governed by a set of state equations of the form

Jc = f(x, u, t). In this chapter, the class of problems is restricted to those where x,

u, and f are continuous. We may denote elements of the performance index, J0,

with an integrand L(x, u, t) and discrete functions of the states and time ¢[x(t), t]

defined only at the initial and final times to and t I. In addition, any constraints

imposed on the states and time at the initial and final times may be placed in sets

of functions ¢[z(t), t]. These constraints may be adjoined to the performance index

by discrete Lagrange multipliers v defined at to and t I. Finally, we may adjoin the

state equations to the performance index with a set of Lagrange multiplier functions

A(t) which will be referred to as costutes. For variable tl, this yields a performance

index of the form
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jft t l
Jo = [L(x,u,t) + AT(f -- :_)] dt+ @lttJo (2.1-1)

0

where @ = ¢[x(t),t] + vT¢[x(t),t]. The constraints to be adjoined to J0 above are

simply that the states be continuous at the initial and final times. Introducing

and

xlt 0 _= lim x(t) and x[tj a= lira x(t) (2.1-2)
_-t+o t-t�

Sco =Sclt o _= x(to) and _f = a_],, _ x(ts) (2.1-3)

continuity is weakly enforced by adjoining aT(x - _)[ttlo to J0 where a is a set of dis-

crete unknown Lagrange multipliers defined only at to and tf. The new performance

index is

ft/!
J = [L(x,u,t) + AT(f -- 5)] dt + _{:l 0 -4-aT(x _ x)lt0^ t! (2.1-4)

To derive the weak principle, it is necessary to determine d J, the first variation

of J. Denoting with 5x(tf) and 5A(tf) the variations of x and A at t = tf when

holding tf fixed, and letting dx(tf) and dA(tl) be the variations of x and A at t = tf

when tl is allowed to be free, then the variations at t = tf can be expressed by the

linear equations (see [1] or [2])

5z(ts) = dz(tz) - _lt, dts and 5A(ts) = dA(tf) - 1It!dr s (2.1-5)

The first variation of J is

13



d J=

(2.1-6)

A necessary condition for an extremal of J is that the first variation be zero.

Also, the admissible variations of the states must be continuous at the initial a_d

final times and therefore (dx ^ ts-dx)lto = 0. For notational convenience we will define

0_

il,o- 0x
to

0_1 (2.1-7)and its= _-x ts

As an aside, to ensure that no necessary conditions have been altered, the 6k term

will be integrated by parts. This results in

s:'{ [ (o,),_.x:r(f-:_)+,_ :r i+ b-;z +

+ SuT -_u + \ Ou J A dt (2.1-8)

Using Eq. (2.1-5) and noting that _Sxlto = dzlto since to is fixed, then the above

equation can be simplified to the following.

14



]/+ _uT -_u + -_u _ dt

( "+dt I L+ ATf + - + _uT¢l,o
t]

t] 0+ - + -  )1,o=

(2.1-9)

The Euler-Lagrange equations from the above will now be compared with the well-

known optimal control equations presented in [1]. The coefficients of/i)_T, �ix T, and

/iu T in the integrand, when set equal to zero, correspond to Eqs. (2.8.15 - 2.8.17)

from [1]. There are also four trailing terms in Eq. (2.1-9) from which the boundary

conditions of [1] can be determined. Namely, the requirement for the coefficient of

dtf to vanish is equivalent to Eq. (2.8.20). The requirement for the coefficient of/iV T

to vanish at t = ty yields Eq. (2.8.21). The requirement for the coefficient of dx T

to vanish at t = tf shows that the value of Airs equals _ltj as given in Eq. (2.1-7),

which corresponds to Eq. (2.8.19). Finally, the requirement for the coefficient of

/iO_T to vanish at t = to requires the value of X[to to equal xlt0, in accordance with

Eq. (2.8.18).

Three additional boundary conditions are present in the above formulation.

One is the requirement for the coefficient of/i_T to vanish at t = t I which demands

that the value of x[t I equal xltj. The second is the requirement for the coefficient

of dx T to vanish at t = to which demands that the value of _[t0 equal _lt0 as given

in Eq. (2.1-7). These two conditions enforce continuity of the states at the final

time and continuity of the costates at the initial time. The third and last boundary

condition is the requirement for the coefficient of /iV T at t -- to to vanish which

demands that ¢[z(to),to] = O. Again, all boundary conditions were cast in the

form of natural boundary conditions so that the shape functions chosen for/ix and

/i)_ will not have to satisfy any particular boundary conditions.
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Having satisfied the requirement that none of the fundamental equations are

altered, the weak formulation is now derived from Eq. (2.1-9). By noting that a

is a Lagrange multiplier whose only restriction is that 5a be independent of dz,

5u, and dtl, and that a has the units of the costates, we then choose 5a = dA.

(Note that there is no unique choice for 5a, but this one will lead to a successful

solution strategy.) Also, the dz and dA terms can be eliminated from Eq. (2.1-9)

using Eq. (2.1-5) resulting in

t!____AT(x __ _) t!A)],0 ,0

=0

(2,1-10)

Finally, the 5: and ,_ terms are integrated by parts so that no time derivatives

of x or A appear in the weak formulation for optimal control. This allows for the

simplest possible shape functions to be chosen which in turn eliminates the need

for numerical quadrature. The resulting equation is

dt I = 0

(2.1-11)
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After noting that the last two terms are equal to zero in accordance with the natural

boundary conditions (see the coefficients of dx and 6o_ in Eq. 2.1-9), one can discard

those terms without changing the necessary conditions. Also, we note that for most

problems, the initial conditions are given for all n states and thus, in accordance

with Eq. (2.1-7), all the initial costates are unknown. Therefore, instead of treating

elements of v at t = to as unknowns and replacing ilt0 with these unknowns, we

will instead treat ilt0 as unknowns and eliminate the 6vlt 0 equations from the weak

principle. We hasten to point out that the elements of xlt0 are the initial conditions.

The final form of the weak principle is then given as

0

-_ _ /_T f -I- _u T _,,"_U ] "+ N "_ d t

+dty (L+ )_Tf +a-_--_) lt +sr'Tc t,

(2.1-12)

This is the governing equation for the weak Hamiltonian method for optimal control

problems of the form specified. It will serve as the basis for the finite element

discretization described below for constructing of candidate solutions (i. e., solutions

which satisfy all the necessary conditions). It should be noted that normally one

will encounter various types of discontinuities in the states and state equations, as

well as inequality constraints on the controls and states in problems that deal with

optimal control. These aspects will be treated in Chapters 4, 6 and 7 respectively.
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2.2. Finite Element Discretization

Let us break the time interval from to to t! into N elements. The nodal values

of these elements areti fori = 1,...,N+I where to = tl andt! =tN+a. Now,

define a nondimensional elemental time 7" as

t - ti t -- ti
r = -- (2.2-1)

ti+l - ti 2xti

Note in Eq. (2.1-12) that time derivatives of 6x and 6_ are present. However,

no time derivatives of x and ,k exist. Therefore, it is possible to implement linear

shape functions for _x and 3A and constant shape functions for x and _ within each

element. The linear shape functions for the virtual states and eostates are

gx = 6xi(1 - r) + 6xi+lr

6_ = 6)q(1 - r) + 6_i+lr
(2.2-2)

For the states and costates, piecewise constant shape functions are taken to be

_i if r = 0
x= 5:i if0<r<l

2:i+1 if r = 1

(2.2-3)

and

Xi if r = 0
"_= Xi ifO<r<l

Xi+a if r = 1

(2.2-4)

It is important to understand that the equalities :_a = x(to),Xl = ,k(t0),:_N+l =

x(tl) , and XN+_ = )_(t I) are enforced as natural (weak) boundary conditions. In

18



other words, the hatted valuesof x and ,k at the beginning and end of the time

interval are the discrete values of x and A that are needed in the weak formulation

of Eq. (2.1-12). This is clarified below in Figure 2.1 where the time line is broken

into elements and the nodes are labelled appropriately.

At 1 At 2 At N

I I II I I
t o =t 1 t 2 t 3 t N tN+l=t f

A A A A A A A

x0 = Xl x2 x 3 x N XN+ 1 = xf

Fig. 2.1: Time line broken into elements and labelling of nodes

Finally, note that the time derivatives of u and _u do not appear in the formulation.

Thus, constant shape functions are chosen for both u and the variation of u. These

shape functions are

u = fii (2.2-5)

Plugging in the shape functions described for x, ,k, and u, substituting t =

ti +rAti, and carrying out the element quadrature over r from 0 to 1 results in
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(2.2-6)

where _ = f(x = ii, u = _i), Li = L(z = ii, u = _,). This is the general algebraic

form of the weak formulation for all optimal control problems of the form specified.

Note that if the time t does not appear explicitly in the problem formulation then

all integration is ezact and can be done by inspection. If t does appear explicitly,

then t may be approximated by a constant value over each element (as are z, _,

and u) and the integration may still be done by inspection. Note that the elements

must be assembled over the entire time interval for this two-point boundary-value

problem. Only the nodal values (the hatted quantities) of the states and costates

at the initial and final times appear in the algebraic equations. These remaining

hatted quantities are the discrete values of the states and costates which appear in

Eq. (2.1-12).

Eq. (2.2-6) is a set of nonlinear algebraic equations whose size depends on the

number of elements N. In fact, if _bltj is a q × 1 column matrix and there are N

elements, then there are 2n(N + 1) (for 6zi and 6Ai) +mN (for 6ui) + q (for 6u)

+ 1 (for dtl) equations and 2n(N + 2) (for _'i, f:0, _I, Ai, _0, and AI) +mN (for

_) + q (for u) + 1 (for ty) unknowns. Therefore, 2n of the 4n endpoint values

for the states and costates (3:0, _0, :_j, and _i) must be specified. In general, :_0

(the initial conditions) is known in accordance with physical constraints. Also, AI
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can be specified in terms of other unknowns with the use of Eq. (2.1-7). Now we

have the same number of equations as unknowns. These equations may be used for

any optimal control problem of the form specified. One simply needs to substitute

the appropriate f, L, ¢, ¢ and boundary conditions into Eq. (2.1-12) for a given

problem. Note that there is never a need to eliminate any of the equations (except

the dt I equation for fixed-time problems) as is usual in standard finite element

practice where strong boundary conditions are enforced by the virtual quantities.

Normally, Eq. (2.2-6) can be solved by expressing the Jacobian explicitly and

using a Newton-Raphson solution procedure. For the example problems which

follow, the iteration procedure will converge quickly for a small number of elements

with a trivial initial guess. Then, the answers obtained for a small number of

elements can be used to generate initial guesses for a higher number of elements.

Thus, a large number of elements can be solved with a very efficient run-time on

the computer.

Although the nodal values xi and _i for 2 < i < N (on the interior of the time

interval) do not appear in the algebraic equations, their values can be easily recov-

ered after the solution is found. This is most easily seen by looking at the following

ordinary differential equation multiplied by a test (or weighting) function _/k and

integrated over some time interval where the integral makes sense. A constraint

to transform the strong boundary conditions to weak ones has been adjoined via a

discrete multiplier which has been identified as 8A.

1

(2.2-7)

After an integration by parts, using the linear shape function for _A defined in

Eq. (2.2-2), using the piecewise constant shape function for x defined in Eq. (2.2-

3), and substituting r for t as given in Eq. (2.2-1), then the following equation is

obtained from Eq. (2.2-7).
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At - At -

With arbitrary _AI and 6Az, the coemcients must vanish, forming two equations of

the form

At-

At-
• _ + =-f- _ = 0

(2.2-9)

Now, by subtracting the second equation from the first, it is seen that

_'1 - 2 (2.2-10)

or, in words, that the interior value (the bar value) is simply the average of the sur-

rounding nodal (or hatted) quantities. Once the solution is found, all the midpoint

values and the end nodal values are known, and thus all other nodal values can be

recovered by repeatedly using Eq. (2.2-10). In fact, the nodal values are really the

best approximation to the solution and thus are the only ones plotted for the state

and costates in this thesis.

Although the shape function for the control u only defines a constant value

within the element, values of u at additional points are available. For instance,

once the nodal values for the states and costates are found, then one may use the

optimality condition (OH/Ou = 0) to solve for u at a nodal point. In fact, this is

how one finds a value for fil to use in the _t I equation. Also, if the states and

costates are approximated by some continuous curve fit through the nodal values

obtained from the solution, then the control could be approximated at any instant

in time by using the optimality condition.
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2.3. Example: A Fixed-Final-Time Problem

As the first optimal control problem, the transfer of a particle to a rectilinear

path will be examined (see Fig. 2.2). This is an example taken from article 2.4 of [1].

Let x(1) and x(2) denote the position of the particle at a given time and x(3) and x(4)

denote the particle's velocity ata given time. (A subscripted number in parentheses

refers to the state index to avoid confusion with the element index.) The thrust

angle u is the control and the particle has mass m and a constant acceleration a.

The state equations are defined as

[i°1 {°/= 0 0 0 = f (2.3-1)0 0 x + a cos u

0 0 0 a sin u

The final time T is fixed and the problem is to maximize the final horizontal

component of velocity. Thus,

L=O

(2.3-2)

¢=[0 0 1 0J s

The optimality condition aH/Ou = 0 yields an expression for the control of tan u =

A(4)/A(3 ). There are also two terminal constraints on the states. These are that the

particle arrive with a fixed final height (h) and that the final vertical component

of velocity be zero. The final horizontal component of position is free. These

constraints can be stated analytically as

h10 {0}[°000
The initial conditions are x(O) = i:0 = L0 0 0 0 J r. Finally, the unknown

Ai's are eliminated by writing it in terms of other unknowns. In accordance with

Eq. (2.1-7)

23



/°/_/__ Vl (2.3-4)
1

V2

The f, L, ¢, ¢, and boundary conditions to substitute directly into Eq. (2.2-6)

have now been defined.

These equations are solved by choosing/kti = At = t//N for all i, expressing

the Jacobian explicitly and using a Newton-Raphson algorithm. For N = 2, suitable

initial guesses for the nonlinear iterative procedure can be found by simply choosing

element values that are not too different from the boundary conditions. The results

from solving the N = 2 equations are then used to obtain the initial guesses for

arbitrary N by simple interpolation. In all results obtained to date for this problem,

no additional steps are necessary to obtain results as accurate as desired.

Representative numerical results for all four states versus dimensionless time

t/T are presented in Figs. 2.3 - 2.6. For this example, h = 100, T -- 20, and

4h/aT 2 = 0.8897018. (This last number is chosen to yield a value of 75 ° for the

initial control angle of the exact solution available in [1]) The results for 2, 4, and

8 elements are plotted against the exact solution. It can easily be seen that N = 8

gives acceptable results for all the states. Amazingly enough, even the very crude

2 element mesh yields a decent approximation to the answer.

In Fig. 2.7, the control angle u versus dimensionless time t/T is presented. Once

again, the results are seen to be excellent for N -- 8. Note the extra data points

which are available for the control when we make use of the optimality condition

at the nodal and midpoint values of the elements. This is of great value since it is

the control variable which is of the most interest.

Three of the four costates are constants for all time and this method yields two

of these exactly. The third costate is very close to the exact answer. The fourth
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costatecorrespondingto the vertical componentof velocity A(4)is shownin Fig. 2.8.

The results comparenicely with the exact results.

A plot of the relative errorof the performanceindex J = :_I,(3) and the endpoint

multiplier vl versus the number of elements is shown in Fig. 2.9. It is seen to be

nearly a straight line on a log-log scale. The slope of the line is about -2 which

indicates that the error varies inversely with the square of N, similar to a-posteriori

error bounds as formulated in usual finite element applications [53]. Notice in

Fig. 2.9 that there is a bend in the endpoint multiplier curve. It is not unusual

for mixed formulations to have an error curve that is not monotonically decreasing.

It should be noted that developments of mathematical proofs for convergence and

expressions for error bounds are not state-of-the-art for mixed methods. However,

some initial error estimate studies for the weak principle are given in Chapter 9.
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Fig. 2.2: Nomenclature for Examples

Transfer of a particle of mass m to a rectilinear path using a constant acceleration a
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Fig. 2.3: Dimensionless horizontal position xo)/h vs. tit

Note that the final horizontal component of position is not specified
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Fig. 2.4: Dimensionless vertical position x(2)/h vs. tiT

The final height is constrained to be h at the final time
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Fig. 2.5: Dimensionless horizontal velocity x(s)T/h vs. t/T

Note that the performance index J = x(3)(T)
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Fig. 2.6: Dimensionless vertical velocity x(4)T/h vs. t/T

The final vertical component of velocity is constrained to be zero at the final time
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Fig. 2.7: Control angle u vs. t/T
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Fig. 2.8: Vertical velocity costate ,k(4) vs. t/T

The results for this costate are the least accurate of all the costates
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2.4. Example: AFr. ee-Final-Time Problem

The second optimal control problem is similar to the previous example except

that now the final time is free and we would like to obtain a given horizontal

component of velocity (U) in the minimum time (see [1], problem 9, article 2.7).

The algorithm from the preceding example is readily modified to fit this problem

by noting the following changes. The performance index is now the final time T;

so ¢ = 0 and L = 1. Also, there is an additional endpoint constraint on the states;

namely that x(3) = U. With these changes

{0}5,! = vl
//2

/23

(2.4-1)

and

¢= 0 1 _l- U (2.4-2)
0 0 0

Along with these changes to the equations, one additional equation is added

from the coefficient of dt I. The new system of equations is solved in the same

manner described previously. Again, initial guesses not too far from the boundary

conditions are satisfactory for N = 2, and these answers are used to obtain initial

guesses for arbitrary N.

Representative numerical results for all four states versus dimensionless time

t/T are presented in Figs. 2.10 - 2.13 for a case with ah/U 2 = 0.75. The results for

2, 4, and 8 elements are plotted against the exact solution available in [1]. It can

easily be seen that N = 8 gives acceptable results for all the states.

The control angle u versus dimensionless time tiT is presented in Fig. 2.14.

Once again, the results are seen to be excellent for N -- 8. In Table 2.1, the initial
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control u(to) (which can be easily shown to be related to yl, /"2, and v3) and the

normalized final time aT-0-" are shown to converge quite rapidly as N is increased.

Note, however, that the N = 2 and N = 4 approximations for u(to) are neither

upper nor lower bounds. This is a common characteristic of mixed formulations.

In Fig. 2.15, the vertical velocity costate is shown. The agreement of the finite

element solution and the exact solution is excellent, even for 2 elements. The plot

of the relative error of the performance index T versus the number of elements N

is shown in Fig. 2.16. Again, the slope of the line is about -2 indicating that the

error varies inversely with the square of N.

Table 2.1: Convergence of u(to) and -_ versus N

N u(to) (degrees) aTU

2 72.586 1.8819

4 74.736 1.8531

8 75.027 1.8413

16 74.969 1.8380

32 74.950 1.8372

exact 74.944 1.8369
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Fig. 2.10: Dimensionless horizontal position x(1)/h vs. t/T

Note that the final horizontal component of position is not specified
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Fig. 2.11: Dimensionless vertical position x(2)/h vs. t/T

The final height is constrained to be h at the final time
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Fig. 2.12: Dimensionless horizontal velocity x(3)/U vs. t/T

The final horizontal component of velocity is constrained to be U
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Fig. 2.13: Dimensionless vertical velocity z(4)/U vs. t/T
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Fig. 2.14: Control angle u vs. tiT
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Fig. 2.15: Vertical velocity costate "_(4) VS. t/T

The results for this costate are the least accurate of all the costates
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CHAPTER 3

SATURN ONE-STAGE ROCKET MODEL

In this chapter, a model is presented which is suitable for evaluating the poten-

tial usefulness of the weak principle for practical problems in optimal control [50].

The weak principle will be applied to a one-stage model of the Saturn IB rocket.

In this case an analytical solution is not available, and the accuracy of the solu-

tion will be compared with a solution obtained using a multiple shooting method.

While there would normally exist several inequality constraints in this problem, the

constraints are not included in this application. However, Chapter 5 contains a

two-stage Saturn model involving discontinuities in the system equations and in the

states, and Chapter 8 has a model of an advanced launch vehicle which includes

staging and inequality constraints.

3.1. A Four-State Model

Consider a vehicle confined to vertical plane dynamics and flying over a spher-

ical, non-rotating earth as depicted in Fig. 3.1. This results in the following state

model for the states m (mass), h (height), E (energy per unit mass), and 7 (flight-

path angle):
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' -\

T_ac

rh=
9.81Isp

]_ = Vsin7

( T + qSeLa
_'= \ m--V ) (v .)c_ + r2r V

cos 7

(3.1-1)

where T is the thrust, Tvac is the thrust in a vacuum (a constant), D is the drag,

and V is the velocity. Here a, the angle of attack, has been adopted as a control

variable. The atmospheric model is given by the following equations:

p = po(1 - 0.00002255h) 5"2s6

(h-_ 10o0)P =pllexp 6350 ]

p =poexp (6ho)

a = ao x/1 - 0.00002255h

a = 295.03ms -2

for h < l lO00m

for h _> llO00m

for h _< llO00m

for h > llO00m

(3.1-2)

7 The aerodynamic and propulsion models are given by the following equations:

T = Tvac - A_p

r =R_+h

pV 2

q- 2

D =qS [CDo(M) + a2eNa(M)]

CL_(M) =CNo,(M) - Coo(M)

V
M=--

a

(3.1-3)
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The vehicle parameters chosenfor this model are based on a Saturn IB launch

vehicle SA-217 [54] and are

S = 33.468 m 2; Isp = 263.4 s
(3.14)

T_,c =8155800N; Ae = 8.47m 2

The aerodynamic coefficient data CNa and CDO are presented as functions of the

Mach number M in Tables 3.1 and 3,2 and shown graphically in Figs. 3.2 and

3.3. The physical constants used in the above model are the earth's gravitational

constant # = 3.9906 x 101_ m3s -2, the earth's mean radius Re = 6.378 x 106 m,

the sea-level atmospheric pressure P0 = 101320 Nm -2, the atmospheric pressure at

11 km pl I = 22637 Nm -2, the sea-level density of air p0 = !.225 kg m -3, and the

sea-level speed of sound in air a0 = 340.3 ms -1.

The initial conditions specified are m(0) = 5.2 x 105 kg, h(0) = 1800 m,

E(0) = -6.25 x 107 m2s -2, and 7(0) = 75 ° . The final energy is specified as

E(tl) = -4.25 x 107 m2s -2.

The performance index is

J = ¢1,, = ml,, (3.1-5)

and the final time t I is open. Note that L = 0.

From Eqs. (2.1-7) and (3.1-5) it is seen that Xf is given by [1 0 v 0J T.

The quantities necessary for direct substitution into the algebraic equations of

the weak principle Eq. (2.2-6) have now been defined.
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Table 3.1: Aerodynamic coefficient Cgc, versus Mach number

M

0.00 6.20

0.50 6.35

0.98* 7.70

1.00 7.70

1.02" 7.70

2.50 5.2O

4.40* 4.70

5.00 5.50

6.00 6.00

(* denotes a common end point of two quadratic polynomial curves)

Table 3.2: Aerodynamic coefficient CDO versus Mach number

M Coo

0.20 1.00

0.75 0.45

0.98* 0.80

1.00 0.80

1.02" 0.80

3.50 0.20

6.0O 0.02

(* denotes a common end point of two quadratic polynomial curves)
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3.2. Results

Two codes have been developed that solve the resulting finite element equa-

tions. One uses the Newton-Raphson method, and the other uses the method of

Levenberg-Marquardt as coded in the IMSL subroutine ZXSSQ [55]. With the

former method, the initial conditions need to be reasonably accurate. However,

running a case for a few elements generates a good approximation for larger num-

bers of elements as above. Also, with this method one can easily exploit sparsity; the

computational savings of this will be investigated in later chapters. With the latter

method, the initial guesses do not need to be very accurate, but the method is not

nearly as computationally e_cient as the former since it generates an approximate

Jacobian from central differencing.

In Figs. 3.4 - 3.12, numerical results for the Saturn one-stage model are given.

In these figures, the finite element results are shown as discrete symbols while the

solid lines show results obtained from a multiple shooting code, an essentially exact

solution [56]. In Figs. 3.4 - 3.7, the mass, altitude, specific energy, and flight-

path angle profiles are shown. For the mass and specific energy, even N = 4 gives

excellent results. For the altitude and flight-path angle, N = 8 gives good agreement

with the multiple-shooting results. When higher final energies were tried, the rate

of change of the energy became very steep, and the finite element results became

more difFicult to obtain. One must remember, however, that these results are not

realistic because of the absence of state constraints and, particularly for the steep

energy gradients, the use of single-stage modeling.

Figs. 3.8 - 3.11 show the costate profiles. The results for the mass costate and

specific-energy costate are not quite as accurate as were the results for the states.

Adding more elements would, however, increase the accuracy of the solution.

In Fig. 3.12 the angle of attack profile is shown. Here the N = 4 solution agrees

well with the exact solution except near the beginning of the trajectory. Note the

smooth and rapid convergence at t = 0 as N increases.
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CHAPTER 4

DISCONTINUITIES IN THE SYSTEM EQUATIONS

Although many practical problems in optimal control theory can be solved by

using the weak formulation derived in Chapter 2, there are problems that require

more generality. Specifically, the weak formulation must be extended to allow for

discontinuities in the states and/or discontinuities in the system equations. Such dis-

continuities might arise when finding the optimal trajectory of a multistage rocket.

At the time the first stage is dropped, the mass state would suffer a discontinuity.

Furthermore, the thrust of the rocket (one of the system parameters) would also

change at this staging time, thereby creating a discontinuity in the system equa-

tions. These discontinuities produce jumps in the states, costates, and possibly the

control variables.

The derivation of the weak formulation to include state discontinuities (or

jumps) and discontinuities in the system equations is similar to the derivation in

Chapter 2, (see also [57]); however, special care must be taken because of the un-

known staging time. Therefore, the details of the derivation are presented below

for a problem with one discontinuity. Of course, the extension of the formulation

to problems with multiple discontinuities is possible and should not cause any con-

fusion.
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4.1. Theory for State Discontinuities

Consider a problem with one discontinuity where the time of discontinuity will

be called the staging time and denoted by ts. The formulation must be modified to

accommodate the unknown staging time ts, the constraint on the states at ts (as

opposed to a constraint on the states at the final time), the jump in the states at

ts, the jump in the costates at ts, the change in state equations at ts (due to the

change in system parameters), and finally the transversality condition to find ts.

Furthermore, the control u may be discontinuous at the staging time.

Now, let a system be defined by a set of n states x and a set of m controls

u. Furthermore, let the system be governed by a set of state equations of the form

= fi(x,u,t) prior to t_ and _ = fii(x,u,t) after ts. Elements of the performance

index, J, may be denoted with integrands Li(x, u,t) prior to t_, LiI(X, u,t) after

t_, discrete functions of the states and time ¢[x(t), t] defined at the initial and final

times to and tf, and discrete functions of the states and time Cs[x(t), t] defined just

before and after the staging time signified by t_" and t + respectively. In addition,

any constraints imposed on the states and time at to and tf may be placed in sets

of functions ¢[x(t),t], whereas constraints imposed at t_- and t + may be placed

in ¢_[x(t), t]. These constraints may be adjoined to the performance index by dis-

crete Lagrange multipliers r, and v_ respectively. Finally, the state equations may

be adjoined to the performance index with a set of Lagrange multiplier functions

)_(t) which will be referred to as costates. For notational convenience, we define

= ¢[x(t),t] + ,T¢[x(t),t] and _8 = Cs[x(t),t] + vT¢_[x(t),t]. Also, a constraint

equation is adjoined to the performance index (as was done in Chapter 2) to trans-

form the strong boundary conditions to weak ones. For variable ts and t f, this

yields a performance index of the form
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J

j_ts_ !
[L:+ _(fi - _)] at + [LI:+ _(/II - _)] at

+ ¢, :_+ ¢1::+ _(x - _)1::

(4.1-1)

Now, denote with 5 0 the variation of 0 when holding time fixed, and let d() be

the variation of () when time is allowed to vary. The fixed and free-time variations

at t = to and t= t I are related by (see [1] or [2])

$x(to) = dx(to) and 5x(ts) = dx(ts) - _lt, dts (4.1-2)

and similarly for )_. (Note that to is considered to be a fixed time so that dto = 0.)

The free and fixed-time variations at t = t s and t = t + are related by

5x(t-j) = dx(t-j) - _clt-;dt, and 5x(t +) = dx(t +) - &]t+dt, (4.1-3)

and similarly for _. It is noted that if a particular state (or costate) does not have

a discontinuity at t = ts, then the corresponding free-time variation is continuous

at ts, i.e., dx(t-j) = dz(t+). Now, proceeding with the development of the weak

form, the first variation of J is taken and the 55 term appearing in both integrands

is integrated by parts. The resulting equation is
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dJ =

+ + + 6AT(fII -- + -- 6x A t+

+ _r¢. '.++ _T¢" + dxr + &r k_]
t7 to It2 to

Ito t]

+
]

(4.1-4)

A necessary condition for an extremal of J is that the first variation be zero.

Also, the admissible variations of the states must be continuous at the initial and

final times and therefore (dx ^ tl-dx)lto = O. For notational convenience, define

H I = L I + ATfI, HII = LII + ATflI, and

a_] 0_[ (4.1-5)ilto=_x to and it =-_x t/

Finally, by using Eqs. (4.1-2) and (4.1-3) to eliminate 6x at to, t_-, t +, and t f, the

above equation can be simplified to
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+

]'.+
t;

-{- 6vT _31t ° + dx T,: L\ x /

+dtf (Hii + +dt, (HI, - HIIt++ ] =0

(4.1-6)

It is easily verified that the necessary conditions for an extremal of J, as defined

in [1], are contained in the coefficients of the virtual quantities [i.e., the S() and

d() terms] of Eq. (4.1-6). This is described in Chapter 2 and thus only the new

boundary conditions which appear as the result of the staging are discussed here.

Specifically, the requirement for the coefficient of Sv, to vanish yields Eq. (3.7.3)

of [1]. The requirement for the coefficient of dx(t-j) to vanish yields Eq. (3.7.11),

whereas the requirement for the coefficient of dz(t +) to vanish yields Eq. (3.7.12).

Finally the coefficient of dt8 is the transversality condition in Eq. (3.7.13).

Having satisfied the requirement that none of the fundamental equations are

altered, the weak formulation may now be derived. First, we choose _o_ = dA. Next,

the b and J terms in Eq. (4.1-6) are integrated by parts. Also, Eq. (4.1-2) is used

to eliminate dx and d)_ at to and tf. The resulting equation is
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f,o (oHi) (oHm)

j[tl s ( OHII "_T ( OHII "_T]+ 5ATflI+SATx--52T)_+SxT\--_X ] +SuT\---O--_--U ] ]

t!

t-Z to to

t-2

+dtI(HII+_-_t) +dt_(HIIt2-HIIl_++--_ ]
tl

=0

dt

(4.1-7)

Note that a (_ - A)k term and an (i - x)A term should appear in the dtl equation

but these terms are each zero in accordance with the natural boundary conditions

(see the dx and 5a coefficients in Eq. 4.1-6). Eq. (4.1-3) is now used to eliminate

dx at t_- and t +. Again, the natural boundary conditions in Eq. (4.1-6) must be

used to avoid changing the dt8 coefficient. The weak principle is now given as

0 7

+ ft_

Jr+

5_TfI +5_Tx--5_cT/_+_zT_ OX ] +suT_,--_U ] J

• {OHII, _ T {OHII, _ T]

]

+ 6xTAIto -- to + t-Z t-Z to

t-;+dts(HIIt-;-HIIIt++-_s /+dtI(HII+_-(t)

dt

(4.1-8)

This is the governing equation for the weak Hamiltonian method for optimal control

problems of the form specified. It will serve as the basis for the finite element

discretization described below for constructing of candidate solutions (i. e., solutions

which satisfy all the necessary conditions).

65



4.2. Finite Element Discretization

Due to the staging, the finite element discretization must be handled somewhat

differently than was done in Chapter 2. Therefore, for clarity, full details of the

discretization will be given below. Let the time interval from to to t_- be broken

into N1 elements and the time interval from t + to tf be broken into N2 elements.

For notational convenience, define N = N1 + N2. The nodal values of time for these

elements are ti for i = 1,2,...,N + 1 where to = tl, ts = tNl+l, and tl = tN+l. A

nondimensional elemental time 7" is defined as

t - ti t -- ti
-- = _ (4.2-1)

ti+l -- ti Ati

Since one derivative of 6x and 6,k appears in Eq. (4.1-8), linear shape functions

for _x and 6)_ may be chosen. Since no derivatives of x or A appear, then piecewise

constant shape functions for x and ,k are chosen. These shape functions are taken

to be

_X : _X_-(I -- T) "_- 6XT.{_I 7" (4.2-2)

and

_/+ if r = O;
x = _i if 0 < r < 1;

^--

xi+ 1 if r = I

(4.2-3)

and similarly for 6,k and _. The superscripted "+" and "-" signs signify values

just before and after the subscripted nodal value. For all nodes except the N1 + 1

node which corresponds to to, the values for x and ,k, as well as for 6x and 6,k, are

equal on either side of the node. Furthermore, it is important to understand that
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_+ -- _o-- _(_0),5,+= io = _(t0),_.+, = _s = =(ts), and_,_-+,= _s = _(ts).

We again choose u = ui and _u = _i as shape functions for the control and its

variation.

Plugging in the shape functions described for x, A, and u, substituting t =

ti q- vAti, and carrying out the integration over 7- from 0 to 1, we obtain a general

algebraic form of our Hamiltonian weak form for optimal control problems of the

form specified. The algebraic equations are

+

T T ^ T

- ,_z},+l - _X},+lz},+_

{ [ fO/-tII_r] r 2 (fii)i]
i=NI+I

--'2i-+T1 [_i Z_ ti (OHII_T] r _ik---_] i j "_-_'_7+1 [:_i + _ (/II)i

j } +
T T ^ c T_ Itt

- _)_}+_i:}+_ + _z_r+_)_r+l + ov_ _l_ 7 + ,_vT¢ = 0

(4.2-4)

where/t = H(_, fi, t-) and/t = H(_:, fi, i). Note that there are not only boundary

conditions at to and tl, but also additional boundary conditions at the staging time
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ts, namely the coefficients of {_XNl+l , (_X+Nt+I, (_)lNl+l , and (_1+1" This is where

the jumps in the states and costates are allowed to occur. Thus, rather than the

nodal values of the shape functions canceling one another at the staging time (as

they do at all other internal nodes), the nodal values at Q- and t + will be distinct.

Eq. (4.2-4) is a system of nonlinear algebraic equations. The coefficient of each

arbitrary virtual quantity (*x, ,_, ,_u, dG, dt/, ,_vi, and (_u) must be set equal to zero

in order to satisfy Eq. (4.2-4). However, not all of the virtual quantities above are

independent. As stated earlier, _ix + = 6z 7 for all i except i = N1 + 1, which is the

node number corresponding to the staging time. At this node, it was observed from

the calculus of variations that the virtual quantities suffer a discontinuity. Now, the

coefficients of *aN,+1 and *x++l may be treated as separate equations; however,

a different option has been chosen in an attempt to simplify the equations to be

programmed. Define

and

(_XNI_t_ 1 = (_ZNI.I- 1 -Jr- _ (4.2-5)

_x+1+1 = 6XN,+I -- &l_

When these values are substituted into Eq. (4.2-4), then two new arbitrary

virtual quantities appear, namely _xg_+l and &Ix. Fig. 4.1 helps clarify the as-

sembly process of the virtual states. The figure shows three straight lines depicting

linear shape functions o'¢'er three elements. For the non-jump node N1, the virtu-

ally quantities are equal at the node and replaced with gXN1. At the jump node,

however, _x++l and gx_+l are replaced with an average value _XN_+l. Another

virtual quantity, &/_, also appears but is not shown in Fig. 4.1. The coefficient of

_XN_+l is now of the same form as all the other Sx terms and the gr/_ coefficient

contains an equation to extract the needed nodal value of _ at ts, namely _N_+I.
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To simplify matters further though, the coefficient of 6r/n is replaced with a still

simpler expression to extract the needed nodal value. This expression comes from

the following recursive equation derived in Chapter 2.

zi+l - 25i - _}i (4.2-7)

where z represents either the state x or the costate )_. The first nodal value zl is

equal to the initial values of the states and costates which are represented by x0

and _0 in Eq. (4.2-4). The same process is done with the 6AN1+1 and 6A+1+1 terms

so that a 6,kN_+l and 6r]_ are introduced. As a final step, all superscripted "+" and

"-" signs can now be dropped (except on XNt+l and _N1+1, because these values

are still distinct) since they are equal at all nodes but the staging time node which

has now been handled. The algebraic equations now take the form
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+,_,_T.'t, t.-a--_-) +dt_ _;,+,-D++, +-_-71

-,_xTJ,,+ ,_>,T_,+ ,_,+,

+,_.x_,+,(_+,+,- _7-+,)

Ati ( 0/III '_ T 1 _ 6.xT _:i (fII)i (4.2-8)
+ _ <_T _,+ --7-t.-b-7-), ] 2

i=N1+1

--6_N+lXN+_ + 6xN+I_N+_ + I +

N_ k

{ [ }+_rl_ i?,+1-(-1) N' il + 2_(-1)ki_ =0
k=l

Eq. (4.2-8) may be used to solve optimal control problems of the form specified.

Note that for this three-point boundary-value problem the elements must be assem-

bled over the entire time interval. Only the nodal values (the hatted quantities) of

the states and costates at to, ts, and tf appear in the algebraic equations.

Often in practical applications, these algebraic equations may be simplified

slightly in order to minimize the number of unknown variables. Consider the case
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(as will be seenin Chapter 5) whereCsis a scalarfunction at t_- and t +, i.e., there

is a known jump in one of the states.

More specifically, since the jump in the states expressed as 5N_+1 -- 5+N1+1 is

known, then the coefficient of _ANI+I will be replaced with an actual numerical

value, such as the drop mass of a booster rocket stage. Also, ¢_- would be retained

to define the unknown staging time, but ¢I'+ would be set to zero since the jump has

already been solved for. Then, the jump in the costates (from the natural boundary

conditions) will be defined as

_N,+I _+ 0_I's - (4.2-9)
-- NI+I _ -0X

To use Eq. (4.2-8), one would let 5N,+1 and _N_+I be the unknown variables

and then replace 5 + (from the physical jump condition) and _+ (from Eq. 4.2-
Nl+l NI+I

9) in terms of other unknowns. Note that if there is no jump condition on a

particular state or costate, then the nodal values just before and after staging are

equal. Fig. 4.2 helps clarify this process. In Fig. 4.2 are shown three piecewise

constant shape functions spanning three elements. The solid black circles in the top

half of the figure represent the hatted or nodal values of the states at the beginning

and end of the element. Note that only the jump node is labelled. After assembly,

two conditions can occur. If there is no jump, then the nodal values from the

left and right sides are equal and do not appear in the algebraic equations. These

"disappearing" nodal values are represented by the hollow circles in the lower half

of the figure. (There values are recoverable though as described earlier.) If there is

a jump, then the nodal values 5++1 and 5N,+1 are not equal, but only 5N_+1 is

treated as an unknown (represented by the solid black dot) and x+g_+l is eliminated

from the equations in terms of 5Nt+l. Thus it is now one of the "disappearing"

nodal values also and depicted by a hollow circle.
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In addition, one must introduce the optimality condition (OH/Ou = 0) at t;-

and t + in order to solve for the values of the control u just before and after the

staging time. Finally, the coefficient of the dts equation (i.e., the continuity of the

Hamiltonian) gives the extra equation to solve for the unknown staging time ts.

Also, as was noted in Chapter 2, for most problems the initial conditions are

given for all n states and thus, in accordance with Eq. (4.1-5), all the initial costates

are unknown. Therefore, instead of treating elements of u at t = to as unknowns

and replacing A[t0 with these unknowns, we will instead treat Air o as unknowns and

eliminate the Suit o equations from the weak principle.

It may be instructive to count the number of equations and unknowns for a

given problem. Consider a problem with n states, m controls, ql constraints on the

states at t8 and q2 constraints on the states at t I. There will be N1 elements in the

first stage and N2 elements in the second stage. The given boundary conditions will

be for :_0 and AI" The number of unknowns is 2n (for A0 and 25) + 2n(N1 + N2) (for

_'i and Ai in the first and second stages) +2n (for :_N_+I and AN,+1) +re(N1 +N2)

(for _i in the first and second stages) + 3m (for fi at t2, t+8, and tl) + ql (for us)

+ q2 (for v) + 2 (for ts and tl). The number of equations is 2n(N_ + N2 + 1) (for 52i

and 8Xi) + 2n (for 5r/, and 5r/:_) + rn(N_ + N2) (for 5_i) + 3m (for OH/Ou = 0 at

t-_,t +, and tl) +q, (for 5u_) +q2 (for 5u) + 2 (for dt8 and dty). Thus, the number

of equations and unknowns is the same.

Eq. (4.2-8) is actually not much more complicated to program than are the

equations presented in Chapter 2 [see Eq. (2.2-6)]. In fact, the one-stage rocket

model was modified for the two-stage rocket model presented in the next chapter

without any serious complications. One of the most tedious and time-consuming

tasks was changing the program to account for the linearization of the new and

unknown staging time, as this variable appears in about half of the equations.

However, the general code described in Chapter 11 eliminates all the programming

difficulties.
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CHAPTER 5

SATURN TWO-STAGE ROCKET MODEL

In this chapter, a more complicated and realistic model than that of Chapter 3

is presented which is suitable for evaluating the potential usefulness of the weak

Hamiltonian finite element approach for real-time guidance of a launch vehicle. A

two-stage, four-state vehicle is considered that is simplified by not allowing for any

inequality constraints. This model allows us to incorporate the theory developed in

Chapters 2 and 4.

5.1. The Model

The same vehicle model from Fig. 3.1 is used. The dynamical equations are

T_ac

rh-
9.81/_p

it = V sin 7

+ = (T + qSCL_'_

(5.1-1)

where T is the thrust, Tvac is the thrust in a vacuum, D is the drag, and V is the

velocity. Here _, the angle of attack, has been adopted as a control variable.

The atmospheric, aerodynamic, and propulsion models are taken to be the

same as in Eqs. (3.1-2) and (3.1-3). The vehicle parameters chosen for this model

are based on a Saturn IB launch vehicle SA-217 [54] and are
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Ispi = 263.4 s; IsPlI = 430.4 s

T_ac I =8155800N; T,acii = 1186200N

Ae I =8.47m2; AeII = 5.29m2; S= 33.468m 2

where subscripts 'T' and "II" refer to the first and second stages respectively.

The aerodynamic coefficient data CNa and Coo are also taken to be the same as

the one-stage model. They are presented as functions of the Mach number M in Ta-

bles 3.1 and 3.2. The graphs are shown in Figs. 3.2 and 3.3. The physical constants

used in the above model are the earth's gravitational constant # = 3.9906 x 10 TM

m3s -2, the earth's mean radius Re = 6.378 x 106 m, the sea-level atmospheric pres-

sure p0 = 101320 Nm -2, the atmospheric pressure at 11 km Pll = 22637 Nm -2,

the sea-level density of air p0 = 1.225 kg m -a, and the sea-level speed of sound in

air a0 = 340.3 ms -1.

(5.1-2)

The performance index is

J = ¢l,f = ml,, (5.1-3)

and the final time tf is open. The initial conditions specified are m(0) = 5.2 x l0 s

kg, h(0) = 1800 m, E(0) = -6.25 x 107 m2s -2, and 7(0) = 75 °. The burnout mass

of the first stage is 192000 kg (¢s = rh(t;-) - 192000) and the drop-mass of the

booster is 51000 kg. The final energy is specified as E(tl) = -4.25 x 107 m2s -2

(¢ = _:(tl)+ 4.25 x 107).

l_rom Eqs. (4.1-5) and (5.1-3) it is seen that AI is given by L1 0 Vl oJ T.

Note that the only jumps are in the mass state and the mass costate, and these

jumps are

rh(t-j) - rh(t+) = 51000
(5.1-4)

76



5.2. Results

The finite element equations axe solved using the method of Levenberg-

Maxquaxdt as coded in the IMSL subroutine ZXSSQ [55]. Running a case for a few

elements generates a good approximation for larger numbers of elements. Initial

guesses do not need to be very accurate, but the method is not nearly as compu-

rationally efficient as a Newton-Raphson procedure where spaxsity in the Jacobian

can be exploited.

Numerical results for the Saturn two-stage model are given in Figs. 5.1 - 5.10.

Discrete points are given for 2, 4, and 8 elements in each time interval (denoted by

N = N1 : N2 on the graphs). The converged results corresponding to N1 = 8 and

N2 = 16 axe shown as solid lines. Note that the number of elements in each interval

is completely arbitrary.

Figs. 5.1 - 5.4 show the four states. In Fig. 5.1, notice how nicely the jump in

the mass is allowed for by the discretization. Also, we point out that the awkward

altitude profile of Fig. 5.2 (i.e., the strange drop at the end of the trajectory) is

a result of an unrealistic model. The model is unrealistic due to the absence of

inequality constraints, and due to the large angles of attack (more than 30 ° at some

points) even though small angles were assumed in the state equations. However,

the model does suffice to illustrate the power of the method.

The four costates are shown in Figs. 5.5 - 5.8. Again the jump is allowed

for very accurately by the discretization. Also, note that for the N = 2 : 2 case,

the jump is actually in the wrong direction. Even though this is a very inaccurate

result for the mass costate, the N = 2 : 2 case is still close enough to the real

answer to allow us to interpolate and run higher numbers of elements. This gives

some indication of the robustness of the method.

The control (a) is shown in Fig. 5.9. There is a jump in the control at the

staging time due to the change in the thrust vector magnitude. The jump is solved

for in the program by enforcing the optimality condition at t_- and t +. Remember
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that the optimality condition is usedat all nodesto get the control, and this leads

to the extra data points on the control profiles.

As an indication of the accuracyof the method in a global sense,the Hamilto-

nian wasobservedto convergeto zero (the exact answer)all along the trajectory as

is seenin Fig. 5.10. The finite elementresults are convergingto the exact solution

as N increases.
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CHAPTER 6

CONTROL INEQUALITY CONSTRAINTS

Many practical optimal control problems have certain constraints imposed on

the magnitude of the control variables. This is done for a variety of different reasons.

For instance, if the control is to be produced by a power supply, then there may

be constraints on the controls so that the power supply does not become saturated.

Another reason for a control constraint would arise when studying flight vehicles

where the structural integrity of the vehicle might be jeopardized by too large a

control variable.

The weak principle will now be derived to include problems with control in-

equality constraints. After the derivation is given, a simple example problem is

presented. The numerical results are compared to the exact solution. Of particu-

lar interest is the performance in terms of execution time and accuracy versus the

number of elements used to represent the time span of the problem.

6.1. General Development

The same problem statement as was given in Chapter 2 is used for this chapter.

Namely, consider a system where the states are continuous. Now, suppose that g is

a p × 1 column matrix of constraints on the controls of the form

g(x,u,t) <_ 0 (6.1-1)
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One way of handling inequality constraints is to use a "slack" variable [58].

The idea is that if g < 0 then g plus some positive number (i. e., the slack variable)

is equal to zero. Thus denoting the slack variable by k 2, then the following p x 1

column matrices for K and 5K, the variation of K, may be defined.

K= [k_ k_ ... k_J T

5K = L2k15kl 2k2_k2 ... 2kpSk, JT
(6.1-2)

Now, from Eq. (6.1-1)

g(x,u,t) + K = 0 (6.1-3)

Eq. (6.1-3) will also be adjoined to the performance index J by using p La-

grange multiplier functions

It(t) = tIt1 It2 ... ItpjT (6.1-4)

The performance index now takes the form:

Jft0 "!J = [L(x,u,t) + )_T(f _ _) + ItT(g + K)] dt + OIttSo+ aT(x -- _)l_lo (6.1-5)

To derive our weak principle, it is necessary to take the first variation of J and

set it equal to zero. For simplicity, the derivation below is for the case of fixed final-

time. The case for free final-time is discussed after this derivation. For notational

convenience, the following variables are introduced.
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I °_ I (6.1-6)O_ and ,_f= _ ts_° = bG;_o

Also, as is shown in Section 2.1, the Lagrange multiplier a can be chosen so that

5a = hA.

The first variation of J is

5J=

+&_' + A+K_} _ +5#T(g+K)+6KT# dt

t/ 0+_v_l ',,0+_x_ :,°+_(x - _) :'0+ _(_x - _)l,0=
(6.1-7)

The admissible variations to the states must be continuous at the initial and fi-

nal times and therefore (hx - 5_)lttSo = 0. Furthermore, it is noted that for most

problems, the initial conditions are given for all n states and thus, in accordance

with Eq. (6.1-6), all the initial costates are unknown. Therefore, instead of treating

elements of u at t = to as unknowns and replacing Air0 with these unknowns, Air0

will be treated as unknowns and the 5U]to equations will be eliminated from the

weak principle. Finally, the weak principle is obtained by integrating the :_ term

in Eq. (6.1-7) by parts. Denoting the variations of the variables at the initial and

final times with subscripts 0 and f, then the resulting equation is
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--65cTA+6ATf+SATx+6xT -_x +\Ox] A+ Ox #

-}-_uT _-_UJ -_- _,Ou/I l-f- _-_U] # +6#T(g+K)--6KTtt dt

+ _J¢1,, +_xT_ - _x_o_o- 6_ +_o_o = o

(6.1-8)

This is the governing equation for the weak Hamiltonian method for fixed-time

problems with control inequality constraints. It is easily shown by integrating the

62 and 6A terms by parts in Eq. (6.1-8) that all the Euler-Lagrange equations are

the same as in [1] and that all boundary conditions are now of the natural type.

When the final time is allowed to vary, Eq. (6.1-8) remains unchanged except that

one term is added, given by

6t I L-]- _ T f -]- -_ T u T (6.1-9)

Note that in this term, values for u are required at t I. To obtain u, one must

also find the values of K and # at t I. These unknowns are found by setting the

coefficients of 6ul, pT6K I , and 6#_ equal to zero in the following

6uT[f aL'  tx )

+K)I,,

+ N _+kN] '
t!

(6.1-10)

Thus, the formulation has now been developed to handle fixed and free-time

problems with inequality constraints on the control.
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6.2. Finite Element Discretization

The same finite element discretization described in Chapter 2 is used for this

problem. The only added step is to define shape functions for K and #. Since the

time derivatives of K, p, 6K, and 6# do not appear in the formulation,then

K = f_i # = #i (6.2-1)

6K = 6._[i 6# = 6#i

By substituting Eq. (4.2-1) and the shape functions described above into

Eq. (6.1-8), and carrying out the element quadrature over r from 0 to 1, a gen-

era] algebraic form of the Hamiltonian weak principle is obtained. Again, if the

time t does not appear explicitly in the problem formulation then all integration

is exact and can be done by inspection. If t does appear explicitly, then t may be

approximated by a constant value over each element and the integration may still

be done by inspection. The latter case occurs in the example problem presented

shortly. For N elements, there are 2n(N + 1) + mN + q + 2Np equations and

2n(N + 2) + mN + q + 2Np unknowns. Therefore, 2n of the 4n endpoint values for

the states and costates (_0, i0,_f, and if) must be specified. In general, :_0 (the

initial conditions) is known in accordance with physical constraints. Also, _I can

be specified in terms of other unknowns with the use of Eq. (6.1-6). Now there are

the same number of equations as unknowns. These equations may be used for any

optimal control problem of the form specified.

Although the shape functions for u, K, and tt only define a constant value

within the element, values for these variables at additional points are also available.

For instance, once the nodal values for the states and costates are found, then one

may use the optimality condition (OH/Ou = 0), the constraint equations (g + K =

0), and the condition that either k or # be zero (k# = 0) to solve for u, K, and #

at a nodal point. This procedure is used in the following example problem.
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6.3. Example

This example is taken from section 3.8 of [1]. The problem is to minimize

1 f0 T u2J = x(T) 2 + _ dt (6.3-1)

where T = 10, x and u are scalars, and the initial condition is x0 = -19.945596.

The state equation is

.q

= h(_)u with h(0 = 1+ t- _t 2

The following two control inequality constraints are imposed.

(6.3-2)

gl=U--l<O

g2= -(u + 1) < 0

The exact solution is found to be x(T) = -17/39 and for the control

(6.3-3)

{ -_(T)h(t)
u(t)= 1

-l(T)h(t)

for 0<t<2

for 2<t <11/3

for 11/3<t<8

for 8<t< 10

(6.3-4)

The algebraic equations which come from the weak principle can be verified to

be

),0 - _(1) = 0

_(i) _ _(i+1) = 0

_(N) _ _f = 0

for i = 1,2,...,N - 1 (6.3-5)

for the 5x coefficients,
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_(,)+ x¢i)h[_(,)]-.(').(')+_-1"_')1.2"(')''"¢')++-k[')=k_')"''_')"2-¢')¢')===°===00°0/
for i= 1,2,...,N (6.3-6)

for the 5u, 5K, and 8# coefficients, and

_(i-/-1) _ _(i)

_.(1) At
-- -_-h [t-(l)] _(1) = _ 0

_At
2 {h [_i)] _(i).it_ h [t-(i+l,] _(i+1)} --_0

__2( N) At h
- 2 [t-(N)] _(N)+ :_/. =0

for i = 1,2,...,N-1

(6.3-7)

for the 5X coefficients. Note that _i) is an average time value for the i th element

and (if Ati = At = ty/N for all i) can be expressed as

t-(0 _ 2i - 1 At for i = 1, 2,..., N (6.3-8)
2

Recall from [1] that one of the additional necessary conditions for problems

with control constraints is that the multipliers be greater than or equal to zero for

a minimizing problem. Therefore, in practice, the multipliers/z appearing in the

first of Eqs. (6.3-6) are squared to ensure their positivity. Further recall that if the

constraint is not violated, then p = 0. This condition is satisfied by the second

and third equation in Eq. (6.3-6) which implies that either k or # is zero for each

element.
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It is readily apparent from the equations shown in Eq. (6.3-5) that all the

costate variables are equal to xI" Therefore, these equations were eliminated and

all costates that occurred in the remaining equations were replaced with _f. The

remaining 6N + 1 algebraic equations were solved using a Newton-Raphson method

and a FORTRAN code written on a SUN 3/260. The sparse, linearized equations

are solved using subroutine MA28 from the Harweii subroutine library [59]. This

subroutine takes advantage of sparsity which leads to great computational savings.

Table 6.1 shows the convergence rate of zl = x(T), the elapsed computer

time for the first 5 iterations, and the percentage of zeroes in the Jacobian (i.e.,

the sparsity) versus the number of elements. The :r(T) column shows that the 32

element case has almost converged on the exact solution. Note further that the

approximate x(T) is not an upper bound of the exact value, which is common in

mixed formulations. The third column of Table 6.1 gives the elapsed computer time

for five iterations. It is easily seen that there is a modest increase in computer time

with an increase in the number of elements. Note that in some cases a converged

answer is found in five or fewer iterations. This is because the answers obtained

from a small number of elements (say 2 or 4) may be interpolated to generate initial

guesses for a higher number of elements. Thus, it is possible to solve a 16 or 32

element case in about 1.5 seconds. Finally, the extremely sparse structure of the

Jacobian is demonstrated in the last column. This strongly encourages the use of

a "smart" sparse matrix solver such as MA28. This subroutine leads to quicker

solutions and tremendous savings in memory allocation since only the nonzeroes of

the Jacobian need be stored.
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Table 6.1: x(T), elapsed computer time and percent sparsity of

Jacobian versus the number of elements N

N x(T) Time (sec) Sparsity (%)

1 -4.0632 0.42 65.3

2 -.82795 0.44 80.5

4 -.44065 0.66 89.6

8 -.43360 0.76 94.6

16 -.43928 1.03 97.3

32 -.43588 1.52 98.6

Exact -.43590

Results for the control u are shown in Fig. 6.1 for 2, 4, and 8 elements and

the exact solution. Note that although the 2 element case does not define the

constraint boundaries very accurately, it is accurate enough to generate guesses for

the 4 element case. Thus, in a problem with many constrained and unconstrained

arcs, a small number of elements could still be used to generate guesses for a higher

number of elements. Also, it is interesting to note that as few as 4 elements have

essentially converged on the exact solution.
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CHAPTER 7

STATE INEQUALITY CONSTRAINTS

Optimal control problems with state inequality constraints are in general very

difficult to solve. Although the problem does not seem more difficult conceptually

than problems with control inequality constraints, there are additional necessary

conditions to reckon with. These additional necessary conditions are a result of what

are sometimes referred to as "tangency" conditions [1]. These tangency conditions

arise from the following physical considerations.

If the constraints are of the form S(x, t) _ O, then successive total time deriva-

tives of S are taken and f(x, u, t) is substituted for _ until an expression explicitly

dependent on the control u is obtained. If p total time derivatives are required,

then S is called a pth-order state variable inequality constraint. Now, since S(x, t)

can be controlled only by changing its pth time derivative, no finite control will

keep the system on the constraint boundary if the path entering onto the constraint

boundary does not meet the "tangency" conditions. These conditions are that S

and all the time derivatives of S up to p - 1 are zero. These conditions also apply

to the path leaving the constraint boundary.

There have been several papers over the past 30 years presenting necessary

conditions of optimality for optimal control problems with state-variable inequality

constraints. In [60], the authors adjoined the pth derivative of the constraint to the

performance index and allowed the tangency conditions stated above to form a set

of interior boundary conditions. These boundary conditions require discontinuities

in the costates at the junction points between constrained and unconstrained arcs.
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However, one may arbitrarily pick the entry point as the place to satisfy these

boundary conditions, and therefore the costatesand Hamiltonian arediscontinuous

at the entry point and continuous at the exit point.

A new set of necessaryconditions was given in [61]. Therein, the constraint

was adjoined directly to the performance index. It was shown that unconstrained

arcs had to satisfy tangencyconstraints at both ends of a constrained arc.

Solution of problems with state constraints may be handled in a variety of

ways. For example, a penalty function approach was presented in [62]. A Valentine

transformation technique (as was used in Chapter 6) was presented in [63]. This idea

transformed a constrained problem into an equivalent unconstrained problem by

adding additional state equations. Also, the control variable is transformed and the

new control appears linearly in the formulation. The weak principle cannot handle

linearly appearing controls, so this idea was not used. Finally, [64] demonstrates

how a state constraint present in the full-order problem may be transformed to a

control constraint in the reduced-order problem.

New necessary conditions for optimal control problems with state inequality

constraints were developed in [65]. Therein, the authors tactfully say: "We do not

imply that the necessary conditions obtained by previous workers are incorrect, but

rather, that, inasmuch as they underspecify the conditions at the junction, there

exists the possibility of non-stationary solutions satisfying these conditions .... " The

authors generated an admittedly contrived example where the necessary conditions

of [1], which are identical to those in [60], were satisfied by a non-extremal solution.

These new necessary conditions are summarized below.

The new necessary conditions derived in [65] may be summarized as follows.

Rather than take successive time derivatives of the constraint S(x, t) until the con-

trol appears explicitly, the authors adjoin S directly to the Hamiltonian, as was

done with control inequality constraints in Chapter 6. The Hamiltonian now takes

the form
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H = L + Arf + _S(x,t) (7-_)

where T/, S, and u are scalars.

As with control inequality constraints, the multiplier r/is positive if S = 0 and

zero if S _< O. At junction points ti of boundary and interior arcs, the costates may

be discontinuous. The boundary conditions are

(0s) ; _,(ti)>__0 (7-2)_(t_+) = _(t;)- .(ti) _ ,,

and, in addition,

OS
(7-3)

H(t +) = H(tT) - v Oti

An extremely interesting consequence of the new conditions is pointed out in

the paper for problems which possess a Hamiltonian which is said to be regular.

The Hamiltonian H is regular if along a given trajectory, H has a unique minimum.

In this case, it was shown that the control u and its (p- 2) time derivatives are

all continuous. Now, the interesting consequence of the new conditions is that for

an odd-order constraint greater than two, the trajectory will, at most, only touch

the boundary if the (p - 1)th derivative of u is discontinuous at the junction point.

Note that for p = 1, the control is continuous, so that boundary arcs are permitted

for the flrst-order case.

101



7.1. General Development

Consider once again a system as defined in Chapter 2. Now, suppose that there

is a pth order scalar constraint on the states and time defined by S(x, t) < O. The

first attempt to apply the present methodology to problems with state inequality

constraints made use of the necessary conditions presented in [65]. These necessary

conditions lead to successful and accurate solution strategies for states that only

touch (i. e., do not ride) the constraint boundary. As is derived in [65], for constraints

of odd order greater than one, the solution can at most only touch the constraint

boundary if the Hamiltonian is regular. However, for cases where the states ride

the constraint boundaries for a nonzero length of time, the algebraic equations

developed by the weak form are singular. Private discussions with Jason Speyer and

Dan Moerder indicate that the cause is related to a reduced-dimensional manifold;

however, we have not been able to develop a nonsingular weak form as of now.

Below are presented two very similar weak formulations using the necessary

conditions of [65] for touch-point cases and [1] for ride cases. Fortunately, the nec-

essary conditions presented in [1] are accurate for first and second order constraints

where the solution often rides the constraint boundary and the conditions in [65]

are accurate for the touch-point cases. It is noted that most practical applications

will be thlrd-order or less.

7.t.1. Touch-Point Cases

The weak formulation is now derived for touch-point cases. Assume that there

is only one touch-point over the time interval of interest whose time will be denoted

by ttp. In this case, the state constraint is nothing more than an interior boundary

point which creates a jump in the costate.

The performance index J now takes the form:
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J
fro t'_ [L(x,u,t) A- _kT(f -- x)] dt -t- ft/'

P

+ ,,,Sl,,,,+ ffl','o+ o,r(x - x)lto""

[L(x,u,t) + $T(f _ b)] dt
(7.1.I-I)

To derive the weak principle, it is necessary to take the first variation of J and

set it equal to zero. This variation, and the entire development of the weak principle

is almost identical to the derivation given in Chapter 4. The only difference is that

the state equations are the same on either side of the constraint. As usual, we

introduce

_xx Off[ (7.1.1-2)i0= Off to and if=_ tl

Also, as is shown in Chapter 4, the Lagrange multiplier _ can be chosen so that

g_ = d_. The final form of the weak principle is obtained after integrating by

parts so that no derivatives of the states or costates appear. After defining the

Hamiltonian H = L + )_Tf and denoting the variations of the variables at the

initial, touch-point, and final times with subscripts 0, 1, and f respectively, then

the resulting equation is

+

(oH) (o.)-,sF',x+ ,5_,Tf + ,sF'_+ ,5_T _ + ,su_ \-g-_,/

(OH'_ T (OH) T"

OS) T+_.[s,,+_J¢,+_xT _ -1

+dttp H(t_)-H(t;)+u,O_S_ ] +dtf [H(tI)

dt

dt

(7.1.1-3)
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This is the governingequation for the weak Hamiltonian method for problemswith

touch-point state inequality constraints. It is easily shown by integrating the £_

and 6_ terms by parts in Eq. (7.1.1-3) that all the Euler-Lagrange equations are

the same as in [65] and that all boundary conditions are now of the natural type.

One simplification may be made to Eq. (7.1.1-3). If the control is continuous

across ttp (as is guaranteed if the Hamiltonian is regular), then it is possible to

simplify the dttp equation since then f(t_) = f(t_) = f(ttp) and L(t_) = L(t_) =

L(ttp). From the necessary conditions that are found in [65] or from the ones that

could be found from Eq. (7.1.1-3), it is seen that

OS

Now, rewriting the coefficient of dttp as

(7.1.1-4)

OS
cOS [AT(t_) -- AT(t_)] f(ttp) + ,10tH(t_)- H(t_) + ,l--_-_ =

COS. COS d S

= .1 x + .1-3-[= .1

(7.1.1-5)

we see that the condition for continuity of the Hamiltonian reduces to the condition

that the first total time derivative of the constraint be zero at ttp if the control is

continuous.

An example of a touch-point case is given in the next section.
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7.1.2. Boundary Arc Case

For cases where there is a boundary arc (i.e., the solution rides the constraint

boundary for a nonzero length of time), then the weak formulation must be modi-

fied. For simplicity, consider the case where the solution has an unconstrained arc

between to and t_n, followed by a constrained arc between ten and tex, and then

another unconstrained arc between tex and tf. Introducing a new Lagrange multi-

plier function r/to adjoin the pth derivative of the constraint S to the performance

index, then J becomes

tenJ = [L(x,u,t) + _T(f _ k)] dt
,/tO

L(x'u't)+ar(f dt, J dt
J ten

f" __ --X)Ito+ [L(x,u,t)+AT(f Jc)]dt+v_Nlt°,,+e_l'Jo+O_T(x ^ ,,

where N is a column matrix defined as

(7.1.2-1)

[s ds ] (7.1.2-2)= d---t " " " dtP- I-

Analogous steps to those described in Chapter 4 lead to a weak formulation for

state constraint problems which ride the constraint boundary. There are only two

minor differences. One is that the time line must be discretized between to and t_n,

from t_,_ to t_, and from te_ to tf. Also, there will be equations corresponding

to the @ coefficient over the interval from t_,, to t_, just as there were with the

control constraint of Chapter 6. These equations are that the pth derivative of S

be zero between ten and te_.

Also note that the dt_n and dt_ equation will reduce to the condition that

the pth total time derivative of S be zero. The proof is identical to that shown in

Eq. (7.1.1-5) after noting that
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ON
(7.1.2-3)

Two examples of problems with a boundary arc are given in the next section.

7.2. Example: A First-Order Problem

Consider the classical brachistochrone problem in Section 3.11 of [1]. Let x

and y define the horizontal and vertical (positive downward) position of the particle

respectively. The governing state equations are

:_ = (2gy) 1/2 cosu
(7.2-1)

_1= (2gy) 1/2 sinu

where g is the acceleration due to gravity (a constant) and the control u is the

angle that the tangent to the path makes with the horizontal. The problem is to

minimize the time it takes for the particle to move from the origin to any point on

the line x --- L. The optimal path to the unconstrained problem was found over 200

years ago by several mathematicians to be a cycloid. The problem takes a new twist

though when a state inequality constraint is added. Let S = y - x tan _ - h < 0

where/_ and h are constants. The first total time derivative of S yields

= (2g )1/2sin(u - e)/cose = 0 (7.2-2)

or u = _ along the constraint boundary. Thus, this is a first order constraint.

By adjoining S to the performance index, the solution was readily found, al-

though the programming was a little tricky because of the three unknown times to

reckon with. Fig. 7.1 shows the trajectory of the particle and Fig. 7.2 shows the

control history. In the figures, (2:2:2) designates that 2 elements were used on each

of the unconstrained arcs and the constrained arc in between. The finite element
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solution for 2 and 4 elements in each phase are graphed versus the exact solution

found in [1]. The answers are excellent for the states, but are a little off on the

controls. When more elements are run, the answer is seen to converge on the exact

answer. Fig. 7.3 shows the log of the error in the entry, exit and final times versus

the number of elements. The lines are all approximately straight with a slope of

about -1. This indicates that the times have an error proportional to about 1/N.

This is uncharacteristically inaccurate as compared to other results presented thus

fax.
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7.3. Example: A Second-Order problem

This example is taken from section 3.11 of [1]. The problem is to minimize

1 _OIu2J = _ dt (7.3-1)

The state equations are

Xl =?A

(7.3-2)
:_2 = Xl

The state inequality constraint S(x, t) = x 2 -- _ ____0 is to be imposed. For certain

values of g, the solution only touches the boundary, whereas for other values of

the solution rides the boundary.

The algebraic equations for both examples were solved using a Newton-Raphson

method and a FORTRAN code written on a SUN 3/260. The sparse, linearized

equations are solved using subroutine MA28 from the HarweU subroutine library

[62].

The state x2 is shown in Fig. 7.4 for the single touch-point case. Results for

2, 4, and 8 elements on either side of the touch-point (denoted by 2:2, etc.) are

compared to the exact solution. Note that even the 2:2 element case lies essentially

on the exact solution. In Fig. 7.5, the state x2 is shown for an example case where

the state rides the boundary. Here, there are three time intervals and the number

of elements in each interval is denoted by 2:2:2 etc. Again we see that the 2:2:2 case

has essentially converged on the exact solution.

One drawback of the weak formulation is that two separate codes had to be

written to solve this problem. Also, one must determine in advance if the solution

will ride or just touch the constraint. However, with the general code described in

Chapter 11, this is a simple and quick thing to do.
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CHAPTER 8

AN ADVANCED LAUNCH VEHICLE

As stated in Chapter 1, future space transportation and deployment needs are

critically dependent on the development of reliable and economical launch vehicles

that will provide flexible, routine access to orbit. The objective of the Advanced

Launch System program is to place large payloads - 100,000 to 150,000 pounds -

into low Earth orbit at an order of magnitude lower cost per pound. The program

also seeks to make the entire scope of space launch operations significantly more

routine compared to present methods and procedures that are highly dependent on

ground operations. The goals of the ALS program can only be met by development

of reliable and efficient on-board algorithms that are capable of calculating real-time

optimal trajectories.

In this chapter, a model of an advanced launch vehicle is presented [66]. This

is a two-stage, four-state vehicle with control and state inequality constraints to

be imposed. The results from the finite element algorithm are seen to compare

favorably with multiple shoot:ng results. Of great interest is the fact that the

answers are obtained in a very short time interval as compared to the time span of

the entire trajectory.
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8.1. A Model for an Advanced Launch Vehicle

A two-stage, four-state vehicle is considered that has two control inequality

constraints and one state constraint. (Only one of these constraints is violated and

is therefore the only one included in the results.)

We confine our attention to vertical plane dynamics of a vehicle flying over a

spherical, non-rotating earth (see Fig. 3.1). This results in the following model for

the states m (mass), h (height), V (velocity), and 7 (flight-path angle):

# sin'7 (8.1-1)

T_ac

gLp

= V sin 7

1}"= Tcos_ - D
m r 2

cos 7

where T is the thrust, Tvac is the thrust in a vacuum, D is the drag, and L is the

lift. Here a, the angle of attack, has been adopted as a control variable.

Note that now V is being used as a state instead of E. There are two reasons

for this. First, using V as a state simplified the algebraic equations. Secondly, since

E was two or three orders of magnitude larger than the other states in the Saturn

models, convergence was easier to obtain with V as a state.

The aerodynamic and propulsion models are given by the following equations:

T =Tvac- A_p(h); M-
V

a(h)
pV _

2

L = qSCL(M, a)

(8.1-2)
r =Re+h; q-

D = qSCD(M, a);

The atmospheric data for density, pressure, and speed of sound are obtained

from the 1975 standard atmospheric data [67].
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The vehicle parameterschosenfor this model are

S I -- 131.34 m2;

Tvac I = 25813400 N;

A, I = 37.515m2;

Ispi - Ispi I = 430.0 s

SII -- 65.67 m 2

T,,acii = 7744020 N

A_II -- 11.254m 2

(8.1-3)

where subscripts 'T' and "II" refer to the first and second stages respectively.

The aerodynamic coefficient data Co and CL are functions of the Mach number

M and angle of attack a. The physical constants used in the above model are the

earth's gravitational constant p = 3.9906 x 10 TM mSs -2, the earth's mean radius

R_ -- 6.378 x 106 m and the acceleration due to gravity g -- 9.81 ms -2.

The three constraints are

gl(x,u,t) =aq- 2925rad-Pa_< 0

g2(x, u,t)= -(aq + 2925)rad-Pa < 0 (8.1-4)

q(h, V) - 40698.2 Pa < 0

where only the first constraint will be enforced since the other two are not violated.

The performance index is

J = ¢l,i = ml,, (8.1-5)

and the final time t I is open. The initial conditions specified are m(0) = 1.52345 x

106 kg, h(0) = 400 m, Y(0) = 64.48941 m/s, and 7(0) = 89.5 °. The final conditions

are h(tf) = 148160.0 m, Y(tf) = 7858.1995 m/s, and 7(tf) = 0.0 °. The burnout

mass of the first stage is 645500 kg and the drop-mass of the booster is 98880 kg.
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8.2. Computational Aspects

The code for this model was written on a SUN 3/260. The code was written

to be as efficient as possible so as to get a feel for the actual run-times one might

see in an on-board computational setting.

An explicit Jacobian is formed within the code and a Newton-Raphson method

was employed. The Jacobian was 85% to 95% sparse for the runs made. Great

computational savings came from taking advantage of the Harwell sparse matrix

solver MA28AD [59]. The code was run with double precision.

Initial guesses were, of course, necessary for the Newton-Raphson method. A

Taylor series approach was taken that generated initial guesses for all variables.

These guesses, although crude, were good enough to make a converged run with

boundary conditions that differed somewhat from the specified conditions. We

were then able to slowly "move" the boundary conditions out to the specified ones.

An explanation of the Taylor series approach is given in Chapter 10.

8.3. Results

In Figs. 8.1 - 8.8, numerical results for the ALV model with no constraints

enforced are given for 2, 4, and 8 elements per time interval, where the number

of elements is denoted by (N1 : N2) on the plots. These results are compared

to a multiple-shooting code as a check on the accuracy of the method and of the

program. The four states are shown in Figs. 8.1 - 8.4 and the costates are shown

in Figs. 8.5 - 8.8. For all cases, the (8:8) run lies on the essentially exact curve

corresponding to the multiple shooting (MS) code. In general, even the (4:4) run

yields an excellent approximation to the solution.

The control is shown in Fig. 8.9. Although the (8:8) run is close to the exact

curve, it has not converged on the answer. Due to the large slopes and sharp peaks

in the control, the finite element method required 24 elements in the first stage to
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converge on the solution. However, it is important to note that we were still able

to run only 8 elements in the second stage. Thus, it may be feasible to cluster the

elements to refine the solution.

Fig. 8.10 shows a graph of aq. (The dynamic pressure q is not shown because

it does not violate the constraint.) It can be seen clearly that only one control

constraint, gl, is violated. This is the only constraint that was added to the program

to generate the next two graphs.

The (4:4) results above were obtained in 5.5 CPU seconds on a SUN 3/260,

and five iterations were required with a Newton-Raphson method. Of course, the

number of iterations depends on the quality of the initial guesses. In an on-board

computational setting, the initial guesses should be pretty good since they would

probably be determined from a previously obtained solution.

For Figs. 8.11 and 8.12, the control constraint gl was included into the computer

model. Since the constraint is just barely violated, there was essentially no change in

the data when the multiple shooting code was run; therefore, it is not seen in these

two graphs. However, for illustrative purposes, the unconstrained case, the realistic

constraint, and two unrealistic constraints are shown for the finite element case.

Even for the lowest of the constraints, the states, costates, and dynamic pressure

are virtually unchanged. Also, no significant extra computer time was expended.

Finally, as a feel for the global convergence of the method, the HamiItonian of

the unconstrained system is plotted in Fig. 8.13 for 2, 4, 8, and 16 elements per

stage. There is a nice convergence toward the exact answer of zero with an increase

in the number of elements.
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CHAPTER 9

ERROR ESTIMATES

Numerical examples have shown that the finite element method presented in

this thesis yields very accurate solutions to initial-value ordinary differential equa-

tions, dynamics problems, and optimal control problems. It is the intent of this

chapter to find a relationship between the step size At and the error of the integra-

tion performed [68]. Error estimates for dynamics have been performed by Hodges

and Hou [69]. Therein, the authors find that the error for the linear oscillator prob-

lem to be F'ts It is noted that to obtain general error estimates for mixed methods-W-"

is not state of the art.

The first part of this chapter will be concerned with comparing the local trun-

cation error of Euler's method, a second-order Runge-Kutta method, and the finite

element method for the initial-value ordinary differential equation _ = f(x, t). The

approximation to x(t) will first be given for each of the three methods, and the

Taylor Series expansion of each approximation will be derived. Then, the local

truncation error of the three methods will be compared to the exact solution for

four different f(x, t)'s. The finite element method will be seen to be proportional

to At 3 for all examples.

The second part of the chapter will involve studying the error of the finite

element method in optimal control problems. A control problem will be solved

using the weak form developed in Chapter 2. It is possible to develop equations for

all the unknown variables in terms of At. Consequently, convergence to the exact

solution is proven and the error in each variable is shown to be proportional to At 2.
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9.1. Initlal-Value Problems

Consider the differential equation

_= f(x,t) (9.1-1)

where x is a scalar, t is the time, and _:0 is the given initial condition. It is desired

to find the local truncation error involved with the integration of this differential

equation. Several approximation methods are explored. These are Euler's method

(also known as a first-order Taylor Series method), a second-order Runge-Kutta

method, and the finite element method which is developed in Appendix B. Following

the summary of these methods, four example problems will be examined.

9.1.1. Methods of Solution

Let At be a small time step and let the value of x at t -- At be denoted by &. To

compare the error of an approximation method with the exact answer, & will be

expanded in a Taylor Series in At about At = 0.

The value of & using Euler's method [70] will be denoted by XEM and is defined

as

XEM : :_0 Jr- f(x0,0)At (9.1.1-1)

This method is already in a Taylor Series form where only first-order terms in At

are present.

The value of _ using a second-order Runge-Kutta method [70] will be denoted

by xRg. Defining g = f(x0,0), then _:RK is given as
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( I')5RK = 50 + Atf 5o + --_-g, -- (9.1.1-2)

For clarity, define

faK = Y 5o + yg,-- (9.1.1-3)

where it is noted that fRK is always an explicit function of At. The Taylor Series

expansion of Eq. (9.1.1-2) is

20fRK(50,0) At 2
5RK _ 50 + fRK (50, O)At + OAt 2

+ 302fRg(5o, O) /_t 3
OAt 2 6

(9.1.1-4)

An expression for the approximation of 5 using the finite element method, XFE,

is not quite as easy to produce. This is because the finite element method is an

implicit method, The equations derived in Appendix B (and Chapter 2 also, but

for a different reason) are

(9.1.1-5)

Eq. (9.1.1-5) may be rewritten as one equation involving only nodal (i.e., hatted)

values. This equation is

5FE -- Atf(SFE + 50 At
2 ' 2 ) = 50 (9.1.1-6)
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In order to find a Taylor Seriesapproximation for irE in the above equation, it is

necessaryto rewrite irE as a polynomial in At with unknown coefficients. Thus,

let

iFB = E xi+'Atl (9.1.1-7)
i=O

Eq. (9.1.1-7) is now substituted into Eq. (9.1.1-6) resulting in

G = EXi+lAti --Atf zo +_i=o:_i+l/kti At2 , _ -_0=0
i=0

(9.1.1-8)

Again for clarity, define

(fFE = f Xo + Ei=0 _7i+ 1 Ati __t
2

(9.1.1-9)

where fFE is an explicit function of At. To find the unknown coefficients ix, x2,

etc., the Taylor Series expansion of Eq. (9.1.1-8) will be taken about At = 0, and

the coefficients of each At term will be set equal to zero. The required derivatives

of G with respect to At, denoted by superscripted numbers, are
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00

zi+_At - AtfFE - _oG_.E^ i
i=0

i----1

G(2) = E z(i - 1)X/+l At i-2 - _3o¢(1)FE-- ,--_%tA÷C(2)FE

i----2

_ £(n--1)
G(n) = E n!_ci+lAti-n - "nJFE

(9.1.1-10)

Since G and the derivatives of G when evaluated at At = 0 are the coefficients in

the Taylor Series approximation of G, then the unknown coefficients for _FE are

found by setting each equation above equal to zero. This results in

G z_t=o = 0 = ?cl - :_o

a(')l_,=o-- o= _=- fFEl_x,=o

o.c(1) I
G(2) IAt=0 = 0 = 2:_3 - ZJFE I,'_=0

a(n) A,:O -- 0 "- n!Xn+l -- (r/, -- 1)!fF(E--1)IAt:O

(9.1.1-11)

Solving Eq. (9.1.1-11) for the unknown coefficients results in

_71 -- X0

_2 = Yr_EIAt=o

1 f(_-2> [A,=o
_" - (_ - 2)!

(9.1.1-12)
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So, finally, the approximation to _ using the finite element method is given by

Eq. (9.1.1-7) where the coefficientsof the polynomial are given by Eq. (9.1.1-12).

The Taylor Seriesapproximation of the Euler method, a second-orderRunge-

Kutta method, and the finite elementmethod havenow beenderived. Theseequa-

tions are grouped together below for convenience. The coefficients in Eq. (9.1.1-12)

have been substituted into Eq. (9.1.1-7).

_TEM = -T0 -Jr- f(&o, 0)At

1 t(2), At 3
¢(1) [At=0At 2 -t- 2JRK IAt-=0_:RK _ _70 "Jr- fRKIzXt=oAt + JRK

(1) 2 1 ¢(2)

XFE _ 330 _t. fFE[at=oAt + fl_EIAt=0A t + 2JFE IAt=OAt3

(9.1.1-13)

where

(fRK =f Xo+_f(i:o,0), (9.1.1-14)

and

fFE = f ( :?O -t- _-'_4_=°_i+l Ati2 , _At ) (9.1.1-15)
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9.1.2. Example Problems

Four example problems with exact solutions will now be examined to compare

the local truncation error of the three methods described above. It will be shown

that the finite element method is as good or better than the second-order Runge-

Kutta method for all the example problems.

The first example will be a simple linear differential equation in x. Suppose

f(x,t) = x and _0 = 1 so that Eq. (9.1-1) becomes

_---x (9.1.2-1)

The exact answer is x(t) = exp(t) so that :_EX, the exact value of x at t -- At is

given as

At 2 At 3
(9.1.2-2)

By using Eqs. (9.1.1-14) and (9.1.1-15), faK and fFE are found to be

fRK = f + =1+- 5-

fFE = f ( 3c° + _i°°=°_i+l/kti _-)2 _ -_-

1 + _i°°_0 Xi+l Ati

(9.1.2-3)

and the unknown coefficients above are found from Eq. (9.1.1-12). Now, Eq. (9.1.1-

13) may be used to find the Taylor Series representation for each method. These

expressions are
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XEM ----1 --}-At

At 2
:}RK =l+At+

2

At 2

_FE _ 1 + At + _ + --

At 3

4

(9.1.2-4)

The local truncation error of the three integration schemes is found by compar-

ing terms of the Taylor Series in Eq. (9.1.2-4) with the exact solution in Eq. (9.1.2-

2). The errors, denoted by e, are found to be

At 2

eEM --
2

At 3
eRK --

6

At a

eFE- 12

for Euler's method

for a Runge-Kutta method (9.1.2-5)

for the finite element method

Thus, it is easily seen that the finite element method is a superior integration scheme

to the Euler method or second-order Runge-Kutta method for this linear differential

equation.

The second example involves a nonlinear differential equation in x only. Let

= 1 + cos x (9.1.2-6)

with _0 = 0. The exact solution to this equation is

x(t) = 2 tan -1 t (9.1.2-7)
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Following the same procedure as in the first example of finding fRK, fFE, and the

unknown _'s, then Eq. (9.1.1-13) and the Taylor Series of Eq. (9.1.2-7) may be

used to write down the following expressions.

_'EM = 2z_t

1 3
_RK _ 2At - _At

1 a
XFE _ 2At -- _/_t

_EX ,_ 2At -- _-At 3
3

(9.1.2-8)

The errors are found to be

2At 3

eEM --
3

At 3
eRK _ --

6

At a
eFE --

6

(9.1.2-9)

For this case, the finite element method and the second-order Runge-Kutta method

have the same error, and the error is proportional to At 3.

The third example deals with a function of x and t. Consider

= x 2 cos t with &0 = 1 (9.1.2-10)

The exact solution for this problem is x(t) = (1 - sin t) -1 . The Taylor Series

approximations for the three approximation methods and the exact solution are
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:_EM ---- 1 + At

At 3
_3RK ,_ 1 + At + At 2 +

8

9At 3
:rfE _-_ 1 + At + At 2 +

8

5At 3
_EX _-, 1 + At + At 2 q-

6

and the errors are found to be

eEM = At 2

17At 3

eRK "- 24

7At 3
eFE -"

24

(9.1.2-19,)

Once again, the finite element method is more accurate than the second-order

Runge-Kutta method. The local truncation error is on the order of At 3.

For the fourth and final example, consider the special case of Eq. (9.1-1) where

f is an integrable function of t only. Then, Eq. (9.1-1) becomes

]c = f(t) (9.1.2-13)

Eq. (9.1.1-6) for the finite element method becomes

XFE = 5o + Atf(_-) (9.1.2-14)

Note that this is now an explicit equation for _:FE and the Taylor Series expansion

may be found without specifying a particular f(t). The Taylor Series expansion for
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Euler's method, the Runge-Kutta method, and the finite elementmethod are found

from Eqs. (9.1.1-13) and (9.1.2-14). Note that fR_: = fFE = f(At/2) so that

f(R_= f(r_) = l f(.)(At_g) (9.1.2-15)

where again the superscripts refer to derivatives with respect to At.

These expressions, along with the expansion of the exact solution, and the local

truncation error associated with each method are given in Table 9.1. A summary

of the errors for each example problem studied in this section is given in Table 9.2.

142



Table 9.1: Taylor Seriesand error versus exact for _ = f(t)

Method Taylor Series Expansion Error

Euler _,o + f(O)At of(o) At _OAt 2

Runge-Kutta xo + f(O)At + of(o) At • + o2f(0) At _ o2j__.__At _oat 2 o--g-d-_-'-V- OAt 2 -_-

ae
finite element xo + f(O)At + OAt 2 "4- OAt _OAt _ 24

Exact :_o + f(O)At + oat --if- + oat_ _ --

Table 9.2: Summary of errors

f(X, t) eEM eRK eFE

x At2�2 At3/6 At3/12

l+cosx 2At3/3 At3�6 At3�6

x 2 cost At 2 17At3/24 7At3/24

f(t) f(1)(O)At2/2 f(2)(O)At3/24 f(2)(O)At3/24
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9.2. Optimal Control Problems

The weak Hamiltonian finite element formulation is a mixed method, which is to

say that there is more than one field variable. Developments of mathematical proofs

of convergence and expressions for error bounds are not state-of-the-art for mixed

methods; however, some feel for the accuracy of the weak Hamiltonian formulation

may be obtained by studying a simple example problem. Afterwards, an error plot

from the fixed-time problem of Chapter 2 will be examined.

Consider the following optimal control problem where x and u are scalars.

fo 11 2J= x(1) 2 + -_u dt

k = tu with x(0) =4

(9.2-1)

The exact solution is readily found to be

= 3

x(t) = 4 - t 3

u(t) = -3t

(9.2-2)

It is desired to find an error estimate of each unknown variable using the finite

element formulation. Since the error estimate will be a function of the element size

At, then the number of elements N = 1�At will be left as a free parameter.

The equations to be solved are easily verified to be

iO __ /_(1) = 0

/_(i) __ _(i+1) = 0

_(N) _ _.t = 0

for i = 1,2,..., N - 1 (9.2-3)
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for the costates,

_(i) + _(i)t-(i ) = 0 for i = 1, 2,..., N (9.2-4)

for the controls, and

,_(1) -- A_t_l)_(1 ) = 4
2

_(i+1)- _,(i)- At [t-(i)_(/) .__ _-(i+l)u(i+l)] =02

__(N) _ Att_N)(z(N ) ._ _ f = 0
2

for i = 1,2,...,N - 1

(9.2-5)

for the states. Note that t_i) is an average time value for the ith element and can

be expressed as

t%i) _ 2i - 1At for i = 1,2, ,N (9.2-6)
, ,,

There are 3N + 2 equations with 3N + 2 unknowns which are _'(i), A(i), and

fi(i) for i = 1,2,...,N, and Y:I and A0. As will be shown, it is possible to find

an expression for :rl solely as a function of At. Then, all the unknowns can be

expressed as a function of At and the errors of each unknown can be found as

compared to the exact solution.

To start with, the N + 1 equations in Eq. (9.2-3) will be solved for the costates

yielding

(9.2-7)
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Next, the control variables are found from Eq. (9.2-4) to be

f_(i)= __(i)t-(i) = __,lt-(i) for i = 1, 2,..., N (9.2-8)

After substituting Eq. (9.2-8) for fi(0 and Eq. (9.2-6) for t-(i) into Eq. (9.2-5), then

what remains are N + 1 equations for the N + 1 unknown states. These equations

are

_,(1) nl- XI = 4

_(i+1) _ _(1) + _f (8i 2 + 2) = 0

__(Y) + _f (2N- 1) 2 +_f = 0

for i = 1,2,...,N - 1 (9.2-9)

Solving the middle of the above equations for _(i) in terms of xl results in

x,(i) = x,(N) -I- X,f (_) 3

N-1

Z (8J2 + 2) = 0 for i = 1,2,... ,N - 1 (9.2-10)

j=i

Using Eq. (9.2-10) to find an expression for ._(a), it is now possible to solve the first

and last of Eq. (9.2-9) for _(Y) and xl" The equation for xl is

}f = 4 (9.2-11)

[ ,-,N-_,o.2 ](_)3 (2N- 1)_+ 1+ z.,=l _o, +2) + 1
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This messyexpressionis of morevalue than it may seemat first. By a seriesof

simplifications, it will be possibleto prove that _l convergesto the exact solution

as the number of elementsN approaches infinity. Furthermore, it will be possible

to find an estimate of the error for each of the unknowns.

The simplification will begin with the denominator of Eq. (9.2-11). Noting

that At = 1/N, the denominator becomes

3[ ]
/=1

(9.2-12)

For the case of N > 1, Eq. (9.2-12) becomes

4N 2-4N+2+2(N-1)+8_i 2 +1
i----1

(9.2-13)

Making use of the following identity

N-1

i2= (N- 1)_[2(N- 1)+ 1] (9.2-14)
6

i=l

in Eq. (9.2-13), then simplification results in

8_ 3 N 3- N +1- 5 12N_ (9.2-15)

Now, after replacing N = 1�At in the above equation, then Eq. (9.2-11) becomes

4
_f = 4 a,2 (9.2-16)

3 12
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Note that as N --* oo, At _ 0 so i/ = 3 which is the exact answer. Thus, at

least for this problem, convergence is guaranteed as more and more elements are

taken.

To study the error in il, the Taylor Series expansion of Eq. (9.2-16) in At will

be taken about At = 0. The resulting equation is

3/kt 2 9 /kt 3

if_3+8 2 16 6 (9.2-17)

The exact value of :_, is 3, so the error is _At 2. The final value of the state is the

least accurate of all the state variables.

Since all the costate variables are the same and equal to _:/ (see Eq. 9.2-7),

then the error in the costates for this problem is equal to 3At2/16. Finally, consider

the error in the control variable at the point t = 0.5. This is a non-moving node

(for N even) and allows for an error estimate of the control. From Eqs. (9.2-8) and

(9.2-17),

9 3= -_//2 = -1.5- At 2 + 1-_At (9.2-18)

The exact control is ZtEX ---- --1.5, so the error is

3At 2

32 (9.2-19)

In summary, convergence of this simple control problem has been proven as the

number of elements increases. In addition, it has been shown that the error in the

costates and the final value of the state is proportional to At 2. The error for the

control is also proportional to At 2.
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It would be difficult, if not impossible, to use this procedure on a more com-

plicated problem; however,from observednumerical results, it is believed that the

finite element method is second-order(At 2) accurate for almost all problems. To

help support this statement, consideronce again the fixed-time trajectory problem

presented in Chapter 2. Fig. 2.8 (repeated in Fig. 9.1) showsa plot of the relative

error of the performanceindex J = _:f,(3) and the endpoint multiplier vl versus the

number of elements. The relative error of the final control value is also included.

In Chapter 2, it was noted that the slope of the line is about -2 which indicates

that the error varies inversely with the square of N, or that the error is propor-

tional to At 2. This is similar to a-posteriori error bounds as formulated in usual

finite-element applications [53].

149



-1

_-2

O
,d

-3

-4

i

Performance Index

End-Point Multiplier

Final Control

.... I ....... !

1 10 100

Number of Elements

Fig. 9.1: Relative error of the performance index, vx, and final control vs. N
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CHAPTER 10

INITIAL GUESSES

Almost all of the problems solved to date have used a Newton-Raphson proce-

dure to solve the nonlinear algebraic equations. This procedure, of course, requires

initial guesses. And not all initial guesses will converge to the solution.

Several different ideas have been used throughout the course of this research.

For example, in the two examples presented in Chapter 2, initial guesses were chosen

that were not too different from the boundary conditions given in the problem.

This method worked well for these simple problems and converged solutions were

obtained without much difficulty. Of course, this idea is nothing more than a trial

and error method.

As the problems studied became more difficult, initial guesses became harder to

obtain. This was due in part to the fact that the costates have little physical meaning

and hence their range of possible values are generally unknown. For the Saturn

one-stage model, the solution was obtained by using the method of Levenberg-

Marquardt [55] which did not require very good guesses. The two-stage solution was

obtained by "slowly" perturbing the vehicle parameters and boundary conditions

and resolving the problem at every perturbation. Solutions for the actual specified

conditions were obtained fairly rapidly using this procedure.
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10.1. Taylor Series Approach

With the attempt to automate the program to handle different vehicle pa-

rameters and boundary conditions more easily, a new initial guess procedure was

developed. This approach is based on the Taylor series expansion of one of the

states. The method is outlined below.

Recall from Eq. (3.1-1) of the Saturn one-stage model the following equations

for m (mass), h (altitude), E (specific energy), and 7 (flight-path angle):

,_ = fl(h)

=f2(h,E,7)

=f3(m,h,E,7, u)

7=f4(m,h,E, 7, u)

(10.1-1)

The first element discretized equations for the states are

#t(1) __ /_t f--(1)
2 J1 =rho

_(1) Ate1)- _j_ =_o

_(1) -- AI_ _7(1) _. E0

2 Ja

,_(1) Ate1)- -g_4 =%

(10.1-2)

where _,(1) denotes the midpoint value of the state x in the first element, At is an

arbitrary time step, f(1) is the value of f evaluated at the midpoint of the first

element, and x0 is the given initial condition of the state x.

Using a Taylor series expansion for _(1) results in

zxt £ k
/_(1)_ £0 + TA( 0, 0,%) (10.1-3)
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Now an actual value for _(1)hasbeenobtained. If Eq. (10.1-3) is substituted

into the second equation of Eq. (10.1-2), then the resulting equation after simplifi-

cation is

(10.1-4)

The first, third and fourth equations from Eq. (10.1-2), along with the above

equation are four equations with the four unknowns (_(1),/_0),_(1), and riO)).

Once the midpoint values are found, the nodal values are extracted and the process

is repeated. We thus time march until the boundary conditions are approximately

satisfied. Initial guesses on the costates are then obtained by time marching back-

wards from the final boundary conditions. The only unknown boundary condition

for the costates was found by evaluating the Hamiltonian at the final time.

The above procedure did generate guesses for all the unknowns and the guesses

did indeed converge on the solution.

Unfortunately, there are several serious drawbacks to this idea. First, there is

no way to control the boundary conditions that are to be satisfied. In other words,

even if the final conditions on the states were changed, the same initial guesses

would still be generated. Second, the optimality condition is not satisfied. The

control solved for is not optimal and is, in fact, fiothing more than a parameter to

satisfy the dynamical equations. Third, and most important, there is no guarantee

whatsoever that the initial guesses will converge. Since a fully automated code is

desired, a different method to generate initial guesses must be found.
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10.2. Homotopy and Continuation Methods

An algorithm for computing Brouwer fixed points wherein the homotopy pro-

cedure has guaranteed convergence is proposed in [71]. The homotopy method

was used to generate a numerical algorithm in [72]. Therein, the author develops

"beautifully simple" analytical steps that allow one to find roots of equations.

The method involves following the zero curve of the homotopy map

pa(.k,x) =/_[x - f(x)] + (1 - )_)(x - a)

starting from (0,a). The zero curve is parameterized by arc length s and it can be

shown that the zero curve of pa emanating from (0,a) is the solution of an initial

value problem. When the solution of the initial value problem reaches )_ = 1, the

corresponding x is a fixed point of f. Virtually any a will lead to a root of f. The

art of this procedure lies in following the zero curve accurately, but not too closely

as this leads to increased computational expense.

The homotopy method has been applied to nonlinear two-point boundary value

problems [73,74]. Also, [75] proposes a homotopy algorithm for sparse systems

of nonlinear equations, which is precisely what the weak principle yields. The

algorithm leads to substantial computational savings.

Homotopy methods are rather involved algorithms. When dealing with well-

behaved equations that have unique solutions, simpler methods may often be used to

find fixed points of nonlinear algebraic equations. Therefore, a continuation method

[76] has been adopted to generate initial guesses. The method is now described.

The most general set of n simultaneous algebraic equations in n unknowns

xl,...,xn can be written as

fi(xl,..., z,) = 0 for i = 1,..., n (10.2-1)
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Let yl(r),..., yn(r) be a set of n functions of a variable r, with 0 < r < 1 and take

yi(0) = ki for i = 1,... ,n (10.2-2)

where ki is a constant and selected arbitrarily. Now, require that yl(r),..., yn(v)

satisfy the equations

fi(Yl,... ,Yn) --" fi(kl, ., •,/¢n)(1 -- T) for i = 1,... ,n (10.2-3)

Then, as the right-hand side of Eq. (10.2-3) vanishes at r = 1, the functions

yl(T),...,yn(v) satisfy, at T = 1, precisely the same equations as do xl,...,xn

[see Eq. (10.2-1)]. Now, y,(1),...,yn(1), and, hence xl,...,xn, may be found

as follows: Differentiate Eq. (10.2-3) with respect to v, thus obtaining the set of

first-order differential equations

c3fl dyl Of 1 dyn
+...+ ---- = -f,(k:,...,

Oyl dr Oy, dr

• (10.2-4)

Of _ dyl c3f _ dy,
+"'-4- - - -fn(kl,... ,kn)

Oyl dr Oy_ dr

and perform a numerical integration of these equations using Eq. (10.2-2) as initial

conditions and terminating the integration at r = 1.

As was stated previously, kl,..., kn may be assigned any values whatsoever.

However, it can occur that, for certain choices of kl,..., kn, some of yl,..., y, do not

possess real values for some values of _- in the interval 0 _ _- < 1, in which event the
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numerical integration of the differential equations cannot be carried to completion.

When this happens, one simply changes one or more of kl,...,kn. In general,

results are obtained most expeditiously when kl,..., k, are good approximations to

Xl,..., x,, respectively. Fortunately, in connection with physical problems, one can

often make good guesses regarding xl,..., x,, and hence assign suitable values to

kl,..., k,,. Finally, it is worth noting that many distinct sets of values of ka,..., k,,

can lead to the same values of xx,..., xn.

Let's look at a simple example of the use of the above procedure. Consider the

scalar equation

f(x) = x - cosx = 0 (10.2-5)

Now, let y(0) = k = 0 so that Eq. (10.2-3) takes the form

f(y) = y- cosy = f(k)(1 - r) = r- 1

The equation corresponding to Eq. (10.2-4) is

(10.2-6)

so that

(1 + siny)-_ = 1 (10.2-7)

dy = (1 + siny) -1
dt

(10.2-8)

8).

A second-order Runge-Kutta method is used to numerically integrate Eq. (10.2-

A time step of 0.02 was used. When the integration was completed at T = 1,
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then y(1), and thus x, was found to have a value of 0.7390654, which is correct to

the fifth decimal place.

This continuation method is used in the general code described in the next

chapter. In practice, the integration is performed and then one or two Newton-

Raphson iterations are required to obtain the final answers. This could be avoided

by using a more accurate integration scheme, but this tends to lead to increased

computational effort.
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CHAPTER 11

AN ALGORITHM FOR OPTIMAL CONTROL PROBLEMS

The weak principle for optimal control problems has been fully developed in

Chapters 2, 4, 6, and 7. The formulation is capable of solving optimal control

problems that have continuous states, costates, and controls, and problems with

discontinuities arising from staging (i.e., discontinuities in the system equations),

control inequality constraints and state inequality constraints. The algebraic equa-

tions which come from the weak formulation may be derived prior to specifying

the problem to be solved. It is this feature in particular that allows for a general

problem-solving environment to be created.

The main goal of the general code is to reliably solve a large class of optimal

control problems with a minimum of user interaction. Specifically, it is desired to

create an environment where the user does not have to write subroutines. To this

end, a general code has been developed on a SUN 3/260 workstation and requires a

FORTRAN 77 compiler, MACSYMA [77], and the Harwell subroutine library [59].

The general procedure can be broken into three parts that must interface together.

The first part is the FORTRAN code. This code contains all the subroutines nec-

essary to solve any of the optimal control problems described above. However, if

certain problems require table look-up routines (such as aerodynamic data for a

rocket model), then these subroutines must be given by the user and interfaced to

the rest of the general code. Thus, there may be a need for some user programming

for certain problems. The second part of the general procedure is the use of MAC-

SYMA. The user must supply an input file specifying the problem. This input file
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is in symbolic form and will be loaded into MACSYMA. MACSYMA will then eval-

uate all the necessary expressions and automatically generate the FORTRAN code.

This code is spliced into a template file and becomes one of the subroutines. The

third and final part of the general procedure will consists of subroutines to generate

initial guesses that will reliably converge. The continuation method described in

Chapter 10 is being used. This method converts the algebraic equations to initial-

value ordinary differential equations. A second-order Runge-Kutta method is used

to integrate the equations and obtain initial guesses for a Newton-Raphson method.

This method has worked on all the problems tested to date.

Every example problem in this thesis has been solved using the general code.

Although this makes the code useful in and of its self, we wish to emphasize that the

setup time required to solve these problems is the important factor. Setup time is the

time required for a user to write all the proper input files and subroutines in order

to run the program. The setup time to use any of the existing codes (see Chapter 1

for a discussion of these) can range from several hours to weeks. However, the setup

time using the general code is only about 10 minutes for any problem (assuming

that the subroutines for table look-up data are already available). This is because

only a symbolic input file is required. MACSYMA and the FORTRAN subroutines

do all the rest.

As mentioned above, the code can handle a wide range of problems. There

are some limitations though. One limitation is that the code can currently only

handle a problem with one or two stages. Also, the code can only handle a scalar

state constraint. These restrictions ave present because of the extra programming

involved to remove them coupled with the fact that there is no way of testing the

results analytically. It is felt that there are possibly better ways to handle state

constraints by using a canonical form as is done in [39]. This is a good problem for

future research (see Chapter 12).
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Severalexampleinput filesaxenow given to demonstrate the useof the general

code. Afterwards, a sampleoutput is given for a third-order state constraint prob-

lem. The chapter concludes with a chart of the times taken to solve the example

problems.

11.1. Example Input Files

The last four pages of this section contain four example input files. These files

contain four distinct cases to be discussed now.

Consider the free time trajectory optimization problem presented in Section 2.4.

The first input file is used to solve this problem. The user is required to supply the

number of states NS, the number of control constraints NP (zero in this example),

the number of phases NPH (to be described shortly), the number of controls M,

and the number of constraints on the states at the final time Q. The next series of

lines from F[1] to F[4] define the system equations as given in Eqs. (2.3-1). After

the equations are formed, the user supplies the performance index L and PHI. The

variable S contains the state constraint, which is zero for this example since there

are no constraints to be imposed. Then the Q constraints are given in PSI and the

initial conditions are given in IC. Next the user supplies the final time TF and a

guess at the value of the final time TFGUES. Since the final time is unknown, TF

is set to zero and the user gives a guess at the final time. This guess only needs

to be within an order of magnitude generally. Also, guesses for the states at the

midpoint of the trajectory and the final point are given in XGUES. These guesses

may be very crude and can even be zero for many problems. Since the final value

of three of the states were known for this problem, crude guesses were easily and

obviously obtained. Finally, the number of elements to be run is given in NE.

Regaxdless of the value of NE, the code automatically starts with the two

element case and uses the continuation method of [76] and the Newton-Raphson

method to solve the problem. The code then interpolates the solution to this case
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and runs a four element caseusing only the Newton-Raphsonmethod. The code

continuesin this manner until NE is met. If the Newton-Raphsonfails to converge

for the four or higher elementcase(which is rare) then the program will start that

case over and try the continuation method to solve the four element case.

The output was verified to be identical to the solution previously obtained.

Again, we emphasize that not only is the method accurate as has been observed

throughout this work, but now the general code can produce these results with a

simple 30 line input file. This file was created in about five minutes and, as will be

seen in the last section, answers for 2, 4, and 8 elements were obtained about 6.25

minutes thereafter.

The second input file is used to solve the control constraint example of Chap-

ter 6. Most of the input is the same as in the preceding example. There are,

however, a couple of important changes to make. One is that now the number of

control constraints, NP, is 2. Also, these constraints are put in the F array at the

end of the state equations. Thus, we see that F[2] and F[3] contain the two control

constraints. Also note that this problem has an explicit dependence on time which

is handled by the code. Finally, since this problem is a fixed time problem, TF is

set to the known value and TFGUES is also set to this value. These values must

be equal for the code to know it is a fixed time problem.

The third input file introduces another new problem that the code can handle.

This file will solve the advanced launch vehicle problem presented in Chapter 8.

For simplicity only in describing this file, the atmospheric effects have been ne-

glected since there are no analytical expressions for atmospheric and aerodynamic

conditions. This example, although somewhat unrealistic due to the absence of at-

mospheric effects, does demonstrate the power and versatility of the general code.

Several new variables are introduced that need to be explained. First, IST appears

in the sixth line and is set to a value of 1 if there is a second stage involved. The

next group of lines (7 - 16) are values defined only to simplify the writing of the
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state equations. F[1] - F[4] define the state equations in the first stage and FI[1] -

F1 [4] define the state equations in the second stage. The staging time is determined

by PSITS, which is a constraint on the states at the staging time. Also, the known

jump in the state is given in JUMP. The index number of JUMP tells the code

which state is experiencing the discontinuity. Notice again the very crude guesses

given for the states. It was essential that the code work with a minimum of physical

insight into the problem.

As a final example file, a third-order state constraint problem is set up. This

example is found in [65] and contains an analytical solution. A finite element code

had not been previously written to solve this problem. Fortunately, the general

code was able to solve the problem in a matter of minutes.

A couple of new features are present in this input file. One is that the number

of phases NPH is something other than 1 for a change. The number of phases is used

to indicate how often the trajectory enters or leaves a state constraint boundary.

For this problem, the solution touches the boundary once, so NPH equals 2. Also

new is an expression for S. S contains the state constraint equation to be enforced

by the program. It is also found (from results not shown) that a lower (or stricter)

state constraint causes two touch-points, in which case the user should choose NPH

= 3. The user is given the task of determining the number of phases in a problem. If

the incorrect number of phases are chosen that either the constraint will be violated

or the multipliers which are supposed to be positive will be negative. It is hoped

that this may be avoided eventually as the general code is further developed. The

output of this example is given in the next section.
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NS:4;

NP:0;

NPH :1 ;

M:I;

Q:3;

F [i] :i. 12397"C0S (U (i)) ;

F[2] :1.12397*SIN(U(1));

F[3] :X(1) ;

F[4] :X(2) ;

L:I.0;

S:0;

PHI:0.0;

PSI Ill :X(I)-12.2129;

PSI[2] :X(2) ;

PSI [3] :X(4)-I00.0;

IC[I] :0.0;

IC[2] :0.0;

IC[3] :0.0;

IC[4] :0.0;

TF:0.0;

TFGUES :I0.0;

XGUES [I, I] :6. 0;

XGUES[1,2] :12.2129;

XGUES [2, i] :i. 0;

XGUES[2,2] :0.0;

XGUES[3,1] :50.0;

XGUES[3,2] :i00.0;

XGUES [4, I] :50.0;

XGUES[4,2] :100.0;
NE:8;
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NS:I;

NP:2;

NPH:I;

M:I;

Q:0;

F[I] : (I+T-3*T**2/17)*U(1);

F[2] :U(1)-l;

F[3] :-U(1)-I;

S:0.0;

L:0.5*U(1)**2;

PHI:0.5*X(1)**2;

IC[I]:-19.945596;

TF:I0.0;

TFGUES:I0.0;

XGUES[I,I]:-I0.0;

XGUES[I,2]:-I.0;

NE:8;
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NS:4;

NP:0;

M:I;

Q:3;

NPH:I;

IST:I;

TVACI :2. 58134E07;

TVAC2 :7.74402E06;

AEI :37. 515;

AE2 :ii.254;

SI:131.34;

S2:65.67;

ISP:430.0;

GRAV: 9.81;

MU: 3. 9906E14;

RE: 6378000.0;

H(X) := RE+X(2);

F [I] :-TVACI/(GRAV*ISP) ;

F[2] :X(3)*SIN(X(4)) ;

F[3] :TVACI*COS (U (1) )/X (1) - MU*SIN(X(4))/H(X)^2;

F[4] :TVACI*SIN(U(1))/(X(1)*X(3))

+ (X (3)/H (X) -MU/(X (3) *H (X) **2) )*COS (X (4)) ;

F1 [I] :-TVAC2/(GRAV*ISP) ;

FI[2] :X(3)*SIN(X(4));

FI[3] :TVAC2*COS(U(1))/X(1) - MU*SIN(X(4))/H(X)^2;

FI[4] :TVAC2*SIN(U(1))/(X(1)*X(3))

+ (x(3)/H(X)-MU/(X(3)*H(X)**2))*COS (X(4)) ;
L:0.0;

PHI :X (I) ;

S:0.0;

PSITS :X (i)-645500.0;

JUMP[l] :98880.0;

PSI[I] :X(2)-148160;

PSI[2] :X(3)-7858. 1995;

PSI [3] :X(4);

IC[I] :1.52345E06;

IC[2] :400.0;

IC[3] :160.0;

IC[4] :1.4;

TF:0.0;

TFGUES :300.0;

XGUES [I, i] :0.7E06;

XGUES [i, 2] :i0000.0;

XGUES [2, i] :70000.0;

XGUES[2,2] :148160.0;
XGUES[3,1] :3000.0;

XGUES [3,2] :7858. 1995;

XGUES[4,1] :0.5;

XGUES[4,2] :.0;

NE:8;
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NS:3;

NP:0;

NPH:2;

M:I;

Q:3;

F[I] :X(2) ;

F[2] :X(3) ;

F[3] :U(1) ;

S:X(1) -0.3;

L:0.5*U (I) *'2;

PHI:0.0;

PSI[I] :X(1);

PSI [2] :X(2)+I;

PSI [3] :X(3)-2;

IC[I] :0.0;

IC[2] :i.0;

IC[3] :2.0;

TF:I.0;

TFGUES: i. 0;

XGUES[I,I] :.3;

XGUES[1,2] :0.0;

XGUES [2, I] :0.0;

XGUES[2,2] :-I.0;

XGUES [3, i] :2.0;

XGUES [3,2] :2.0;

NE:8;
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11.2. Sample output file

The output (given on the following pages) of the state constraint example

consists of the solutions for the states, costates, controls, and Hamiltonian for 2, 4,

and 8 elements per phase. At the top of each page is the total elapsed computer time

from the start of the program. On the two element case sheets is 10.40 secs. T_Ls

is the time the code took to run the continuation method and the Newton-Raphson

method for this case. This is a rather small number given the complexity of the

problem and the fact that an accurate second-order Runge-Kutta method was used

to solve the problem. The time at the top of the four element case is 11.94 which

tells us that only 11.94 -10.40 = 1.54 seconds was required to run the four-element

case given the solution to the two element case. Finally, the desired eight element

case solution was obtained in a total of 15.08 secs and only 3.14 secs from the four

element case. Note that this time includes the extraction of nodal values and the

production of the data files. This is a nonnegligible part of the total time.

In summary, a third order state constraint problem which might have taken

several days or weeks to program from scratch was solved in about 10 or 15 minutes

with the general code. The simple input file is typed in a few minutes and a few

minutes are required by MACSYMA to create the FORTRAN subroutines. After

that, the program runs in a matter of seconds.
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NODAL VALUES FOR THE STATES

NUMBER OF ELEMENTS = 2 TOTAL ELAPSED TIME - 10.40

Xl X2 X3 X4 TIME

0.00000E+00

0.21250E+00

0.30000E+00

0.30000E+00

0.21250E+00

0.55511E-16

0.10000E+01

0.70000E+00

0.00000E+00

0.00000E+00

-.70000E+00

-.10000E+01

0.20000E+01

-.44000E+01

-.12000E+01

-.12000E+01

-.44000E+01

0.20000E+01

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.25000E+00

0.50000E+00

0.50000E+00

0.75000E+00

0.10000E+01
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NODAL VALUES FOR THE STATES

NUMBER OF ELEMENTS = 4 TOTAL ELAPSED TIME = 11.94

Xl X2 X3 X4 TIME

0.00000E+00

0.12385E+00

0.22506E+00

0.28246E+00

0.30000E+00

0.30000E+00

0.28246E+00

0.22506E+00

0.12385E+00

-.13878E-15

0.10000E+01

0.98158E+00

0.63780E+00

0.28062E+00

0.27756E-15

0.27756E-15

-.28062E+00

-.63780E+00

-.98158E+00

-.10000E+01

0 20000E+01

- 22947E+01

- 32057E+01

- 25091E+01

- 19809E+01

- 19809E+01

- 25091E+01

- 32057E+01

-,22947E+01

0°20000E+01

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

O.O0000E+O0
0.00000E+00

0.00000E+00

0.12S00E+00

0.2S000E+00

0.37500E+00

0.50000E+00

0.50000E+00

0.62500E+00

0.75000E+00

0.87500E+00

0.10000E+01

169



NODAL VALUES FOR THE STATES

NUMBER OF ELEMENTS - 8 TOTAL ELAPSED TIME - 15.08

Xl X2 X3 X4 TIME

0.00000E+00

0.63949E-01

0.12682E+00

0.18238E+00

0.22738E+00

0.26086E+00

0.28330E+00

0.29595E+00

0.30000E+00

0.30000E+00

0.29595E+00

0.28330E+00

0.26086E+00

0.22738E+00

0.18238E+00

0.12682E+00

0.63949E-01

-.15266E-15

0 I0000E+01

0 I0464E+01

0 96565E+00

0 81215E+00

0 62799E+00

0 44308E+00

0 27512E+00

0 12965E+00

- 55511E-15

- 55511E-15

-.12965E+00

-.27512E+00

-.44308E+00

-.62799E+00

-.81215E+00

-.96565E+00

-.I0464E+01

-.10000E+01

0.20000E+01 0.00000E+00 0.00000E+00

-.51643E+00 0.00000E+00 0.62500E-01

-.20665E+01 0.00000E+00 0.12500E+00

-.28453E+01 0.00000E+00 0.18750E+00

-.30479E+01 0.00000E+00 0.25000E+00

-.28695E+01 0.00000E+00 0.31250E+00

-.25051E+01 0.00000E+00 0.37500E+00

-.21499E+01 0.00000E+00 0.43750E+00

-.19990E+01 0.00000E+00 0.50000E+00

-.19990E+01 0.00000E+00 0.50000E+00

-.21499E+01 0.00000E+00 0.56250E+00

-.25051E+01 0.00000E+00 0.62500E+00

-.28695E+01 0.00000E+00 0.68750E+00

-.30479E+01 0.00000E+00 0.75000E+00

-.28453E+01 0.00000E+00 0.81250E+00

-.20665E+01 0.00000E+00 0.87500E+00

-.51643E+00 0.00000E+00 0.93750E+00

0.20000E+01 0.00000E+00 0.10000E+01
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NODALVALUESFORTHE COSTATES

NUMBEROF ELEMENTS= 2 TOTAL ELAPSED TIME _ 10.40

L1 L2 L3 L4 TIME

0.20480E+04

0.20480E+04

0.20480E+04

-.20480E+04

-.20480E+04

-.20480E+04

0.66560E+03

0.15360E+03

-.35840E+03

-.35840E+03

0.15360E+03

0.66560E+03

0.76800E+02

-.25600E+02

-.71054E-14

-.71054E-14

0.25600E+02

-.76800E+02

0.00000E+00 0

0.00000E+00 0

0.00000E+00 0

0.00000E+00 0

0.00000E+00 0

0.00000E+00 0

00000E+00

25000E+00

50000E+00

50000E+00

75000E+00

10000E+01
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NODAL VALUES FOR THE COSTATES

NUMBER OF ELEMENTS = 4 TOTAL ELAPSED TIME = 11.94

L1 L2 L3 L4 TIME

0.90935E+03

0.90935E+03

0.90935E+03

0.90935E+03

0.90935E+03

-.90935E+03

-.90935E+03

-.90935E+03

-.90935E+03

-.90935E+03

0.33023E+03

0.21656E+03

0.I0289E+03

-.I0779E+02

-.12445E+03

-.12445E+03

-.10779E+02

0.I0289E+03

0.21656E+03

0.33023E+03

0.51445E+02

0.17271E+02

-.26947E+01

-.84517E+01

0.46185E-13

0.46185E-13

0.84517E+01

0.26947E+01

-.17271E+02

-.51445E+02

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 12500E+00

0 25000E+00

0 37500E+00

0 50000E+00

0 50000E+00

0 62500E+00

0 75000E+00

0.87500E+00

0.10000E+01

172



NODAL VALUES FOR THE COSTATES

NUMBER OF ELEMENTS - 8 TOTAL ELAPSED TIME - 15.08

L1 L2 L3 L4 TIME

0.79917E+03

0.79917E+03

0.79917E+03

0.79917E+03

0.79917E+03

0.79917E+03

0.79917E+03

0.79917E+03

0 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

- 79917E+03

0.29734E+03

0 24739E+03

0 19745E+03

0 14750E+03

0 97549E+02

0 47601E+02

- 23476E+01

- 52296E+02

- I0224E+03

- I0224E+03

-.52296E+02

-.23476E+01

0 47601E+02

0 97549E+02

0 14750E+03

0 19745E+03

0 24739E+03
0 29734E+03

0.48774E+02

0.31751E+02

0.17850E+02

0.70708E+01

-.58689E+00

-.51228E+01

-.65370E+01

-.48294E+01

-.26645E-14

-.26645E-14

0.48294E+01

0 65370E+01

0 51228E+01

0 58689E+00

- 70708E+01

- 17850E+02

- 31751E+02
- 48774E+02

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 00000E+00
0 00000E+00

0 00000E+00
0 00000E+00
0 00000E+00
0 00000E+00

0 00000E+00
0 00000E+00

0.00000E+00

0.62500E-01

0.12500E+00

0.18750E+00

0.25000E+00

0.31250E+00

0.37500E+00

0.43750E+00

0.50000E+00

0.50000E+00

0.56250E+00

0.62500E+00

0.68750E+00

0.75000E+00

0.81250E+00

0.87500E+00

0.93750E+00

0.10000E+01
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ALL VALUES FOR CONTROL AND HAMILTONIAN

NUMBER OF ELEMENTS = 2 TOTAL ELAPSED TIME = 10.40

U1

-.76800E+02

-.25600E+02

0.25600E+02

0.12800E+02

0.15843E-13

0.71054E-14

-.12800E+02

-.25600E+02

0.25600E+02

0.76800E+02

U2 U3 HAMIL TIME

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.43008E+03

0.92160E+03

0.43008E+03

0.92160E+03

0.43008E+03

0.43008E+03

0.92160E+03

0.43008E+03

0.92160E+03

0.43008E+03

0 00000E+00

0 12500E+00

0 25000E+00

0 37500E+00

0 50000E+00

0 50000E+00

0 62500E+00

0 75000E+00

0 87500E+00

0 10000E+01
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ALL VALUESFORCONTROLANDHAMILTONIAN

NUMBEROF ELEMENTS= 4 TOTALELAPSEDTIME = 11.94

U1

-.51445E+02

-.34358E+02

-.17271E+02

-.72880E+0!

0.26947E+01

0.55732E+01

0.84517E+01

0.42258E+01

-.58764E-13

-.46185E-13

-.42258E+01

-.84517E+01

-.55732E+01

-.26947E+01

0.72880E+01

0.17271E+02

0.34358E+02

0.51445E+02

U2 U3 HAMIL TIME

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 000OOE+00
0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.27045E+03

0.24651E+03

0.00000E+00

0.62500E_01
0.12500E+00

0 18750E+00

0 25000E+00

0 31250E+00

0 37500E+00

0 43750E+00

0 50000E+00

0.50000E+00

0.56250E+00

0.62500E+00

0.68750E+00

0.75000E+00

0.81250E+00

0.87500E+00

0.93750E+00

0.10000E+01
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ALL VALUES FOR CONTROL AND HAMILTONIAN

NUMBER OF ELEMENTS = 8 TOTAL ELAPSED TIME = 15.08

U1

-.48774E+02

-.40263E+02

-.31751E+02
-.24801E+02

-.17850E+02

-.12461E+02

-.70708E+01

-.32419E+01

0.58689E+00

0.28549E+01

0.51228E+01

0.58299E+01

0 65370E+01

0 56832E+01

0 48294E+01

0 24147E+01

0 44409E-15

0 26645E-14

- 24147E+01
- 48294E+01

- 56832E+01

- 65370E+01

- 58299E+01

- 51228E+01

- 28549E+01

- 58689E+00

0 32419E+01

0 70708E+01

0 12461E+02

0 17850E+02

0 24801E+02

0.31751E+02

0.40263E+02

0.48774E+02

U2 U3 HAMIL TIME

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00
0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0 00000E+00

0 00000E+00

0 O0000E+O0

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0.00000E+00

0,00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0 00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0 20918E+03

0 20438E+03

0 20438E+03

0 20918E+03

0 20438E+03

0 20918E+03

0 20438E+03

0 20918E+03

0 20438E+03

0 20918E+03

0 20438E+03

0,20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.20918E+03

0.20438E+03

0.00000E+00

0.31250E_01

0.62500E-01

0.93750E-01

0.12500E+00

0.15625E+00

0.18750E+00

0.21875E+00

0.25000E+00

0 28125E+00

0 31250E+00

0 34375E+00

0 37500E+00

0 40625E+00

0 43750E+00

0 46875E+00

0 50000E+00

0 50000E+00

0 53125E+00

0 56250E+00

0 59375E+00

0 62500E+00

0.65625E+00

0.68750E+00

0.71875E+00

0.75000E+00

0,78125E+00

0 81250E+00

0 84375E+00

0 87500E+00

0 90625E+00
0 93750E+00

0 96875E+00

0 10000E+01
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We concludethis chapter with a chart showingthe actual clock time required

to solve the abovefour problems. The four problems (to read the chart) are t, the

free time trajectory optimization problem of Chapter 2, II, the control constraint

problem of Chapter 6, III, the advancedlaunch vehicle of Chapter 8, and IV, the

state constraint example problem presentedabove.

The time to type in the different input files is approximately the same for all

problems, around 5 to 10 minutes. The first column in Table 11.1gives the clock

time (in minutes) it took for MACSYMA to read in the input file and produce

the two necessaryFORTRAN subroutines to be used by the general code. These

subroutines contain analytical first and second mixed partial derivatives for all the

state equations. The second column gives the total elapsed time (in minutes) until

the program generated all the requested results. This includes compilation and

linking of the new subroutines created by MACSYMA. The third column gives the

time required (in seconds) to generate each set of results for 2, 4, and 8 elements.

These are the times given at the top of each output page as described above. It

is seen by studying Table 11.1 that even the complicated advanced launch vehicle

problem was solved in just 8 minutes and 20 seconds, from start to finish. Also, the

majority of the time is used by MACSYMA to generate the subroutines.
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Table 11.1: Setup and run times for the generalcode

Problem Setup Time (min:sec) Total Time (min:sec)

I 5:05 6:15

II 2 : 45 4 : 00

III 6 : 10 8 : 20

IV 3 : 30 4 : 40

Run Time (sec)2/4/8

7.80/9.28/11.14

3.68/4.80/6.12

21.76/25.60/33.38

10.40/11.94/15.08
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CHAPTER 12

CONCLUSIONS AND FUTURE RESEARCH

This thesis was concerned with a method for the solution of optimal control

problems. The method, called the weak principle for optimal control, is based on

time-domain finite elements. The goal of the weak principle was to develop an

efficient and accurate algorithm in the hopes that it might be capable of produc-

ing optimal trajectory solutions in a real-time environment. This would lead to

tremendous savings in terms of time and money for many space related projects.

Some of the characteristics and features of the weak principle are summarized

below.

(1) The necessary conditions of optimality are satisfied and all strong boundary

conditions are transformed into weak boundary conditions. The weak princi-

ple finds candidate extremal solutions, i.e., ones that satisfy all the necessary

conditions.

(2) Because all strong boundary conditions are cast in the form of natural or weak

boundary conditions, then the same shape functions may be chosen for every

optimal control problem.

(3) The choice of shape functions allowed by the weak principle permits all inte-

gration to be done by inspection, regardless of the degree of nonlinearity in the

problem. Thus, no errors are introduced as the result of numerical quadrature.

(4) One tremendous advantage of the integration being done by inspection is that

algebraic equations may be derived prior to specifying the problem to be solved.
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Becausethe form of the algebraicequationsis known, it waspossibleto create

a general algorithm for the solution of optimal control problems.

(5) The algebraic equations which come from the weak principle possessa ver_

sparse Jacobian. When this sparsity is exploited by way of a smart sparse

matrix solver, a very efficient algorithm may be produced.

(6) Symmetry in the solution is manifested by the weak principle. Problems, such

as those presented in Chapter 2, that possess a state, costate, or control that

is analytically symmetric, will also have symmetric approximated solutions

obtained by the weak principle.

These features of the weak principle make it a powerful and versatile tool for

solving optimal control problems. Particular attention was given to the applica-

tion of the method to advanced launch vehicle guidance. A real-time algorithm

was to be developed which requires that the optimal trajectory be computed in a

small time interval as compared to the total time interval. This thesis presented

a solution to this optimization problem which was obtained in about 5.5 sees as

compared to the 360 second time span of the entire trajectory. This fact, coupled

with the accuracy demonstrated by the weak principle, make real-time trajectory

optimization a possibility.

A general code for the solution of optimal control problems was developed

based on the weak principle. It was possible to create a general purpose, robust, and

efficient algorithm because the algebraic equations are known before the problem is

specified. The most promising feature of the general code is the reduction in setup

time for any given problem over any other existing formulation. Problems that

might take weeks to program and solve can be solved in a matter of minutes with

the general code. This can lead to tremendous savings in terms of time, money, and

human resources.

There is still work that can be done for developing the weak principle further.

Below are a few ideas.
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(1) The algebraicequationsarederived in terms of the midpoint valuesof the shape

functions. For problemswith staging or state constraints, certain nodal values

appear and must be recoveredaround the unknown time(s). It may be easier

if all the algebraicequationswere rewritten in terms of the nodal values. This

may alsobe more efficient sincethe nodal valuesneedto be recoveredanyway.

However, the resulting Jacobian may not be as sparse as with the midpoint

values.

(2) It wasnoted that the algebraicequationswereall linear in terms of the costates.

It may be possibleto useMACSYMA to symbolically solvefor the costatesin

terms of the other unknowns. The advantagesof this would be two-fold. One

is that the number of equations would be cut almost in half and there would

be no associateddecreasein the percentageof zerosin the Jacobian. Second,

there would be no needto obtain initial guessesfor the costates. This is helpful

becausethere is often times little or no physical insight into the magnitude of

the costate variables.

(3) It may be possibleto generatea canonical form for constraints that will allow

for easier programming of multiple constraints. A canonical form, which is

successfullyusedin [39], could haveseveraladvantages,including that it might

allow for multiple constraints and that there may also be a way of eliminating

the usersneed for estimating a priori and iterating on the number of phases

present in the solution.

(4) Work can be continued on the weak principle to remove the singularity asso-

ciated with state constraint problems when using the necessary conditions of

Ref. 65. This would also allow more uniformity in the programming.

(5) The weak principle could be extended to include singular control problems

(see [1]). Singular control problems are characterized by the control appearing

linearly in the formulation. Since the optimality condition does not determine
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the control, successivetime derivativesare taken until the control doesappear.

It shouldbepossibleto incorporate this type of problem into the weakprinciple.

(6) Finally, the generalcode can be continually updated. Along with the sugges-

tions above that can be incorporated into the general code, there are other

potential savingsto be explored. One is the generation of the subroutines by

MACSYMA. Perhaps there are more efficient ways of producing the needed

code,or perhapsMathematica (another symbolic manipulator) would be bet-

ter. In addition, the general code would be very useful if it were available for

desktop computers. One drawbackof existing codesis that many of them only

run on large, and sometimesinaccessible,machines. A fast and efficient code

to run on desktop computerswould beof great valueto industry and academia.
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APPENDIX A

HAMILTON'S WEAK PRINCIPLE FOR DYNAMICS

The potential of obtaining a direct solution in the time domain is very much

analogous to obtaining the solution of a beam deflection problem with the beam

axial coordinate broken into several segments or finite elements. In the present case,

however, it is the time interval which is broken into segments; thus, the phrase "finite

elements in time" has been adopted by several investigators.

Only recently has a mixed formulation of Hamilton's Weak Principle (HWP)

been investigated as a computational tool for finite elements in time [47]. In this

section, the mixed form of HWP is derived and its application to dynamics problems

is illustrated.

A.1. General Development

To this aim, let us consider an arbitrary holonomic mechanical system. The

configuration is completely defined by a set of generalized coordinates q. Further,

let us denote with L(q, gl, t) the Lagrangean of thesystem, Q the set of nonconserva-

tive generalized forces applied to the system, and p = OL/Ogl the set of generalized

momenta. The generalized coordinates q should be piecewise differentiable and the

generalized momenta p will have discrete values at to and t I. (For a more math-

ematically rigorous discussion, see [53].) Then the following variational equation,

known as HWP [45], describes the real motion of the system between the two known

times to and ti:
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//o'6Ldt + 6qTQdt =6q_Di-6qTDo (A.1- 1)

where 6q, the variation of q, should be of the same class of functions as is q, 6qf =

6q(t = tl) and 6q0 = 6q(t = to). Although HWP contains p in the form of discrete

values at the end points denoted by the hatted quantities, this particular variational

equation is said to be in displacement form because it only involves the variation

of q. Keeping _ distinct from OL/O_ allows for accurate extraction of the momenta

without differentiation of q. Although this formulation has been shown to be of

practical use in dynamics (see [45] and [46]), an even more useful formulation may be

derived if independent variations in both displacements and momenta are allowed,

resulting in a mixed formulation.

In order to derive the mixed formulation, let the Hamiltonian be defined as

H(q,p,t) = pT(t- L(q,(t,t) (A.1 - 2)

Taking the variation of Eq. (A.1-2) and substituting for 6L in Eq. (A.I-1) results

in

Now, introducing

+ 6(tTp - 6H + 6qTQ) dt = 6qf_f - 6qT_o (A.1 - 3)

and

qlto _ lim q(t) and qlts _= lira q(t) (12-1)

ql,o q(to) and C I,, q(tl) (12-2)



then continuity between the values of q and p on the interior and _ and/3 on the

boundary is weakly enforced by adjoining _aT(q ^ tf-q)lt0 to Eq. (A.1-3) where _a

is a set of discrete unknown Lagrange multipliers defined only at to and tf. The

resulting equation is

' ('SpT_t + $cITp _SH + _qTQ) dt _5q_/31 gqTo/3o + _T(q ^ ,.r- = - -q)lto (A.1 - 4)

It is now possible to choose ¢5a = _ without changing any necessary conditions.

Also, to finish the development, the first term in Eq. (A.1-4) is integrated by parts

yielding

fti' (8(tTp-- @T q -- gH + _qTQ) dt = gq_[_f -- gqT/3o -- ,_pTfCty + _pTo_o (A.1-5)

This is called a mixed formulation because it contains independent variations of q

and p. It is also in the "weakest" possible form in the sense that all boundary condi-

tions are of the natural type, enforced by the variational equation for unconstrained

variations. Note that now p and q should have discrete values at to and tf, p and

q should be piecewise continuous, and ¢5p and _q should be piecewise differentiable

(c°).

There are two main advantages of the mixed formulation over the displacement

formulation. The first advantage is that the mixed formulation generally provides

a more accurate solution for a given level of computational effort than does the

displacement formulation. The second advantage is that a simpler choice of shape

functions is allowed. Note in Eq. (A.1-5) that time derivatives of 6q and Sp are

present. However, no time derivatives of q and p exist. Therefore, it is possible to

implement linear shape functions for 6q and _p and constant shape functions for q

and p within each element.

185



A.2. Finite Elements in Time

Let the time interval from to to ty be broken into N equally spaced elements.

The nodal values of these elements are ti for i = 1,..., N + 1 where to = ta and

ty = tN+a. A nondimensional elemental time r is defined as

t - ti t - ti

7" -- ti+x -- ti -- Ati (A.2 - 1)

The linear shape functions for the virtual coordinates and momenta are

6q = $qi(1 - r) + _qi+lr

6p = - ,-) +
(A.2 - 2)

For the generalized coordinates and momenta

and

_i if r = O;q= qi ifO<r< 1;

_i+1 if r = 1

(A.2- 3)

/3i if r = 0;p = /5i if 0 < r < 1;

jOi+l if r = 1

(A.2- 4)

It is important to understand that ql ---- q(t0), Pl = p(t0 ), qN+l ---_ q(tf), and PN+l =

p(ti). In other words, the hatted values of q and p at the beginning and end of our

time marching scheme are the discrete values of q and p that are needed in the mixed

formulation. When these shape functions are substituted into Eq. (A.1-5), one can

either generate an implicit time-marching procedure for nonlinear problems or apply

standard finite element assembly procedures to solve periodic or two-point boundary

value problems [48]. When this formulation is applied to the linear oscillator, a
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time-marching algorithm emergesthat is unconditionally stable [45]. Higher-order

(so-calledp-version) elements could be developed [69], and they would certainly be

attractive for linear problems or for nonlinear problems with nonlinearities of low

order. For nonlinear problems in general, use of the crude shape functions allowable

with the mixed method would seem to be more efficient than use of higher-order

shape functions in a p-version. The reason for this is that, with the exception of the

term involving Q, which may contain time explicitly, all element quadrature can be

done by inspection regardless of the order of the nonlinearities.

A.3. Example: A Nonlinear Initial-Value Problem

Applying the shape functions of Eqs. (A.2-2 - A.2-4) to Eq. (A.1-5) for an

initial value problem, a recursive set of nonlinear algebraic equations is obtained of

the form

fj (qi,qi+l,Pi,Pi+l) "-- 0 j = 1,2,... ,n (A.3- 1)

where n is four times the number of degrees of freedom of the system. Eq. (A.3-1)

can be solved by a Newton-Raphson method yielding an implicit time-marching

procedure. The key advantage of using finite elements and a weak variational ap-

proach over numerical integration is that the solution (for linear problems) is stable

for all time steps. In other words, no matter how large a time step is used, a finite

approximation of the solution will be obtained. This unconditional stability is ob-

tained without ad hoc procedures such as selective or reduced element quadrature

which are necessary in displacement formulations.

Also noteworthy of the finite element discretization is that the midpoint values

of q and p are just the average values of the adjoining nodal values, or

(A.3 - 2)
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Thus, it is possibleto cut the number of equations and unknowns in half. This can

be very useful for a multi-degreeof freedom problem in terms of computer savings.

Consider a simple pendulum composedof a lumped massm and a weightless

bar of length g (see Fig. A.1). The single generalized coordinate q is the angular

displacement of the bar from the vertical. Denoting the kinetic energy of the system

with K and the potential energy with V, then we may define the following:

V = mgg(1 - cos q)

L=K-V

OL

P - O0 - me2 (_

H- p2
2rag 2 + mgg(1 - cos q)

(A.3- 3)

There are no nonconservative forces Q applied to this system.

Substituting t = ti + rAti from Eq. (A.2-1), along with Eq. (A.3-3), and

substituting the shape functions defined in Eqs. (A.2-2 - A.2-4) into Eq. (A.1-5)

we obtain (for i = 1,2,...,N)

\ Ati Pi - mggsin(ti [$qi(1 -- r) + _qi+a_']

( _p_ ,Sp_ _Ati-- )q'--(_-_7)['pi(l--r)+'p,+lr] }dr

-- _qi+lPi+l -_ 6Pi+lqi+l + _qi[_i -- _Pi_ti -= 0

(A.a-4)

Carrying out the integration by inspection and setting the coefficient of each virtual

quantity (_qi, _Pi, _qi+ 1, and @i+ 1 ) to zero, the following four independent equations

for each value of i are obtained.
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mggAti sin qi = 0
/_i - P/- 2

mggAti sin qi = 0
/5i --/_i+1 - 2

p_At_ _ 0
qi -- qi 2rag 2

fiiAti -- 0
4i+1 - qi 2rag 2

(A.3- 5)

There are six unknowns; however, for an initial-value problem, we will specify qi

and/_i and solve for the remaining unknowns as outlined below. Thus, Eq. (A.3-5)

is of the form of Eq. (A.3-1).

Recall that i ranges from 1 to N. To start with, i = 1 and ql and/_1 (i.e. the

initial conditions) are specified. Now, solve for _1,/51,42, and/_2. Next, let i = 2,

use the known q2 and 152 (we just found those values), and solve for the new four

unknowns. This process is repeated until i = N.

For this simple pendulum example, the variables will be nondimensionalized as

follows. If we define w 2 = g/g, then a dimensionless time step At- may be defined

that does not vary with i so that At-= wAti. Also, instead of solving directly for

p, the dimensionless p/mg2w will be solved for.

The initial conditions of the pendulum are ql = 60 ° and 151 = 0.0. The equa-

tions will be solved for A_ = 0.4, 0.8, and 1.6. Graphs of the solutions are shown

in Fig. A.2 and Fig. A.3 and compared to the exact elliptic integral solution [78].

(Since the element midpoint values are simply the average of the element nodal

values, only the nodal values are given for these results.) From Figs. A.2 and A.3,

it is easily seen that A{ = 0.4 gives acceptable results for both displacement and

angular momentum. Also, note that even the large 1.6 time step yields a finite

approximation of the exact solution.
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Fig. A.I: Nomenclature for example

A simple pendulum composed of a lumped mass m and a weightless bar of length e
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Fig. A.2: Angular displacement q versus dimensionless time

Results for three values of the time step A_ and the exact elliptic integral solution

191



1.0

0.5

0.0

-0.5
Qm

-1.0

Exact

1.6

0.8

0.4

0 1 2 3 4 5 6 7

Dimensionless Time

Fig. A.3: Dimensionless momentum p/m#2_ versus dimensionless time

Results for three values of the time step A_ and the exact elliptic integral solution
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APPENDIX B

INITIAL-VALUE ODE's

A very useful idea came from the work described in Chapter 2 and Appendix A

concerning the solution of first-order ordinary differential equations. Of course,

initial-value solvers are ubiquitous, so the goal of this work was to produce an

easier and more efficient method to solve the differential equations. Furthermore,

it was desired to employ a symbolic environment (such as MACSYMA) to perform

all the necessary computations and write certain FORTRAN subroutines. This

is similar to what is done by the general code described in Chapter 11, only this

program is much simpler. This aspect of the work fully automates the procedure of

solving initial-value problems and minimizes the amount of user interaction.

B.1. General Development

The problem may be stated as follows: Given a set of n first-order ordinary

differential equations of the form

:e = f(x,t) tl < t < t2 (B.1 - 1)

with x(to) specified, find x(t).

To begin, a weighted residual method is used and Eq. (B.1-1) is integrated

over the time interval of interest.

t'5,xT[2-- f(x,t)] dt =0
1

(B.1- 2)
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Now, as was done in Chapters 2 and Appendix A, the strong boundary condi-

tions are transformed to natural boundary conditions by weakly enforcing continu-

ity of the states at the initial and final times. This is done via a discrete Lagrange

multiplier which we identify as 6_. Eq. (B.1-2) now becomes

Integrating the above equation by parts results in

(B.1- 3)

+ ::
Once again introducing a nondimensional time r as

=0 (B.1 -4)

t - tl t - ta
r-- -- (B.1 -5)

t2 - tl At

a linear shape function for 6)_ of the form

_)_ = _i(1 -- r) + 6)_i+lr (B.1 -6)

and a piecewise-constant shape function for x of the form

_i if r= O;
x= _i ifO<r<l;

_i+_ if r = 1

(B.1 - 7)

then these values are substituted into Eq. (B.1-4). Carrying out the integration,

the following set of algebraic equations is obtained

At-

Xi -- --_-f. fi = Xi

At-

_ + -_-f_ = _i+_

(B.1 -S)
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where ._ = f(x = 2,, t = [i).

Eq. (B. 1-8) yields a time-marching algorithm since the value of Ati is specified

at each time step. In practice, one solves the first of Eq. (B.1-8) for 2i, and then

obtains the nodal value _i+l from

_i+1 -" 2£'i - _i (B.1- 9)

This process then repeats until the final desired value of x is reached.

B.2. MACSYMA: A Symbolic Manipulator

Eq. (B.1-8) is a set of very simple nonlinear equations. These equations can

be solved by a Newton-Raphson method. Since we are time-marching, the previous

known nodal values serve as initial guesses. To date, the roots of the equations have

always been found using these initial guesses.

Using the above method, it was necessary to write a new code (or a large part

of it) incorporating the new equations for each initial-value problem. Also, it was

necessary to take explicit derivatives of the f's and code those values in for the

linearization process. Therefore, it was desirable to combine FORTRAN code and

MACSYMA code to automate our initial-value solver.

MACSYMA is a large symbolic manipulation program developed at the MIT

Laboratory for Computer Science [77]. This program has many capabilities which

include taking an analytical expression, finding an analytical derivative, writing

FORTRAN code for the analytical expression, and splicing the FORTRAN code

into a subroutine template file. This is exactly what we needed MACSYMA to do.

The general procedure to solve initial-value ordinary differential equations con-

sists of three batch files, two subroutines, and a main program. Each of the above

six components of the procedure is briefly described below. The whole procedure is

very compact and runs very efficiently.
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One batch file, "run.bat," is the top-level command file that controls the whole

procedure. Its commands include putting the user into an input file in order to

input the f's for MACSYMA to read. Next, run.bat starts up MACSYMA. At this

point other batch files take over. Upon return to run.bat, the commands include

compiling the MACSYMA written subroutine, adding the subroutine to an archive

library, compiling the main program with the updated archive library, and finally

running the program.

The MACSYMA input file, named "input.macsyma," prompts the user to enter

the order of the system, n, and then the f's of the system in MACSYMA form.

For example, if one wishes to solve the scalar system _ = x, then "input.macsyma"

would contain the two lines "N:I;" and "G[1]:x(1);".

Once MACSYMA is started by "run.bat," the user must type "batch(run);".

This batch file calls another batch file which loads the user supplied equations. Then

MACSYMA is asked to evaluate the expressions in the template file and splice in

the FORTRAN code. Finally, MACSYMA is terminated and control is returned to

"run.bat."

The template file is very short and simple. It is nothing more than a FOR-

TRAN subroutine (IVMAC) with MACSYMA expressions put in some places. After

MACSYMA is called, all MACSYMA expressions in the template file are replaced

with legal FORTRAN statements. This interaction between FORTRAN and MAC-

SYMA was the key to automating the procedure and minimizing user interaction.

The largest file, containing only 83 lines of code, is the subroutine SOLVER.

This routine linearizes the discretized algebraic equations, calls IVMAC for values

of f and derivatives of f, calls some Harwell subroutines to solve the equations, and

writes the data to an output file.

Finally, the main program, IVODE, asks the user for initial conditions, the

time interval, and the time step to take. IVODE calls SOLVER and computes the

elapsed computer time.
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The above work has been a key part of the research effort. Although the initial-

value problem is much easier than the optimal-control problem, the work indicated

that a general procedure to solve optimal-control problems is realizable. The above

outlined procedure must simply be broadened to handle the more complicated equa-

tions that come from optimal-control problems.
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APPENDIX C

APPLICATION TO BEAM THEORY

The weak principle for optimal control developed in this thesis and, in par-

ticular, the general code described in Chapter 11 may be used to solve virtually

any problem that can be cast in the proper form. Specifically, if one can identify

a performance index and state equations, then the general code could be used to

solve these problems. Problems from areas such as chemical engineering, robotics,

electrical engineering and elasticity could be solved. This appendix examines how

simple beam problems can be solved with the general code of Chapter 11.

C.1. Transformation of Beam Problem

Consider a simple cantilever beam of length L with a distributed load q, an

end load FL, and an end moment ]_g. The deflection and slope of the neutral axis

of the beam are signified by v and fl respectively; and the curvature is denoted by

The first thing to do is identify elements of the beam problem with elements

of the optimal control problem. From simple elasticity, we know that the first

derivative of deflection with respect to the beam axis yields the slope, and the

second derivative gives the curvature. These two equations can be written as two

first-order equations as

v'=/9 and /9'= n (C.1 - 1)
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It is easy to identify v and fl as the two states and ,_ as the control variable. What

remains is to identify a suitable performance index. It is well known in elasticity

that the variation of the strain energy equals the variation of the work produced by

external forces. Therefore, a performance index may be written as

)J = qv dz- FLVL -- .f/ILflL (C.1 - 2)

where EI is the bending stiffness of the beam and x measures the distance along

the axis of the beam. The Hamiltonian can now be identified as

EIg 2

H - 2 qv + Avfl + AZ,_ (C.1 - 3)

The costate equations yield additional insight into the problem. The equations are

OH OH
A'v = ' A_ (C.1 -4)

Ov =q and A_,- Off

From these differential equations, we identify Av = -F and AZ = -M, or in

words, the costates yield the shear force and moment distribution along the beam.

The beam problem has now been transformed to the equivalent optimal control

problem and is ready for solution.

C.2. Example

A simple example problem is now considered. Consider a cantilevered beam

with a tip load. Let EI = 106 psi, L = 100 in, and the tip load -_L = 30 lb. The

states will have the following constraints at the final time

PLL 3 P'LL 2

_)1 = V 3EI and ¢2 = fl 3EI (C.2- 1)
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These constraints impose that the beam have a deflection equal to that which it

would havewith no constraint, however,the slopeof the beamat the end is changed

so that is lies along a line joining the origin and the point of deflection at the end

of the beam.

The equations and boundary conditions were put into the general code (as

describedin Chapter 11) and the solution was readily found. Figs. C.1 - C.4 show

the deflection, slope, shear force, and moment distributions for 2 and 4 elements

and the exact answer. An 8 elementcaseis alsogivenfor the shearforce in Fig. C.3.

In all the graphs, the accuracyof the finite element method is once again seen.
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