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ABSTRACT

The various phases to developing a methodology for studying the response of a

spring-reinforced arch subjected to a point load are discussed. The arch is simply

supported at its ends with both the spring and the point load assumed to be at

midspan. The spring is present to off-set the typical snap-through behavior normally

associated with arches, and to provide a structure that responds with constant re-

sistance over a finite displacement. The various phases discussed consist of: De-

velopment of the closed-form solution for the shallow arch case; Development of a

finite-difference analysis to study (shallow) arches; and; Development of a finite-

element analysis for studying more general shallow and nonshallowarches. The two

numerical analyses rely on a continuation scheme to move the solution past limit

points, and to move onto bifurcated paths, both characteristics being common to the

arch problem. An eigenvalue method is used for a continuation scheme. The finite-

difference analysis is based on a mixed formulation (force and displacement vari-

ables) of the governing equations. The governing equations for the mixed formulation

ar_. in first order form, making the finite-difference implementation convenient.

However, as will be discussed, the mixed formulation is not well-suited for the

eigenvalue continuation scheme. This provided the motivation for the displacement-

based finite-element analysis. Both the finite-difference and the finite-element ana-

lyses are compared with the closed-form shallow arch solution. Agreement is

excellent, except for the potential problems with the finite-difference analysis and the

continuation scheme. Agreement between the finite-element analysis and another

investigator's numerical analysis for deep arches is also good.
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Background

INTRODUCTION

In the initial phase of this study, closed-form solutions for tile response of a shallow

arch reinforced with a single spring at midspan and loaded with a downward point

load, also at midspan, were developed. Typical results were documpnted in ref. [1].

A schematic of this physical situation is shown in fig. 1, a figure taken from ref. [1].

The purpose of reinforcing the arch with a spring is to alter the arch's well-known

snap-through behavior associated with the limit point. With no spring reinforcement,

under load control the Ioad-midspan deflection behavior is characterized by a sudden

and large increase in deflection as the load reaches a limit value. Snap-through be-

havior is characterized in fig. 2a, the load increasing to limit point L, suddenly

'jumping' (dynamically) to point M, and then continuing on to point N. With a rein-

forcing spring, the snap-through behavior can be controlled. The Ioad-midspan de-

flection relation that can result from the addition of a reinforcing spring is shown in

fig. 2b. Instead of the load increasing to the limit point, the load increases to point

C, then the relation proceeds along path CD (which is stabilized by the center sping)

to point D, and then on to point N. In a particular application, to take advantage of this

altered response it may be desirable to have a steeper or a shallower slope to path

CD. The slope of path CD can be controlled by the stiffness of the spring. Relation-

ships between the spring stiffness, the geometric and elaslic properties of the arch,

and the characteristic of arch response were summarized in fig. 11 in ref. 1.

w

Since a generalization of the reinforcing concept would consider arches that cannot

be categorized as shallow, efforts then focused on extending the analysis to include

deep arches. Unfortunately, closed-form solutions to the deep arch problem, even

with no spring, do not exist. Thus the extension of the spring reinforcement concept

to these other geometries relied on a numerical method. With a numerical approach,

the problems of zero stiffness at limit points, such as point L in fig. 2a. and bifurcated



(multivalued)solutionpoints, suchas point C in fig. 2b,are serious. Most standard

numericalschemes become singular at these points. Fortunately,there are tech-

niquesto overcomethe singular natureof the problemat thesepoints, thoughthey

are not in the categoryof generalpurposetechniqu_.s.To studydeep arches,then,

the followingstepswere necessary:

t) A numericalapproachhadto be developedandverified; and

2) A techniqueto overcomethe singular natureof thp.problem hadto be imple-

mented.

Duringthe secondphaseof this study,bothsteps were accomplishedusing a finite-

differenceapproach. Specifically,a finite-different#approachwasused with the in-

cremental equations for this geometrically nonlinear problem. The incremental

equationswere,of course, linearandto solvethe problemthe linearequationswere

solved repeatedlyasthe load level was increased. To check the formulationof the

finite-differenceapproach,the shallow arch problemwas resolved using the finite-

differencescheme. The numericalsolutionwas comparedwith limited closed-form

results in ref. [2]. The comparisonbetweenthe closed-formand finite-differenceap-

proacheswas excellent. A continuationof the work with the finite-differenceap-

proachfocusedon the implementationof a techniqu_to overcomesingularities,and

on a further comparison of the numerical results with the closed-form solution, par-

ticularly the ability to move the solution through limit points, and to move the solution

onto one branch or the other at bifurcation points. The results of this phase of the

work have not been reported on and will be discussed in a subsequent section.
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As will be seen, the finite-difference method, including the method to overcome
+

singularities, worked quite well...on the problems tested. The finite-difference for-

mulation was based on the first-order form of the incremental equations governing m

the behavior of a shallow arch. These incremental equations, by their first-order na-

ture, were of a mixed formulation, i.e., the equations involved both force and dis- w

placement variables. While the first-order mixed form of the equations was very
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convenient for implementing the finite-difference approach, th# mixed feature proved

to bea serious drawback. The reason is as follows: The finite-difference formulation

of the linear incremental equations was written as a known coefficien! matrix times

the unknown increments in the force and displacement variables eq_al to a known

vector. At each load level the unknown increments were determined from the set of

linear equations using standard methods. At limit or bifurcation points, the coefficient

matrix was singular and the equations could not be solved. To know when singular

points were to be encountered, the eigenvalues of the coefficient matrix were com-

puted, one eigenvalue going to zero when the matrix became singular. So the sol-

ution could proceed past the singular points, the eigenvector associated with the

singular eigenvalue, but evaluated at a load slightly away from the singularity, was

used to represent the unknown increments at the singular points. Using the

eigenvector represenlation of the increments, the solution could be made to proceed

through the singularity. Once through the singularity, the increments were again

found by using the coefficient matrix, the matrix being non-singular again. Unfortu-

nately, with a mixed formulation, the coefficient matrix is not symmetric so the

eigenvalues and vectors are in general complex, thus i! was difficult to use them re-

liably to predict when singular behavior was about to occur. In addition, with complex

eigenvectors, a physical interpretation of what was taking place in th# vicinity of the

singular points was difficult. As an alternative to predicting when a singular point

was being approachpd, a dynamic stability analysis was posed. At each level of ap-

plied load, the frequency of small motions about the static equilibrium configuration

can be used to study stabilily. Bifurcation and limit points are associated with the

lowest frequency going to zero. Keeping track of the frequencies computed from the

stability analysis would thus provide insight into the location of singular points. This

dynamic stability method would also have the advantage of indicating the stability

characteristics of the various paths associated with the singular points. Unfortu-

nately, with the mixed formulation, the mass matrix for the problem was itself singu-



lar. The mass matrix was not a mass matrix in the classic sense of a purely

displacementbasedformulation. As all variableswere notdisplacementsand hence

the massesassociatedwith the nondisplacementvariableswere not really masses.

Theeigenvaluesandeigenvectorsof tile dynamicsystemwere alsocomplexand did

not provideany benefitto the analysisof limit and bifurcationpoint. Thus,because

of the difficulties with the mixedapproach,efforts focused on the developmentof a

displacement-basedfinite-elementformulation.

A displacement-basedformulationwould result in a symmetrictangentstiffnessma-
==

trix which has real eigenvalues, and hence there is less difficulty in determining the

stability of the equilibrium paths. The eigenvectors would also be real and hence

more useful. This displacement formulation was more general than the finite-

difference formulation in that it was not restricted to shallow arches. A subsequent

section of this report will trace the development of that work.

Overview of Report
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To follow in this report, then, are a number of sections. The next section presents the

equations governing the behavior of a shallow arch with a reinforcing spring. The

case of no supporting spring isa special case of these equations. The third section

summarizes the finite-difference representation of incremental form of the shallow

arch equations. In the fourth section results from the finite-difference approach are

compared with closed-form results, particularly for branched solutions. This section

will demonstrate the ability to move through singu(ar points. In the fifth section the

finite-element formulation of the problem is presented. In the sixth section, results

obtained by the finite-element method for several shallow arches are compared with

the closed-form solution. Then the finite-element results for deep arches are com-

pared with the numerical results of Huddleston [3]. Huddleston obtained results by

using the so-called shooting method for solving the first-order form of the equations

for the deep arch.
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Three appendices are also included. Appendix A is a detailed derivation of the gov-

erning equations for both deep and shallow arches. Appendix B is a _lsers guide to

the finite-element program usedto obtain numerical results. Appendix C is a listing

of the finite-element program.

EQUATIONS GOVERNING THE BEHAVIOR OF A SHALLOW ARCH
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The governing equations are derived using the first variation of the lotal potential

energy of the arch-spring-load system shown in Fig. 1. The initial shape of the arch

is described by the function Zo(X), Zo(X) representing an initial shape relative to a

straight line connecting the arch supports. Because the arch is shallow, there is no

distinction between the arc length coordinate along the arch, So, and the Cartesian

coordinate x measured along the straight line between the supports. Here arch

midspan is designated as x= 0. With this, the total potential energy, V, is given by

L

'F{ EA[u'V=y L
2

+ Z'oW" + -_- (w') 2 4- El(-w") 2 dx

1 Kw2(O),+ Pw(O) + -_-

(1)

where u is the displacement in the x direction (horizontal), w the displacement in the

z-direction (vertical), E the Young's modulus of the arch, A and I the area and the area

moment of inertia at the arch cross-section, P the applied load, and K the spring

stiffness. (The development of eq. (1) is given in Appendix A.)

Equilibrium Equations and Boundary Conditions

Taking the first variation of the total potential energy and defining the force and mo-

ment resultants to be

N=EA[u ' + z'ow' + -_-- (w') 2]

M=EI(-w")

(2)



results in

L

5V =fY
-L

2

{N[6u' + z'o(Sw' -f- w'(_w'] -t M( .... _;w")}dx

+ P(_w(o)+ Kw(O)aw(O).

Integrating by parts twice yields

L

3V =f-Y
-L
2

L

+ N3u I_- + (M' + N(Z' o + w")),_w I
--L

2

L

I°1 --- M3w' + [P + Kw(0)]_iw(O),
----b-L o'

2

{ -N'_u - [N(z' o -f- w'o)]'_Sw-- M"_iw}dx

L

° 17
--L 0 _
2

(3)

(4)

where ( )' denotes differentiation with respect to x. Setting _iV=0 gives the equi-

librium equations and boundary terms. The equilibrium equations are

from &u: N'=0 (5)

L L
from 5w: M"+[N(z' o+w')]'=0 x e (-_-- ,0-) and x e (0 _ ,-_-), (6)

=

and the boundary terms are

L

N&ul -£
-L
2

L

+ [M' + N(z' o + w')]Sw I :L

2

- (M' + N(z' o + w'))SWlx=0 '

+ (P + Kw)&Wlx=0 --

+ (M' + N(z' o + w'))_Jwlx=o -

L

- M_W'Jx_o _,M_'_w'IY L + M_W'lx=o '
2

From the boundary terms the boundary conditions are

(7)

I

IIII

ii

ip

i
I

i

I

I

==

I



w

w

w

at x=+ L-- 2 u=O w=O M--O (8)

The conditions at the location of the load and spring can be written as

at x=O w(O-)=w(O+) (8)

w,(O-)=w'(O_/ (9)

M(0-) = M(0 4) (10)

and

V(0-) + P + Kw(0) =v(0+), (11)

w

where the shear V is

V =M' + (z o + w)'N. (12)

Equations 8-10 are referred to as the continuity conditions while eq. 11 is referred to

as the jump condition. Due to eq. 5, the thrust, N, is constant, i.e.,

N = constant. (13)

Thus the boundary value problem becomes

(-EIw")" + N(z" o + w")=0 ___ Lx e ( ,0-) and x e (0+,-_--), (14)

with

r_

L

L

,:
2

+ (15)



and boundaryand continuityconditions,given by eqs.8-11.

defining

Zo_A___(I= --L--'2x 5o =-2"- = _ -_2)

-- -w A 72= -NL2 2
w-- _ , 4El h

KL3 pL 3
k = 8E--T ' P- 16EI _/'T '

yields the governing equation

.... - 72[_" o - _"] = O,

with the nondimensional version of eq. 15,

1

[ (2_'o_' (_')_)d_
"--1

Nondimensionalizing by

(16)

(17)

(18)

I

I

I

i
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and the boundary conditions

_( -I)=0, _(I) = 0

_"(--I)=0, _"(I)= O,
(19)

u

I

and continuity and jump conditions

e(o-)=_(o+)
_,(o-)=e'(o+)
_,,(o-)=e,,(o+)

+p k_-- w'" Iw'" I0-
0 _

(20)

The quantity 7_now represents the thrust. For a circular arch, function Zo is given by

eq. A.70in Appendix A and in nondimensionalformin eq. 16. The solution toeq. 17

for the circular arch is
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f --2

A 1 sin yx + A 2 cos yx 4- A3x Jr A 4 2) X- -7 '
w= (21)

x (o,t)A s siny2 + A 6cosy2 4- A7Y + A e- 2)_ , xe

which, with the boundary and jump conditions, leads to the matrix equation,

CijA i = jc i 4- pdi ; i, j = 1,2 ..... 8

for the eight unknown Aj's. Equation 18 results in

(22)

mij A i Aj 4- n i A i 4- q = 0. (23)

=

w

w

w

w

w

w

This leads to a quadratic equation in the nondimensional load p such that for given

values of y, ,t., and k, the nondimensional load p can be determined.

The AdJoint Problem

The solution for _, eq. 21, is unique if y is not an eigenvalue of the adjoint problem

to the differential equation, eq. 17, boundary conditions, eq. 19, and the transition

conditions, eq. 20. If y is an eigenvalue to the adjoint problem, then multiple solutions

for W are possible for particular values of the load p, and matrix Cij in eq. 22 is sin-

gular. (The fact that multiple solutions to eq. 17 and its associated boundary and

transition conditions are possible is sometimes referred to as Fredholm's alternative

theorem.) The adjoint problem is

v .... 4- y2v=0, (24)

with homogeneous boundary conditions

v(--1)=0, v"(-1)=0

v(1) = 0, v"(1) -- 0,
(25)

w

and the homogeneous continuity and jump conditions

11



v(o-)=v(o*)
v'(o l

v,,(0-):v,,(0+)
v'"(0+) - v'"(0-) + kv(0)=0,

(26)

B

m

m
i

I

with the compatibility condition s

1

pv(0)=2}'2).f v(Y)dY. (27)
-I

The adjoint boundary value problem is homogeneous, and has the trivial solution

v(_) = 0 for all _. Note that the compatibility condition, eq. 27, is satisfied by the trivial

solution for any p. Nontrivial solutions (eigenfunctions) for v(_) exist if ), is an

eigenvalue. If y is an eigenvalue, then p, ),, and )_ are related by the compatibility

equation. For a given arch rise /t and eigenvalue _,, the load(s) p at which multiple

solutions for _(_) are possible are determined by eq. 27. This adjoint problem has

the same homogeneous solution as eq. 17, namely

_" B1sin yY + B 2 cos yx 4- B3"x 4- B4 _ _ (-1,0)
v =

B5sin _Y + B6cos y_ 4- Bz_ + B8 Y e (0,1)
(28)

Substituting eq. 28 into eqs. 25 and 26 results in a homogeneous problem for coeffi-

cients B_ to B8 with y as the eigenvalue parameter. The nontrivial solutions to this

problem are

A° siny=0 (y=n;z,n = positive integer)

A.1 kV =2y 2, then

Vn(E)=B 1sin nrt_, _e(-1,1)

(29)

for which any value of p will satisty compatibility; and
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A.2 k = 2y 2 , then

f_ I 1 sin nTrY 4 _ + 1 _e(-l,0) (30)

sin n_Y + B3(- n--"_ )'

Vn(X) = sin arty + B3(_ sin nTr_ -Y4 1), Y_ (0,1)

for which

(nzr)2) (31)p=42 1 -- cos(n_r) + 2 "

where

w

=

J

_- B1 + B5
Y=Yn=n_=_ , and B,- 2 (32)

B, sin y V=0

B.1 k_0, then

ksiny + y(2y 2 -- k) cosy=0 with

._ 2y2 -- k
siny_ -k--- yc°sy_ - y_ - y, Ee(-1,0)

v(_) = B, _.- sin yY 2y2-k_k--ycos),Y 4- ;;_ - y, Ye(0,1)

(33)

(34)

for which

-2,_k ( 1 1)-2y2-k YtP--- Y -7- (c°s y -- k sin y - _- , (35)

w

B.2 k-- 0, then

cosy=0 with

v(_) = B2cos y_,

(36)

for which

p = 4,_y sin y. (37)

13



The solution for _ when y is an eigenvalue of the adjoint problem describes special

but important system behavior. When y is an eigenvalue the solution for _ is still

obtained from eqs. 22 and 23, however, Cij is singular. In case A.1, C,j is reduced to

rank 7. The unknowns A_, A2, A3,A4 _,A6, AT, and As can be soived for in eq. 22 in terms

of As. The unknown As is solved for in terms of p and )_ in eq. 23. Solutions for As

exist only for values of,_ greater than a threshold value and only for a range of p. For

each p in this range there are two values of As, thus two solutions for W. These sol-

utions correspond to two asymmetric equilibrium paths bifurcating from the sym-

metric equilibrium path. Case A.2 is a special casp. of A.1. in this case C,j is of rank

6 and A2, A3, A4, A6, AT, and Ae are solved for in terms of A_ and As. The value of p for

which solutions exist was determined from compatibility as given by eq. 31. Equation

23 is used to solve for A5 in terms of A_. Again solutions only exist for )_ large enough.

This case corresponds to bifurcation behavior in which the two bifurcation paths col-

lapse to one solution in which the midspan deflection increases without a change in

load. tn cases B.1 and B.2, the matrix C_j is again of rank 6 and in addition, Az =A6.

The remaining A's are solved for in terms of A2, and A2 is solved for in terms of/t via

eq. 23. For given values of y and k, related through eq. 33, there will be only one

value of 2 which yields a solution for A2. This case describes the particular situation

of a horizontal inflection point on the symmetric equilibrium path.

The equations presented in this section lead to the exact solution for the case of a

shallow arch. As has been seen in past results [1,2]. the response is complicated

witha number 0fspecial but important cases. The governing equations will now be

solved using a finite-difference formulation.

FINITE-DIFFERENCE REPRESENTATION OF THE

INCREMENTAL FORM OF THE SHALLOW ARCH EQUATIONS

First-Order Form of Governing Equations
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Using the governing equilibrium equations from the exact solution and the definitions
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of shear force, and axial force and moment resultants, the following system of

equations can be written:

N'--0

V'=0

M' + N(z' o 4- w') - V=0

N=EA u' + Z'oW' + -_-(w')

M = El(- w"),

(38)

Introducing the additional definition

fl = -- w' (39)

m which is the rotation, produces a system of first order equations consisting of force

and displacement variables. These equations are

m

i

Letting

N'--0

V,=0

M '=-N(z' o - fl) + V

1 2
u '=NIEA + Z'ofl -- yfl

W'--_ --_

B' = M/El.

Yi ----N Y4= u

Y2----V YS= w,

Y3 ---- M Y6 =/t

(40)

(41)

the system of equations can be written as

y'= Ay + f(y) (42)

with boundary conditions

15



y4(0)=Y4(L)=0

y5(0) = ys(L) = 0

y3(0) = Y3(L)=0

and continuity and jump conditions

(43)

y_-=yl+

-- 4

Y2-+ P + Ky5=Y2

y_=y3+

y4=y +

ys=ys+

y_=y+,

(44)

where the '+' and "-' denote values of the variables to the left and right of the center

of the arch.

Considering each of the six equations in eq. 40 to be a function Fj, j - 1,6, of six

variables, the governing system of first order equations can be written as

m

m

m

l

i

m
i

U
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m
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m

Fj(N, V, M, u, w, fl)=0, j=1,6. (45) m
m

Finite-Difference Representation role

Utilizing a finite-difference approximation

equations become

for the 1st derivative, the governing U

I

g

m

N
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Xi+l _ Xi =0

F_,:v'_+'- v_
Xi+l _ Xi --0

F3ki= M_+ 1 -- M_ 1 (Z'o i 1x,+, - x, + T{N_+' + -

+ N_(Z'o,- py)- v_}=0

xi + 1 -- xi 2 EA 4- Z' o i + 1

+ EAN_+ Z,o,flk _ -2-1(fir)2}=0

Fk= W_k+, - Wik 1x,+,- x, + T{B_+,+ B_}:0

FL=_+'- B_ _ {ML, + Mr}=0
xi + 1 -- xi 2El

B_+,)-vr+,

(46)

where i identifies values at the i-th grid point in the finite-difference grid and k signi-

fies that the equations are being solved for the k-th load level. The boundary condi-

tions are

k k
M 1=0 Mm=O

u_=O uk=O

k
W_=0 Wm=0 ,

(47)

where the number of grid points is m, the 1-st grid point being the left boundary

(x--0) and the m-th grid point the right boundary (x=L). The continuity and jump

conditions at the middle grid point are

i

17



Nkm--+1 -- Nk- ----0
2 2

2 2 2

Mkrn - Mkm =0
T+I _-

k Ukm=0Um
-_ +1 -_-

wk___m+,- wk=0
2 2

/_+_ -/_:o.
2 2

(48)

R

z

ml

m

II

II

Incremental Form
m
I

Letting
III

Np+':._ + A.r
v,_+'--vy + Avr
Mik+1=My+ AM_
Op+'--uy+ Aur
w,"+1:w_+ Aw_

(49)

substituting into eq. 46, expanding, and neglecting higher-order terms, results in the

following set of equations for the increments in the six variables:

M

m

i

I

=

m

m

=

i

Z

I

I
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w

"v--

w

Fk+ 1 N_+ 1 - N_ AN_+ 1 - AN_
= Xi+l __ Xi Jr Xi+l __ Xi =0

F.+,_ v_+,- v_ ,_v_+,- Av,_
2i Xi+l _ Xi 4- Xi+l _ Xi =0

Fk+, M_+ 1 -- M_ I _ fl_+lN,
3i = xi+l xi 4- -_-(Z'oi+lN_+1 +1

z_M_+ 1 -- AM_ 1 lANk ++ xi+l Z + T(Z'oi+ 1-

4- Z'oIAN_- flikAN k - Afl_N_- z_V_):0

k k

Fk+,_ U,+l -- U i 1 {._A Nk+l 4- Z,oi+lfl_, ,4i xi + I - x, 2

+

+

+

Fk+ 1
5i =

F6i ---

_ m (B,b_}+z'J 2

- {
xi+l - xi 2

- vr+,+ Z'o,Nl:- f_P._-vr)

k _ - AV[+/_4 1_N_4-I -- _i+INi+1 1

1 Jr- Zoi + +1

W_+l - wy I Awp+, - Awl

Xi+ , -- Xi 4- '_(fl_+l 4- fl_) 4- Xi+ 1 -- X i

fl_<+l -- fl_ 1 (M_+I 4- M_)+ Aflr+l - Aflr
xi+l - xi 2El Xi+l - x_

1 (fl_+1)2 (50)
2

- Br+1ABr+I

+ 1(.',BL+ ABr)=0y

I (AMik+l _ AM_)=0
2El

with boundary conditions

M_ 4- AM_=0

k Au_= 0u 1 4-

k k
w 1 + Awl = 0

Mkm + AMkm:0

k k
U m + AUm=0

k gWkm= 0w m +

(51)

and continuity and jump conditions

w

m

w
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2 2 2

Vkm+1 -- Vkm -- Kwkm + AVkm -- AVkm -- KAwkm = P
T ]- ]- ]--+1 ]- T

M_,,,+__- M% + AM k - AM k---o

k -- u% + AU% -- AU% :0
Um +1 _ -- 22 2 +1

k --w% + Aw% - Aw%=0
Wm +1 -- 2Y 2 Y+_ --

2 +1 2 2 +1 2

(52)
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Specifically, we have equations which can be written as

[A] {Ay} = {R} (53)

If the coefficient matrix [A], is not singular, the equations can be solved for the in-

crements in the force and displacement variables. A solution is realized when the

residual vector {R} is zero. This condition is achieved by iteration at a given load

level.

At limit and bifurcation points the coefficient matrix [A] becomes singular, and the

eigenvalues of [A] are used to evaluate the singular nature. As can be seen from eq.

52, the [A] matrix is not a classic stiffness matrix (i.e., it is not symmetric) since it

involves both forces and displacements. Its eigenvalues are not all real and vary

greatly in magnitude which makes it difficult to analyze the singular nature of the

matrix and use the eigenvalues as an indication of singular behavior. Equation 53 can

be partitioned as

AI IR1}
A21 A22 J _U R 2

(54)
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where AF are the force variables AN, _V, AM, and Au are the displacement variables

z%w, Au, Aft. It was hoped that by eliminating the force variables from eq. 54 a classic

stiffness matrix would result. Doing so led to an equation of the form

where

[A']{Au} = {R'} (55)

[A']=[A11 - A21 A_I t A12] (56)

i and

{R'}={R 2 - A21 AI-_ R I.} (57)

w

E

w

r

m

--=

Unfortunately the [A'] matrix was not symmetric either and could not be used to help

analyze or indicate the singular nature of the problem at bifurcation points and limit

points.

Dynamic Stability Analysis

As a final approach, it was hoped a dynamic stability analysis would aid in determin-

ing the bifurcation and limit points. For the dynamic problem, the governing

equations are

L

--=

w

E

,X _ 0

V,x = mw,t t

M,x = -N(z' o - fl) + V

1 /p
U,x=N/EA + Z'ofl - -_

W,x_--- -- /_

fl,x = M/El,

(58)

where variables N, V, M, u, w, fl,

and time. It is assumed that

i.e., yi, i = 1,6, - are now functions of space
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y(x,t) =Z_[x) + Ay(*x,t), (59)

the two parts on the right hand side representing an equilibrium part and a dynamic

part to the solution. Further assuming that

Ay(x,t) = Ays(x)e _t

Jl

I

i

=
II

and using the finite-difference formulation on eq. 58, the system of equations for the

Ay, results. This system is of the form

[A]{Z_Zs} - ,__2[B]{Ays} = 0 (60)

from which the eigenvalues ,_ can be determined. It was found that the eigenvalues

of the dynamic stiffness matrix were also complex. Thus the dynamic stiffness anal-

ysis did not offer any advantage over the examination of the eigenvalues of the ori-

ginal A matrix in eq. 53.

COMPARISON OF CLOSED-FORM AND FINITE-DIFFERENCE SOLUTIONS FOR THE

SHALLOW ARCH

m
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m
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MII
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Several important cases of shallow arch response were studied with the finite-

difference formulation, and the results were compared with the closed-form solution.

The Ioad-midspan deflection relation of a spring-reinforced arch with 2 = 1.5 and k = 2

is shown in fig. 3. These values of the parameters result in limit point behavior. Both

the closed-form solution, the dashed line, and the finite-difference solution evaluated

at distinct load levels, the asterisks, are shown. The numerical values were gener-

ated by increasing the load from zero and proceeding to the load level represented

by the asterisk just to the lower left of the limit point. At this point the eigenvalue

strategy was used to move to a point represented by the asterisk just to the lower

right of the limit point. The load level was then decreased and the solution continued.

Moving the numerical solution past the second limit point, point L', was accomplished
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in a similar manner. Without the eigenvalue strategy, it would not be possible to

move the numerical solution past either limit point. The numerical solution could be

made to have as many discrete points as desired, the number shown in fig. 3 being

selected simply for purposes of illustration. The load-thrust relation for this same

case is shown in fig. 4.

Figure 5 illustrates the response of an arch with the parameters chosen so it exhibits

bifurcation behavior as the load increases from zero. For this case,

_t= 2.5 and k = 10. At point C, the load-deflection relation can either continue with the

load increasing to the limit point, or the relation can branch to a secondary path, the

load decreasing with increasing deflections. Whereas the solution path from zero

load to the limit point represents arch response that is symmetric with respect to the

midspan, the bifurcated solution path represents arch response that is not symmetric

with respect to midspan. To be forewarned that the solution was about to bifurcate,

the e[genvalues of the coefficient matrix were computed as the load increased from

zero. For this problem there were real as well as complex eigenvalues. Fortunately,

one of the real eigenvalues tending to zero provided an indication that a bifurcation

point was being approached. There is no guarantee with the mixed formulation that

any of the eigenvalues have to be real and provide an indication of the impending

bifurcation. This, as mentioned at the onset, represents an important disadvantage

to the mixed approach.

The move onto the secondary path was accomplished with the eigenvector associ-

ated with the real eigenvalue that did approach zero. If ll_e eigenvector was not used,

the solution would continue on the primary path and the eigenvector continuation

approach could be used to move past the limit point, as in fig. 3. If the solution was

on the secondary path, the move back onto the primary path at D was no particular

problem. The load-thrust relation for this case is illustrated in fig. 6. The interesting

feature to note is that if the response is on the secondary path, CD, the thrust remains
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constant even though the applied load decreases as the arch deforms. On the pri-

mary path both the thrust and the load change values as the arch deforms. It is also

important to note for the case shown in figs. 5 and 6 that to move onto the secondary

path, the load must decrease. If the load increases, the response remains on the

primary path until the limit point. At this point, under load control the deflections then

jumps to the remaining portion of the primary path, as in fig. 2a. If under displace-

ment control at the limit point, the load must decrease for the displacements to in-

crease. As can be seen, the finite-difference with the continuation method and the

closed-form solution agree perfectly.

To have the ability to increase the load, yet not experience the snap-through at the

limit point, the behavior shown in fig. 7 is desirable. This figure illustrates the cor-

relation between finite-difference solution and the closed-form solution, but it also il-

lustrates a useful response. If the spring stiffness is increased so k=25, the arch

midspan deflection behaves as shown in the figure. As the load is increased from

zero, a bifurcation is encountered at C. The response can move to the bifurcated path

and the load can continue to increase, with moderate increases in deflection. Thus,

with the proper choice of spring stiffness, neither the decrease in load required in fig.

5 and 6, nor the sudden jump in displacement due to limit point behavior have to be

tolerated. This is a significant finding, one that has important physical implications.

As noted in fig. 8, on the bifurcated path the thrust is not influenced by the load level.

This also has important ramifications.

Despite the success of the finite-difference approach coupled with the continuation

method, as indicated by the excellent agreement of the last several figures, the

method was not based on principles that would guarantee success with all problems

encountered. Hence the entire problem was reformulated with a displacement-based

finite-element approach. With a displacement-based approach, the coefficient matrix

that results would be symmetric and thus its eigenvalues real. In addition, positive
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definiteness of the matrix, or the lack thereof, can be used to study stability of the

response as the solution bifurcated. As an alternative, the classic dynamic stability

approach could be used. The following section ot0tlines the finite-element formu-

lation.

FINITE-ELEMENT FORMULATION FOR A GENERAL ARCH

Basic Definitions

The finite-element approach was formulated using the Principle of Virtual Work. The

Principle of Virtual Work requires that the internal work of a system equal the external

work, i.e.,

& Wint = & Wext (61)

--=.

The internal and external virtual work expressions for a general arch with a center-

span load and linear spring are developed in detail in Appendix A. The basic as-

sumptions used to develop the virtual work expressions are that the strain of the

reference arc is small compared to unity, the Kirchhoff-Love hypotheses govern the

strain of parallel arcs, the rotation and rotation gradients as given by inextensional

theory are sufficiently accurate for a small strain (extensional) theory, the material is

linear elastic and that the normal stress components in Hooke's law can be neglected

with respect to the hoop normal stress, and that the reference arc passes through the

centroid of each cross section. The virtual work expressions are (see also the sum-

mary of the deep arch in Appendix A).

w

m

S

Wint ='_o 3_Ta-- ds° "

and (62)
F (G Win)

& We_= P&wm + K(,#- #o)|
L

where
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2
_=J(_'o--Wm) 2 _- Urn (63)

The quantity #'° is the original length of the initially vertical spring and /' is the length

after deformation. In the expression for internal work, the generalized strain vector

is

(64)

in which the prime means derivative with respect to arc length coordinate s., and the

stress vector is

m

I

I

I

iiI

where the elasticity matrix is:

= C_£, (65)

I EA -EiKo- ] (66)C= -ET% Ei _l

m

I

I

In the elasticity matrix the following definitions are used: W

I

-- 1
A = 1 - ._co dA and /= 1 - _:o

dA (67)

where the Ko is the curvature of the initial configuration and _ is the thickness coor-

dinate measured from the centroid. Expanding, the strains can be written in terms

of the displacement gradients as

26

I

I'

I

m



£o = FT _
I 2 I 2 /7'= I-'N

yF T + -_-F N and _ (68)x - F_

The displacement gradients are defined by

1-" T _--- U' -- KoW and F"N= w' + KoU . (69)

(Note that the "o" subscripts on the tangential and normal displacements of the ref-

erence arc used in Appendix A have been dropped here for convenience.) The vari-

ation in the strains are

5r,o=(1 + FT)_F T 4- FN(_F N

_F' N FNE" N

= + (1_
(7O)

Incremental Form

L

:

F •

r_

Using an incremental formulation to solve for the unknown displacements, the sub-

stitution

u--,u + z%u and w_w + Aw (71)

is made, and all dependent variables are linearized in the increments.

=

F T = r T Jr-" _r T and F N= F N 4- AF N ,

Thus

(72)

where

AF T= Au' - KoAW and &F N= Aw' + Ko&U . (73)

The incremental strains are

_o=r-o 4- &_o and fl'=fl' + Aft', (74)
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where

A,Co=(1 dr- rT)/_r T -{- F N AF N

AF' N FNF' N
Aft'= + (1 r_)3_2r.,l.,-

An N .
(75)

m

I

I

Incrementing the actual displacements in the strain variations results in w

5r,o=(I + rT)_r" T + FN_F N 4- 6FT_F T 4 A[-N_F N

5r, N F'NF'NSr" N FNAF N
+ 4- 3F' N

'_B'=vq - r_ (_- r_)_' (1- r'.)3_'

{ rNAr', r'.('+2r_.) }+ (1- r_)_ + (_- r;)'_' Ar, ,_r,.

(76)

Introduction of Finite-Elements

At this point the displacement interpolations for a seven degree-of-freedom element

with three degrees of freedom in the tangential displacement - one at each end of the

element and one at the center - and four degrees of freedom associated with the

normal displacement w and w' are introduced. The res_Jlt is that

I

i

Ill

I
I

I

m

i

u =HI_, Au = HIAG _u = HI_0

w=u_. Aw:u_A__,.,_w_u2,L_..
(77)

I

In the above the seven nodal displacements are
m

i

i
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IJ 1

W 1

W' 2

U3

(78)

and the shape functions are

w

w

with

and

and

H t = I-Hll(So), 0, 0, H14(So), 0, 0, H1z(So)] ,

H 2= [0, H22(So), H23(So), 0, H25(So), H26(So), 0]

Hll(So)=

H14(So) =

Hlz(So) = 1 -

(2 so_sol he,1) (2 so_so, h ,'t
2 2

/ 2(s° -s°l)he I 112 I 2(so -sol). he1 1t

+
2 2

2

(2(s°-s°l) 1) < So <he I ' sol - _ So2

(79)

(80)

w

=

r
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2 3

( ) (sosol)s° s°l + 2
H22(So)= 1 - 3 he I he I

2

So- Sol )H23(So)= - (so-- Sol) 1- h'e_

= 3// So-- sol _ SolH25(So) L _el hel

H26(So) = _ (s O -- sol ) s° - sol _ So - sol
heJ h-e_ ' Sol _ S O < So2

(81)

where So, is the arc-length location of the left end of the element, So_is the arc length

location of the right end, and h,, is the arc length of the element. See Fig. 9 for a

sketch of the element. Substituting the shape functions into the strain and strain

variations leads to

tk A

where B,(_) is a 1 x 7 matrix given by

^T.... - KoH2)T(H_'I- _oNH2)B_= B_(G)=H'_- '_oNH2+ u t__"

+ _r(H'2 + KoNOT(H'2+ '(oH0.
(83)

and

/k A

_/t' =_B2(u)_u, (84)

where B2(_) is a 1 x 7 matrix given by

_B2=_B2(g)=

+

1 (H"- 2 + _:o-H'l)

FNF' N

(1- r2N)3/2 (H'2 + K°_I) "

(85)

m

l

l
lid

i

III

w

I

II

D

u

iii

i

|

m

g

III

In the above

3O

II



2 ATt, ,t A

r N ----U [1"1 2 + KOHI)T(_H'2 Jr Koal) U (86)

F A

FNF'N=uT(_H'2 + KoHH1)T(..HH"2 4- KoH 1)U. (87)

Also the incremental strain and incremental displacement relations are

A_o=BIA _ and z_fl' = B2A_.. (88)

Incrementing the actual displacements in the strain variations, these incremental

strain variations can be written as

A A

_Se.o=BI(U)6U + z_uTD_u and (_fl' A A T A A.... Au E(u)Su.~ -- ~ = B2(u)(_u + , (89)

where

and

__D=(H__' 1 -KoHH2)T(__H'I- KoH2) -t- (H' 2 Jr_ KoH__I)T(H'2 + KoH__I ) (90)

F N

_E(g)=(1- 3/2[(u'2 + KoH1)T(__H"2 + Ko__H'I) -{- (__a"2 4- KoH'I)T(---H'2 4- KOCH1)]

r"N(1 Jr- 2r2N) (91)
-I- [(_H_H' 2 -I- KoH_Ht)T(H'2 Jr- EoH1) ] .

Note that the 7 x 7 matricies D and E are symmetric. Using the expressions for the

incremental strain variation, the strain variation, and Hooke's law, the internal virtual

work for an element can be written

A T A

(92)

In this expression
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T I- E_
 ---LEoT °
----'_, BTcB_ dSo ,

hel

ds o

(93)

K=f BTcB dso, (94)
J,

hpI

u

J

= =

m
I

i

and
i

_KG=[,., (CB,LD+ c_B2_E)dso. (9S)
el

Here K+ KG is referred to as the tangential stiffness matrix. It is evaluated numer-

ically, specifically, by using Simpson's integration rule. An issue is the number of

intervals to be used to evaluate the integral. This is addressed in the next section.

The actual displacements in the external work are also incremented to give

=
I

I

I

I

5Wex t = PSWrn

+ {O N - KNN_Wrn -- KNT_Um}_Wm

Jr- {QT- KTNZ_Wrn- KTTAUm)&Um

(96)

i

I

in which the incremental quantities from the spring are

QN = Fs(#o -- wm)/_'

QT = -Fs(umH')

KNN ----K # rs[ wm+7- 1- f

KNT=KTN = -K _- # + Fs T _'

(-_/2 Fs [ I Um t 2]KTT = K + "7, 1 - T

(97)
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The incremental expression for the internal virtual work can then be set equal to the

incremental expression for the external virtual work to solve for the displacements in

an incremental fashion.

This completes the outline of the finite-element formulation. It is totally

displacement-based and hence the eigenvalues of the stiffness matrix are expected

to be useful for the analysis of instability.

COMPARISON OF CLOSED-FORM AND FINITE-ELEMENT APPROACHES FOR THE

SHALLOW ARCH

Initial Behavior

Before implementing the eigenvalue continuation scheme within the finite element

method the inital response of several shallow arches, beginning from zero load and

displacement, was compared using the finite element method and the closed-form

solution. In fig. 10 the comparison for one of the shallow arches is illustrated. Four

elements are used and four intervals in the application of the Simpson's rule are used

to approximate the integrals in the tangent stiffness matrix, eqs. 94 and 95. This case

has no spring, k=0, and a value of the arch rise parameter J] =0.7656 which produces

Ioad-midspan deflection behavior that is monotonically increasing everywhere along

the path. There is no bifurcation or limit point for this case. Clearly, the finite-

element analysis and the closed-form solution are in complete agreement. In fig. 11

comparison is made for the value of,_ = 1.5, k again being zero (no spring). This value

of 2 results in limit point behavior. As can be seen, at the limit point the finite-

element analysis responds to an increasing load level by jumping to the other portion

of the solution path. In fig. 12 a case of bifurcating behavior is shown, the value of 2

being 4, k still being zero. In the finite-element analysis, as the load is increased

from zero and the bifurcation encountered, the solution responds by remaining on the

primary load path. For this case the load was not increased beyond the limit load.
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The finite-element formulation and closed-form results agrp.e very well for the initial

response (response before limit point) of the shallow arch. The infhJence of more

elements or more integration intervals was not explored because of the good agree-

ment with what was felt to be a rather crude model.

Behavior with Singular Points

To be able to continue solutions through limit points and to branch on to bifurcated

paths, an eigenvalue continuation method, similar- to that used with the finite-

difference scheme described earlier, was implemented in the finite-element analysis.

As a bifurcation point or limit point is approached, one of the eigenvalues of the tan-

gent stiffness matrix will approach and pass through zero. In the displacement based

finite-element formulation the eigenvalues of the tangent stiffness matrix are all real

and thus the existence of a zero eigenvalue clearly indicated the singular nature of

the tangent stiffness matrix at bifurcation and limit points. At a bifurcation point the

eigenvector associated with the zero eigenvalue is asymmetric. If the solution at a

load just prior to the bifurcation point is modified by adding to it this eigenvector

(normalized) and multiplied by a scale factor, a solution on the bifurcated path can

be found. Once on the bifurcated path, lhe usual solution technique can be used to

continue along the path. At a limit point the eigenvector associated with the zero

etgenvalue is symmetric. If the scaled eigenvector is added to the solution at a point

just before the limit point, a point on the path just after the limit point can be deter-

mined. As with the bifurcated path, once a solution past the limit point is found, the

arch response can be followed using the standard sohJtion technique.

Figures 13, 14, and 15 show the agreement between the finite-element solution and

the closed-form solution when the eigenvalue continuation scheme is used in the vi-

cinity of bifurcation and limit points. Figure 13 illustrates the case with nondimen-

sional spring stiffness k = 2 and ,_ = 1.5. With these parameters the arch will exhibit

limit point behavior with no bifurcations. The Ioad-midspan deflection relation, be-
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ginning at zero load, is determined by using the sohflion at tile previous load as the

initial guess to the solution at the next load step. This process is repeated until the

limit point is encountered. Using the solution at the poinljusltothe lower left of the

limit point, the eigenvalue continuation scheme is used to determine the solution at

the point just to the right ofthe limit point. From this point thp load level is decreased

stepwise and the remainder of the relationship is gennratr_d, each load step using the

solution at the previous load step as an initial g_less. The notation 'batch" and

'interactive' in fig. 13 refers to the fact that two computer co(Ins were written for the

finite-element formulation with the continuation. Tile batch program automates

somewhat the steps necessary to continue the solution past a limit point. The inter-

active program requires user intervention and allows the _lser to vary the parameters

associated with the continuation scheme based on the nalure of the solution, the

eigenvalues, and the eigenvectors.

Figure 14 illustrates the agreement between the finite-element and closed-form sol-

utions for an arch with 2 = 2.5 and k = 10, an arch which exhibits both limit point and

bifurcation behavior. At the bifurcation point the solution can continue along the

symmetric path using the standard solution technique, or the solution on the

bifurcated path can be determined using the eigenvalue continuation scheme. Note

that the eigenvector associated with the eigenvalue that approaches zero at the

bifurcation point is asymmetric. At the limit point the eigenvalue continuation

scheme can be used to move past the limit point. Again, once a point on the

bifurcated path is found, or a solution past the limit point is found, the standard sol-

ution technique can be used to follow the arch response.

Figure 15 shows the agreement between the finite-ele_,,-mt and closed-form solutions

for a shallow arch that exhibits bifurcation behavior but no limit point. The parame-

ters for this arch are ).=2.5 and k=70. For this arch the eigenvalue continuation
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schemeis necessaryonly to get onto the bifurcatedpath,the symmetricpathcan be

followed usingthe standardsolution technique.

I

i
i

In summary, for the shallow arch, the finite-element formulation and the closed-form

results agree very well, both on primary paths and on adjacent equilibrium paths,

which are reached with the finite-element method by using the eigenvalue continua-

tion scheme. All the arches which used the eigenvalue continuation method were

modeled with 16 elements and 8 integration intervals. The influence of the number

of elements or the number of integration intervals was not investigated due to the

good agreement with the closed form solution.

COMPARISONS FOR NONSHALLOW ARCH USING FINITE-ELEMENT APPROACH

Huddleston [3] published a series of papers dealing with the response of deep

arches. Huddleston obtained numerical results from his first-order formulation by

using the so-called shooting method. With this method, a boundary value problem is

converted to an initial value problem. Using conditions at one boundary, a

predictor-corrector method is used to integrate the governing differential equations

and compute the conditions at the other boundary. If the conditions at the second

boundary do not match what the boundary conditions there should actually be, the

initial boundary conditions are adjusted, and the process repeated. The process is

repeated until the boundary conditions on both ends of the arch match the desired

conditions. To compare with Huddleston, nomenclature peculiar to that formulation

must be introduced. Specifically,

y2I' = dA, (98)
1 - Koy
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which is a modified second moment of the cross-sectionat area, where

_o = initial curvature of arch. (99)
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Quantity I' in eq. (98) is identical to the quantity / in eq. (67). Also

A = midspan displacement

DELV = A____-nondimensional displacement
L

pL 2
Q = - nondimensional load

El'

I'
CRUX - = compressibility parameter

AL2

REL=H/L= height ratio.

(1oo)

w

E

w

w

w

w

Since Huddleston reported the numerical values of the nondimensional parameters,

there are wide choices of values for the physical dimensions of the arch that can be

used and still duplicate the values of those nondimensional parameters. A compar-

ison with Huddleston for the case of CRUX=0 and REL=0.25 is shown in fig. 16.

(Note, to have CRUX =0 the arch has to be infinitely thin, so that the radius of gy-

ration, I/A, is zero. Alternatively, the arch has to be infinitely long. These are both

extremes and cannot be duplicated exactly by the finite-element formulation.) In fig.

16 two finite-element descretizations, 16 elements and 32 elements, two levels of

Simpson's rule integration accuracy, four intervals and eight intervals, and two ab-

solute arch thickness are included in the figure. The value of L was chosen to be 16

in. The material considered was aluminum, with Young's modulus of 10 Msi and

Poisson's ratio of 0.3. The results from Huddleston were obtained by interpolating

from the figures in ref. 3. Initially, to compare with Huddleston, 16 elements and four

integration intervals were used, and the arch thickness, h, was chosen to be 0.1 in.

This led to a value for CRUX of 0.32 x 10 _. The calculations with these parameters

are represented by the open squares. The finite-element calculations were stiff rel-

ative to Huddleson's results, the asterisks. To overcome this, the finite-element re-

sults were computed for the case of a thinner arch, h =0.01 in., the open triangles.

The value for CRUX in this case is 0.32 x 10 7. Though this is a more flexible arch,

and should lead to less stiff response, the response was actually much stiffer than for

the thicker arch. This was surprising. However, this result can be attributed to the
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following: For both the thick and the thin archa certain percentageof the strain en-

ergy is due to bending strains, and the remaining percentage is due to extensional,

or membrane, strains. For the thinner arch there is very little strain energy due to

bending. Unfortunately, the element displacement field is represented only by a

quadratic polynomial for the extensional motion, u(x), but it uses a cubic polynomial

for the oui-of-plane, or bending, motion w(x). Though the element does not 'lock' in

the classic sense of finite-elements, it tends toward locking behavior in the exten-

sional mode and is thus overstiff for elements which have a higher percentage of

strain energy in extensional effects than in bending effects. The thinner element thus

shows this tendency to be overstiff.

To further study this locking tendency, and to minimize it, the number of elements
. _ _.

was doubled and the results using two thickness again compared. With more ele-

ments, the stiffness of the finite-element model more closely matches the results of

Huddleston. In fact, with the thicker arch, the solid squares, the results compare well.

As the case of the thinner arch, the solid triangles, is stiffer, the membrane stiffening

effect is again evident.

To study the effect of the number of integration intervals, and to determine if this had

any influence on the stiffness of the model, the thicker arch and 16 elements were

again used but with eight instead of four trapezoidal integration intervals. These re-

sults are shown as solid circles and it is evident the number of integration intervals

has little influence, as the solid circles and the open squares are practically coinci-

dent.
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After determining the number of elements, the number of integration intervals, and

the physical parameters of the arch necessary to favorably compare the finite-

element results with those of Huddleston for the intital arch response, the eigenvalue

continuation method was tested. Using the arch with h=0.1 and L= 16 which results
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w

in CRUX=0.32x10 5 and REL=0.25, and 32 elements, the eigenvalue continuation

scheme was used to branch onto the bifurcated path and to move past the limit point.

The comparison of the finite-element results and Huddleston's results are shown in

fig. 17. Again the values for Huddelston were obtained by interpolating form the fig-

ures in ref. 3. As illustrated in fig. 17 the finite-element results compare quite well

with Huddleston's results. However, with the deep arch the bifurcated path and the

symmetric path on the other side of the limit point were more difficult to follow than

they had been in the shallow arch. Smaller load steps were necessary to be able to

continue on the curve after an initial equilibrium soh_tion on the adiacent path had

been found using the eigenvalue continuation scheme.

FINAL COMMENTS

w

m
w

z ii

Presented has been a summary of a rather extensive study of a complex yet funda-

mental problem. The problem is complicated by the existence of multiple equilibrium

solutions. A finite-element formulation with a scheme to aid in finding the multiple

solutions has been developed and discussed. Comparisons with other solutions are

good and lend credibility to the formulation. A users guide for the program written

to implement the finite-element formulation is provid_.d in Appendix B. At this point

a variety of arches should be studied to better understand the character of the for-

mulation, and to interpret how the formulation actually represents and interprets

particular physical characteristics of arch response.
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Appendix A

Derivation of the Governing Equations --

The governing equations for the static equilibrium configurations are developed first

for deep arches, and then specialized for shallow arches. We consider the large

displacement response of elastic arches in the plane of their curvature.

g

D

ZmE

w

DEEP ARCH m
B

Kinematics lid

The initial, unstressed configuration of the arch is characterized by a symmetric plane

curve, or reference arc, whose arc length coordinate is denoted So, and whose cur-

vature in the plane, Go, is of one sign. Coordinate So=0 at the left end and so=S at

the right end. The origin 0 of a right-handed cartesian system (x,y,z) is at the left end,

with the x-axis passing through the end points, the y-axis perpendicular to the plane

^ ^

ofarch, and the z-axis in the plane of the arch. See Fig. A.1. The unit vectors i, _ and

denote the positive cartesian directions x, y, and z, respectively. A point on the

reference arc has a position vector ro(So) measured relative to the origin 0. Let _ and

denote unit tangent and normal vectors, respectively, of the reference arc at so.

The differential geometry of the reference arc is represented by

E

N

m

II

I

J

U

A A

dr_o ^ dI dN
ds--'-_-= -T, ds_-_-= Ko -N, dso- - Ko ~T (A.1)

in which the unit normal !_1is directed to the concave side of the reference arc.

The material point with position ro(So) in the initial configuration occupies the point

defined by position vector .rr_,in the deformed configuration. See Fig. A.2. We intro-

duce the displacement vector _o such that
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ro = ro + _o (A.2)

whose components are

A A

do= Uo(So) m(so) Wo(So)N(so). (A.3)

The differential of eq. (2) is

.(d od0o)dro= _ + ds° dSo

Using eqs. (1) and (3), this differential is written as

d_ = 1 + r'T) _ -{- FNN]ds o

where the components of the displacement gradient are

(A.4)

(A.5)

L

rm = U'° -- _:°W° (A.6)
FN=W' O --[- KoU O

and the prime means ordinary derivative with respect to so. Line element d[o of

length dSo in the initial configuration displaces and rotates to line element d[_, of

length ds_ in the deformed configuration. Since (ds_,) 2=d[_ • drY, we have from eq.

(5) that

"_ 2

(dso) 2=[(I + rT) 2 + [i.,](ds o) . (A.7)

The stretch ratio 20 is defined as ds_,/dso. Thus from eq. (7)

w

22= (dSo/dso)2= (1 + rT) 2 + !-2 . (A.8)

r Green's strain t.o of the reference arc is defined by

(dso) 2 - (dso)2= 2r,o(dSo) 2 (A.9)
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whichfrom eq. (8)can bewrittenas I

1
= (4 - 1) (A.10)

or

1 2 1 2 (A.11)
r.o=i-" T + -_-F T + "_rN.

Similar to eqs. (1) for the initial state, the differential geometry of reference arc in the

deformed state is given by

g A

dr[o ^ dt , dR , ^
. - !, ~ - _o n " - Kot

ds o ds ds

(A.12)

in which K_ is the curvature at s_. From the first of eqs. (12), and eqs. (5) and (8), the

unit tangent vector is

We define the rotation of line element dr, in the initial state into d r_ in the deformed

state by the angle p. Angle ,8 is measured positive clockwise from T to t* such that

A A A

t = cosfl T + sinfl N. (A.14)

Comparing eqs. (I3) and (14) gives the trigonometric functions of the angle fl in terms

of the components of the displacement gradients as

2o cos fl = 1 + r T (A.15)

2 o sin/Y= r N . (A.16)
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Taking the derivative of t in eq. (14) with respect to so. using the chain rule and eqs.

(1) and (8), and comparing this result to the second of eqs. (12), we find that

,_oKo=/t' + Ko (A.17)

A /"

n=-sin/t T + cosfl _N (A.18)

where 6 is the unit normal to the reference arc in the deformed state at so.

vector _ is rotated 90 ° clockwise with respect to the tangent vector i-

The unit

A parallel arc to the reference arc in the initial state is defined by the position vector

w

A

r=_ + (N (A.19)

in which _ is the coordinate along the normal at so. Coordinate _ is constant for a

parallel arc. Using eqs. (1) the differential line element tangent to the parallel arc is

m
w

I

A

dr=(1 -- _Ko)ds o T, _= constant. (A.20)

The magnitude of eq. (20) is

=

w

L

i

ds = (1 - _:o)dso (A.21)

in which ds is the arc length of the parallel arc. A material point located by position

vector r in the initial state is located in the deformed state by position vector E'. The

displacement of this material point on the parallel arc is given by the vector differ-

ence r' -- r, and we invoke the Kirchhoff-Love hypothesis to relate this displacement

to the displacement of a material point on the reference arc. The Kirchhoff-Love hy-

pothesis is

- r= o + -  A.22 

=

w

Using eqs. (19) and (2) this becomes
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J

r'=ro + _. (A.23)

The differential of r* in eq. (23) is

dr'=drLo + _'d6 (A.24)

which from the relations in eqs. (12) may be written as

dr'=(1 -- _rKo)dso t.. (A.25)

Thus, the magnitude of eq. (25) is the differential arc length on the parallel arc in the

deformed state; i.e.,

m
m

m

I

m

g

11

w

i. i t

ds=(1- _*o)dSo (A.26)

==

Z
J

The stretch ratio for the parallel arc is defined as U

t

,t -- ds/ds (A.27)
Will

which from eqs. (21) and (26) becomes Ill

_--4o(I- ._o)/(_- ___o). (A.28)
III

Finally, the Green's strain for a parallel arc is m

J

1
_=T(4 2- 1)

or in view of eq. (28) and (10) this becomes

)1 _'Ko

(A.29)

(A.30)
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= =
w

Equilibrium

=

w

Consider equilibrium of an infinitesimal element of the arch in the deformed state.

A

The internal actions are a force vector F'in the plane and a moment vector M'j. Mo-

ment M" is positive clockwise acting on a positive s_, face. Static equilibrium in the

limit as ds_ _ 0 requires

dEE

dso

A
dM' I + txF =0

ds o

(A.31)

m

At the point s_ =s_, where the spring is attached and the applied downward load P

acts (Fig. A.2), eqs. (31) are invalid and they are replaced by the transition equilibrium

conditions. These transition equilibrium equations are

s = P..k + Fsu
(A.32)

in which the [Q] means the difference between the quantity Q in the brackets eval-

uated on the right side of s_, and the quantity evaluated on the left side of s_,. The

spring force vector acting on the arch is - F,O, where

i

Fs = K(_. - #o) (A.33)

m

m

r

w

and

A P'

tU=to..k +  o(Sm)- (A.34)

In eqs. (33) and (34) #o and #' represent the unstretched and stretched spring lengths,

K is the spring stiffness, and Ao(S,,) is the displacement vector of the arch at the

spring attachment point (midspan). The magnitude of the vector eq. (34) is
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:2=(:o - w_)2 + u2m (A.35)

( ^ ^ t, ^in which Ao(Sm)=w,_ sin) + um T(sm), ~l_'N(sm) = --1, and _i*T(sm)--1 for the

midspan location on the symmetric arch. The unit vector _ is directed from tile base

of the spring along its line of action toward its connection to the arch in the deformed

state. From eq. (34}

m

m

g

g

u

Virtual Work

-- U m A
I_ : C° Wm k 4- I (A.36) J

Ii

Consider an infinitesimal virtual displacement of the arch from its equilibrium con-

figuration in the deformed state. The increment in the virtual work of the external

loads (P and F,) is

+ Fs( (A.37)

in which (_r_ denotes a kinematically admissible virtual change in position. Using the

first eqs. (32) this expression becomes

II

iii

a

II

- (A.38)
III

Equation (38) is equivalent to

A S* t

Lmj o/,./(_Wext = + .EF" --dso.
s;. dS'o

(A.39)

since the ends of the arch are immovable and the internal force vector is spatially

constant on the open intervals 0 < s_ < s;. and s;. < s_ < S" via eq. (30). Immov-

able end points imply the kinematically admissible variations must satisfy
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=0 (A.40)

L

The virtua displacement is performed following a material point Which is identified

by a fixed value of so in the initial state, Thus, 5r_, implies a change in position (dis-

placement) holding so fixed. As a result, the variational operator "_" and ordinary

derivative d( )/dso commute, but "3" and d( )/ds_ do not. Using the chain rule a cou-

ple of times, the spatial derivative of the variation in the integrand of eq. (39) may be

manipulated as follows

d (Sr_)
dso

d • dSo

dso

)
1

520 ^ ^

w

w

520

'_O

+ _/i' _. (A.41)

In the second step of the above manipulations eqs. (8) and the first of eqs. (12) were

used to rewrite the spatial derivative, and in the last step the variation of the unit
^

tangent vector was obtained from eq. (14) recognizing that unit vectors T(so) and

^

N(so) do not vary since Sois fixed. Substitute eq. (41) into (39) to get

W

6Wext = + Ft 20 4- FnS_ ds o
(A.42)

in which _ and F_,are the tangent and normal components of F in the deformed state.

The second of equilibrium eqs. (31) can be used to eliminate F_ in (42) in terms of the

derivative of the moment. That is,
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A

6Wext=[o sm 4- Ft _oo
(A.43)

m

l

The following identity is valid for simply supported ends (M' = 0) or for prescribed end

rotations (//) (also note M" and/Y are continuous at the point load)

w

E
m

Expanding

f0,S d--d-- (M°5/_) dso=0
t

ds o

J'0 * J'0s" ' d )dso
s" riM*, 5,/Y dso =- M ----;-(5/_

ds o dSo

J"0s" 1 ds °- M'Sfl' --_-° .

(A.44)

m

I

I

r_

=__

i

g

Substituting eq. (44) into (43) and changing the integration variable from s_ to So, we

get

j,0Sm if, S
+ l-F;  o+ dSo

Sm

(A.45)

The right hand side of eq. (45) is the internal virtual work, i.e.

i

i

W

g

_Wtnt = -I- EFI_o + M'3fl'] ds o.
Srn

(A.46)

By eq. (45) we have shown, for an arch in equilibrium, that the internal virtual work

is equal to the external virtual work for every kinematically admissible variation of the

displacements With respect to the actual equilibrium displacements. In the finite el-
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ement solution we use the converse of this statement; i.e., we impose _W.,, = 5W_,, for

every kinematically admissible variation to ensure equilibrium of the arch.

From eq. (46) the internal virtual work of the arch in the deformed state per unit arc

length of the initial state is

t w_W int- Ft_.o 4- M 3fl' (A.47)

w

The force and moment components in eq. (47) are defined in terms of the normal

(Cauchy) stress component T,, in the deformed state by

(F_, M')=fAzss(1, -- .q")dA (A.48)

in which A is the cross-sectional area of the arch. The cross-sectional area does not

change from its value in the initial state in the theory. Substituting eq. (48) into (47)

results in

=

s

w

_W'int=_*ATSS(_,_ o -- _*_') dA (A.49)

=

m.

w

m

r

w

which can be rewritten in terms of the variation of the parallel arc stretch ratio (see

eqs. (2B) and (17)) as

5W'int=J"A'zssS"l-(1 -- _:o) dA. (A.50)

Division and multiplication by 2 in the integrand of eq. (50) gives

w

_W'int=fA(TSS/_ ) _._,_ (1 -- _Ko) dA. (A.51)
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The result in eq. (51) is written as i

5W'int=J'ASss.4r. (1 - _:o1 dA (A.52)

in which S,,(= _,/,_) is the second Piola-Kirchhoff normal stress defined in the initial

state, and 6r. is the first variation of Green's strain for a parallel arc; see eq. (29). The

second-Piola Kirchhoff stress tensor and Green's strain tensor are the conjugate

variables frequently used for finite element analysis of finite deformation in solid

mechanics.

A_pproximation for Thin Arches and Small Strains

The Green's strain _ is a quadratic function of the thickness coordinate and curva-

tures as shown byeq. (30). For thin arches I_.Kol < hKo, where h is the arch thick-

ness, and h_cois small with respect to unity. We approximate the strain of a parallel

arc for a thin arch as follows: Multiply eq. (30) by the factor (1 - _Ko) and expand the

right hand side of this result in a power series in ( to get

(_- _,o),=_.o- _[(_ + 2_.o)_o- (_+ _.o)_o]+ 0(¢_). (A.53)

Now we assume that the strain r.oof the reference arc is small with respect to unity,

and neglect terms quadratic in { in eq. (53), to get

m

u

J

l

J

L_

I

IIIB

m
I

m

m

W

,o- - *o)
_-_ (A.54)

(i - -_o)

Equation (54) is used to approximate the small strain behavior of thin arches.

The approximation to the strain in eq. (54) is substituted into the expression (52) for

the internal virtual work per unit initial arc length to obtain

p __
6W int- N6t'o + M6Ko (A.55)
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in which the second Piola-Kirchhoff stress resultants are

(N,M)=IASSS(1 , - () dA. (A.56)

m

r

w

=

w

Equation (55) shows that N and _o, and M and (K_, - Ko), are conjugate variables. The

Green's strain for the reference arc is given in terms of the displacement gradients

in eq. (11). The change in reference arc curvature _ - Ko is determined from eqs.

(15), (16) and (17). Consistent with the assumption of small strains, the stretch ratio

,_o--_ 1, since ,t2o= 1 + 2_o. Thus for small strains eq. (17) determines the change in

curvature as

Ko -- Ko _ fl'. (A.57)

The expression for the rotation gradient in terms of the displacement gradients FT

and F, is determined by differentiating eqs. (15) and (16) with respect to So, and then

solving the resulting two simultaneous equations in 2off' and 2'0. The result of this

procedure is

w

w

w

w

_[ofl'=(c°sfl) F' N - (sinfl) F' T (A.58)
2' o=(sinfl) F' N + (cosfl) F' T.

In regards to computing the rotation fl (see eqs. (15) and (16)) and the rotation gradi-

ent fl', under the assumption of small strains, it is reasonable to consider an inex-

tensional theory. That is, ,_o is identically equal to unity for all displacements. This

inextensional constraint implies 2'°--0 in the second of eqs. (58) and ,_o= i in the first

equation. If the resulting system is used to eliminate F'T, then the rotation gradient

is

F I F'N N
fl' = -- = (A.59)

cos fl _I - F2N
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since eqs. (15)and (16)imply m

cosfl=l + VT=J1 -- V_ (A.60)

sin fl= F N . (A.61)
i

In the inextensional theory, the displacement gradient VT and its derivative are elim-

inated terms of gradient F, and its derivative as shown by eqs. (59) to (61). We as-

sume for an extensional arch theory with strains small with respect to unity that the

rotation fl and its gradient are given with sufficient accuracy from eqs. (59) to (61).

Equation (60) implies the range of rotations considered in the theory is

-n/2 < fl < +hi2. If 1fll=_/2, thenF,=l, VT =-1. and V'.=0sothateq.(59)

for fl' becomes an indeterminate form. Consideration of eq. (54), and that the strains

are assumed to be small compared to unity, implies I hB'l should also be small

compared to unity. Finally, since _ - Ko =B' then 3K_ = _fl' and the internal virtual

work (55) becomes

m

m

III

S

_Wlnt=_0 (N3r. o + M_Sfl') ds o . (A.62)

Hooke's Law

For a linear elastic, isotropic material, and neglecting the transverse normal stresses

with respect to stress S,, for the arch, Hooke's law is simply

ibm

I

n

m

Sss = E r. (A.63)

in which E is the modulus of elasticity. Substituting eq. (54) for the strain in (61), and

substituting this result into eqs. (56), we get
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i

EA

--ELKo
(A.64)

where we have taken the reference arc to pass through the centroid of the cross

section such that

'A_dA = 0. (A.65)

Quantities A and / in eqs. (64) are defined by

'A dAA= 1 -_:o ' 'A (2dA (A.66)f= 1 - ._%.

z

Summary for the Deep Arch

m

Equilibrium of the arch in the deformed state is imposed by the principle of virtual

work. From eqs. (2), (33), (36), and (37), the external virtual work is

)[ [o- Wm Urn ](_Wext = P_w m + K(_' - _'o ¢' (_Wrn /' (_um (A.67)

in which the subscript m means midspan. The length of the spring in the deformed

configuration is determined from the midspan displacements by the positive square

root of eq. (35). Thus,

I

win)+ (A.68)

The internal virtual work referenced to the initial state is given by eq. (62) which is

repeated below.
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_Wint=j" 0 (NSr, o + M2J/I") ds o. (A.62) I

Equation (11) for the strain of the reference arc, eq. (59) for the rotation gradient, and

eqs. (6) for the components of the gradient of the displacement vector are repeated

below for convenience.

I

II

1 1 (A.11)
£'o = F'T "}- -2" FT Jr- -'_

B,=r,./J1 - (A.59)

F'T=U' O -- KoWo_ "

F N w' o + KoUoJ
(A.6)

The hoop force N and bending moment M are related to strain r,o and rotation gradient

_' by eq, (64).

SHALLOW CIRCULAR ARCH

Let Ro (-- 1/Ko) denote the radius of the reference arc, c_the semi-opening angle of the

reference arc, L the span between supports, and let H denote the midspan rise of the

arch above the line connecting the supports. See Fig. 1. A shallow arch is defined

by a small rise to span ratio H/L. For the circular arch

H/L=c(/4 + 0(_ 3) (A.69)

so that a shallow arch is characterized by a small semi-opening angle. The maximum

slope of the reference arc with respect to the line passing through the supports is c(

and occurs at the support points. Since (x is small, the slope of the reference arc is

small everywhere on the arc. We move the origin of the x-axis to a position midway
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between the supports with respect to the deep arch development. Thus

-L/2 _< x _< L/2. The symmetric function Zo(X) describes the reference arc in the

initial state. A shallow circular arch is described by the quadratic function.

Zo(X)= H[1 - (2x/L)2], x e (-L/2, L/2). (A.70)

The initial configuration is described by the position vector

A

r_(x)=x _, + Zo(X) _k- (A.71)

We prefer to use cartesian coordinates for the shallow arch rather than the curvilinear

coordinates (so, () used in the deep arch development, as is suggested by eq. (71).

From eq. (71), the differential arc length dso, unit tangent and normal vectors to the

reference arc, and the curvature are

ds o=J1 + (Z'o)_ dx (A.72)

_=[_ + z' o _,]/J1 + (Z'o) 2 (A.73)

,., ^ / + (z,J (A.74)

,_o= - ,%/[ 1 + (Z'o?]_/_ (A.75)

E =

i
in which a prime now means derivative with respect to x. For a shallow arch

0 < Iz'ol < = < < 1. (A.76)

Thus eqs. (72) to (75) simplify to

ds o = dx (A.77)

A

_--,i + z' o k (A.78)
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A A A

N=z'o i - k (A.79)

Ko = - z" o . (A.80)

The deformed configuration of the reference arc is given by the position vector

r_Eo--ro + _o (A.81)

in which the cartesian representation of the displacement vector is

Ao=U X + (A.82)

In eq. (82), u and w are the x- and z-direction displacements, respectively, of a point

on the reference arc. Note that w(x) is positive vertically upward toward the convex

side of the reference arc, whereas Wo(X) for the deep arch was defined positive to-

ward the concave side of the reference arc. The line element dr.° in the initial con-

figuration displaces, rotates, and stretches to line element d.Er_in the deformed

configuration. The differential of r_ in eq. (81), using eqs. (71) and (82), is

• [ ^drEo= (1 + u')L + (Z'o + w') , dx. (A.83)

The square of the magnitude of this differential vector is

(dso)_=[0+ u'? + (Z'o+ w')_]dx_. (A.84)

The stretch ratio _lodefined in eq. (8) is determined by eqs. (72) and (84) to be

,,!2o= (1 + u') 2 + (Z' o + W')2 (A.85)
1 + (Z'o)2

and the Green's strain defined in eq. (9) is
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W Ju' + z' o + 1/2(u') 2 + 1/2(w') _-
So= (A.86)

1 + (Z'o) 2

From eqs. (83), (84), and (72) the unit tangent vector to the reference arc in the de-

formed state, defined by the first of eqs. (12), is

A A

^ (1 + u'Li + (Z'o + w%k
t -- (A.87)

,_oX//1 + (Z'o)2 .

v

w

Since the unit normal to the reference arc in the deformed state is rotated 90° clock-

^

wise with respect to t, we get from eq. (87) that

A A

,, (Z'o + w')±- (I + u')k
(6.88)n=

Jto,,//1 + (z'J

The rotation of line element dro to dr*o was defined by the angle /_ in eq. (14). Trig-

onometric functions of angle/Y are determined from eqs. (73), (74), and (87). The re-

sult is

2ocOs/7=1 4- F T (A.89)

20 sin/t = F N (A.90)

in which we define

FT=EU' + Z'oW'][1 + (Z'o)2] -1 (A.91)

r.=E-w' + Z'oU'][l + (_'J]-'. (A.92)

The quantities F'T and r'N above are the tangential and normal components of the

displacement gradient vector, d&o/dso, in terms of the shallow arch variables. The
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curvature K_ on the reference arc in the deformed state is defined in terms of the ro-

tation /7 by eq. (17). Using the chain rule and eq. (72), the eq. (17) is rewritten as

 oK'o=4'[1 + (z'J] + *o (A.93)

n

i

m
g

where again the prime now means derivative with respect to x. The rotation gradient

fl' is determined by differentiating eqs. (89) and (90) with respect to x and solving the

resulting two simultaneous equations for 2off' and 2'0. This procedure is analogous

to that followed for the deep arch (see eqs. (15), (16), and (58)). The result is

2off' = ( cos B)F' N - ( sin/7)F' T
(A.94)

)-'o = ( sin/_)F' N + ( cos _)l-' z .

For strains small with respect to unity, i.e., 0 < Ir.ol << I, the rotation gradient fl'

may be approximated in an analogous fashion to the deep arch (see the discussion

of eq. (59)). From eqs. (94) under the assumption of small strains, we approximate

/_' as

r'tN
/'/' = _ (A.95)

COS f_

m

N

Z
I

ig

m

I

T'_--

g

R

I

For shallow arches eq. (76) is applicable for the inltial configuration, but we also as-

sume that the rotation/_ is the same order of magnitude as the semi-opening angle

_. That is, the inverted configuration of the arch, or its approximate snapped-through

configuration, would have an end rotation of approximately 2cc. Thus, for ccsmall and

respect to unity, the rotation/Y is small with respect to, unity, and we can use the small

angle approximation for the trigonometric functions of f/ such that cosp --_ 1 and

sin/Y --_ _. In addition, strains small with respect to unity imply Ao _ 1 in eqs. (89)

and (90). Consequently, for small strains and rotations the order of the semi-opening

angle we approximate the rotation angle by
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w

B -_ ]-'N" (A.96)

The approximation for the rotation gradient from eq. (95) becomes

fl''-_ V' (A.97)-- N

w

which is consistent with eq. (96). Since the approximations imply 1 + VT "-- 1 in (89),

and that the strain _o in (86) is equivalent to

_o=VT(1 + 1/2 F T) + 1/2 V_, (A.98)

it is consistent to approximate the strain-displacemen! relation (98) by

r,o --_ F T + 1/2 ([-'N) 2. (A.99)

Finally, for shallow arches we neglect the contribution of the displacement u with re-

spect to w in rotation in eq. (96). This implies from eq. (92) that

F N ,_ -w' (A.100)

in which we also neglected the initial slope angle with respect Io unity. In terms of

displacements, the approximations to the strains measures for a shallow arch

undergoing small strains are

r.o=U' + Z'oW' + 1/2(w') 2 (A.I01)

fl = --w' (A.102)

fl' = -w" (A.103)

_o - I<o= fl' • (A. 104)

The internal virtual work for the shallow arch is the same expression (62) developed

for the deep arch except that the strains are given by eqs. (101) and (103) and
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dso-_ dx (see eq. (77)),where -L/2 _<x_<L/2. We assume Hooke's law for the

shallowarch is the sameas for a straightbeam,such that

N= EA r.o, M= El fl' (A.105)

where A is the cross-sectional area and I is the second area moment. The ex-

pressions for A and I are given in eqs. (66) for A and T, respectively except 1 - _'Ko

is replaced by unity in the denominator of the integrands. Since the arch is linearly

elastic the internal virtual work is the negative of first variation of the strain energy

U; i.e.,

5Wint = - _U (A.106)

where

+L

1 j" 2 (N% + M/Y') dx.U= T -L
2

(A.107)

The external loads P and Fs acting at midspan are also conservative mechanical

forces. The applied load P is assumed to be a deadweight load. Thus, the potential

function _ for the external loads is

_=Pw(0) + 1/2K(_- £o) 2 . (A.108)

The axial displacement u is smaller than the lateral displacement w for the shallow

arch, so that we neglect the contribution of u in computing the elongation of the

spring; see eqs. (67) and (68). Since w at midspan for the shallow arch is positive in

the opposite sense with respect to the deep arch development, we approximate eq.

(68) as

__ CO + w(0) (A.I09)
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m

such that #' - #' -_ w(0) in the external potential (108). The total potential energy V

for the shallow arch and load configuration is the sum of the strain energy (107) and

the external potential (108). That is,

L

J" 1 Kw2(0)1 7(N r,o + M_') dx 4- P w(0) + --_V= T -L
2

(A.110)

in which the strain r,o is given by eq. (101), rotation gradient//' by (103), and resultants

N and M by eqs. (105).

w

=

w

w

w

= .
w
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Fig. A.1 Initial configuration of the arch.
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Appendix B

User's Guide for FENLA FORTRAN

m

L

FENLA is a program which implements the finite-element formulation of the solution

to the problem of a simply-supported general arch (either shallow or deep) with a

spring attached at centerspan subjected to a centerspan point Ioadl The solution is

developed from the principle of virtual work as outlined in the text, eqs. 61-97, and

uses Newton's method to solve the system of non-linear equations. The general re-

sponse of such an arch-spring system, loaded from an undeformed shape at zero

load, is for the arch midspan to deflect downward with the normal deflections, w, of

the rest of the arch being symmetric with respect to the midspan. As the load in-

creases the midspan deflection also increases. A curve tracing the Ioad-midspan

deflection for this initial response is known as the symmetric equilibrium path. For

some arches, depending on the physical properties of the arch-spring system, a

point, called a limit point, will be reached, at which for the centerspan deflection to

continue to increase smoothly, without a large jump in the deflection, the applied load

must be decreased. The symmetric equilibrium path can be traced past a limit point

with the load decreasing with increasing midspan deflection. For some arches an-

other limit point on the symmetric equilibrium path will be reached, after which the

load will again increase with increasing midspan deflection. Although in general se-

veral symmetric equilibrium paths may exist for an arch-spring system they are not

necessarily joined by limit points. Some symmetric equilibrium configurations are

disjoined, meaning that one configuration cannot be reached from another by a

smooth stepwise deformation of the arch, but can only be obtained by a significant

change in arch shape. Another possible arch response, again depending on the

physical properties of the system, corresponds to an equilibrium path that bifurcates

off the symmetric equilibrium path. Along this path the arch responds with continued

increase in midspan deflection, the load either increasing or decreasing depending

on the physical properties of the arch-spring system. However, the w deflections of
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the arch are asymmetric about the midspan. If allowed to follow this path far enough

the arch may begin to exhibit symmetric behavior, indicating that the bifurcated path

has intersected a symmetric equilibrium path.

n

u

The program is intended to be used to trace the symmetric equilibrium path, from

zero load and an undeformed shape, indicating the possible existence of critical or

limit and bifurcation points. The program can then be used to finda solution on the

adjacent equilibrium path, either past the limit point, or on the bifurcated path. Once

a single solution is known on the adjacent equilibrium path that path can also be

traced.

D

i

I

The program is started with an initial applied load and an initial guess at the dis-

placement vector, relative to the undeformed arch shape, for that load. An incre-

mental displacement vector is solved for and added to the initial guess until the

solution converges to the displacement vector for the applied toad. Convergence

occurs when the internal virtual work of the arch-spring system equals the external

virtual work for the applied load. If the program is run in batch mode, once the sol-

ution at the current load is found the load is incremented and the displacement vector

just found is used as the initial guess of the displacement vector at the new load.

This procedure continues until either the load limit specified by the user is reached

or until the program cannot converge to a solution at the new load within ten iter-

ations. In batch mode the program indicates the existence of critical points, points

where an eigenvalue of the tangent stiffness matrix becomes zero. Critical points are

points such as limit points and bifurcation points where another equilibrium config-

uration exists in addition to the current equilibrium configuration. Bifurcation points

are indicated by an eigenvalue passing through zero, while limit points are indicated

by the inability of the program to find a solution at the next load step, with an

eigenvalue that is approaching zero as the load approaches the limit point load.
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w

w

w

w

The interactive mode of the program is particularly useful at critical points, where it

can be used to find a solution on an adjacent equilibrium path, i.e., past a limit point,

or on the path continuing from a bifurcation point. To find a solution on the adjacent

path at the critical point the arch shape must be perturbed. This perturbation is ac-

complished by using the eigenvector associated with the eigenvalue that is zero at

the critical point. Because ata limit point the adjacent path is a continuation of the

current equilibrium path the eigenvector will have the same shape as the current

equilibrium configuration, i.e., it will be symmetric. At a bifurcation point the

eigenvector associated with the zero eigenvalue will have a different shape than the

current equilibrium configuration, i.e., it will be asymmetric. At either type of critical

point the critical eigenvector can be scaled and added to tile current displacement

vector to be used as a guess at the displacement vector on the adjacent path.

The Program

Main Program: The program Consists of a main program with several subroutines.

In the main program the problem is set up and the system of linear incremental

equations is solved using an IMSLsubroutine. The error in the solution is checked

and based on the error the program either iterates to find a new solution or reports

the new solution. In batch mode the program checks the eigenvalues of tile tangent

stiffness matrix at each solution to Indicate the possible existence of critical points.

A bifurcation point is indicated by an eigenvalue, with an associated asymmetric

eigenvector, that passes through zero. The program estimates the bifurcation load

by using a linear interpolation to find the load at which the eigenvalue is actually zero.

The displacement vector at a load very near the bifurcation point is then found. A

possible limit point is indicated when the program cannot find a solution for the next

load step even after reducing the load increment by half three times. As a limit point

is approached one of the eigenvalues of the tangent stiffness matrix will approach

zero. The eigenvector associated with this eigenvalue will be symmetric. The sym-
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metry or asymmetry of the eigenvector is determined by looking at the elements of

the eigenvector corresponding to u and w' of the midspan of the arch. If these ele-

ments are zero the eigenvector is said to be symmetric, if either of them is nonzero

the eigenvector is said to be asymmetric.

I

m
I

I

In interactive mode once a solution is determined the program will provide the user

with information about the eigenvectors of the tangent stiffness matrix and will ask

the user to select an eigenvector and a scale factor by which to multiply the

eigenvector when adding it to the previous displacement vector to use as a guess at

the displacement vector on the adjacent equilibrium path. The interactive mode can

also be used to continue along the current equilibrium path by specifying the value

of the scale factor to be zero, thus using the current displacement vector as the initial

guess at the displacement vector at a different load.

I

i
I

I

m
W
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I

The Subroutines: The subroutines consist of several subroutines to compute the el-

ements of the stiffness matrix of the problem, several subroutines for general matrix

manipulation, and a subroutine to add the effect of a centerspan spring to the prob-

lem. The stiffness matrix is computed by numerical integration, using Simpson's

rule, of the matrices derived in the text. eqs. 93, 94, 95. The integrands, which are

functions of the shape function for the element used, see fig. 9 and eqs. 77-81, were

computed using MACSYMA and then used in this program. Several of the subrou-

tines are the MACSYMA FORTRAN77 output.

I

I

I

I

I

Program Inpu_t

The program has two input files. The file corresponding to unit 11 will contain phys-

ical information about the arch, the load limits for the run, and information about the

particular run, i.e., whether the run is interactive or batch, and whether or not the in-

itial guess at the displacement vector will be input from a file. The file corresponding

84

I

I

I

mm
tlJ

I



to unit 14 will contain a value of load and the initial guess of the global displacement

vector (GU). If the initial guess at the displacement vector will be the zero vector unit

14 need not be used. Unit 5is used for input from the terminal during an interactive

run. The user will be prompted for necessary information. The number of elements

in the model is set using the parameter statement at the beginning of the program.

The smallest number of elements possible is 4. The number of elements is increased

by cutting each element in half so that possible models can have 4, 8, 16, 32 .... ele-

ments. The number ofeigenvalues and eigenvectors of the tangent stiffness matrix

to be computed can also be changed in the parameter statement. The input from

each of units 11, 14, and 5 is outlined below.

Unit 11 (Variable names are given parentheses)

w

w

= ,

w

w

• Flag (INTERACT) for batch (0) or interactive (1) mode. (line 1)

• The physical parameters E*A (EA) in pounds, E*I (El) in pound*in 2, and curvature

(C) in inches I for the arch. The arch is assumed to be circular with constant

curvature. (line 2)

• The arch length (SL) and span length (RL) of the arch in inches. (line 3)

• The spring stiffness (SK) in pounds/inch, and original spring length (SPRL) in

inches. (line 4)

• The distributed load (Q) in pounds/inch. The program can handle a distributed

load in addition to the point load if desired. (line 5)

• The initial point load (PINIT), the final load (PFIN), and the load increment (DP) in

pounds. Note that this information is used only in batch mode. (line 6)

• The number of Simpson's integration intervals (NSI) to use in the numerical in-

tegration of the stiffness matrix. (line 7)

• A scale factor (SFAC) to use in the solution of the system of equations as neces-

sary to prevent numerical (under/low and overflow) problems. (line 8)

• Flag (IREAD) for indicating whether or not to read the initial guess of the dis-

placement vector from an input file (0 if no, 1 if yes). (line 9)
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All input is unformatted.

Unit 14

u

m

The load (P) at or near the displacement vector that follows. (line 1)

The value of the global displacement variable at each node (GU(I)) to be used as

the initial guess. (lines 2 to number of global displacement variables (NN) + 1)
i

Again the input is unformatted. Note that on the element level the nodes are num-

bered as indicated in fig. 9, with local degrees of freedom GUEL(I,1) -- u of element

I node 1, GUEL(I,2) = w of element I node 1, GUEL(I,3) = w' of element I node 1,

GUEL(I,4) = u of element I node 2, GUEL(I,5) = w of element I node 2, GUEL(I,6) =

w' of element I node 2, and GUEL (I,7) = u of element I node 3. On the global level

the nodes are numbered from left to right with the global displacement variables be-

ing GU(1) = u of node 1, GU(2) = w of node 1, GU(3) = w' of node 1, GU(4) = u of

node 2, GU(5)= u of node 3, GU(6)= w of node 3, GU(7) --- w' of node 3, and so on.

Unit 5

In interactive mode the user will be asked to respond to several questions. The user

will be asked if he wants to update PLAST, EVLAST, GULAST, and PHELAST. These

variables are used as the base from which to try to find a solution on the adjacent

equilibrium path. They correspond to the load, eigenvalues, displacement vector,

andeigenvectorsa tasolution. The user should answer yes (1) if he wants to use the

current solution as the point from which to try to move to a bifurcated path or past a

limit point. The user should also answer yes just before quitting the interactive ses-

sion as the values saved in these variables are written to an output file 13 when the

program stops. The user must also respond whether he wants to stop the program

(0) or try to find a new solution (1). If he wants to find a new solution he must enter

a value of the load, P, the scale factor (EPS) by which to scale the normalized

eigenvector, and which eigenvector he wants to use to increment the displacement
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vector to obtain an initial guess at the solution on the adjacent path. Note that sym-

metric eigenvectors are normalized by the term corresponding to w at the center

node while asymmetric eigenvectors are normalized by the lerm corresponding to w

at the quarter points of the arch.

Program Output

W

The program has several output files.

Unit 6 is used for error output in the batch mode and for output to the screen in

interactive mode.

w

w

Unit 8 contains the nondimensionalized load and midspan deflection for each sol-

ution. The nondimensionalization can either be based on the nondimensionalization

used in studying the shallow arch problem analytically as outlined in eq. 16 or using

nondimensionalization of Huddleston given in eq. 100.

w

w

v

Unit g contains the general output for the program. The top of the file reports the

physical parameters for the run, i.e., the geometrical data for the arch, the initial load,

load increment, and final load, information about the spring, and information about

the number of nodes and elements in the model. The program then outputs to this

file the error in each type of displacement variable (u, w, and, w') for each iteration

as a solution is searched for at each load step. When a solution has converged the

program prints the number of iterations required, the load level, the solution dis-

placement vector, and the lowest three eigenvalues of the tangent stiffness matrix at

the solution. In batch mode when the lowest eigenvalue becomes negative, as it will

if the current load and solution are on a part of the equilibrium path that is either past

a bifurcation point or past a limit point, the program outputs the eigenvectors asso-

ciated with the three lowest eigenvatues. In batch mode unit 9 also contains infor-

mation on the loads at which critical points are suspected. In interactive mode the
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program outputs the smallest three eigenvalues and the associated eigenvectors for

each solution found.

Unit 13 is a file containing the load and displacement vector for a couple of key load

steps. In batch mode it will contain the load and displacement for the load closest to

but just before a suspected bifurcation point, and the load and displacement vector

for the last load level before a suspected limit point. In interactive mode unit 13 will

contain the load and displacement vector stored as PLAST and GULAST when the

user ends the program. This file is set up to be used as the input file 14 on subse-

quent run.

I

l

g

n

Ill

Unit 15 is a file containing the load and the lowest eigenvalue at each solution.

used for plotting a load vs. eigenvalue curve to help indicate bifurcation points.

It is m

Sample Problems

Example Batch Run

This example is for a shallow aluminum arch, with a 1 inch wide by 0.1 inch thick

cross section. The arch span is 3.97 inches and the arch rise is 0.0866 inches. The

stiffness of the centerspan spring is 213 pounds/in. This batch run will start at zero

load and zero displacement and find the displacement solution vector for increasing

load levels.

I

ID

Ill

Input file 11

Line Number Variables Value

Line 1: INTERACT 0

Line 2: EA,EI,C 1.D6 833.33 0.04391

Line 3: SL,RL 3.975 3.97

Line 4: SK,SPRL 213.0 0.3
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w Line 5: Q 0.0

Line 6: PINIT,PFIN,DP 20.0

Line 7: NSI 8

Line 8: SFAC 1.D-5

Line 9: IREAD 0

200.0 5.0

L

'row

w

w

F_

w

w

T

When IREAD = 0 the additional data file (unit 14) containing an initial guess is not

needed.

Output

The output (unit 9) from this run would consist of the load and displacement vector

at 5 pound increments from 20 Ibs. to 90 Ibs. At 95 Ibs. the program is not able to find

a solution using the displacement vector at 90 Ibs. as an initial guess. The program

will reduce the load increment (DP) by half and try to find a solution for P = 92.5

again using the displacement vector at 90 Ibs. as the initial guess at the displacement

vector. At 92.5 Ibs. the program is again unable to find a solution so the load incre-

ment is again reduced by half. The program will reduce DP by half three times, after

which the batch run will stop, reporting a suspected limit poinl. The user will note

that the lowest eigenvalue of the tangent stiffness matrix at each solution is ap-

proaching zero as the load approaches the suspected limit point. For the last load

before the suspected limit point at which the program can find a solution, the

eigenvector associated with the lowest eigenvalue is symmetric. Recall that this in-

dicates that the adjacent path at the critical point has the same shape as the current

solution.

Sample Interactive Run

This is an example of the input files that would be used to try to move past the limit

point for the arch in the batch example above. The number of lines in input file 14
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dependson the numberof etementsand nodesin the model. The data file below

correspondsto a run with 16elements,33 nodes,and 67 degreesof freedom. The

parameterstatement in the FORTRANfile that correspondsto this case would be

uncommentedwith all other parameterstatementscommentedout.

Input file 11

Line Number Variables Value

Line 1: INTERACT 1

Line 2: EA,EI,C 1.D6 833.33

Line 3: SL,RL 3.975 3.97

Line4: SK,SPRL 213.0 0.3

Line 5: Q 0.0

Line 6: PINIT,PFIN,DP 20.0 200.0 5.0

Line 7: NSI 8

Line 8: SFAC 1.D-5

Line 9: IREAD 1

0.0439_

J

I

m

U

!

I

g

Input file 14

Line Number Variables Value

Line 1: P 0.9125000E + 02

Line 2: GU(1), u(1) 0.0000000E 4-00

Line 3: GU(2), w(1) 0.0000000E + 00

Line 4: GU(3), w'(1) -0.3398966E-01

Line 5: GU(4), u(2) -0.1825044E-03

Line 6: GU(5), u(3) -0.3425904E-03

Line 7: GU(6), w(3) 0.8474547E-02

Line 8: GU(7), w'(3) -0.3431770E-01

Line 9: GU(8), u(4) -0.4805153E-03

Line 10: GU(9), u(5) -0.5959346E-03
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w
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Line 11:

Line 12:

Line 13:

Line 14:

Line 15:

Line 16:

Line 17:

Line 18:

Line 19:

Line 20:

Line 21:

Line 22:

Line 23:

Line 24:

Line 25:

Line 26:

Line 27:

Line 28:

Line 29:

Line 30:

Line 31:

Line 32:

Line 33:

Line 34:

Line 35:

Line 36:

Line 37:

Line 38:

GU(10), w(5)

GU(11), w'(5)

GU(12), u(6)

GU(13), u(7)

GU(14), w(7)

GU(15), w'(7)

GU(16), u(8)

GU(17), u(9)

GU(18), w(9)

GU(19), w'(9)

GU(20), u(10)

GU(21), u(11)

GU(22), w(I1)

GU(23), w'(11)

GU(24), u(12)

GU(25), u(13)

GU(26), w(13)

GU(27), w'(13)

GU(28), u(14)

GU(29), u(15)

GU(30), w(15)

GU(31), w'(15)

GU(32), u(16)

GU(33), u(17)

GU(34), w(17)

GU(35), w'(17)

GU(36), u(18)

GU(37), u(19)

0.1705960E-01

-0.3474200E-01

-0.6882522E-03

-0.7564230E-03

0.2567705E-01

-0.3444491E-01

-0.7993174E-03

-0.8156363E-02

0.3405088E-01

-0.3266051E-01

-0.8042857E-03

-0.7644650E-03

0.4172702E-01

-0.2872985E-01

-0.6960134E-03

-0.5996932E-03

0.4810602E-01

-0.2214872E-01

-0.4774480E-03

-0.3328459E-03

0.5248630E-01

-0.1260452E-01

-0.1711844E-03

-0.3067471E-21

0.5411497E-01

-0.6270848E-18

0.1711844E-03

0.3328459E-03
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Line 39:

Line 40:

Line 41:

Line 42:

Line 43:

Line 44:

Line 45:

Line 46:

Line 47:

Line 48:

Line 49:

Line 50:

Line 51:

Line 52:

Line 53:

Line 54:

Line 55:

Line 56:

Line 57:

Line 58:

Line 59:

Line 60:

Line 61:

Line 62:

Line 63:

Line 64:

Line 65:

Line 66:

GU(38),w(19)

GU(39),w'(19)

GU(40),u(20)

GU(41),u(21)

GU(42),w(21)

GU(43),w'(21)

GU(44),u(22)

GU(45),u(23)

GU(46),w(23)

GU(47),w'(23)

GU(48),u(24)

GU(49),u(25)

GU(50),w(25)

GU(51),w'(25)

GU(52),u(26)

GU(53),u(27)

GU(54),w(27)

GU(55),w'(27)

GU(56),u(28)

GU(57),u(29)

GU(58),w(29)

GU(59),w'(29)

GU(60),u(30)

GU(61),u(31)

GU(62),w(31)

GU(63),w'(31)

GU(64),u(32)

GU(65),u(33)

0.5248630E-01

0.1260452E-01

0.4774480E-03

0.5996932E-03

0.4810602E-01

0.2214872E-01

0.6960134E-03

0.7644650E-03

0.4172702E-01

0.2872985E-01

0.8042857E-03

0.8156363E-03

0.3405088E-01

0.3266051E-01

0.7993174E-03

0.7564230E-03

0.2567705E-01

0.3444491E-01

0.6882522E-03

0.5959346E-03

0.1705960E-01

0.3474200E-01

0.4805153E-03

0.3425904E-03

0.8474547E-02

0.3431770E-01

0.1825044E-03

0.0000000E4-00
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Line 67: GU(66), w(33) 0.0000000E + 00

Line 68: GU(67), w'(33) 0.3398966E-01

In the above variable listing for unit 14 the second variable indicates the physical

degree of freedom corresponding to each global degree of freedom.

Input To and Output From the Terminal

w

w

w

w

Inpul from and output to the terminal in this interactive run could be as follows:

Program:
SOLUTION FOUND FOR P = 0.9125000E+02

CURRENTSOLN HAS P = 0.9125000E+02 W(0) = 0.5411497E-01
EIGENVECTOR 1 IS SYMMETRIC
EIGENVECTOR 2 IS ASYMMETRIC

LAST SOLN HAS P = 0.0000000E+00 W(0) = 0.0000000E4 00
VALUE OF EPS = 0.0000000E + 00

DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0=NO, 1 =YES)

(IF FIRST TIME THROUGH SAY YES)

User:
1

Program:
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?

(0=STOP, 1 =GUESS)

User:
1

Program:
ENTER P AND EPS AND WHICH EIGENVECTOR TO USE

User:
91.5 0.0 1

Program;
SOLUTION FOUND FOR P = 0,9150000E+02

CURRENT SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
EIGENVECTOR 1 IS SYMMETRIC
EIGENVECTOR 2 IS ASYMMETRIC

LAST SOLN HAS P = 0.9125000E+02 W(0) = 0.5411497E-01
VALUE OF EPS = 0.0000000E + 00

DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0 = NO, 1 = YES)

(IF FIRST TIME THROUGH SAY YES)

User:
1

Program."
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?
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(O=STOP,1=GUESS)

User."
1

Program:
ENTER P AND EPS AND WHICH EIGENVECTOR TO USE

User:
91.5 0.001 1

Program:
SOLUTION FOUND FOR P = 0.9150000E+02
CURRENT SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
EIGENVECTOR 1 IS SYMMETRIC

EIGENVECTOR 2 IS ASYMMETRIC
LAST SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
VALUE OF EPS = 0.1000000E-02
DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0= NO, 1 =YES)

(IF FIRST TIME THROUGH SAY YES)

User:
0

Program:
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?

(0 = STOP, 1 = GUESS)

User:
1

Program:
ENTER P AND EPS AND WHICH EIGENVECTOR TO USE

User:
91.5 0.003 1

Program:
SOLUTION FOUND FOR P = 0.9150000E+02
CURRENT SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
EIGENVECTOR 1 IS SYMMETRIC

EIGENVECTOR 2 IS ASYMMETRIC
LAST SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
VALUE OF EPS = 0.3000000E-02

DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0 = NO, 1 = YES)

(IF FIRST TIME THROUGH SAY YES)

User:
0

Program:
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?

(0 = STOP, 1 = GUESS)

User:
1
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Program."
ENTER P AND EPS AND WHICH EIGENVECTOR TO USE

User."
91.5 0.006 1

Program:
SOLUTION FOUND FOR P = 0.9150000E+02

CURRENT SOLN HAS P = 0.9150000E+02 W(0) = 0.6259679E-01
EIGENVECTOR 1 IS SYMMETRIC
EIGENVECTOR 2 IS ASYMMETRIC

LAST SOLN HAS P = 0.9150000E+02 W(0) = 0.5565260E-01
VALUE OF EPS = 0.6000000E-02
DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0= NO, 1=YES)

(IF FIRST TIME THROUGH SAY YES)

User:
1

Program:
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?

(0 = STOP, 1 = GUESS)

User;
1

Program:
ENTER P AND EPS AND WHICH EIGENVECTOR TO USE

User:
91.25 0.0 1

Program:
SOLUTION FOUND FOR P = 0.9125000E+02

CURRENT SOLN HAS P = 0.9125000E+02 W(0) = 0.6424372E-01
EIGENVECTOR 1 IS SYMMETRIC

EIGENVECTOR 2 IS ASYMMETRIC
LAST SOLN HAS P = 0.9150000E+02 W(0) = 0.6259679E-01
VALUE OF EPS = 0.0000000E + 00
DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAST? (0 = NO, t = YES)

(IF FIRST TIME THROUGH SAY YES)

User:
0

Program."
DO YOU WANT TO GUESS AT P AND EPS? OR STOP?

(0 = STOP, 1 = GUESS)

User:
0

w

w

In this interactive session the program used the information from unit 14 to find an

solution for the initial load of 91.25 Ibs. The first thing the user does is to update
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PLAST,EVLAST,GULAST,and PHELASTso that the program has a displacement

vector to useas the startingpoint for finding additionalsolutions. The user then in-

dicatesthat hewants to find a solutionfor a new load. In this example the user first

tries to get a little closer to the limit point by specifying a higher load, 91.5 Ibs. and

a value of EPS = 0, which means that the solution at 91.25 Ibs. will used as the initial

guess at the solution at 91.5 Ibs., without being perturbed. The program finds a sol-

ution at 91.5 Ibs, and the user decides to use this displacement vector as the starting

point for moving past the limit point so he updates PLAST, EVLAST, GULAST, and

PHELAST. He then tries to find a solution past the limit point by specifying the load

to again be 91.5 Ibs., but perturbing the displacement vector using the symmetric

eigenvector, eigenvector 1, and a scale factor of 0.001. The symmetric solution vector

is used because, as described earlier, the solution past the limit point should have

the same shape as the current solution. The value of EPS = 0.001 is too small to sig-

nificantly perturb the displacement vector and the program converges to the solution

already known. Thus a larger value of EPS is needed. The user tries EPS=0.003.

Note that there was no need to update PLAST, EVLAST, GULAST, and PHELAST.

Again, the value of EPS is not large enough to perturb the solution away from the al-

ready known solution. Using EPS =0.006, the program finds a displacement vector for

P=91.5 lbs. which is different from the already known solution as indicated by the

larger midspan deflection. This new solution is expected to be a solution on the path

past the limit point so PLAST, EVLAST, GULAST, and PHELAST are updated. The user

can stop the program atthts point, or continue as in the example above. In the ex-

ample above the user decided to continue along the symmetric path that is past the

limit point by specifying a lower load P=91.25 Ibs. and using the solution at 91.5 Ibs.

that was just found, without perturbing it, i.e., EPS=0. as the guess at the solution

at 91.25 Ibs. The program was able to find a solution for P =91.25 Ibs. Note that the

midspan deflection is different than the midspan deflection for the same load at the

start of the interactive session. The user does not update PLAST, EVLAST, GULAST,
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and PHELAST so when the user stops the program in the next step output file 13 will

contain information about the load and displacement vector the last time these vari-

ables were updated, namely for P=91.5 Ibs., just past the limit point. If the user

wishes to continue following the symmetric path that is past the limit point he could

start another batch session using the information saved in unit 13 from this interactive

session as the input unit 14 changing the load information in unit 11 appropriately.

Miscellaneous Notes

The above example cases were for an arch that exhibits only limit points and no

bifurcation points. Arch-spring systems that exhibit both bifurcation and limit points

are handled in a similar fashion to the example. In trying to move onto a bifurcated

path or past a limit point, the user must specify a value of load (P), the factor (EPS)

by which to scale the normalized eigenvalue before using it to increment the dis-

placement vector, and which eigenvector to use to increment the displacement vector

to obtain an initial guess at the solution on the adjacent path. For trying to move past

a limit point or onto a descending bifurcated path, the value of the load can be the

same as the initial load. For trying to move onto an ascending bifurcation path the

load must be higher than the last load before the bifurcation point. The value of EPS

needed to move onto the adjacent path depends strongly on the physical size of the

arch and the closeness of the initial solution to the bifurcation or limit point. The

closer to the bifurcation or limit point and the shallower the arch, the smaller the

value of EPS that will be needed. For example, the value of EPS needed to move past

the limit point for the arch used in the sample interactive file (see also fig. 12) was

0.006, while the value of EPS needed to move past the limit point in fig. 17 was 0.2.

To move past limit points, the symmetric eigenvector will be used. To move onto a

bifurcated path, an asymmetric eigenvector should be used.

The user should be aware that it is possible to bypass limit points, i.e., effectively

move from point L to point M in fig. 2a in one load step, if the load increment is too

,,



large. It is also possible to end up on a symmetric path even though the initial guess

at the displacement vector corresponds to a solution on a bifurcated path if the two

solution configurations are similar. Thus the user may need to try several load in-

crements before being able to follow the path he intends to follow.

m
II

I

II

The development of the governing equations used in the finite-element formulation

assumes that the change in slope of the arch from its original slope is at no point

greater than 90°. If the change in slope should ever reach90 ° the quantity r_ will be

come greater than one and the quantity/1' becomes undefined. Because r_ can also

become greater than one if there is no solution for a given load in the vicinity of the

initial guess for that load, the program alerts the user to the fact that F'g > 1 and

therefore argument under the radical sign in one of several expressions is negative

and the program cannot continue on along the current path. In general this message

indicates that a new initial guess is needed (i.e., a new value of EPS in interactive

mode), but in certain cases it could indicate the change in slope is actually greater

than 90° . Note also that the development of the governing equations permits

tangential displacement and rotation of the center node of the arch.
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Appendix C

FENLA FORTRAN Source Code

This appendix contains the FORTRAN source code for FENLA. The code accesses

Version 1.1 IMSL (International Mathematical and Statistical Library, Houston, Texas)

Math/Library subroutines DLSLSF, DEVLSF, DEVASF, DEVESF, and IWKIN. This ver-

sion of the code was compiled using the IBM VS FORTRAN Version 2.4 compiler, a

FORTRAN77 and FORTRAN66 compiler.
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C THIS VERSION IS DESIGNED TO EITHER FOLLOW A SYMMETRIC EQUILIBRIUM PATH
C INDICATING POSSIBLE LIMIT POINTS AND BIFURCATION POINTS IN BATCH MODE,
C OR TO INTERACTIVELY TRY TO JUMP TO AN ADJACENT PATH GIVEN A NEW P AND
C EPSILON TO MULTIPLY THE EIGENVECTOR OF THE STIFFNESS MATRIX TO GET A
C NEW GUESS AT THE DISPLACEMENT VECTOR.
C
C NON-LINEAR INCREMENTAL FINITE ELEMENT SOLUTION FOR AN ARCH WITH A
C MIDSPAN SPRJNG SUBJECTED TO A TRANSVERSE MJDSPAN POINT LOAD.
C QUADRATIC ELEMENTS ARE USED FOR THE AXIAL DISPLACEMENTS. STIFFNESS
C MATRICES ARE INTEGRATED NUMERICALLY USING THE COMPOSITE SIMPSONS RULE.
C
C *** INPUT FILE (UNIT 11) CONTAINS VALUES FOR
C
C INTERACT(FLAG FOR INTERACTIVE OR BATCH MODE)
C EA(E*A),EI(E* I),C(CURVATUR E),
C SL(ARCH LENGTH),RL(SPAN LENGTH)
C SK(SPRING STIFFNESS),SPRL(ORIGINAL SPRING LENGTH)
C Q(DISTRIBUTED LOAD),
C PINIT(INITIAL CENTERSPAN POINT LOAD),PFIN(FINAL LOAD),DP(LOAD STEP)
C NS_(NUMBER OF SJMPSONS RULE APPLJCATJONS IN STFJNT),AND
C FAC(REDUCING FACTOR TO DECREASE THE MAGNITUDE OF THE NUMBERS IN THE
C STIFFNESS MATRIX TO AVOID OVERFLOW ERR).
C IREAD(FLAG TO READ NON-ZERO INITIAL GUESS AT U'S)
C
C *** NOTES *'"
C PARAMETER STATEMENT MUST BE CHANGED TO CHANGE NUMBER OF NODES IN
C ARCH
C
C NONDIMENSIONALIZATION TO COMPARE TO EXACT SOLUTION OR HUDDLESTON
C MUST BE SELECTED BY COMMENTING OUT THE APPROPRIATE LINES.

C LIST OF VARIABLES

C NE: NUMBER OF ELEMENTS
C NN: NUMBER OF GLOBAL DISPLACEMENT VARIABLES
C 3/NODE AT ENDS OF ELEMENT, 1/NODE FOR CENTER NODES
C NRN: NUMBER OF DOF INN-4)
C GU(NN): GLOBAL NODAL DISPLACEMENTS
C GUEL(NE,NRN): ELEMENT DISPLACEMENTS (ITH ELEMENT, JTH NODE)
C U(NRN): UNKNOWN GLOBAL DISPLACEMENTS (DOF)
C EU(NRN): INCREMENTAL U'S SOLVED FOR EACH ITERATION
C CSTIF(2,2): CONSTITUTIVE MATRIX
C SINE): ELEMENT ENDPOINTS
C FINN): NODAL FORCES FROM APPLIED POINT LOADS
C QQ(NN): NODAL FORCES FROM APPLIED DISTRIBUTED FORCES
C FF(NN): TOTAL APPLIED NODAL FORCES
C P: MIDSPAN POINT LOAD AT EACH LOAD STEP
C PINIT: THE INITIAL POINT LOAD (INPUT)
C PFIN: THE POINT LOAD TO STOP AT (INPUT)
C DP: THE LOAD STEP - DELTA P (INPUT)
C GR(NRN): STIFFNESS FROM THE CONSTITUTIVE RELATION, USED IN
C CALCULATING THE RESIDUAL VECTOR FOR ERROR CALCULATION
C GSTIF(NRN,NRN): GLOBAL STIFFNESS MATRIX FOR EU WITH BC APPLIED
C R(NRN): RESIDUAL AT EACH STEP = FF-GR
C REACT(4): RESULTANT FORCES AT THE NODE AT WHICH BC ARE APPLIED
C ERR(3): ERROR IN EACH OF THE THREE TYPES OF DOF
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SFAC:

NSI:
NPE:
SL:
RL:
EA:
Eh
C:
HEL:
SK:
SPRL:
NUMEI:
NEVEC:

SCALING FACTOR TO AVOID OVERFLOW/UNDERFLOW WHEN SOLVING
SYSTEM OF EQUATIONS

NUMBER OF SIMPSONS RULE APPLICATIONS IN NUMERICAL INT
NUMBER OF NODES PER ELEMENT

LENGTH OF ARCH ALONG ARCH
SPAN OF ARCH
PHYSICAL CONSTANT (E'A)

PHYSICAL CONSTANT (E*t)
PHYSICAL PARAMETER (CURVATURE OF ARCH)
LENGTH OF ELEMENT (CONSTANT FOR ALL)
SPRING STIFFNESS

ORIGINAL SPRING LENGTH
NUMBER OF EIGENVALUES TO COMPUTE
FLAG INDICATING WHICH EIGENVECTOR TO USE TO ADJUST U

EVAL(NUMEI): EIGENVALUES
EVEC(NR N,NUM EI):EIGENVECTORS
PHE(NRN,2): NONDIMENSIONALIZED EIGENVECTOR USED TO ADJUST U
PNON: NONDIMENSIONALIZED LOAD
WNON: NONDIMENSIONALIZED MIDSPAN DEFLECTION
NEGSQRT: FLAG INDICATING A NEG SIGN UNDER A RADICAL (NO SOLN)
GSLAST: VALUES OF GSSTIF AT LAST SOLUTION
PLAST: VALUE OF P AT LAST SOLUTION
EVLAST(2): THE LOWEST TWO EIGENVALUES AT LAST SOLUTION
PHELAST(NRN,2):NONDIMENSIONALIZED EIGENVECTORS AT LAST SOLUTION
GSSAVE(NRN,NRN): SAVED VERSION OF GSSTIF USED IN IMSL ROUTINES

ITERATION COUNTER
COUNTER FOR # OF SOLUTIONS WITH NEG. EIGENVALUE

COUNTER FOR # OF TIMES CAN'T FIND A SOLUTION IN 10 ITE

IC:
INEC:
INS:
INTERACT:
IB:
IREAD:

FLAG FOR INTERACTIVE OR BATCH MODE
FLAG FOR PASSING BIFURCATION POINT

FLAG FOR READING IN INITIAL GUESS

MAIN PROGRAM
*********************************************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C PARAMETER (NE = 4,NN = 19,NRN = 15,NUMEI = 1,IWSP = 5000)
C PARAMETER (NE = 8,NN = 35,NRN = 31,NUMEI = 1,IWSP = 5000)
C PARAMETER (NE=12,NN=51,NRN=47,NUMEI=3,1WSP =5000)
C PARAMETER (NE = 14,NN = 59,NRN = 55,NUMEI = 1,1WSP = 6237)

PARAMETER (NE -- 16,NN -- 67,NRN = 63,NUMEI = 3,1WSP = 9030)
C PARAMETER (NE = 20,NN = 80,NRN = 76,NUMEI = 1,1WSP = 49162)
C PARAMETER (NE = 32,NN -- 131,NRN = 127,NUMEI = 3,1WSP = 34439)
C NN=4*NE+3

DIMENSION GU(NN),U(NR N),GUEL(NE,7),EU(NRN),CSTI F(2,2),S(NE)
DIMENSION F(NN),QQ(NN),FF(NN)
DIMENSION GR(NRN),GSTIF(NRN,NRN),R(NR N),R EACT(4),ERR(3)
DIMENSION GSLAST(NRN,NR N),GSSAVE(NRN,NR N)
DIMENSION EVAL(NUMEI),EVEC(NRN,NUMEI)
DIMENSION GULAST(NN),PHE(NR N,2), PHELAST(NR N,2),EVLAST(2)
COMMON /WORKSP/ RWKSP
REAL RWKSP(IWSP)
CALL IWKIN(IWSP)

C INITIALIZE MESH CONSTANTS, FLAGS
INEC=0
INS=0
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IB=0
NPE=7
EVLAST(1 ) = 0.0
PLAST = 0.0

C INPUT DATA
C FLAG FOR BATCH(0) OR INTERACTIVE(I)

READ(11 ,*)INTERACT
C PHYSICAL CONSTANTS

READ(I 1,*)EA,EI,C
READ(11,*)SL,RL
READ(11,')S K,S PRL

C LOADING
READ(11,*)Q
READ(11,*)PINIT,PFIN,DP

C MISC INFORMATION
READ(11,*)NSI
READ(11,')SFAC

C IF IREAD= 1 READ IN INITIALS U'S, IF IREAD NE 1 UINIT=0.0
READ(11,*)IREAD
HEL = SL/NE

C PRINT CASE INFORMATION
WRITE(g,1200)EA,EI,C
WR1TE(9,1201)Q
WRrTE(9,1202)PIN!T
WRITE(9,1207)DP
WRITE(9,1206)PFIN
WR ITE(9,1203)SL,HEL,R L
WR ITE(9,1208)S K,S PR L
WR ITE(9,120-4)NE, NN
WRITE(9,1205)NSI

C INTIALIZE ITERATION COUNTER
IC=0

C FILL IN STIFFNESS MATRIX

CSTIF(1,1) = EA
CSTI F(1,2) = -EI*C
CSTI F(2,1 ) = CSTI F(1,2)
CSTIF(2,2) = El

C ELEMENT ENDPOINTS
DO 90 N= 1,NE ........

90 S(N) = (N-1)*HEL
C INITIALIZE DISPLACEMENTS AND FORCES

DO 100 1= 1,NN
GU(I) = O.DO
F(1)=O.DO
QQ(1)= O.DO

100 FF(I) = 0.D0
IF(IREAD.NE.1)GO TO 104
READ(14,*)PINIT
DO 102 I= 1,NN

102 READ(14,*)GU(I)
C FOR DISTRIBUTED LOAD
104 QHOT= Q*HEL/12.D0

QQ(2) = 6.D0*QHOT
QQ(3) = -HEL*QHOT
DO 105 N =2,NE

NI = 4.D0*(N-1) + 2
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105 QQ(NI) = 12.D0*QHOT
QQ(NN-1) = 6.D0*QHOT
QQ(NN) = HEL*QHOT

C FOR CONCENTRATED POINT LOAD AT CENTER SPAN
P= PINIT

C *'* RETURN HERE FOR LOAD STEPPING ....................................
110 IC=0

NEGSQRT = 0
WRITE(9,1105)

C REDUCED DISPLACEMENTS FROM GLOBAL DISPLACEMENTS
NRNM1 = NRN-1
DO 115N=l,NRNM1

115 U(N) = GU(N + 2)
U(NRN) = GU(NN)

F(4*NE/2 + 2) = P
C TOTAL LOADING

DO 1201=1,NN
120 FF(I) = QQ(I) + F(I)

C *** RETURN TO HERE FOR NEXT ITERATION ................................
130 CONTINUE

C INITIALIZE GLOBAL STIFFNESS MATRICES
DO 131 I = 1,NRN

GR(I) = 0.D0
DO 131 J= 1,NRN

131 GSTIF(I,J) =0.D0
C ASSIGN ELEMENT NODAL DISPLACEMENTS FROM DISPLACEMENT VECTORS GU AND U

GULL(I,1) = GU(1)
GULL(I,2) = GU(2)
GULL(I,3) = U(1)
GULL(1,7)-- U(2)
GULL(I,4) = U(3)
GULL(I,5) -- U(4)
GULL(I,6) = U(5)
NEM1 =NE-1
DO 135 N = 2,NEM1

II = 4"(N-1)-1
GULL(N,1) = U(II)
GULL(N,2) = U(II + 1)
GULL(N,3) = U(II + 2)
GULL(N,7) = U(II + 3)
GULL(N,4) -- U(II + 4)
GULL(N,5) = U(II + 5)

135 GULL(N,6) = U(lt + 6)
II = 4"(NE-1)-1
GUEL(NE,1) =
GUEL(NE,2) =
GUEL(NE,3) =
GUEL(NE,7) =
GUEL(NE,4) =
GUEL(NE,5) =

u(ll)
u(ii + 1)
U(ll + 2)
U(ll + 3)
GU(NN-2)
GU(NN-1)

GUEL(NE,6) = U(II + 4)
C DETERMINE STIFFNESS MATRIX AND RESIDUAL

CALL STIF(S,HEL,GUEL,C,CSTIF,NE,NRN,NSI,GSTI F,GR,REACT,NEGSQRT)
IF(NEGSQRT.EQ.1) GO TO 700

C ADD TERMS TO STIFFNESS MATRIX FOR SPRING
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CALL SPRING(SK,S PRL,NR N,GSTIF,GR,U)
C FIND ERROR

DO 1801=1,3
180 ERR(I) = 0.DO

NRNMI=NRN-1
DO 185 I= 1,NRNM1

185 R(I) = FF(I + 2)
R(NRN) = FF(NN)

DO 190 I = 1,NRN
190 R(I) = R(I)-GR(I)

NEM 1 = NE-1
DO 195 N= 1,NEM1

N4=4*N
ERR(l) = R(N4-2)*R(N4-2) + R(N4-1)*R(N4-1) + ERR(l)
ERR(2) = R(N4)*R(N4) + ERR(2)

195 ERR(3) = R(N4-3)*R(N4-3) + ERR(3)
ERR(l) = R(NRN-I)*R(NRN-1) + ERR(l)
ERR(3) = R(NRN)*R(NRN) + R(NRN-2)*R(NRN-2) + ERR(3)

ERR(I) = 1.D0/(2.D0*NE + I)*DSQRT(ERR(1))
ERR(2) = I.D0/(NE-t)'DSQRT(ERR(2))
ERR(3) = 1.D0/(NE + 1)*DSQRT(ERR(3))
WR ITE(g,*)(ER R(I),1 = 1,3)

C IF ERROR IS SMALL U IS SOLN ... PRINT ANSWER
I F(ERR (1).LT. 1.0D-7.AND.ER R(2).LT. 1.D-7.AN D.ER R(3).LT. 1.D-7)

1 GO TO 500
C IF HAVE ITERATED 10 TIMES CUT LOAD STEP IN HALF

IF(IC.GT.10)GO TO 700
C IF ERROR IS TOO LARGE ITERATE TO FIND A NEW EU TO ADD TO U
C FORM OF PROBLEM IS [GSTIF]*{EU}={R}
C MULT GSTIF AND R BY SFAC TO AVOID OVERFLOW ERROR

DO 2151= 1,NRN
R(I) = SFAC*R(I)
DO 215 J = 1,NRN

215 GSTIF(J,I) = SFAC*GSTIF(J,I)
C USE IMSL TO SOLVE FOR EU

CALL DLSLSF(NR N,GSTIF,NRN,R,EU)
DO 220 I = 1,NRN

220 U(I) -- U(1) + EU(I)
IC = IC + 1

C LOOP BACK TO CHECK ERROR WITH NEW DISPLACEMENT VECTOR
GO TO 130

C *** U'S HAVE BEEN SOLVED FOR .........................................
500 WRITE(g,1100)1C

C REGROUP GLOBAL DISPLACEMENTS
NRNM1 = NRN-I
DO 510 1= 1,NRNM1

510 GU(I + 2) = U(I)
GU(NN) = U(NRN)

C SAVE LAST GLOBAL STIFFNESS MATRIX
DO 515 I = I,NRN

DO 515 J = 1,NRN
515 GSSAVE(J,I) = GSTIF(J,I)

C COMPUTE EIGENVALUES OF TANGENT STIFFNESS MATRIX
C CALL DEVLSF(NRN,GSTI F,NRN,EVAL)

CALL DEVASF(NRN,NUMEI,GSTIF,NRN,.TRUE.,EVAL)
C WRITE OUTPUT . _: _....
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WRITE(9,1030) P

WR ITE(9,1110)
WRITE(9,1120)(GU(I),I = 1,NN)

C WRITE(9,1131)
C WRITE(9,1120)(QQ(I),I = 1,NN)

C WR ITE(9,1132)

C WRITE(9,1120)(F(I),1 = 1,NN)
WRITE(9,1134)
WRITE(9,1120)(EVAL(I),I = 1,NUMEI)

C SHALLOW ARCH NONDIMENSIONALIZATION

PNON = P*(RL*RL*RL)/(16.D0*EI)*DSQRT(EA/EI)
WNON = GU(2*NE + 2)/(2.D0" DSQRT(EI/EA))

C HUDDLESTONS NONDIMENSIONALIZATION
C PNON = P*RL*RL/EI

C WNON = GU(2*NE + 2)/RL
WR ITE(8,1040) PNON,WNO N

WRITE(15,1040)P,EVAL(1)
IF (INTERACT.EQ. 1)WR ITE(6,1345)P

IF (INTERACT.EQ.1)GO TO 800
C SAVE GLOBAL STIFFNESS MATRIX FOR LOAD STEP

550 DO 555 I = 1,NRN
DO 555 J = 1,NRN

555 GSLAST(J,I) = GSSAVE(J,I)
DO 560 I= 1,NN

560 GULAST(I) = GU(I)
C IF EIGENVALUE < 0 AND BIFURCATION POINT HAS NOT
C BEEN ESTABLISHED...COMPUTE EIGENVECTORS

IF(EVAL(1).GE.0.0) GO TO 600
PLAST-- P

IF(EVLAST(1).EQ.0)WRITE(9,1015)P
IF(EVLAST(1 ).EQ.0)I B = 1

IF(IB.GE.1)GO TO 610
INEC=INEC + 1

WRITE(9,1011)
DO 570 I= 1,NRN

DO 570 J = 1,NRN

570 GSTI F(J,I) = GSSAVE(J,I)
CALL DEVESF(NRN,NUMEI,GSTI F,NRN,.TRUE.,EVAL,EVEC,NR N)

WR ITE(9,1220)
DO 580 I= I,NRN

580 WRITE(9,1221)(EVEC(I,J),J = 1,NUMEI)

NNN = (NRN-1)/2

IF(ABS(EVEC(NNN, 1)).LT.1 .D-8.AND.
1ABS(EVEC(NNN + 2,1)).LT.I.D-8)GO TO 595

IF(INEC.NE.1)GO TO 590
PB = P-DP*EVAL(1)/(EVAL(1)-EVLAST(1))

WRITE(9,1017)PB,P,DP,EVAL(1),EVLAST(1)
P = PB + 3.*DP/8.

590 P= P-DP/4.0

GO TO 620

595 WRITE(9,1012)P
GO TO 610

C INCREMENT LOAD

600 IF(INEC.LE.1)GO TO 605
IB = IB + 1

WR ITE(9,1016)PLAST, P
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WRITE(13,1120)P,(GU(I),I = 1,NN)
605 PLAST= P
610 P=P+DP
620 EVLAST(1) = EVAL(1)

C GO TO LOAD STEPPING IF WITHIN RANGE OF P
IF(DP.GT.0.AND.P.LE.PFIN) GO TO 110
IF(DP.LT.0.AND.P.GE.PFIN) GO TO 110
WRITE(13, ??20)PLAS T,(GULAS T_I),I = "f,NN)
GO TO 900

C***IF NO SOLUTION IS FOUND ............................................
70O WRITE(9,1210)P,IC

C INCREMENT "NO-SOLUTION COUNTER"
IF(INTER ACT.EQ. 1)WRITE(6,1210)P,IC
IF(INTERACT.EQ.1)GO TO B30
IF(NEGSQRT.EQ.1)GO TO 900
INS = INS + 1
IF(INS.GT.1)GO TO 750
DO 725 I= 1,NRN

DO 725 J = 1,NRN
725 GST_F(J,I} = GSLAST(J,I)

CALL DEVES F(NRN,NUMEI,GSTI F,NR N,.TR UE.,EVAL,EVEC, NRN)
750 IF(INS.GT.3)GO TO 770

P = P-DP
DP = DP/2.0
DO 760 I = 1,NN

760 GU(I) = GULAST(I)
P=P+DP

C GO TO LOAD STEPPING
GO TO 110

770 WRITE(13,1120)PLAST,(GULAST(I),I = 1,NN)
NNN = (NRN-1)/2
IF(EVEC(NNN, 1).LT. 1.D-8.AND.EVEC(NNN + 2,1).LT. 1.D-8)GO TO 780
WR ITE(9,1014)PLAST,P
GO TO 900

780 WRITE(9,1013)PLAST, P
GO TO 900

C *** INTERACTIVE SECTION ..............................................
800 WRITE(6,1315)P,GU(2*NE + 2)

C COMPUTE AND NORMALIZE EIGENVECTOR
DO 805 I = 1,NRN

DO 805 J = 1,NRN
805 GSTIF(J,I ) = GSSAVE(J,I)

CALL DEVESF(NRN,NUMEI,GSTIF,NRN,.TR UE.,EVAL,EVEC,NR N)
WR ITE(9,1220)
DO 810 I= 1,NRN

810 WRITE(9,1221)(EVEC(I,J),J = 1,NUMEI)
C NORMALIZE EIGENVECTORS

NNN = (NRN-I)/2.
DO 825 J = 1,2
IF(ABS(EVEC(NNN,J)).LT.1.0E-8.AND.ABS(EVEC(NNN + 2,J)).LT.1.0E-8) TH

I'EN
DO 815 I = 1,NRN

815 PHE(I,J) = EVEC(I,J)/EVEC((NRN-1)/2 + 1,J)
WRITE(S,1320)J

ELSE
DO 820 I= 1,NRN
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820 PHE(I,J) = EVEC(I,1)/EVEC((NRN + 1)/4,J)
WRITE(6,1325)J

END IF
825 CONTINUE
830 WRITE(6,1310)PLAST,GULAST(2*NE + 2)

WRITE(6,1350)EPS
WRITE(9,1350)EPS
WRITE(6,1330)
READ(5,*)IUPDATE
IF (IUPDATE.EQ.0)GO TO 850
DO 835 I = 1,NRN

DO 835 J = 1,NRN
835 GSLAST(J,I) = GSSAVE(J,I)

DO 840 I-- 1,NN
DO 840 J = 1,NN

840 GULAST(1) = GU(I)
PLAST = P

C SAVE EVAL AND PHE
DO 845 J = 1,2

EVLAST(J) = EVAL(J)
DO 845 I = 1,NRN

845 PHELAST(I,J) = PHE(I,J)
850 WRITE(6,1335)

READ(5,*)ISTOP
IF(ISTOP.EQ.0)GO TO 890
WRITE(6,1340)
READ(5,*)P,EPS,NEVEC
DO 860 I = 1,NRN-1

860 GU(I + 2) = GULAST(I + 2) + EPS*PHELAST(I,NEVEC)
GU(NN) = GULAST(NN) + EPS*PHELAST(NRN,NEVEC)
GO TO 110

890 WRITE(13,1120)PLAST,(GULAST(I),I = 1,NN)
C FALL THRU TO STOP " ' -

1001 FORMAT(1X,'DETERMINANT = ',E15.7)
1002 FORMAT(1X,3E8.1)
1003 FORMAT(1X,9E7.1)
1004 FORMAT(lX,7EI0.2)
1005 FORMAT(1X,5E10.2)
1006 FORMAT(lX,4E10.2)
1010 FORMAT(1X,'ERR = ",E15.7)
1011 FORMAT(1X,'LOWEST EIGENVALUE IS NEGATIVE')
1012 FORMAT(IX,'LOWEST EIGENVALUE IS NEGATIVE, BUT EIGENVECTOR IS SYMME

1TRIC FOR P=',E15.7)
1013 FORMAT(lX,'LOWEST EIGENVECTOR IS SYMMETRIC, LIMITPOINT SUSPECTED B

1ETWEEN P= ',E15.7," AND P= ',E15.7)
1014 FORMAT(lX,'LOWEST EIGENVECTOR IS ASYMMETRIC, LIMITPOINT SUSPECTED

1BETWEEN P= ',E15.7,' AND P--',E15.7)
1015 FORMAT(1X,'BIFURCATION POINT SUSPECTED BEFORE P --',E15.7)
1016 FORMAT(1X,'BIFURCATION POINT SUSPECTED BETWEEN P = ',E15.7,' AND P

1
1017
1030
1040
1100
1105

= ',E15.7)
FORMAT(IX,'ESTIMATED BIFURCATION LOAD IS PB = ',E15.7/1X,4E15.7)
FORMAT(lX,'FOR P = ',E15.7)
FORMAT(1X,2E15.7)
FORMAT(lX,'AFTER ',13,' ITERATIONS')
FORMAT(lX,'ERROR IN U,W, AND W PRIME FOR EACH ITERATION')
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1110 FORMATI
1120 FORMATq
1131 FORMATt
1132 FORMATd
1134 FORMAT_
1135 FORMAT_
1140 FOR M ATI
1145 FORMAT_
1150 FORMAT1
1155 FOR M AT,
1200 FORMATI
1201 FORMAT,
1202 FORMAT,
1203 FORMAT,

11X,'SPAN
1204 FORMAT,
1205 FORMAT,
1206 FORMAT,
1207 FORMAT
1208 FORMAT
1209 FORMAT
1210 FORMAT

1X,'GLOBAL NODAL DISPLACEMENTS')
IX,El5.7)
1X,'APPLIED DISTRIBUTED LOAD')
1X,'RESULTANT NODAL FORCES')
1X,'EIGENVALUES OF TANGENT STIFFNESS MATRIX GSTIF')
1X,3E16.7/E16.7/3E 16.7/)
lX,'STRAINS AT NODE POINTS')
1X,'ELEMENT',I4,5X,'EX',2X,3E15.7,/, 15X,'KAPPAX',3E 15.7/)
IX,'FORCE AND MOMENT RESULTANTS AT NODE POINTS')
1X,'ELEMENT',I4,5X,'NX',2X,3E15.7,/,17X,'MX',2X,3E 15.7/)
1X,'EA = ',E15.7,2X,'EI = ',E15.5/IX,'CURVATURE = ',E 15.7)
1X,'MAGNITUDE OF DISTRIBUTED LOAD = ',E15.7)
1X,'MAGNITUDE OF INITIAL CENTER LOAD = ',E15.7)
1X,'AR CH LENGTH = ',E 15.7/1X,'ELEM ENT LENGTH = ', EI5.7,/
_ENGTH = ',E15.7)
1X,'NUMBER OF ELEMENTS = ",I4/1X,'NUMBER OF NODES = ',14)
1X,'NUMBER OF SIMPSONS RULE APPLICATION IN STFINT = ',15/)
1X,'MAGNITUDE OF FINAL CENTER LOAD = ',E15.7)
1X,'MAGNITUDE OF CENTER LOAD INCREMENT = ',E15.7)
1X,'SPRING STIFFNESS = ',E15.7,' INITIAL LENGTH = ',E15.7)
lX,'EPSILON = ',E15.7)
1X,'FOR P = ',E15.7/1X,'NO SOLUTION FOUND AFTER ',14,' ITER

1ATIONS')
1211 FORMAT(IX,'TRYING TO GO OVER LIMIT POINT')
1215 FORMAT(IX,15)
1216 FORMAT(IX,E20.12)
1220 FORMAT(IX,'EIGENVECTORS ASSOCIATED WITH LOWEST EIGENVALUES')
1221 FORMAT(1X,3E17.7)
1310 FORMAT(1X,'LAST SOLN HAS P = ',E15.7,' W(0) = ',E15.7)
1315 FORMAT(1X,'CURRENT SOLN HAS P = ',E15.7,' W(0) = ',E15.7)
1320 FORMAT(1X,'EIGENVECTOR',I2,' IS SYMMETRIC')
1325 FORMAT(1X,'EIGENVECTOR',I2,' IS ASYMMETRIC')
1330 FORMAT(IX,'DO YOU WANT TO UPDATE PLAST, EVLAST, GULAST, AND PHELAS

1T? (0 = NO, 1= YES)'/lX,'(IF FIRST TIME THROUGH SAY YES)')
1335 FORMAT(1X,'DO YOU WANT TO GUESS AT P AND EPS? OR STOP?'/1X,'(0=STO

1P, 1 = GUESS)')
1340 FORMAT(lX,'ENTER P AND EPS AND WHICH EIGENVECTOR TO USE')
1345 FORMAT(lX,'SOLUTION FOUND FOR P --',E15.7)
1350 FORMAT(lX,'VALUE OF EPS = ',E15.7)

C _ • i, _ t._**********_************* _** *******_**_*_**_****_*_**

900 STOP
END

C SUBPROGRAM TO ASSEMBLE THE GLOBAL STIFFNESS MATRIX
C _**t_,_,__**_,_***_**__*************_** _***_ _***_**** ,_ *

SUBROUTINE STIF(S,HEL,GUEL,C,CSTIF,NE,NRN,NSI,GSTIF,GR,R EACT,NEGSQ
1RT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION S(NE),GUEL(NE,7),CSTI F(2,2)
DIMENSION GSTIF(NRN,NRN),GR(NRN),R EACT(4)
DIMENSION ELSTI F(7,7),ELR (7),UEL(7)

C FILL IN GLOBAL RESIDUAL STIFFNESS ,
C CONTRIBUTIONS FROM FIRST ELEMENT

N=I
DO 10 I= 1,7

10 UEL(I)=GUEL(I,I)
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SEL = S(N)
CALL STFINT(SEL,HEL,UEL,NSI,C,CSTIF,ELSTI F,ELR,NEGSQRT)
IF(NEGSQRT.EQ.1)GO TO 250
GSTIF(1,1) = ELSTIF(3,3)
GSTIF(1,2) = ELSTI F(3,7)
GSTI F(1,3) = ELSTI F(3,4)
GSTIF(1,4) = ELSTI F(3,5)
GSTIF(1,5) = ELSTIF(3,6)
GR(1) = ELR(3)
GSTI F(2,1) = ELSTI F(7,3)
GSTI F(2,2) = ELSTI F(7,7)
GSTI F(2,3) = ELSTI F(7,4)
GSTIF(2,4) = ELSTIF(7,5)
GSTI F(2,5) = ELSTI F(7,6)
GR(2) = ELR(7)
DO 150 I = 3,5
I1=1+1

GSTIF(I,1) = ELSTIF(II,3)
GST1F(I,2) -- ELSTI F(II,7)
GSTIF(I,3) = ELSTI F(II,4)
GSTIF(I,4) -- ELSTI F(II,5)
GSTI F(I,5) -- ELSTI F(I 1,6)

150 GR(I) = ELR(II)
REACT(l) = ELR(1)
R EACT(2) = ELR(2)

C CONTRIBUTION FROM INTERNAL ELEMENTS
NEM1 = NE-1
DO 165 N=2,NEM1

DO 156 I = 1,7
156 UEL(I) = GUEL(N,I)

SEL=S(N)
CALL STFINT(SEL,HEL, UEL,NSI,C,CSTIF,ELSTI F,ELR,NEGSQRT)

IF(NEGSQRT.EQ.1)GO TO 250
K = 4"(N-1)-1
DO 1551=1,3

L=K+I-1
GSTIF(L,K) = ELSTIF(I,1) + GSTIF(L,K)
GSTIF(L,K + 1) = ELSTIF(I,2) + GSTIF(L,K + 1)
GSTIF(L,K + 2) = ELSTIF(I,3) + GSTIF(L,K + 2)
GSTIF(L,K + 3) = ELSTIF(I,7)
GSTIF(L,K + 4) = ELSTIF(I,4)
GSTIF(L,K + 5) = ELSTI F(I,5)
GSTIF(L,K + 6) = ELSTIF(I,6)

155 GR(L) = ELR(I) + GR(L)
L=K+3

GSTI F(L, K) = ELSTI F(7, I)
GSTIF(L,K + 1) = ELSTIF(7,2)
GSTIF(L,K + 2) = ELSTIF(7,3)
GSTIF(L,K + 3) = ELSTIF(7,7)
GSTIF(L,K + 4) = ELSTIF(7,4)
GSTIF(L,K + 5) = ELSTIF(7,5)
GSTI F(L,K + 6) = ELSTIF(7,6)
GR(L) = ELR(7)

DO 160 1=4,6
L=K+I
GSTIF(L,K) = ELSTIF(I, 1)
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GSTIF(L,K + 1) = ELSTIF(I,2)
GSTIF(L,K + 2) = ELSTIF(I,3)
GSTIF(L,K + 3) ---ELSTIF(I,7)
GSTIF(L,K + 4) = ELSTIF(I,4)
GSTIF(L,K + 5) = ELSTIF(I,5)
GSTIF(L,K + 6) = ELSTIF(I,6)

160 GR(L) = ELR(I)
165 CONTINUE

C CONTRIBUTION FROM LAST ELEMENT
DO 1661 = 1,7

166 UEL(I) = GULL(ME,I)
SEL=S(NE)
CALL STFINT(SEL,HEL,UEL,NSI,C,CSTI F,ELSTI F,ELR,NEGSQRT)

IF(NEGSQRT.EQ.1)GO TO 250
K = 4*(ME-I)-1
DO 170 i = 1,3

L=K+(I-1)
GSTIF(L,K) = ELSTIF(I,1) + GSTIF(L,K)
GSTIF(L,K + 1) = ELSTIF(I,2) + GSTIF(L,K + 1)
GSTIF(L,K + 2) = ELSTIF(I,3) + GSTIF(L,K + 2)
GSTIF(L,K + 3) = ELSTIF(I,7)
GSTI F(L, K + 4) = ELSTI F(I,6)

170 GR(L) = ELR(I) + GR(L)
L=K+3

GSTI F(L, K) = ELSTI F(7,1 )
GSTIF(L,K + 1) = ELSTIF(7,2)
GSTIF(L,K + 2) = ELSTIF(7,3)
GSTIF(L,K + 3) = ELSTI F(7,7)
GSTIF(L,K + 4) = ELSTI F(7,6)
GR(L) = ELR(7)

L=K+4
GSTIF(L,K) = ELSTIF(6,1)
GSTIF(L,K + 1) = ELSTIF(6,2)
GSTIF(L,K + 2) = ELSTI F(6,3)
GSTIF(L,K + 3) = ELSTI F(6,7)
GSTIF(L,K + 4) = ELSTI F(6,6)
GR(L) = ELR(6)

REACT(3) = ELR(5)
REACT(4) = ELR (6)

250 RETURN
END

C *********************************************************************

C SUBPROGRAM TO INTEGRATE ELEMENT STIFFNESS TERMS
C *********************************************************************

SUBROUTINE STFINT(S0,HEL,UEL,NSI,C,CSTIF,ELSTIF,ELR,NEGSQRT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION UEL(7),CSTIF(2,2)
DIMENSION ELSTIF(7,F),ELR(7)
DIMENSION ELKI(7,7),ELK2(7,7),ELKA(F,F),EEKBIF,7),ELK(7,7)
DIMENSION ELKG1 (7,7),ELKG2(7,7),ELKGA(7,7),ELKGB(7,7),ELKG(7,7)
DIMENSION SENDK(7,7),SENDKG(7,7),SMIDK(7,7),SMIDKG(7,7)
DIMENSION ELR I(7),ELR2(7),ELRA(7),ELR B(7)
DIMENSION SENDR(7),SMIDR(7)
SN = SO + HEL
TWOHI = HEL/NSl
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HI = TWOHI/2.D0
C* SET SUMS TO ZERO

DO 50 I = 1,7
SENDR(I) = 0.D0
SMIDR(I) = 0.D0
DO 50 J = 1,7

SENDK(I,J) =0.D0
SM IDK(I,J) - 0.D0
SENDKG(I,J) = 0.D0

50 SMIDKG(I,J) = 0.D0
C BEGIN INTEGRATION LOOP

DO 100 K = 1,NSl
Sl =SO+ (K-1)*TWOHI
S2=Sl + HI
CALL ELINTS(S I,S0,HEL,C,UEL,CST1F,ELK 1,ELKG 1,ELR 1,NEGSQRT)
IF(NEGSQRT.EQ.1)GO TO 250
CALL ELINTS(S2,S0,HEL,C,UEL,CSTIF,ELK2,ELKG2,ELR 2,NEGSQRT)
IF(NEGSQRT.EQ.1)GO TO 250

C** COMPUTE SUMS
DO 100 I = 1,7

SENDR(I) = SENDR(I) + ELR 1(I)
SM1DR(I) = SMIDR(I) + ELR2(I)
DO 100J=1,7
SENDK(I,J) = SENDK(I,J) + ELK1 (l,J)
SMIDK(I,J) = SMIDK(I,J) + ELK2(I,J)
SENDKG(I,J) = SENDKG(I,J) + ELKG 1(I,J)

100 SMIDKG(I,J) = SMIDKG(I,J) + ELKG2(I, J )
CALL ELINTS(S0,S0,HEL, C,UEL,CSTIF,ELKA,ELKGA,ELR A,NEGSQRT)
IF(NEGSQRT.EQ.1)GO TO 250
CALL ELINTS(SN,S0,HEL,C,UEL,CST1F,ELKB,ELKGB,ELR B,NEGSQRT)
IF(NEGSQRT.EQ.1)GO TO 250
DO 200 I = 1,7
ELR(I) = (2.D0*SENDR(I) + 4.D0*SMIDR(I)-ELRA(I) + ELRB(I))*HI/3.D0

DO 200 J = 1,7
ELK(I,J) = (2.D0*SENDK(I,J) + 4.D0*SMIDK(I,J)-ELKA(I,J) + ELKB(I,J))*HI

1/3.D0
200 ELKG(I,J) = (2.D0*SENDKG(I,J) + 4.D0*SMIDKG(I,J)-ELKGA(I,J) + ELKGB(I,J

1))*HI/3.D0
CALL MATADD(1.D0,ELK,1.D0,ELKG,ELSTIF,7,7)

250 RETURN
END

C PROGRAM TO COMPUTE VALUES OF PARTS OF ELE MATRICES AT INT POINTS.

SUBROUTINE ELINTS(S,S0,HEL,C,UEL,CSTIF,ELKI,ELKGI,ELR I,NEGSQRT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION UEL(7),CSTIF(2,2)
DIMENSION ELKI(7,7),ELKGI(7,7),ELRI(7)
DIMENSION ZA1 (7),ZA2(7),Z B1(7),Z B2(7),ZUD 1(7),ZUD2(7),Z UE2(7)
DIMENS ION ZD1 (7,7),ZD2(7,7),ZE 1(7,7),ZE2(7,7)
DIMENSION Al(7),A2(7),B1(7),B2(7),A(2,7),B(2,7),D(7,7),E(7,7)
DIMENSION BTC(7,2),CA(2,7),FORC(2),DUM MY(7),DUM MYS(7,7)

C*" COMPUTE ...
CALL MATXAI(S,S0,HEL,C,ZA1)
CALL MATXDI(S,S0,HEL,C,ZD1)
CALL MATXD2(S,S0,HEL,C,ZD2)
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CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

M ATXA2(S,S0,HEL,C,ZA2)
M ATXB2(S,S 0,HEL,C,Z B2)
M ATXE 1(S,S0,HEL,C,ZE 1)
M ATXE2(S,S0,HEL,C,ZE2)
C M M ULT(U EL,Z D1,ZUD1,7,7)
CM M ULT(U EL,Z D2,Z UD2,7,7)
COLMULT(ZUD2,UEL,GAMN2,7)
CMM ULT(UEL,ZE2,ZUE2,7,7)
COLMULT(ZUE2,UEL,GAMNNP,7)
COLMULT(ZA1 ,UEL,GAMT,7)
COLMULT(ZB2,UEL,GAM N,7)

CALL COLMULT(ZA2,UEL,GAMNP,7)
GAMT2 = GAMT*GAMT
EPS0 = GAMT + 0.5*GAMT2 + 0.5*GAMN2
IF((I.-GAMN2).LT.0)GO TO 100
BETAP = GAMNP/(DSQRT(1-GAMN2))

C** FORM MATRICES
C** A1

CALL CADD(1.D0,ZA1,0.5D0,ZUD 1,DUMMY,7)
CALL CADD(1.D0,DUMMY,0.5D0,ZUD2,A1,7)

C** A2
FAC = 1.D0/DSQRT(1-GAMN2)
CALL SMULT(FAC,ZA2,A2,7)

C** B1
CALL CADD(1.D0,ZAI,I.D0,ZUD1,DUM MY,7)
CALL CADD(1.D0,DUMMY, 1.D0,ZUD2,B 1,7)

C** B2
FAC = GAMNNP/(1 .D0-GAM N2)** 1.5
CALL CADD(1 .D0,A2,FAC,ZB2,B2,7)

C**D
CALL MATADD(1.D0,ZD1,1.D0,ZD2,D,7,7)

C**E
CALL MATADD(1.D0,ZE1,1.D0,ZE2,DUMMYS,7,7)
FAC = (1.D0-GAMN2)** 1.5
FACA = GAMN/FAC
FACB = GAMNP*(1 .DO+ 2.D0" GAMN2)/((t .D0-GAMN2)* "2.5)
CALL MATADD(FACA,DUMMYS,FACB,ZD2,E,7,7)

C** A AND B
DO 50 I = 1,7

A(1,1) = AI(I)
B(1,1) = BI(I)
A(2,1) = A2(I)

50 B(2,1) = B2(I)
C** ELSTIF(ELK)

CALL M ATTM ULT(B,CSTI F,BTC,7,2,2)
CALL U ATM ULT(BTC,B,ELKI,7,2,7)
CALL MATM ULT(CSTI F,A,CA,2,2,7)

I00

CALL MCM ULT(CA,UEL,FORC,2,7)
CALL MATADD(FORC(1),D,FORC(2),E,ELKGI,7,7)
CALL CADD(FORC(1 ),B 1,FORC(2), B2,ELR 1,7)
GO TO 150

WRITE(6,1000)
WRITE(9,1000)
NEGSQRT = 1

RETURN150
1000 FORMAT(IX/CANNOT FILL IN STIFFNESS MATRIX, ARG OF SQRT < 0")
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ZATAI(1) --
ZATAI(2) =
ZATAI(3) =
ZATAI(4) =
ZATAI(5) --
Z ATA 1(6) =
ZATAI(7) --
RETURN
END

END

C CODE FOR MATRIX A1

SUBROUTINE M ATXAI(S,S 1,H,C,ZATA1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATAI(7)

2* (2" (S-S 1)/H- 1)/H-1/H
-C*(2"(S-S 1)*'3/H*" 3-3"(S-S 1)*" 2/H*'2 + 1)
C*(1-(S-S 1)/H)** 2"(S-S 1)
2"(2"(S-S 1)/H-1)/H + 1/H
-C*(3*(S-S 1)*" 2/H* "2-2"(S-S 1)** 3/H*" 3)
C* ((S-S 1)** 2/H** 2-(S-S 1)/H)* (S-S 1)
-4*(2*(S-S1)/H-1)/H

ZATA2(1) =
ZATA2(2) =
ZATA2(3) --
ZATA2(4) =
ZATA2(5) =
ZATA2(6) =
ZATA2(7) =
RETURN
END

C CODE FOR MATRIX A2
C *********************************************************************

SUBROUTINE MATXA2(S,S 1,H,C,ZATA2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATA2(7)

C a(2.(2.(S-S 1)/H-1)/H-1/H)
12"(S-S 1)/H**3-6/H**2
4"(1-(S-S 1)/H)/H-2* (S-S I)/H** 2
C*(2*(2*(S-S1)/H-1)/H + l/H)
6/H*'2-12* (S-S 1)/H** 3
2/H-6*(S-S1)/H**2
-4" C* (2" (S-S 1)/H-1 )/H

ZATB2(1) =
ZATB2(2) =
ZATB2(3) =
ZATB2(4) =
ZATB2(5) =
ZATB2(6) =
ZATB2(7) =
RETURN
END

C *********************************************************************

C CODE FOR MATRIX B2
C *********************************************************************

SUBROUTINE MATXB2(S,S 1,H,C,ZATB2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATB2(7)

C*((2*(S-S 1)/H-1)*'2/2.0-(2"(S-S 1)/H-1)/2.0)
6"(S-S 1)*'2/H*'3-6" (S-S I)/H**2
2"(1-(S-S 1)/H)* (S-S 1)/H-(1-(S-Si)IH)** 2
C*((2*(S-S 1)/H-1)*'2/2.0 + (2"(S-S 1)/H-1)/2.0)
6"(S-S1)/H**2-6*(S-S1)'*2/H**3
-(S-$1)"2/H*'2-(2"(S-S 1)/H**2-1/H)*(S-S 1)+ (S-S 1)/H
C*(1-(2"(S-S 1)/H-I)'* 2)

C *********************************************************************

C CODE FOR MATRIX D1
C *********************************************************************

SU BROUTI NE M ATXD 1(S,S 1,H,C,Z ATD 1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATDI(7,7)
ZATDI(1,1) = (2*(2"(S-S1)/H-1)/H-1/H)**2
Z ATD 1(1,2) = -C* (2* (2" (S-S 1)/H-1 )/H- l/H)* (2" (S-S 1)" *3/H** 3-3* (S-S 1
1 )*'2/H*'2+ 1)
ZATDI(1,3) = C*(2*(2*(S-S1)/H-1)/H-1/H)*(1-(S-S1)/H)**2*(S-S1)
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ZATDI(I,4) = (2"(2*(S-Sl)/H-I)/H-1/H)*(2*(2"(S-S1)/H-1)/H + l/H)
ZATD 1(1,5) = -C* (2* (2" (S-S I)/H- 1)/H- l/H)* (3" (S-S 1)'* 2/H* *2-2" (S-S 1
1 )*'3/H*'3)
ZATDI(1,6) -- C*(2*(2*(S-SI)/H-1)/H-1/H)'((S-S1)**2/H"2-(S-S1)/H)"

1 (S-S1)
ZATD 1(1,7) = -4*(2* (2* (S-S 1)/Hq )/H-1/H)' (2" (S-S 1)/H-1)/H
ZATD 1(2,1) = -C* (2* (2* (S-S 1 )/H- 1)/H- 1/H)* (2" (S-S 1)" 3/H** 3-3* (S-S 1

1 )*'2/H*'2+ 1)
ZATDI(2,2) = C**2*(2*(S-S1)'*31H"3-3"(S-S1)"2/H"2 + 1)*'2
ZATDI(2,3) = -C**2*(1-(S-S1)/H)**2*(2*(S-S1)**3/H'*3-3"(S-S1)**2/H

1 *'2+ 1)*(s-sl)
ZATDI(2,4) = -C*(2*(2*(S-S1)/H-1)/H + 1/H)*(2*(S-S1)"3/H**3-3*(S-S1

1 )*'2/H*'2+1)
ZATDl(2,5) C**2*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)*(2"(S-S1)**3
1 /H**3-3*(S-S1)**2/H**2+ 1)
Z ATD 1(2,6) = -C** 2" ((S-S 1)** 2/H** 2-(S-S 1)/H)* (2" (S-S 1)** 3/H** 3-3"(
1 S-$1)*'2/H*'2+ t)*(S-$1)
ZATDI(2,7) = 4*C*(2*(S-SI)/H-1)*(2*(S-S1)**3/H'*3-3"(S-S1)*'2/H'*2
1 + i)/H
ZATDI(3,1) = C*(2*(2*(S-SI)/H-1)/H-1/H)*(1-(S-SI)/H)*'2*(S-S1)
Z ATD 1(3,2) = -C** 2* (1-(S-S 1)/H)** 2* (2* (S-S I)'* 3/H** 3-3" (S-S 1)** 2/H

1 -2+ 1)*(S-Sl)
ZATDI(3,3) =
ZATDI(3,4) =
ZATDI(3,5) =

1 *'3)*(S-$1)
ZATDI(3,6) --

I "'2
ZATDI(3,7) =
ZATDI(4,1) =
ZATDI(4,2) =
1

ZATDI(4,3) =
ZATDI(4,4) =
ZATDI(4,5) =
1 )*'3/H*'3)
ZATDI(4,6) =

1 (s-s1)
ZATDI(4,7) =
ZATDI(5,1) =

1 )*'3/H*'3)

C**2*(1-(S-S 1)/H)**4*(S-S 1)*'2
C*(2"(2"(S-S 1)/H-1)/H + 1/H)*(1-(S-S1)/H)"2*(S-Sl)
-C** 2" (1-(S-S 1)/H)**2* (3* (S-S 1)** 2/H** 2-2" (S-S 1)** 3/H

C** 2"(1 *(S-S 1)/H)** 2" ((S-S 1)* *2/H** 2-(S-S 1)/H)* (S-S 1)

-4"C*(1-(S-S 1)/H)*'2" (2"(S-S 1)/H-1)*(S-S 1)/H
(2*(2*(S-S1)/H-1)/H-1/H)*(2*(2*(S-S1)/H-1)/H + l/H)
-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(2*(S-SI)**3/H**3-3*(S-S1

)*'2/H*'2 + 1)
C*(2*(2*(S-S1)/H-1)/H + 1/H)*(1-(S-S1)/H)'*2*(S-S1)
(2*(2*(S-S1)/H-1)/H + 1/H)*'2
-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(3*(S-S1)"2/H'*2-2*(S-S1

C*(2"(2" (S-S 1)/H-1)/H + l/H)* ((S-S 1)"2/H'" 2-(S-S 1)/H)"

-4"(2"(2"(S-S 1)/H-1)/H 4-1/H)*(2*(S-S1)/H-I)/H
-C*(2*(2*(S-S1)/H-1)/H-1/H)*(3*(S-S1)*'2/H**2-2"(S-S1

ZATDI(5,2) = C**2*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)*(2"(S-S1)**3
1 /H**3-3*(S-S1)**2/H**2+ 1)
ZATD1 (5,3) = -C** 2" (1-(S-S 1)/H)*'2"(3" (S-S 1)* *2/H* "2-2" (S-S 1)* *3/H
1 *'3)*(s-sl)
Z ATD 1(5,4) = -C* (2* (2* (S-S 1)/H- 1)/H + l/H)* (3* (S-S 1)** 2/H** 2-2* (S-S 1
1 )*'3/H*'3)
ZATDI(5,5) = C**2*(3"(S-S1)**2/H**2-2"(S-S1)**3/H**3)*'2
ZATDI(5,6) = -C**2*((S-S1)**2/H**2-(S-S1)/H)*(3*(S-S1)**2/H**2-2*(

1 S-S 1)"3/H*'3)*(S-S 1)
ZATDI(5,7) = 4*C*(2*(S-S1)/H-1)*(3*(S-S1)**2/H**2-2'(S-S1)**3/H'*3

1 )/H
ZATDI(6,1) = C*(2*(2*(S-S1)/H-1)/H-1/H)°((S-S1)**2/H'*2-(S-Sl)/H) *

1 (S-S1)
ZATD1 (6,2) = -C** 2"((S-S 1)**2/H** 2-(S-S 1)/H)* (2*(S-S 1)* *3/H* *3-3" (

1 S-$1)*'2/H*'2+ I)*(S-$1)

114

D

I

I

a

m

m

mi

Nil

I

II

J

il

iil

m

t



w

=_.._

L

ZATDI(6,3) = C**2*(1-(S-S1)/H)**2*((S-S1)**2/H"2-(S-SI)/H)*(S-S1)
1 *'2
ZATDI(6,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*((S-S1)**2/H'*2-(S-S1)/H) *
1 (s-s1)
Z ATD 1(6,5) = -C** 2" ((S-S 1)** 2/H** 2-(S-S I)/H)* (3" (S-S 1)** 2/H'* 2-2*(

1 S-S 1)** 3/H**3)*(S-S 1)
ZATDI(6,6) = C**2*((S-S1)**2/H**2-(S-S1)/H)**2"(S-S1)'*2
ZATD f (6, 7) = -4 *C* (2* (S-S f )/H- f ) *((S-S f )* *2/H* '2-(S-S 1)/H) *(S-S f)/
1 H
ZATDI(7,1) = -4*(2*(2*(S-S1)/H-1)/H-1/H)*(2*(S-S1)/H-1)/H
ZATDI(7,2) = 4*C*(2*(S-S1)/H-1)*(2*(S-S1)**3/H**3-3*(S-S1)**2/H**2
1 + 1)/H
ZATDI(7,3) = -4*C*(1-(S-Sl)/H)**2*(2*(S-S1)/H-1)'(S-S1)/H
ZATDI(7,4) = -4*(2*(2*(S-S1)/H-1)/H + 1/H)*(2*(S-S1)/H-1)/H
ZATD1 (7,5) = 4" C* (2" (S-S 1)/H-1)* (3" (S-S 1)**2/H** 2-2" (S-S 1)*'3/H* *3
1 )/H
Z ATD 1(7,6) = -4* C* (2* (S-S 1)/H- 1)* ((S-S 1)** 2/H'* 2-(S-S 1)/H)* (S-S 1)/
1 H
ZATDI(7,7) = 16*(2*(S-S1)/H-1)**2/H**2
RETURN
END

C CODE FOR MATRIX D2

SU BROUTI NE MATXD2(S,S 1,H,C,ZATD2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATD2(7,7)
ZATD2(1,1) = C**2*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)**2
Z ATD2(1,2) = C* ((2* (S-S 1)/H- 1)** 2/2.0-(2* (S-S 1)/H- 1)/2.0)* (6* (S-S 1

1 )**2/H** 3-6" (S-S 1)/H** 2)
Z ATD2(1,3) = C* ((2" (S-S 1)/H-1 )** 2/2.0-(2* (S-S 1)/H-1 )/2.0)*(2"(1-(S
1 -S 1)/H)* (S-S 1)/H-(1-(S-S 1)/H)*'2) -
ZATD2(1,4) = C**2*((2*(S-S1)/H-1)**212:0-(2*(S-SI)/H-1)/2.0)*((2*(

1 S-S1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)
ZATD2(I,5) -- C*((2*(S-S 1)1H-1)*'2/2.0-(2"(S-S 1)/H-1)/2.0)* (6* (S-S 1
1 )/H*'2-6"(S-S 1)*'2/H*'3)
Z ATD2(1,6) = C* ((2* (S-S 1)IH- 1)** 2/2.0-(2* (S-S 1)/H- 1)/2.0)*(-(S-S 1)

1 **2/H**2-(2*(S-S1)/H**2-1/H)*(S-SI)+(S-S1)/H)
ZATD2(1,7) = C*'2"(1-(2" (S-S 1)/H- I )* "2)* ((2"(S-S 1)/H- 1)*" 2/2.0-(2"

1 (S-$1)/H-1)/2.0)
ZATD2(2,1) = C* ((2" (S-S 1)/H- 1)*'2/2.0-(2" (S-S 1)/H- 1)/2.0)* (6" (S-S 1
1 )*'2/H*'3-6" (S-S 1)/H*'2)
ZATD2(2,2) -- (6*(S-S1)**2/H**3-6*(S-SI)/H*'2)**2
Z ATD2(2,3) = (2"(1 -(S-S 1)/H)*(S-S 1)IH-(1 :(S-S 1)/H)** 2)*(6* (S-S 1)*"
1 2/H*'3-6" (S-S 1)/H*'2)
ZATD2(2,4) = C*((2"(S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)I2.0)*(6"(S-$1
1 )'* 2/H*'3-6" (S-S 1)/H** 2)
Z ATD 2(2, 5) = (6" (S-S 1)/H** 2-6* (S-S 1)** 2/H** 3)* (6" (S-S 1)** 2/H** 3-6*
1 (S-S1)/H**2)
Z ATD2(2,6) = (6" (S-S 1)** 2/H*'3-6" (S-S 1)/H** 2)* (-(S-S 1)'* 2/H** 2-(2*

1 (S-S1)/H**2-1tH)*(S-S1)-t-(S-S1)/H)
ZATD2(2,7) = C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)**2/H**3-S*(S-S1)/H*
1 "2)
ZATD2(3,1) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(2*(1-(S
1 -S 1)/H)*(S-S 1)/H-(1-(S-S 1)/H)*'2)
Z ATD2(3,2) = (2" (1-(S-S 1)/H)* (S-S 1)/H-( 1-(S-S 1)/H) °°2)" (6* (S-S 1)**
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1 2/H**3-6*(S-S1)/H**2)
Z ATD2(3,3) = (2"(1-(S-S 1)/H)* (S-S 1)/H-(1-(S-S 1)/H)'" 2)'* 2
ZATD2(3,4) -- C*((2"(S-$1)/H-1)*'2/2.0+ (2*(S-S1)/H-1)/2.0)*(2*(1-(S

1 -S 1)/H)*(S-S 1)/H-(1-(S-S 1)/H)*'2)
Z ATD2(3,5) = (2"(1-(S-S 1)/H)* (S-S t )/H-(1-(S-S 1)/H)*'2)*(6" (S-S 1)/H

1 *'2-6" (S-S 1)** 2/H** 3)
ZATD2(3,6) = (2"(1 -(S-S 1)/H)* (S-S 1)/H-(1 -(S-S 1)/H)** 2)* (-(S-S 1)" *2

1 /H**2-(2*(S-S1)/H**2-1/H)*(S-S1) + (S-S1)/H)
ZATD2(3,7) = C*(1-(2*(S-S1)/H-1)**2)*(2*(1-(S-S1)/H)*(S-S1)/H-(1-(

1 S-S1)/H)**2) ...........
ZATD2(4;I) = C**2*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*((2*(

1 S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)
ZATD2(4,2) = C*((2"(S-$1)/H-1)*'2/2.0 + (2"(S-$1)/H-1)/2.0)*(6"(S-$1

1 )**2/H**3-6*(S-S1)IH'_2)
Z ATD2(4,3) = C*((2" (S-S 1)/H- 1)** 2/2.0 + (2* (S-S 1)/H- 1)/2.0)* (2" (1-(S

1 -S 1)/H)*(S-S 1)/H-(I-(S-S 1)/H)** 2)
ZATD2(4,4) = C*'2' ((2"(S-S 1)/H- 1)*'2/2.0 + (2* (S-S 1)/H- 1)/2.0)*'2
ZATD2(4,5) = C* ((2* (S-S 1 )/H- 1)**2/2.0 + (2* (SoS1)/H-I)/2.0)*(6" (S-S 1

1 )/H**2-6*(S-S1)**2/H**3)
ZATD2(4,6) = C*((2*(S-S1)/H-1)**2/2.0+(2*(S-SI)/H-1)/2.0)*(-(S-S1)

1 **2/H**2-(2*(S-S1)/H**2-1/H)*(S-S1)+(S-S1)/H)
ZATD2(4,7) = C**2*(1-(2*(S-S1)IH-1)**2)*((2*(S-S1)/H-1)**2/2.0 + (2"
1 (S-$1)/H-1)I2.0)
ZATD2(5,1) = C*((2* (S-S 1)/H- 1)*'2/2.0-(2" (S-S 1)/H- 1)/2.0)* (6" (S-S 1

1 )/H** 2-6" (S-S 1)*'2/H*'3)
ZATD2(5,2) = (6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(6*(S-S1)**2/H**3-6*

1 (S-S1)/H**2)
ZATD2(5, 3) = (2"(1-(S-S 1)/H)* (S-S 1)/H-(1 -(S-S 1)/H)** 2)*(6" (S-S 1)/H

1 *'2-6"(S-S 1)*'2/H*'3)
ZATD2(5,4) = C* ((2* (S-S 1)/H-1)** 2/2.0 + (2* (S-S 1)/H-1 )/2.0)*(6" (S-S 1

1 )/H*'2-6" (S-S 1)*'2/H** 3)
ZATD2(5,5) = (6*(S-S1)/H**2-6*(S-S1)**2/H**3)**2
ZATD2(5,6) = (6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(-(S-S1)**2/H**2-(2*

1 (S-S1)/H**2-1/H)*(S-S1)+ (S-S1)/H)
ZATD2(5,7) = C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)/H**2-6*(S-SI)**2/H"
1 "3)
ZATD2(6,1) = C*((2" (S-S 1)/H-1)*'2/2.0-(2" (S-S 1)/H-1)/2.0)*(-(S-S I)

1 *'2/H*'2-(2"(S-S 1)/H**2-1/H)*(S-S 1) + (S-S 1)/H)
Z ATD2(6,2) = (6* (S-S 1)** 2/H*'3-6" (S-S 1)/H**2)* (-(S-S 1)** 2/H*'2-(2"

1 (S-S1)/H**2-1/H)*(S-S1) + (S-S1)/H)
ZATD2(6,3) = (2"(1-(S-S 1)/H)* (S-S 1)/H-(1-(S-S 1)/H)** 2)* (-(S-S 1)** 2
1 /H**2-(2*(S-SI)/H**2-1/H)*(S-S1) +(S-S1)/H)
ZATD2(6,4) = C*((2"(S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)'(-(S-$1)
1 *'2/H*'2-(2"(S-S 1)/H**2-1/H)*(S-S 1) + (S-S I)/H)
Z ATD2(6,5) = (6* (S-S 1)/H** 2-6* (S-S 1)** 2/H** 3)* (-(S-S 1)** 2/H** 2-(2*
1 (S-S1)/H**2-1/H)*(S-S1)+(S-S1)/H)
Z ATD2(6,6) = (-(S-S 1)** 2/H** 2-(2* (S-S 1)/14"* 2-1/H)* (S-S 1) + (S-S 1)/H)
1 *'2

Z ATD2(6, 7) = C*(1 -(2* (S-S 1)/H-1)** 2)* (-(S-S 1)** 2/H** 2-(2* (S-S 1)/H*
1 *2-1/H)*(S-S1)+(S-S1)/H)
ZATD2(7,1) = C*'2"(1-(2"(S-S 1)/H-1)*'2)*((2"(S-S 1)/H-1)*'2/2.0-(2"
1 (S-S1)/H-1)/2.0)
ZATD2(7,2) = C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)**2/H**3-6*(S-S1)/H*
1 *2)
Z ATD2(7,3) = C*(1-(2" (S-S 1)/H-1 )** 2)* (2" (1-(S-S 1)/H)* (S-S 1)/H-(1-(
1 S-S1)/H)**2)
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ZATD2(7,4) = C**2*(1-(2*(S-S1)/H-1)'*2)*((2*(S-S1)/H-1)**2/2.0+ (2"
1 (S-S1)/H-1)/2.0)
ZATD2(7,5) = C*(1-(2*(S-Sl)/H-I)**2)*(6*(S-Sl)/H**2-6'(S-F :)**2/H'
1 *3)
ZATD2(7,6) = C*(1-(2*(S-Sl)/H-1)**2)*(-(S-S1)**2/H*'2-(2"(S-Sl)/H*

1 *2-1/H)*(S-S1) + (S-S1)/H)
ZATD2(7,7) = C"*2"(1-(2*(S-S1)/H-I)*'2)**2
RETURN
END

C *********************************************************************

C CODE FOR MATRIX D
C *********************************************************************

SUBROUTINE MATXD(S,Sl,H,C,ZATD)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATD(7,7)
ZATD(1,1) = C**2*((2*(S-S1)IH-1)**212.0-(2"(S-S1)/H-1)/2.0)**2 + (2"
1 (2"(S-S 1)/H-1)IH-1/H)** 2
ZATD(1,2) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(6*(S-S1)
1 *'2/H*'3-6" (S-S 1)/H*'2)-C*(2" (2"(S-S 1)/H-1)/H- 1/H)*(2*(S-S 1)*'3
2 /H**3-3"(S-S1)**2/H**2+ 1)
ZATD(1,3) = C*(2*(2*(S-S1)/H-1)/H-1/H)*(1-(S-S1)/H)**2*(S-S1) + C*((
1 2" (S-S 1)/H-1)*'2/2.0-(2"(S-S 1)/H-1)/2.0)*(2"(1-(S-S 1)/H)*(S-S 1)
2 /H-(1-(S-S1)/H)**2)
ZATD(1,4) = C*'2" ((2"(S-S 1)/H-1)*'2/2.0-(2" (S-S 1)/H-1 )/2.0)'((2" (S
1 -$1)/H-1)*'212.0+ (2*(S-S1)/H-1)/2.0)+(2*(2*(S-S1)/H-1)/H-1/H)*(
2 2*(2*(S-S1)/H-1)/H+ l/H)
ZATD(1,5) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(6"(S-S1)

1 /H**2-S*(S-S1)**2/H**3)-C*(2*(2*(S-S1)/H-1)/H-1/H)*(3"(S-S1)**2
2 /H** 2-2" (S-S 1)** 3/H*'3)
ZATD(1,6) = C*(2*(2*(S-SI)/H-1)/H-1/H)*((S-S1)**2/H**2-(S-S1)/H)*(

1 S-S1) +C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(-(S-S1)**2/
2 H**2-(2*(S-S1)/H**2-1/H)*(S-SI) + (S-St)/H)
Z ATD(1,7) = C** 2"(1-(2" (S-S 1)/H- 1)'" 2)*((2" (S-S 1)/H- 1)** 2/2.0-(2*(

1 S-S1)/H-1)I2.0)-4*(2*(2*(S-S1)IH-1)iH-1/H)*(2*(S-S1)/H-1)/H
ZATD(2,1) -- C* ((2* (S-S 1)/H- 1)** 2/2.0-(2" (S-S 1)/H- 1)/2.0)* (6" (S-S 1)

1 **2/H**3-6*(S-S1)/H**2)-C*(2*(2*(S-S1)/H-1)/H-1/H)*(2*(S-S1)**3
2 /H**3-3*(S-S1)**2/H**2+ 1)
ZATD(2,2) -- C**2*(2*(S-S1)**3/H*'3-3*(S-S1)**2/H**2 + 1)*'2 + (6"(S-$1

1 )*'2/H*'3-6" (S-S 1)/H*'2)*'2
ZATD(2,3) = (2*(1-(S-S1)/H)*(S-S1)/H-(1-(S-SI)/H)**2)*(6*(S-S1)**2

1 /H**3-6*(S-S1)/H*"2)-C**2*(1-(S-S1)/H)**2*(2*(S-S1)**3/H**3-3*(
2 S-$1)*'2/H"'2+ 1)*(S-$1)
ZATD(2,4) = C* ((2* (S-S 1)/H-1)*'2/2.0 + (2* (S-S 1)/H- 1)/2.0)" (6" (S-S 1)
1 **2/H**3-6*(S-S1)/H**2)-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(2"(S-$1)*'3
2 /H**3-3*(S-S1)"*2/H**2+ 1)
ZATD(2,5) = C**2*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)*(2*(S-S1)**3/
1 H**3-3*(S-S1)**2/H**2+ 1) + (6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(6*(S
2 -S 1)*'2/H*'3-6" (S-S 1)/H**2)
ZATD(2,6) = (6* (S-S I )* "2/H*'3-6" (S-S 1)/H*'2)* (-(S-S 1)** 2IN** 2-(2"(

1 S-S1)/H**2-1/H)*(S-S1) +(S-S1)/H)-C**2*((S-S1)**2/H**2-(S-SI)/H)
2 *(2*(S-S1)**3/H**3-3*(S-S1)**2/H**2+ 1)*(S-$1)
ZATD(2,7) = 4*C*(2*(S-S1)/H-1)*(2*(S-SI)*"3/H**3-3*(S-S1)**2/H**2+

1 1)/H+C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)**2/H**3-6*(S-S1)/H**2)
ZATD(3,1) = C*(2*(2*(S-S1)/H-I)/H-I/H)*(1-(S-S1)/H)**2*(S-SI) + C*((

1 2*(S-S1)IH-1)**2/2.0-(2*(S-S1)!H-1)/2.0)*(2*(1-(S-S1)/H)*(S-S1 )
2 /H-(1-(S-S 1)/H)*'2)
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ZATD(3,2) = (2*(I-(S-S1)/H)*(S-SI)/H-(1-(S-S1)/H)*'2)*(6*(S-S1)**2
1 /H**3-6*(S-S 1)/H*'2)-C*'2"(1-(S-S 1)/H)** 2"(2'(S-S 1)"3/H*'3-3"(
2 S-Sl)**2/H**2+ 1)*(S-S1)
ZATD(3,3) = C**2*(1-(S-SI)/H)**4*(S-S1)"2+ (2*(1-(S-S1)IH)*(S-S1)/
1 H-(1-(S-S 1)/H)** 2)*'2
ZATD(3,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(1-(S-S1)/H)'*2"(S-S1) + C*((
1 2"(S-$1)/H-1)*'2/2.0+ (2*(S-S1)/H-1)/2.0)*(2*(I-(S-SI)/H)*(S-SI)
2 /H-(1-(S-S 1)/H)*'2)
ZATD(3,5) = (2"(1-(S-S1)/H)*(S-S1)/H-(1-(S-S1)/H)*'2)'(6*(S-S1)/H*

1 "2-6"(S-S 1)*'2/H** 3)-C*'2"(1-(S-S 1)/H)*'2"(3" (S-S 1)*'2/H*'2-2"(
2 S-S 1)** 3/H*'3)*(S-S 1)
ZATD(3,6) = C**2*(1,(S-S1)/H)**2*((S-S1)**2/H *'2-(S-S1)/H)*(S-S1)'

1 *2 + (2"(1 -(S -S1)/H)* (S-S 1)/H-(1 -(S-S 1)fH)* "2)* (-(S-S 1)'* 2IH** 2-(
2 2"(S-S 1)/H**2-1/H)*(S-S 1) + (S-S 1)/H)
ZATD(3,7) = C*(1-(2*(S-S1)/H-1)**2)*(2*(1-(S-S1)/H)'(S-S1)/H-(1-(S

1 -S 1)/H)** 2)-4"C*(1-(S-S 1)/H)** 2* (2* (S-S 1)/H-1 )* (S-S 1)/H
ZATD(4,1) = C**2*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*((2*(S
1 -$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)+ (2*(2*(S-S1)/H-1)/H-1/H)*(
2 2*(2*(S-S1)/H-1)/H+ l/H)
ZATD(4,2) = C*((2*(S-S1)/H-1)**2/2.0 + (2"(S-$1)/H-1)/2.0)'(6"(S-$1)
1 **2/H**3-6*(S-S1)/H**2)-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(2"(S-$1)*'3
2 /H**3-3*(S-S1)**2/H**2+ 1)
ZATD(4,3) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(1-(S-S1)/H)"2*(S-S1) + C*((

1 2"(S-$1)/H-1)*'2/2.0+ (2*(S-S1)/H-1)/2.0)*(2*(1-(S-S1)/H)*(S-S1)
2 /H-(1-(S-S 1)/H)*'2)
ZATD(4,4) = C*'2" ((2"(S-S 1)/H-1)*'2/2.0 + (2* (S-S 1)/H-1 )/2.0)*'2 + (2"

1 (2*(S-SI)/H-I)/H + 1/H)*'2
ZATD(4,5) -- C*((2"(S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)*(6"(S-$1)

1 /H**2-6*(S-SI)**2/H**3)-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(3"(S-$1)*'2
2 /H**2-2*(S-Sf)**3/H**3)
ZATD(4,6) = C*(2*(2*(S.S1)/H-1)/H + 1/H)*((S-S1)**2/H**2-(S-S1)/H)'(

1 S-St) + C*((2"(S-$1)/H-1)*'2/2.0 + (2"(S-$1)/H-1)/2.0)*(-(S-$1)*'2/
2 H**2-(2*(S-S1)/H**2-1/H)*(S-S1)+(S-S!)/H)
ZATD(4,7) = C**2*(1-(2*(S-S1)/H-i)**2)*((2*(S-S1)/H-1)**2/2.0+ (2*(

1 S-S1)/H-1)/2.0)-4*(2*(2*(S-St)/H-1)/H + 1/H)*(2*(S-S1)/H-1)/H
ZATD(5,1) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(6*(S-SI)
1 /H**2-6*(S-S1)**2/H**3)-C*(2*(2*(S-S1)/H-1)/H-1/H)*(3*(S-S1)**2
2 /H*'2-2" (S-S 1)*'3/H** 3)
ZATD(5,2) = C**2*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)*(2*(S-S1)**3/

1 H**3-3*(S-S1)**2/H**2+ 1)+(6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(6*(S
2 -S 1)*'2/H*'3-6" (S-S 1)/H*'2)
Z ATD(5,3) = (2"(1 -(S-S 1)IH)* (S-S 1)/H-(1-(S-S 1)/H)** 2)*(6* (S-S 1)/H*
1 * 2-6* (S-S 1)** 2/H** 3)-C* *2* (1-(S-S 1)/H)* *2* (3" (S-S 1)** 2/H** 2-2* (
2 S-S 1)*'3/H*'3)*(S-S 1)
ZATD(5,4) = C*((2"(S-$1)/H-1)*'2/2.0 + (2"(S-$1)/H-1)/2.0)*(6"(S-$1)
1 /H**2-6*(S-S1)**2/H**3)-C*(2*(2*(S-S1)/H-1)/H + 1/H)*(3'(S-$1)*'2
2 /H*'2-2"(S-S 1)*'3/H** 3)
ZATD(5,5) = C**2*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)**2+ (6"(S-$1)/
1 H** 2-6" (s'S 1)** 2/H*'3)** 2
ZATD(5,6) = (6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(-(S-S1)**2/H**2-(2*(
1 S-S 1}/H**2-1/H)*(S-S 1) + (S-S 1)IH)-C'*2*((S-S 1)*'2/H*'2-(S-S 1)/H)
2 *(3" (S-S i )**2/H** 2-2* (S-S 1)** 3/H* '3)*(S-S 1)
ZATD(5,7) = 4*C*(2*(S-S1)/H-1)*(3*(S-S1)**2/H**2-2*(S-S1)**3/H**3)

1 /H +C*(1-(2*(S-S1)/H-1)**2)*(S*(S-S1)/H**2-6*(S-S1)**2/H*'3)
ZATD(6,1) = C*(2*(2*(S-S1)/H-1)/H-1/H)*((S-SI)**2/H**2-(S-S1)/H)*(

1 S-S1)+C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(-(S-SI)**2/
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2 H'*2-(2*(S-S1)/H**2-1/H)*(S-S1)+ (S-S1)/H)
ZATD(6,2) = (6*(S-S1)**2/H**3-6*(S-S1)/H**2)*(-(S-S1)**2/H**2-(2*(

1 S-S1)/H**2-1/H)*(S-S1) + (S-S1)/H)-C*'2*((S-S1)'*2/H**2-(S-S1)/H)
2 *(2*(S-S1)**3/H**3-3*(S-S1)**2/H**2+ 1)*(S-$1)
ZATD(6,3) -- C**2*(1-(S-S1)/H)**2*((S-S1)**2/H**2-(S-S1)/H)*(S-S1)*

1 *2 + (2"(1-(S-S 1)/H)* (S-S 1)/H-(1-(S-S 1)/H)'" 2)*(-(S-S 1)** 2/H*'2-(
2 2*(S-S1)/H**2-1/H)*(S-S1)+ (S-S1)/H)
ZATD_6,4) = C*(2"(2"('S-S 1}/H-1)/H + 1/H)*((S-S 1)*'2/H*'2-_S-S 1)/H)*(
1 S-S1)+C*((2*(S-S1)/H-1)**2/2.0+(2*(S-S1)/H-1)/2.0)*(-(S-S1)**2/
2 H**2-(2*(S-S1)/H**2-1/H)*(S-S1)+ (S-S1)/H)
ZATD(6,5) = (6*(S-S1)/H**2-6*(S-S1)**2/H**3)*(-(S-S1)**2/H**2-(2*(
1 S-S1)/H**2-1/H)*(S-S1)+(S-S1)/H)-C**2*((S-S1)**2/H"2-(S-S1)/H)
2 *(3* (S-S 1)** 2/H** 2-2* (S-S 1)** 3/H** 3)* (S-S 1)
ZATD(6,6) = C**2*((S-S1)**2/H**2-(S-S1)/H)**2*(S-S 1)*'2 + (-(S-S1)'"
1 2/H**2-(2*(S-S1)/H**2-1/H)*(S-S1) + (S-S1)/H)**2
ZATD(6,7) = C*(I-(2*(S-S1)/H-1)**2)'(-(S-S1)**2/H*'2-(2*(S-SI)/H*"
1 2-1/H)*(S-$1) + (S-S1)/H)-4*C*(2*(S-S1)/H-1)*((S-S1)"2/H*'2-(S-S
2 1)/H)*(S-S 1)/H
ZATD(7,1) = C**2*(1-(2*(S-S1)/H-1)*'2)*((2*(S-S1)/H-1)**2/2.0-(2*(

1 S-S1)IH-1)I2.0)-4*(2*(2*(S-S1)/H-I)/H-1/H)*(2*(S-S1)/H-1)/H
ZATD(7,2) = 4'C*(2*(S-S1)/H-1)*(2*(S-S1)**3/H**3-3*(S-S1)**2/H**2+
1 1)/H+C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)**2/H**3-6*(S-S1)/H**2)
ZATD(7,3) = C*(1-(2*(S-S1)/H-1)**2)*(2*(1-(S-S1)/H)'(S-S1)/H-(1-(S
1 -S 1)/H)** 2)-4'C* (1-(S-S 1)/H)**2* (2* (S-S 1)/H- 1)* (S-S 1)/H
ZATD(7,4) = C**2*(1-(2*(S-S1)/H-1)**2)*((2*(S-S1)/H-1)**2/2.0+ (2*(
1 S-S1)/H-1)/2.0)-4*(2*(2*(S-S1)/H-1)IH + 1/H)*(2*(S-S1)/H-1)/H
ZATD(7,5) = 4* C* (2* (S-S 1)/H- 1)* (3* (S-S 1)*'2/H*'2-2' (S-S 1)** 3/H** 3)
1 /H+C*(1-(2*(S-S1)/H-1)**2)*(6*(S-S1)/H**2-6*(S-S1)**2/H**3)
ZATD(7,6) = C*(1-(2*(S-S1)/H-1)**2)*(-(S-S1)**2/H**2-(2*(S-S1)/H*'
1 2-1/H)*(S-$1) + (S-S1)/H)-4*C*(2*(S-S1)/H-1)*((S-S1)**2/H**2-(S-S
2 I)/H)*(S-S1)/H
ZATD(7,7) = 16*(2*(S-S1)/H-1)**2/H**2 + C*'2"(1-(2"(S-$1)/H-1)*'2)**

1 2
RETURN
END

C *********************************************************************

C CODE FOR MATRIX E1
C *********************************************************************

SUBROUTINE MATXE I(S,S 1,H,C,ZATE 1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATEI(7,7)
ZATEI(1,1) = C**2*(2*(2*(S-S1)/H-1)/H-1/H)*((2"(S-S1)/H-1)'*2/2.0 -
1 (2"(S-$1)/H-1)/2.0)
ZATE 1(1,2) = C*((2" (S-S 1)/H- 1)** 2/2.0-(2* (S-S 1)/H- 1)/2.0)*(12* (S-S
1 1)/H**3-6/H**2)
ZATEI(1,3) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)'(4*(1-(S
1 -S I)/H)/H-2* (S-S 1)/H*'2)
ZATEI(1,4) = C**2*(2*(2*(S-S1)/H-1)/H + 1/H)*((2*(S-S1)/H-1)**2/2.0-

1 (2"(S-$1)/H-1)/2.0)
ZATEI(1,5) = C*((2*(S-S1)IH-1)**2/2.0-(2*(S-S1)/H- " -0)*(6/H*'2-
1 f2*(S-S_}/H**3)
ZATEI(1,6) = C*((2"(S-$1)/H-1)*'2/2.0-(2"(S-$1)/I-:- 0)'(2/H-6"(

1 S-S 1)/H*'2)
Z ATE 1(1,7) = -4"C*'2"((2" (S-S I)/H-1)** 2/2.0-(2* (S-_ i; i-I-.1)/2.0)*(2

1 *(S-S 1)/H-1)/H
ZATEI(2,1) = C*(2*(2*(S-S1)/H-1)/H-1/H)*(6*(S-S1)**2/H**3-6*(S-S1)

119



1 /H**2)
ZATEI(2,2) -- (12*(S-S1)/H**3-6/H**2)*(6*(S-SI)**2/H*'3-6*(S-S1)/H °

1 *2)
ZATEI(2,3) = (4*(1-(S-S1)/H)/H-2*(S-S1)/H"2)*(6*(S-S1)"2/H"3-6*

1 (S-S1)/H**2)
ZATEI(2,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(6*(S-S1)"2/H**3-6*(S-S1)

1 /H**2)
ZATEI(2,5) = (6/H**2-12*(S-S1)/H**3)*(6*(S-S1)"2/H*'3-6"(S-S1)/H"
1 "2)
ZATEI(2,6) = (2/H-6*(S-S1)/H**2)*(6*(S-S1)**2/H*'3-6*(S-S1)/H**2)
ZATE 1(2,7) -- -4"C* (2' (S-S 1)/H- 1)* (6"(S-S I)*'2/H*'3-6" {S-S 1)/H** 2)/
1 H
ZATEI(3,1) = C*(2*(2*(S-S1)/H-1)/H-1/H)*(2*(1-(S-S1)/H)'(S-S1)/H-(
1 1-(S-$t)/H)*'2)
ZATEI(3,2) = (12*(S-SI)/H**3-SlH*'2)*(2*(1-(S-S1)/H)*(S-S1)IH-(1-(

1 S-S 1)/H)*'2)
Z ATE1 (3,3) = (4"(1-(S-S 1)/H)/H-2* (S-S 1)/H'* 2)*(2'(1-(S-S 1)/H)* (S-S

1 1)/H-(1-(S-S 1)/H)*'2)
ZATEI(3,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)'(2*(1-(S-S1)/H)*(S-S1)/H-(

1 1-(S-S 1)/H)*'2)
ZATEI(3,5) = (6/H**2-12*(S-S1)IH**3)*(2*(1-(S-S1)/H)*(S-S1)/H-(1-(

1 S-S1)/H)**2)
ZATEI(3,6) = (2/H-6*(S-S1)/H**2)*(2*(1-(S-S1)/H)*(S-S1)/H-(1-(S-S1
1 )/H)**2)
Z ATE 1(3,7) = -4* C" (2* (S-S 1)/H- 1)* (2" (1-(S-S 1)/H)* (S-S 1)/H-(t-(S-S 1
1 )/H)**2)/H
ZATEI(4,1) = C**2*(2*(2*(S-S1)/H-1)/H-1/H)*((2*(S-S1)/H-1)'*2/2.0+
1 (2*(S-S 1)/H-1)/2.0)
ZATEI(4,2) = C*((2"(S-$1)/H-1)*'2/2.0 + (2'(S-$1)/H-1)/2.0)*(12"(S-S
t 1)/H**3-6/H**2)
ZATEI(4,3) -- C*((2"(S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)*(4"(1-(S

1 -S I)/H)/H-2*(S-S 1)/H"'2)
ZATEI(4,4) = C"'2*(2*(2*(S-S1)/H-1)/H + 1/H)*((2*(S-S1)/H-I)*'2/2.0 +
1 (2"(S-$1)/H-1)/2.0)
ZATE 1(4,5) = C* ((2" (S-S 1)/H-1 )**2/2.0 + (2* (S-S 1)/H- 1)/2.0)" (6/H* "2-
1 12"(S-S 1)/H*'3)
Z ATE 1(4,6) = C* ((2* (S-S 1)/H- 1)** 2/2.0 + (2* (S-S I)/H- 1)/2.0)" (2/H-6" (
1 S-S1)/H**2)
Z ATE 1(4,7) = -4* C** 2* ((2* (S-S 1)/H- 1)** 2/2.0 + (2" (S-S 1)/H- 1)/2.0)* (2

1 *(S-S1)/H-1)/H
Z ATE 1(5, t) = C* (2* (2* (S-S 1)/H- 1)/H- l/H)* (6" (S-S 1)/H"* 2-6* (S-S 1)'" 2

1 /H**3)
ZATE 1(5,2) = (12" (S-S 1)/H** 3-6/H*'2)*(6" (S-S 1)/H** 2-6* (S-S 1)*'2/H"

1 "3)
ZATE 1(5,3) = (4"(1-(S-S 1)/H)/H-2* (S-S 1)/H** 2)*(6" (S-S 1)/H*" 2-6" (S-

1 $1)*'2/H*'3)
ZATEI(5,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(S*(S-S1)/H**2-6*(S-SI)*'2

1 /H**3)
Z ATE 1(5, 5) = (6/H** 2-12* (S-S 1)/H** 3)*(6' (S-S 1)/H'* 2-6" (S-S 1)** 2/H"

1 *3)
ZATE 1(5,6) = (2/H-6"(S-S 1)/H** 2)* (6" (S-S 1)/H*'2-6" (S-S 1)*'2/H*'3)
Z ATE 1(5,7) = -4"C*(2' (S-S 1)/H-1 )* (6" (S-S 1)/H** 2-6" (S-S 1)** 2/H** 3)/
1 H
ZATEI(6,1) = C*(2*(2*(S-S1)/H-1)/H-1/H)*(-(S-S1)'*2/H**2-(2*(S-S1)
i /H**2-1/H)*(S-S1) +(S-S1)/H)
ZATE 1(6,2) = (12" (S-S 1)/H*'3-6/H**2)*(-(S-S 1}*'2/H* *2-(2" (S-S 1}/H"
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ZATEI(7,2) =
ZATEI(7,3) =

1 -2)
ZATEI(7,4) =
ZATEI(7,5) =
ZATEI(7,6) =
ZATEI(7,7) =
RETURN
END

1 "2-1/H)*(S-S1) +(S-S1)/H)
Z ATE 1(6, 3) = (4"(1 -(S-S 1)/H)/H-2* (S-S 1)/H*'2)* (-(S-S 1)'* 2/H'* 2-(2"

1 (S-S1)/H*'2-1/H)*(S-S1) + (S-S1)/H)
ZATEI(6,4) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(-(S-S1)**2/H**2-(2*(S-S1)

1 /H**2-1/H)*(S-S1) + (S-S1)/H)
ZATEI(6,5) = (6/H**2-12*(S-S1)/H**3)'(-(S-S1)"2/H"2-(2*(S-S1)/H*

1 "2-1/H)*(S-S1)+(S-S1)/H)
ZATEI(6,6) = (2/H-6*(S-S1)/H**2)*(-(S-S1)**2/H"2-(2"(S-S1)/H**2-1
1 /H)* (S-S 1) + (S-S 1)/H)
Z ATE 1(6,7) = -4* C* (2* (S-S 1)/H- 1)* (-(S-S 1)** 2/H'" 2-(2" (S-S 1)/H** 2-1
1 /H)*(S-S1) + (S-S1)/H)/H
ZATEI(7,1) = C**2*(2*(2*(S-S1)/H-1)IH-1/H)*(1-(2"(S-S1)/H-1)'*2)

C' (1-(2* (S-S 1)/H- 1)** 2)' (12* (S-S 1)/H** 3-6/H** 2)
C*(1 -(2* (S-S 1)/H-1 )** 2)* (4" (1-(S-S 1)/H)/H-2" (S-S 1)/H"

C**2*(2*(2*(S-S1)/H-I)IH + 1/H)*(1-(2*(S-S1)/H-1)**2)
C*(1-(2* (S-S1)/H-1)'*2)* (6/H**2-12* (S-S1)/H**3)
C* (1-(2* (S-S 1)/H- 1)** 2)* (2/H-6* (S-S 1)/H** 2)
-4"C*'2"(1-(2"(S-S 1)/H-1)*'2)'(2"(S-S 1)/H-1)/H

C CODE FOR MATRIX E2

SUBROUTINE M ATXE2(S,S 1,H,C,ZATE2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ZATE2(7,7)
ZATE2(1,1) = C**2*(2*(2*(S-S1)/H-1)/H-1/H)*((2*(S-S1)/H-1)**2/2.0-
1 (2"(S-$1)/H-1)/2.0)
Z ATE2(1,2) = C* (2* (2* (S-S 1)/H- 1)/H- 1/H)* (6' (S-S 1)" 2/H** 3-6* (S-S 1)

1 /H**2)
Z ATE2(1,3) = C*(2" (2* (S-S 1)/H- 1)/H- l/H)* (2"( 1-(S-S 1)/H)* (S-S 1)/H-(
1 1-(S-S 1)/H)*'2)
ZATE2(1,4) = C**2*(2*(2*(S-S1)IH-1)IH-1/H)*((2*(S-S1)/H-1)**2/2.0+

1 (2"(S-$1)1H-1)12.0)
ZATE2(1,5) = C*(2*(2*(S-S1)IH-1)IH-1/H)*(6*(S-S1)/H'*2-6*(S-S1)*'2

1 /H**3)
ZATE2(I,6) = C*(2*(2*(S-S1)/H-1)/H-i/H)'(-(S-S1)**2/H**2-(2*(S-S1)

1 /H**2-1/H)*(S-S1)+ (S-S1)/H)
ZATE2(1,7) = C**2*(2*(2*(S-S1)/H-1)/H-1/H)*(1-(2"(S-S1)/H-1)**2)
Z ATE2(2,1 ) = C*((2" (S-S 1)/H- 1)** 2/2.0-(2" (S-S 1)/H- 1)/2.0)* (12* (S-S

1 1)/H**3-6/H**2)
Z ATE2(2,2) = (12" (S-S 1)/H** 3-6/H** 2)* (6" (S-S 1)** 2/H'* 3-6" (S-S 1)/H'
1 "2)
ZATE2(2,3) = (12"(S-S I)/H**3-6/H**2)*(2*(1-(S-S 1)/H)*(S-S 1)/H-(1-(
1 S-S1)/H)**2)
ZATE2(2,4) = C*((2"(S-$1)/H-1)*'2/2.0+ (2"(S-$1)/H-1)/2.0)*(12"(S-S
1 1)/H**3-6/H**2)
Z ATE2(2,5) = (12* (S-S 1)/H'* 3-6/H** 2)*(6* (S-S 1)/H** 2-6" (S-S 1)* *2/H*
1 *3)
Z ATE2(2,6) = (12° (S-S 1)/H** 3-6/H** 2)* (-(S-S 1)** 2/H** 2-(2* (S-S 1)/H*

1 "2-1/H)*(S-S1) + (S-S1)/H)
Z ATE2(2,7) = C*(1-(2" (S-S 1)/H- 1)*'2)*( 12" (S-S 1)/H** 3-6/H** 2)
Z ATE2(3,1) = C*((2" (S-S 1)/H-1)** 2/2.0-(2* (S-S 1)/H-1 )/2.0)*(4"(1-(S
1 -S 1)/H)/H-2*(S-S 1)/H*'2)
ZATE2(3,2) -- (4*(1-(S-S1)/H)/H-2*(S-S1)/H**2)*(6*(S-S1)**2/H**3-6*
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ZATE2(5,7) =
ZATE2(6,t) =
1 S-S1)/H**2)
ZATE2(6,2) =
ZATE2(6,3) =

1 )/H)**2)
ZATE2(6,4) =
i S-Si)/H**2)
ZATE2(6,5) =

1 (S-S l)/H**2)
Z ATE2(3,3) = (4"(i-(S-S i )/H)/H-2* (S-S 1)/H** 2)* (2" (1-(S-S 1)/H)" (S-S

1 1)/H-(1-(S-S 1)/H)*'2)
ZATE2(3,4) = C'((2'(S-$1)/H-1)*'2/2.0+ (2'(S-$1)/H-1)/2.0)'(4"(1-(S

1 -S 1)/H)/H-2"(S-S i)/H**2)
ZATE2(3, 5) = (4"(1-(S-S 1)/H)/H-2* (S-S 1)/H** 2)* (6' (S-S 1)/H'* 2-6" (S-

1 $1)*'2/H*'3)
ZATE2(3,6} = (4"(1-(S-S 1)/H)/H-2*(S-S 1)/H'*2)'_-(S-S _)*'2/H"2-(2"

i (S-Si)/H**2-i/H)*(S-Si) + (S-S1)/H)
ZATE2(3,7) = C*(1-(2*(S-S1)/H-i)**2)'(4*(1-(S-S1)/H)/H-2"(S-S1)/H"

1 *2)
ZATE2(4,i) = C**2*(2*(2*(S-S1)/H-1)/H + 1/H)*((2*(S-S1)/H-1)**2/2.0-

1 (2"(S-$1)/H-1)/2.0)
ZATE2(4,2) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(6*(S-S1)**2/H**3-6"(S-S1)

1 /H**2)
ZATE2(4,3) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(2*(1-(S-SI)/H)*(S-S1)/H-(

1 1-(S-$1)/H)*'2)
ZATE2(4,4) = C**2*(2*(2*(S-S1)/H-1)/H + 1/H)*((2"(S-S1)/H-I)**2/2.0-_

1 (2"(S-$1)/H-1)/2.0)
ZATE2(4,5) = C*(2"(2"(S-S f)/H-f)/H + 1/H)*(6*(S-S 1)/H*'2-6"(S-S 1)*'2
1 /H**3)
ZATE2(4,6) = C*(2*(2*(S-S1)/H-1)/H + 1/H)*(-(S-S1)**2/H**2-(2*(S-S1)

1 /H**2-1/H)*(S-S1) +(S-S1)/H)
ZATE2(4,7) = C**2*(2*(2"(S-S1)/H-1)/H + 1/H)*(1-(2*(S-S1)/H-1)**2)
ZATE2(5,1) = C*((2*(S-S1)/H-1)**2/2.0-(2*(S-S1)/H-1)/2.0)*(6/H**2-

1 12"(S-$1)/H*'3)
Z ATE2(5,2) = (6/H** 2-12" (S-S 1)/H* "3)* (6" (S-S 1)* *2/H* "3-6" (S-S 1)/H'
I "2)
Z ATE2(5,3) = (6/H** 2-12* (S-S 1)/H** 3)*(2'(1 -(S-S 1)/H)* (S-S 1)/H-(i -(
i s-sl)/H)-*2)
ZATE2(5,4) = C*((2"(S-Si)/H-1)*'2/2.0+ (2*(S-Si)/H-1)/2.0)'(6/H**2-

1 12"(S-S 1)/H**3)
Z ATE2(5,5) = (6/H** 2-12* (S-S 1)/H** 3)*(6* (S-S 1)/H*" 2-6* (S-S 1)** 2/H*

1 *3)
ZATE2(5,6) = (6/H*'2-12*(S-S 1)/H**3)*(-(S-S 1)*'2/H*'2-(2" (S-S 1)/H*

1 *2-1/H)*(S-S1) + (S-SI)/H)
C*(1-( 2*(S-S1)/H-1)**2)'( 6/H**2-12* (S-S i )/H**3)
C*((2*(S-S 1)/H-1)*'2/2.0-(2"(S-S 1)/H-1)/2.0)*(2/H-6"(

(2/H-S* (S-S 1)/H** 2)*(6* (S-S 1)** 2/H** 3-6* (S-S 1)/H** 2)
(2/H-6* (S-S 1)/H** 2)* (2" (1-(S-S 1)/H)* (S-S 1)/H-(1 -(S-S 1

C*((2*(S-S 1)/H-1)*'2/2.0 + (2*(S-S1)/H-1)/2.0)*(2/H-6*(

(2/H-6" (S-S 1)/H** 2)* (6" (S-S 1)/H*' 2-6" (S-S 1)*" 2/H** 3)
ZATE2(6,6) = (2/H-6"(S-S 1)/H**2)*(-(S-S 1)** 2/H*'2-(2"(S-S 1)/H*'2-1

1 /H)*(S-S 1) + (S-S1)/H)
Z ATE2(6,7) = C*(1 -(2" (S-S 1)/H-i )** 2)*(2/H-6" (S-S 1)/H*" 2)
Z ATE2(7,1) = -4" C*'2"((2" (S-S 1)/H-1)** 2/2.0-(2* (S-S 1)/H-1 )/2.0)*(2
1 *(S-S1)/H-1)/H
Z A TE2(7,2) = -4"C*(2"(S-S f_/H-f)*(6*(S-S 1)*'2/H*'3-6"(S-S 1)/H*'2)/

ZATE2(7,3) = -4* C* (2* (S-S 1)/H-1)* (2"(1-(S-S 1)/H)* (S-S 1)/H-(1-(s-S 1
1 )/H)**2)/H
Z ATE2(7,4) = -4"C** 2* ((2* (S-S 1)/H- 1)** 2/2.0 + (2" (S-S 1)/H- 1)/2.0)* (2

1 *(S-S1)/H-1)/H
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=

ZATE2(7,5) = -4"C*(2*(S-S1)/H-1)*(6"(S-S1)/H*'2-6*(S-S1)*'2/H**3)!
1 H
Z ATE2(7,6) = -4" C*(2* (S-S 1)/H- 1)* (-(S-S 1)** 2/H" 2-(2" (S-S 1)/H** 2-1

1 /H)*(S-S1)+ (S-S1)/H)/H
ZATE2(7,7) = -4" C*'2"(1-(2" (S-S 1)/H-1)** 2)* (2" (S-S 1)/H-1 )/H
RETURN
END

C ********_.t******tt*******_,_._t*******_********* _******* _, _. ttl *** _ _

C PROGRAM TO ADD TWO COLUMN VECTORS WITH A SCALE FACTOR FOR EACH

SUBROUTINE CADD(FACA,A,FAC B,B,C,N 1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C ADDS MATRIX FACA*A TO FACB*B AND CALLS IT C
DIMENSION A(N1),B(N 1),C(N1)
DO 100 1= 1,N1

100 C(I)= FACA*A(I) + FACB*B(I)
RETURN
END

C *********************************************************************

C PROGRAM TO ADD TWO NIXN2 MATRICES WITH SCALE FACTORS FOR EACH
C _**********,t.t**,_***********************_._**** _,, _ t _. ,t_ *** **, _. *** *

SUBROUTINE MATADD(FACA,A,FACB,B,C,N 1,N2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C ADDS MATRIX FACA*A TO FACB*B AND CALLS IT C
DIMENSION A(N 1,N2),B(N 1,N2),C(N 1,N2)
DO 100 I = 1,N1
DO 100J=1,N2

100 C(I,J)=FACA*A(I,J) + FACB*B(I,J)
RETURN
END

C PROGRAM TO MULTIPLY TWO NXN MATRICES
C _,_r***************_***,_._*******_ _**_****** _********* _*** _ _., *** _.,, _ *

SUBROUTINE MNMULT(A,B,C,N)
C YIELDSAXB = C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N,N),B(N,N),C(N,N)
DO 100 1= 1,N
DO 100J=1,N
C(l,J) = 0.
DO 100 K= 1,N

C WR ITE(9,1000)l,J, K,A(I,K), B(K,J),C(I,J)
100 C(I,J)=C(I,J) + A(I,K)*B(K,J)

RETURN
END

C PROGRAM TO MULTIPLY A ROW BYA MATRIX I.E. {R}TRAN*[M] *
C **********************************************************************

SUBROUTINE CMMULT(A,B,C,N1,N2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N1),B(N 1,N2),C(N2)
DO 10 I = 1,N2

10 C(1)=O.ODO
DO 20 I = 1,N2

DO 20 J = 1,N1
20 C(I)=A(J)*B(J,I) + C(I)
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RETURN
END

C PROGRAM TO MULTIPLY A MATRIX BY A COLUMN *

SUBROUTINE MCMULT(A,B,C,N1,N2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N1,N2),B(N2),C(N1)
DO 10 I-- 1,N1

1o Cfl)=0.0D0
DO 2O I = 1,N1

DO 20 J = 1,N2
20 C(I)=A(I,J)*B(J) + C(I)

RETURN
END

C ** PROGRAM TO MULTIPLY TWO COLUMNS *
C **********************************************************************

SUBROUTINE COLMULT(A,B,C,N 1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N1),B(N1)

C = 0.0D0
DO 20 I= 1,N1

20 C = A(1)* B(I) + C
RETURN
END

C PROGRAM TO MULTIPLY A SCALAR BY A COLUMN OR ROW MATRIX

SUBROUTINE SMULT(S,A,C,Nf)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(N1),C(N1)
DO 20 1--1,N1

20 C(1) = S*A(I)
RETURN
END

C SUBPROGRAM TO MULTIPLY A N1XN2 BY A N2XN3

SUBROUTINE M ATMULT(A,B,C,N 1,N2,N3)
C YIELDS AXB = C

IMPLICIT DOUBLE PRECfSION (A-H,O-Z)
DIMENSION A(N1,N2),B(N2,N3),C(N 1,N3)
DO 100 1= 1,N1
DO 100 J = 1,N3
Cfl,J) = 0.
DO 100 K -- 1,N2

100 C(I,J)=C(I,J) + A(I,K)*B(K,J)
RETURN
END

C SUBPROGRAM TO MULTIPLY THE TRANS OF AN N2XN1 BY A N2XN3 MATRIX

SUBROUTINE M ATTMULT(A,B,C,N 1,N2,N3)
C YIELDS A(TRANS) X B = C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
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DIMENSION A(N2,N 1),B(N2,N3),C(N 1,N3)
DO 100 I = 1,N1

DO 100 J = 1,N3
C(I,J) = 0.
DO 100 K= 1,N2

100 C(I,J)=C(I,J) + A(K,I)*B(K,J)
RETURN
END

C SUBPROGRAM TO ADD TERMS DUE TO THE SPRING TO THE STIFFNESS MATRIX

SUBROUTINE SPR ING(SK,SL0,NRN,GSTI F,GR,U)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION GSTIF(NRN,NR N),GR(NR N),U(NR N)

MN = (NRN-1)/2
MN1 =MN+I

UM =U(MN)
WM = U(MN1)
SL = DSQRT((SL0-WM)*(SL0-WM) + UM*UM)
GSTIF(MN,MN) = GSTIF(MN,MN) + SK/SL'(SL0* UM*UM/(SL*SL) + SL-SL0)

GSTI F(M N,M N 1) = GSTI F(M N,M N 1)-S K/(S L* SL)* (SL0" U M" (S L0-WM)/S L)
GSTIF(MN 1 ,MN) = GSTIF(MN1 ,M N}-S K/(S L*S L*S L)*S L0* UM* (S L0-WM)

GSTIF(MN 1 ,MNI) = GSTIF(M NI ,MN1) + SK/SL*(SL-SL0 + SL0*(SL0-WM)*(SL0-WM)/
1 {SL*SL))

GR(MN) = GR(MN) + SK*(SL-SL0)*UM/SL
GR(MN 1) = GR(MN 1)-SK*(SL-SL0)*(SL0-WM)/SL
RETURN
END
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