
N91-25954

A DISTRIBUTED SCHEDULING ALGORITHM FOR

HETEROGENEOUS REAL-TIME SYSTEMS

Osman ZeinEIDine Mohamed E1-Toweissy Ravi Mukkamala

Department of Computer Science, Old Dominion University

Norfolk, Virginia 23529.

Abstract

Much of the previous work on load balancing and scheduling in distributed environ-

merits was concerned with homogeneous systems and homogeneous loads. Several of

the results indicate that random policies are as effective as other more complex load al-

location policies. In this paper, we investigate the effects of heterogeneity on scheduling

algorithms for hard-real time systems. We propose a distributed scheduler specifically

to handle heterogeneities in both nodes and node traffic. The performance of this algo-

rithm is measured in terms of the percentage of jobs discarded. While a random task

allocation is very sensitive to heterogeneities, our algorithm is shown to be robust to

such non-uniformities in system components and load.

1. Introduction

Meeting deadline is of utmost importance for jobs in hard real-time systems. In these

systems, when a job cannot be executed to completion prior to its deadline, it is either

considered as having a zero value or as a discarded job with possible disastrous side-

effects. Scheduling algorithms are assigned the responsibility of deriving job schedules

so as to maximize the number of jobs that meet their deadline. Most of the literature

in real-time systems deals with periodic deterministic tasks which may be prescheduled

and executed cyclically [1,2,5,6]. The aperiodically arriving random tasks with deadlines

have not been thoroughly investigated [3]. In addition, much of the studies in this area

assume systems dedica_.ed to real-time applications and working at extremely small

loads (10% or less).

In a distributed real-time system, jobs with deadlines are received at each of the

nodes in the system. Each node is generally capable of executing a job completely.

These jobs are scheduled for execution at the nodes by a scheduler. A distributed

scheduler is a distributed algorithm with cooperating agents at each node. Basically,

the agents cooperate through exchange of local load information. The decision for

scheduling a job, however, is taken by a local agent. Much of the current work in

distributed scheduling assumes identical scheduling algorithms, homogeneous processing

capabilities, and identical request arrival patterns at all nodes across the distributed

system [7].

In this paper, we are interested in investigating the effects of heterogeneit.v and

aperiodicity in distributed real-time systems on tile performance of the overall system.

We have designed a distributed scheduler specifically aimed at tolerating heterogeneities

https://ntrs.nasa.gov/search.jsp?R=19910016640 2020-03-19T16:51:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42817534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in distributed systems. Our algorithm is basedon a tree-structured schedulerwhere
the leavesof the tree representthe processingnodesof the distributed system,.and the

intermediate nodes represent controlling or server nodes. The server node is a guardian

for nodes below it in the tree. The leaf nodes attempt to keep its guardian node informed

of their load status. When a leaf node cannot meet the deadline of an arriving job, it

transfers the job to its guardian (or server). The guardian then sends this job either

to one of its other child nodes or to its guardian. We measure the performance of our

algorithm in terms of percentage of discarded jobs. (A job may be discarded either by

a leaf node or by one of the servers.) Since random scheduling is often hailed to be as

effective as some other algorithms with more intelligence, we compare the performance

of our algorithm with a random scheduler [4]. Even though a random algorithm is often

effective in a homogeneous environment, our investigations found it to be unsuitable

for heterogeneous environments.

This paper is organized as follows. Section 2 presents the model of the system

adopted in this paper. Section 3 describes the proposed scheduling algorithm. Section

4 summarizes the results obtained from simulations of our algorithm and a random

scheduler algorithm. Finally, Section 5 presents some conclusions from this study and
proposes some future work.

2. The System Model

For the purposes of scheduling, the distributed system is modeled as a tree of nodes

and is shown in Figure 1. (The choice of the hierarchical structure is influenced by

our scheduling algorithm which can handle a system with hundreds of nodes. The

choice of three levels in this paper is for ease of illustration.) The nodes at the lowest

level (level 0) are the processing nodes while the nodes at the higher levels represent

guardians or servers. A processing node is responsible for executing arriving jobs when

they meet some specified criteria. The processing nodes are grouped into clusters, and

each cluster is assigned a unique server. When a server receives a job, it tries to either

redirect that job to a processing node within its cluster or to its guardian. It is to be

noted that this hierarchical structure could be logical (i.e., some of the processing nodes

may themselves a3sume the role of the servers).

In summary, there are four component3 in the system model: jobs, processing nodes,

servers, and the communication subsystem. A job is characterized by its arrival time,

execution time, deadline, and priority (if any). The specifications of a processing node

include its speed factor, scheduling policy, external arrival rate (of jobs), and job mix

(due to heterogeneity). A server is modeled by its speed and its node assignment policy.

Finally, the communication subsystem is represented by the speeds of transmission and

distances between different nodes (processing and servers) in the distributed system.

3. Proposed Scheduling Algorithm

We describe the algorithm in terms of the participation of the three major compo-

nents: the processing node, the sever at level 1, and the server at level 2. The major

execution steps involved at these three components are summarized in Figure 2.

3.1 General

First let us consider the actions at the processing node. When a job arrives (either

from an external user or from the server) at a processing node, it is tested at the gateway.

The local scheduling algorithm at the node decides whether or not to execute this job

locally. This decision is based on pending jobs in the local queue (which are already

guaranteed to be executed within their deadlines), the requirements of the new job, and

the scheduling policies (e.g., FCFS, SJF, SDF, SSF etc. [8]). In case the local scheduler

decides to execute it locally, it will insert it in the local processing queue, and thereby

guaranteeing to execute the new job within its deadline. By definition, no other jobs

already in the local queue will miss their deadlines after the new ad(lition. In case the

local scheduler cannot make a guarantee to the new job, it either sends the job to its

server (if there is a possibility of completion), or discard the job (if there is no such

chance of completion).

Let us now consider the actions at level-1 server. Upon arriving at a server, a job

enters the server queue. First, the server attempts to choose a candidate processing node

(within its cluster) that is most likely to meet the deadline of this job. This decision is

based on the latest information provided by the processing node to the server regarding

its status. This information includes the scheduling algorithm, current load and other

status information at each of the processing nodes in its cluster. (The choice of the

information content as well as its currency are critical for efficient scheduling. For lack

of space, we omit this discussion here.) When more than one candidate node is available,

a random selection is carried out among these nodes. (We found a substantial difference

in performance between choosing the first candidate and the random selection.) If a

server cannot find a candidate node for executing the job, it forwards the job to the

level-2 server.

The level-2 server (or top level server) maintains information about all level- 1 servers.

Each server sends an abstract form of its information to the level-2 server. Once again,

the information content as weli as its currency are crucial for the performance of the

algorithm. This server redirects an arriving job to one of the level-I servers. The choice

of candidate servers is dependent on the ability of these servers to redirect a job to one

of the processing nodes in their cluster to meet the deadline of the job.

The rule for discarding a job is very simple. At any time, a job may he discarded

if the processing node or the server at which the job exists finds that if the job is sent

elsewhere it would never be executed before its deadline. This may be due to the jobs

already in the processing queue, and/or the communication delay for navigation along

the hierarchy.

3.2 Information Abstraction at Different Levels

The auxiliary information (about the load status) maintained at a processing node

or a server is crucial to the performance of the scheduling algorithm. Besides the infor-

mation content, its structure and its maintenance will dictate its utility and overhead on

the system. To maximize the benefit and minimize the overhead, every level is assigned

its own information structure. The information at the servers is periodically updated
by nodesat the lower level. (The time interval for propagating the information to the
serversis a parameter of the system.)

The jobs waiting to be executedat a processingnode are classifiedaccordingto the
localscheduling algorithm (e.g., the classification would be on based priority if a priority

scheduler is used.). Due to this dependency on the scheduling algorithm, we allow each

processing node to choose its own local classification. Typically, the following attributes
are maintained for each class:

• the average response time; (used for performance statistics)

• the likely end of execution (time) of the last job, including the one currently being

served;

• the minimum slack among the jobs currently in the processing queue.

In addition, depending on the scheduling poficy, we may have some other attributes.

The server maintains a copy of the information available at each of its child nodes

including the scheduling policy. Since the information at a child node is dependent on

the local scheduling policy, the server node should be capable of maintaining differ-

ent types of data. Using this information, the server should be able to decide which

processing nodes are eligible for executing a job and meet its deadline.
The information at level 2 server consists of an abstraction of the information

available at each of the level-1 servers. Since each level-1 server may contain nodes

with heterogeneous scheduling policies, level-2 server abstracts its information based on

scheduling policies for each server. Thus, for a FCFS scheduling policy, it will contain

abstracted status information from each of its child servers. This i3 repeated for other

scheduling policies. Thus, the information at this level does not represent information

at a processing node; r:xther it is a summary of information of a group of nodes in a

cluster with the same scheduling policy.

4. Results

In order to evaluate the effectiveness of our scheduling algorithm, we have built a

simulator and made a number of runs. The results presented in this paper concentrate

on the sensitivity of our algorithm to four different parameters: the cluster size, the

communication delay (between nodes), the frequency of propagation of load information

(between levels), and the node heterogeneity. For lack of space, we have omitted other

results such as the scheduler's sensitivity to heterogeneity in scheduling algorithms,

heterogeneity in loads, and the effects of information structures. Accordingly, all the

results reported here assume:

• FCFS scheduling policy at every node,

• the total number of processing nodes is 100,

• equal load at all nodes,

• communication delay between any nodes is the same.

The performance of the scheduleris measuredin terms of the percentageof jobs dis-
cardedby the algorithm (at levels0,1, 2). The rate of arrivals of jobs and their process-
ing requirements are combinedly representedthrough a load factor. This load factor
refers to the load on the overall system. Our load consistsof jobs from three types of
execution time constraints. The first type areshort jobs with averageexecution of 10
units of time and with a slackof 25 units. (The actual valuesfor a job are derived from
an exponential distribution.) The secondtype of jobs have an averageexecution time
of 50 units and a slackof 35units. Long jobs haveaverageexecution times of 100units
and slacksof 300 units. In all our experiments, all these types have equal contribution
to the overall load factor.

We now discuss our observations regarding the characteristics of the distributed
scheduler in terms of the four selectedparameters. In order to isolate the effect of
one factor from others, the choice of parameters is made judiciously. For example,
in studying the effectsof cluster size (Figure 3), the updation period is chosento be
a medium value of 200 (stat=200), the communication delay is chosento be small
(corn=5), and the nodesareassumedto be homogeneous(node: horn). Similarly, while
studying the effectsof the updation period (Figure 4), the cluster size is chosento be
100 (cluster =100). Similar choicesare made in the study of other two factors.

4.1 Effect of Cluster Size

Cluster size indicates the number of processingnodes being assignedto a level-1
server. In our study, wehaveconsideredthree cluster sizes: 100,50, and 10. A cluster
of 100nodesindicates a centralizedserver structure whereall the processingnodesare
under one level-1 server. In this case, level-2server is absent. Similarly, in the caseof
cluster of 50 nodes, there are two levcl-I servers,and one level-2 server. For 10-node
cluster, we have 10 level-1servers. In addition, weconsidera completely decentL'alized
case representedby the random policy, in this case,each processingnode acts as its
own server and randomly selects a destination node to execute a job which it canr_ot

locally guarantee. We make the following observations (Figure 3).

• Both cluster sizes of 100 and 50 nodes have identical effect on performance.

• With cluster size of 10, the percentage of discarded jobs has increased. This

difference is apparent at high loads.

• The random policy results in a significantly higher percentage of jobs being dis-

carded.

From here, we conclude that our algorithm is robust to variations in cluster size. In

addition, its performance is significantly superior to a random policy.

4.2 Effect of The Frequency of Updations

As is the case for all distributed algorithms, the currency of information at a node

about the rest of the system plays a major role in performance. Hence, if the state

of processing nodes vary rapidly, then the frequency of status information exchanges

between the levels should also be high. In order to determine the sensitivity of the
proposedalgorithm to the periodof updating statistics at the servers,weexperimented
with four time periods: 25, 100, 200 and 500 units. (These time units are the same as

the execution time units of jobs.) The results are summarized in Figure 4. From here

we make the following observations.

• Our algorithm is extremely sensitive to changes in period of information exchanges

between servers and processing nodes.

• Even in the worst case of 500 units, the performance of our algorithm is signifi-

cantly better than the random policy.

4.3 Effect of Communication Delay

Since processing nodes send jobs that cannot be executed locally to a server, com-

munication delay is a major factor in reducing the number of-jobs discarded due to

deadline limitations. Here, we present results for four values of of communication de-

lay: 0, 5, l0 and 20 units. (These units are the same as the execution time units of

jobs.) The results are summarized in Figure 5. The communication delay of zero rep-

resents a closely coupled system with insignificant time of inter-node or inter-process

communication. A higher communication delay implies lower slack for jobs that cannot

be executed locally. It may be observed that

When the communication delay is 0, 5, or 10, the number of discarded jobs with

our algorithm (DSA) is relatively small and independent of this delay. In all

these cases, the percentage of discarded jobs with DSA is much smaller than with

random policy.

When communication delay is 20, however, the percentage of discarded jobs is

much higher. In fact, in this case the random policy has a better performance

than our algorithm.

The performance difference between random policy and our algorithm reduces

with the increase in communication delay. When the communication delay is

higher, this difference has vanished, and in fact the r_tndom policy has displayed

better performance.

We attribute our observation to the selection of slacks for the input jobs. If a shortest

job could not be executed at the processing node at which it originated, it has to go

through two hops of communication (node to server, server to node), resulting in twice

the delay for a single hop. Since the maximum value of the slack for jobs with short

execution time has been taken to be 25 units of time (in our runs), any communication

delay above 12 units will result in a non-local job being discarded with certainty. Thus,

even though our algorithm is robust to variations in communication delay, there is

an inherent relationship between the slack of an incoming job and the communication

delay.

4.4 Effect of Node Heterogeneity

As mentioned in the introduction, a number of studies claim that sending a job

randomly over the network would be almost as good as using a complex load balancing

algorithm [4]. We conjecture that this claim is only valid under homogeneous nodes

assumption and jobs with no time constraints. Since one of our major objectives has

been to test this claim for jobs with time constraints over a set of heterogeneous nodes,

experiments have been conducted under four conditions. For each of these conditions,

we derive results for our algorithm (DSA) as well as the random policy. The results are

summarized in Figure 6. The homogeneous case (denoted by horn) represents a system

with all 100 nodes having tile same unit speeds. (Since a job is only distinguished By

its processing time requirements, we have considered only speed heterogeneities.) The

three heterogeneous cases are represented by hetI, het°,, bet3. The heterogeneities are

described through a set of <# of nodes, speed factor> pairs. For example, hetl relates

to a system with 50 nodes with a speed factor of 0.5 and 50 nodes with a speed factor

of 1.5. Thus the average speed of a processing node is still 1.0, which is the same as

the homogeneous case. The other two heterogeneous cases may be similarly explained.

Among the cases considered, the degree of heterogeneity is maximum for het3. From

our results it may be observed that:

With our algorithm, even though the increase in degree of heterogeneity resulted

in an increase of discarded jobs, the increase is not so significant. Hence, our

algorithm appears to be robust to node heterogeneities.

The performance of the random policy is extremely sensitive to the node hetero-

geneity. As tt, e heterogeneity is increased, the number of discarded jobs is also

significantly increased.

With the increase in node heterogeneity, the number of nodes with slow speed also

increase. Thus, using a random policy, if a slow speed node is _elected randomly, then

the job is more likely to be discarded. In our algorithm, since the server is aware of the

hcterogeneities, it can suitably avoid a low speed node when necessary. Even in this

case, there is a ;,endency for high-speed nodes to be overloaded and low speed nodes to

be under loaded. Hence, the difference in performance.

5. Conclusions

In this paper, a distributed algorithm has been proposed to help schedule jobs with

time constraints over a network of heterogeneous nodes, each of which could have its

own processing speed and job-scheduling policy. Several parametric studies have been

conducted. From the results obtained it can be concluded that:

• the algorithm has a large improvement over the random selection in terms of the

percentage of discarded jobs;

• the performance of the algorithm tends to be invariant with respect to node-speed

heterogeneity;

* the algorithm efficiently utilizes the available information; this is evident from the

sensitivity of our algorithm to the periodicity of update information.

• the performance of the algorithm is robust to variations in in the cluster size.

In summary, our algorithm is robust to several heterogeneities commonly observed in

distributed systems. Our other rcsults (not prcsented hcrc) also indicate the robustness

of this algorithm to heterogeneities in scheduling algorithms at local nodes. In future,

we propose to extend this work to investigate the sensitivity of our algorithm to other

heterogeneities in distributed systems. We also propose to test its viability in a non-real

time system where response time or throughput is the performance measure.

ACKNOWLEDGEMENT

This research was sponsored in part by the NASA Langley Research Center under

contracts NAG-l-Ill4 and NAG-l-l154.

References

[1] S.R. Biyabani, J.A. Stankovic, and K. Ramamritham, "The integration of deadline

and criticalness in hard real-time scheduling," Proc. Real-time Systems Symposium,

pp. 152-160, December 1988.

[2] J.-Y. Chuang and J.W.S. Liu, "Algorithms for scheduling periodic jobs to minimize

average error," Pr9c. Real-time Systems Symposium, pp. 142-151, December 1988.

[3] D.W. Craig and C.M. Woodside, "The rejection rate for tasks with random ar-

rivals, deadlines, and preemptive scheduling," IEEE Trans. Software Engineerin 9,

Vo[. 16, No. 10, pp. 1198-1208, Oct. 1990.

[4] D.L. Eager, E.D. Lazowska, and J. Zahorjan, "Adaptive load sharing in homoge-

neous distributed systems," IEEE Trans. Software Engineering, Voi. SE-12. No. 5,

pp. 662-675, May 1986.

[5] R. Rajkumar, L. Sha, and J.P. Lehoczky, "Real-time synchronization protocols

for multiprocessors," Proc. Real-time Systems Symposium, pp. 259-269, December

1988.

[6] K.G. Shin, C.M. Krishna, and YI-I-I. Lee, "Optimal resource control in periodic

real-time environments," Proc. Real-time Systems Symposium, pp. 33-41, Decem-

ber 1988.

[7] J. Stankovic and K. Ramamritham, "Evaluation of a bidding algorithm for hard

real-time distributed systems," IEEE Trans. Computers, Vol. C-34, No. 12, pp.

1130-1143, Dec. 1986.

[8] W. Zhao, K. Ramamritham, and J. Stankovic, "Scheduling tasks with resource

requirements in hard-real time systems," IEEE Trans. Software Engineering, Vol.

SE-13, No. 5, pp. 564-577, May 1987.

() Level 2 server

Level 1 server

Level 0 •

Proc. node

Figure 1 • System Model

(

from other level 1

servers

from other child
nodes

Jobs

front other servers

 Llll
Extemal jobs

discard

v to a level I server

--J

discard

r

to a processing
node in this

cluster

Level 2 server

Level 1 server

I Processing
I node

parture
guaranteed job ,.,,.,.v._,_¢,-,,.I

queue v y._,j

I_t toserver
I

II _< > granted
I
I gateway
I discard

Figure 2 • Flow diagram of The Algorithm

O

b

d

i

S

C

a
r

d

e

d

25

2O

15

10

5

0

% 25

0

b 2o

S

d 15

i

S
10

C

a

r 5

d

e

d

• cluster = 100 stat = 200
• cluster = 50 corn = 5 /_'
÷ cluster= 10 node:hom /
$

0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 3:Effect of cluster size

• corn = 10 stat = 200

÷

corn = 5 cluster = 1130 j_

corn = 0 node: horn
///

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

25

• star = 25 cluster = 1130
• stat= 100 corn=5
+ stat = 200 node: hom

20 o stat = 500
• random

15

10

o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 4: Effect of updation period

40

35

30

25

20

15

!0

5

O:

• corn = 20(DSA) x
• corn = 20(random) /

star = 200 /
cluster= 100 DSA// /A•

_ .rand°m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 5:Effect of communication delay

O

b

S

d
i

S

C

a

r

d

e

d

25

2O

15

10

0
0

,horn

• hetl Random
+het2
, her3

0.1 0.2 0.3 0.4 0.5 0.6

load factor ---_

25

20

10

o
0,7 0.8

,horn

Ahetl DSA
,her2
oher3

0,1 0.2 0.3 0.4 05 0.6 0.7 0.8

load factor

Figure 6: Effect of Node Heterogeneity

hetl ' <50,1.0>, <25,1.5>, <25,0.5>
het2 • <50,0.5>, <50,1.5>
het3 • <20,0.25>, <20,0.5>, <20,1.0>, <20,1.5>, <20,1.75>

IEEE PROCEEDINGS OF THE

UTH TCON '91

Volume2

91 CH2998-3 NASA

