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ABSTRACT

Experimentally, thermal annealing is known to be a factor which enables a number
of different integrated circuits (ICs) to recover their operating characteristics after
suffering radiation damage in the space radiation environment, and thus to decrease
and limit long-term cumulative total-dose effects. This annealing is also known to be
accelerated at elevated temperatures both during and after irradiation.

We have applied linear response theory (LRT) and have constructed a linear response
function (LRF) to predict the radiation/annealing response of sensitive parameters of
ICs for long-term (several months or years) exposure to the space radiation
environment.

In order to develop a short-term (several hours or days) test procedure for predicting
long-term annealing, a number of LRF constants in this theoretical model must be
determined. Several methods to calculate the LRF constants from the experimental
data have been used. Equations for the shift in the threshold potential of MOS ICs
have been derived for both pure annealing and simultaneous irradiation and
annealing. Estimations of the equilibrium point of the shift in the threshold
potential have been made.

Since we need to conduct a short-term test to make predictions of the radiation
response for the very long-term region of the IC’s operation, a compression in time
was proposed. Compressing the annealing process from several years in orbit to just
a few hours or days in the laboratory is achieved by subjecting the IC to elevated
temperatures or by increasing the typical spaceflight dose rate by several orders of
magnitude for simultaneous radiation/annealing only.

The development of tests at elevated temperatures was based on linear response
theory and theoretical models in order to use data extrapolation from the elevated
temperatures to near-room temperature. To use LRT, we need to check the linearity
of the response with respect to impulse dose for pure annealing and with respect to
dose rate for simultaneous irradiation and annealing. This approach became a part
of the test development.

The test procedure to make predictions of the radiation response was developed; the
calculation of the shift in the threshold potential due to the charge distribution in the
oxide was written; electron tunneling processes from the bulk Si to the oxide region in
an MOS IC were estimated; in order to connect the experimental annealing data to
the theoretical model, constants of the model of the basic annealing process were
established; experimental data obtained at elevated temperatures were analyzed;
time compression and reliability of predictions for the long-term region were shown;
a method to compress test time and to make predictions of response for the non-linear
region was proposed; non-linearity of the LRF with respect to log(t) was calculated
theoretically from a model.
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INTRODUCTION

This work deals with the development of a test to predict the radiation/annnealing
response in sensitive parameters of ICs in long-term operation in a radiation
environment,

Semiconductor ICs installed in electronics, computers and other systems of
spacecraft, nuclear power installations (submarines in particular) and particle
accelerators suffer total-dose , slow-rate radiation damage, which usually appears as
a change in operating characteristics. Although total-dose radiation damage is
cumulative, in the slow-rate radiation environment, such as in space, nuclear power
installations and particle accelerators, annealing has been observed to occur in many
IC technologies. After some time in the radiation environment, it is expected that a
situation will be reached in which the annealing rate will match the damage
introduction rate and will result in stability of the shift in the sensitive parameter,
for example, in the threshold potential for MOS ICs. For theelectronics to be
operational after this time in the radiation environment, it is necessary to determine
whether or not the parameters of the device are still within specifications.

Flight projects and equipment designers are consequently asking how much
annealing can be expected to extend the operating time of ICs and other devices for
long-term use in radiation environments in space and on Earth. An easy way to
answer these questions would be to allow the damaged devices to anneal for two or
three years at room temperature and observe the results of annealing. Such tests,
however, would be time-consuming and impractical.

Yet, the problem is still not solved, although constant attempts have been made to
choose the most radiation-resistant devices and to choose such a technology in a
short-time test. Hence, a number of tests have been proposed18-21,

1. Such a test!8 has been performed: a detailed comparison of 1/f noise with the
radiation-induced threshold voltage shifts due to oxide-trapped charge and interface
states for enhancement-mode, 3-nm gate, n-channel MOS transistors. It was shown
that the pre-radiation 1/f noise levels of these devices correlated strongly with the
post-radiation threshold shift component and was related to the oxide traps, AV, but
not with the post-radiation shift component related to the interface states, AVj.
These results are supposed to show that 1/f noise measurements may prove useful in
characterizing and predicting the response of MOS devices.

This test cannot give correlations of the pre-radiation 1/f nose with the post-radiation
AV;; which is one of the components of the radiation-induced shift in the threshold
potential. The problem of long-term prediction of the radiation-induced shift in the
threshold is not approached.

2. In the second work19, a simple model was suggested to interpret and to extrapolate
the experimental data by fitting the data to the model.
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This investigation suggests a test procedure, using a simple linear dependence on
log(t) of annealing, which does not work for the long-term period. Also, this test
procedure consumes as much time as a simple long-term experimental test, because
annealing in this test was not accelerated.

3. The third and fourth tests20-21 that were proposed used a compression of time by
using elevated temperatures. These completely empirical tests could only classify
the MOS devices into particular groups. Their main goal is to predict the grade of
radiation hardness of a device, but not the value of the radiation-induced shift in the
threshold potential or the shift in other sensitive parameters.

A number of tests suggest simply applying an increased dose rate, i.e., to irradiate a
device to the total required dose in a short time, but a difference between prediction
and response has been observed.

We are going to make predictions, for example, of the shift in the threshold potential,
by applying the LRT. We are determining the region of linearity of the response
relative to an impulse dose for pure annealing and the linearity of the radiation
response relative to the dose rate for simultaneous radiation and annealing. For the
linear region, the LRT will be used as the principal tool and the damaged devices will
be subjected to elevated temperatures to accelerate the annealing. This method was
proposed to shorten the time period of the tests and to use the results of these tests to
predict the anticipated long-term annealing.

These short-term (several hours or days) test procedures for making predictions for
long-term (several months or years) radiation/annealing response of ICs in a
radiation environment were developed for linear and non-linear response relative to
dose rate. For the non-linear region, the method of increasing the dose rate to shorten
the test time was proposed. Also, the quasi-linear approach to calculate a prediction
of response was introduced for non-linear cases.

Calculations were made to predict when the simultaneous irradiation/annealing can
be expected to reach an equilibrium. The maximum value of the shift in the
threshold potential, V(t), (equilibrium value) was estimated. Experimental data
were treated according to the LRT and results produced the LRF shape and time
compression rate for the long-term region. The shift in the threshold potential was
introduced by calculating the electric field distribution in relation to the charge
distribution in the bulk oxide. The deviation of the LRF from linear dependence on
log(t) was derived theoretically from the model. We also observed cases of high-dose-
rate radiation damage and a high-dose impulse radiation environment, where
linearity of radiation response relative to dose and dose rate does not exist. To make
predictions of the malfunctioning of ICs in this case, a time compression of the test by
increasing the dose rate was proposed.
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THEORETICAL MODEL

LINEAR RESPONSE MODEL
The Concept of Impulse Dose and Impulse Response

According to linear response theory (LRT), radiation response, i.e., shift in the
sensitive parameter, of any device subjected to a radiation environment is linearly
proportional to an impulse dose, if this impulse dose is small and the instant of
measurement of the response is far removed in time from the instant of the impulse
dose, asin Fig.1:

AP(t) = R(t)AD, (1)
where the linear response function (LRF), R(t), depends on a time lapse:
AP(t) = R(t-t)D(t)
and the LRF, R(t), can be determined to be:
R(t) = AP/AD.

To determine the region of linearity, one has to plot AP measured at a fixed instant, t,
as a function of AD, as shown in Fig.2.

In this work, we have used linear response theory to solve both cases of pure
annealing (from impulse and non-impulse doses) and simultaneous irradiation and
annealing. Since we are applying LRT, i.e., a linear approach, to experimental data
during the test, the concept of impulse dose is crucial for our work. The calculations
of threshold potential as the main sensitive parameter for MOS devices for both pure
annealing and simultaneous irradiation and annealing are essential. Calculations
will determine whether the concept of impulse dose can give us:

1. The practical time duration of the impulse dose and
2. The limit of radiation dose magnitude.

Some simple transformation would be helpful. The shift in the main MOS IC
parameter, the threshold potential can be determined from linear response theory as
shown below:

o br t

AV(Y) = D FR(t-§) dj = -DJR(W)dY,
' 0 t'tr

Page 5



where the dose rate, f) = const. and R(t) is the linear response function. Such a
transformation yields the threshold shift calculation,

o t
AV(t) = D[F(t) - F(t-t;)], where F(t) = SR(t')dt.
0

Expanding the equation for the response shift in a Taylor power series for small
irradiation time, t;y and using the equation for the linear response function,

R(t) = -C + A In(t/tp),
we then obtain:
AV(t)YD(t;) = -C + Aln(t/tg) + K+ T,
where T = (A/2)t/t and K = A(tg/te )t - tr)/tg.

We can then calculate the conditions for choosing the observation time, t, and the
irradiation time, tr, such that the dose response is linear. Knowing that t,<t, T/K
= 2,/2t2. Let us set this expression equal to 1/100. This means that, in the
expression involving the observation time, t, and the irradiation time, t;, the
deviation of response from linearity in log(t), T, has the value of 1/100 of the second
term of the expansion, therefore t/t should be less than 1/7,i.e., on the order of 1/10.

The concept of impulse dose and the condition of linearity are sources of the method
for determining the linear response function from experimental data for the linear
case. The method to determine the limit of radiation dose magnitude from the
experimental data is shown in Fig.2.

Using this basic concept, we can obtain experimental data to investigated the critical
region of time dependence of the radiation damage response during which
equilibrium between the radiation damage rate and annealing rate occurs. , In this
area, the linear response function, as will be shown, changes its character, and to
make predictions for long-term operation (from several months to a few years), we
must determine the Linear Response Function for long-term annealing, using
experimental data.

The linear response theory for the case of pure annealing, as well as simultaneous
irradiation and annealing, will be directly applicable to spacecraft flown in the space
radiation environment, where both radiation damage and annealing take place at the
same time. '
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In the case of non-linear response, an approach to solve the problem will be shown
below.

1. Pure annealing in MOS devices

Much work has been done in the area of radiation or radiation sensitivity of MOS ICs.
Some work has been done on pure annealing and very little, if any, has been done on
the simultaneous radiation and annealing response.

Linear response theory presumes that the annealing of a sensitive parameter is
linearly proportional to the imparted impulse radiation dose and depends on the time
lapse between the observation time and the time of the imparted impulse dose, as
shown in Fig.1.

. There are several sensitive parameters of a MOS integrated circuit which can be used
to measure damage and annealing, such as the shiftin the threshold potential, AV(t),
of individual transistors, leakage currents, propagation delay, rise and fall times, etc.
Since the device parameter, the shift in the threshold potential, expressed as Av(t), is
most often used as the sensitive parameter, we choose to use this parameter in our
measurements of annealing. Eq.(1) thus becomes

AV = R(t-t)AD(Y). (2)

In the case of many impulse doses, the total annealing response is the result of the
sum of the partial response. In the case of continuous irradiation, this becomes an
integral
t
AV(1) = SR(t-t)dD(t). ) (3)
0

1.1 Determination of Response Function

In the case of pure annealing, we shall use Eq.(2) to determine R(t). For this purpose,
we set t' = 0. Then

AV(t) = R(t)AD(0),
and the response function becomes
R(t) = AV(t)/AD(0),
which turns out to be the remainder of the gate threshold voltage shift per unit dose

at time, t, far removed from the impulse dose, i.e., ' < <t.

Pure annealing has been observed by several investigators to be nearly linear with
respect to the logarithm of annealing time. Danchenko at al.l observed a linear or
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near-linear dependence on log(t) of annealing in a pMOS device. A similar log(t)
dependence for other technologies was observed by Simons and Hughes2.3 and
Simons4. The only deviations from this linear dependence are observed at very short
and very long annealing times.

These experimental data show that R(t) plotted vs. In(t) follows a near-straight line.
Under this assumption, for pure annealing, R(t) takes the form:

: R(t) = -C + Aln(t)
where the coefficients A and C are regarded as independent of impulse dose and
should be determined experimentally.

To render the argument of R(t) dimensionless, it is necessary to introduce another
parameter, the characteristic time, tg, which is related to the annealing rate. The
response function thus becomes

R(t) = -C + A In(t/tg). (6)

To find the significance of the constants A, C and tg, we have plotted R(t) (as given by
Eq.(6)) vs. In(t), as shown in Fig.3. To separate the constants from In(t), we have

transformed this equation as follows:
R(t) = [-C-A In(tp)] + A ln(b).

As can be seen from Fig.3, the region tg< <t<t represents a straight line in R(t). If
we extrapolate this straight line to In(t) = 0, we see that it intercepts the ordinate at
[-C - A In(tg)). We can determine A immediately, since it is the slope of a straight
line. C and tg, however, cannot be separately determined, because they are factors of
the intercept, [-C - A In(tg)]. A few methods exist to find C and tg. To find C, one can
measure the response at t< <ty and obtain

R(t) = AV(t)/AD = C- a1(t/tg) + ag(t/tp)2 + ...

To make the function valid in the region of small t, we can change the argument of
Eq.(6) as follows:

R(t) = -C + Aln(1 + t/tg). (7)

We can plot this equation for small t . We can see that, as t approaches zero, In(t)
approaches minus infinity and R(t) approaches (-C).

For large t, we can estimate at what time annealing will be nearly complete. When
“we extrapolate the linear region of the curve in Fig.3 to R(t) = AV/AD = 0, we obtain
a rough estimate of the critical time, t¢, given by: :

-C + A In(tJ/tg) = 0, or tc = tg exp(C/A). (8)
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This estimate of t. is valid for pure annealing, as well as for simultaneous irradiation
and annealing, as we will see below.

We also need to determine at what time the straight line of R(t) (Fig.2) intercepts the
straight line of (-C). We can immediately determine this time, t = tg, and R = R(to) -
(-C) = Aln(2).

1.2 Qeneralized Convolution Integral.

Response to continuous irradiation can be described as a sum of responses to a
number of impulse doses. Such a response can be calculated as an integral:

t

AP(t) = SR(t-t)Ddt.
0
If the radiation ceases at time, t<t, then
tr .
AP(t) = SR(t-t")Ddt’.
0

Iftr< <t, then t'< <tand R(t-t") = R(t). Then:

L
AP(t) = R(t)/Ddt;, or
0

AP(t) = R(t)D(t,). In other words, for t> >t,, the total dose, D(t;), may be regarded as
an impulse dose. :

Using the gate threshold potential as a sensitive parameter, and assuming that the
total imparted dose is not an impulse dose, but is extended in time, we can derive the
same equation, integrating Eq.(2) over the period of time in which irradiation occurs.
We thereby obtain the same convolution integral in the form:

tr .
AV(t) = JR(t-t)DdAY,
0
where t; is the time at which irradiation ceases.

In the case of pure annealing, t is always less than t. If t, < <t, then Eq.(9) takes the
form: ‘

AV(t) = R(t)D(tp), (10)
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which is similar to Eq.(2) and gives us the response function as the shift in threshold
potential per unit total dose.

2. Simultaneous Irradiation and Annealing

As has been shown, calculations developed for pure annealing can also be applied to
simultaneous irradiation/annealing with some modification if the linearity of
radiation response relative to dose rate (or accumulated dose) exists.

21. The linearity of Response Relative to Dose Rate

During long-term spaceflight, the irradiation/annealing response of a device in the
space radiation environment could become non-linear. To make predictions correctly,
we need to determine the region of linear response with respect to dose rate for long
times, asin Fig.4.

We can find the slope in Fig.4: AP = D x Slope; tis large and
t
Slope = SR(t)dt'.
0

This relation and determination of linearity of the response with respect to dose rate
will be used in the test procedure.
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2.2 Calculations of Response

Derbenwick and Sander5 were the first to suggest the applicability of linear response
theory to annealing through the use of a convolution integral. Winokur et al.6,8 have
also made extensive use of a convolution integral in their analysis of experimental
data. The authors applied the convolution theory to calculate the radiation-induced
voltage shifts for a uniform dose rate:

' -AV(t) = Bt{-Alx In(x/x-1) + In(x-1)] + (A + C)},

where x = t/te, B is equal to a constant dose rate and A is the annealing rate. In this
equation, they explained the time, t, as the time at which the measurement is taken
and the time, te, as the time of termination of the radiation exposure at a constant

dose rate.

Applying a convolution integral, we set the time of cessation of irradiation, tr, equal
to the time of observation, t, in Eq.(9), which yields:

t
AV(t) = FR(t-t)Ddt. (11)
0

In order to find an expression for the threshold potential shift, AV(t), we substitute
Eq.(7) into Eq.(11). Integrating Eq.(11), we obtain:

AV(®) = [A(L + tg/t) In(1 + ttg) - (A + O)Dt, (12)
where 13 is assumed to be constant with respect to time.
For t> >tg, Eq.(12) becomes:
AV(t) = [Aln(Uty) - (A + C)ID(1), (13)
where the total dose, D(t), is equal to f)t, or:
[AV] = DYA + C- A In(t)]. (13)

AV(t) and AV(t)/I.)t expressed in Egs.(12), (13) and (13;) are plotted vs. In(t) in Fig.5
and Fig.6 for arbitrary values of the constants.

It is anticipated that in space (and in similar radiation environments), as the damage
accumulates, a time will be reached when the damage introduction rate will be
balanced by the annealing rate and the threshold potential will reach stability. This
region of balance is shown in Fig.5 for large t. '
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A useful approach to treat the experimental data of very long-term simultaneous
irradiation and annealing is to plot AV(t) per unit dose, instead of AV(t). In Fig.6, we
plot AV(t)/D(t) vs. In(t). Indeed, we see that, for large t, we have a straight line, in
accordance with Eq.(13), plotted as:

AV(t)/D(T) = A In(t/tp) - (A + C). (14)

We have the experimental evidence to prove such a conclusion. Curves of
simultaneous irradiation and annealing from experimental work26 with
supplemented “straight line® curves of AV/D calculated from these experimental data
are shown in Figs. 24 and 25.

In time, however, we should see some deviation from this straight line, as in the case
of pure annealing. This region of deviation, tq, is important for the treatment of
experimental data, because this is the region to which the saturation of the damage
or the balance between the damage introduction rate and annealing rate is very
close. In the laboratory, we can investigate this region experimentally, since, at
elevated temperatures, the deviation can be observed in a short time. We
consequently have to investigate this region in detail.

The straight line of Fig.6, plotted vs. In(t), intercepts the AV(t)/D(t) = 0 axis either at
In(t/tg) = C/A + 1, or explicitly at the critical time

tc = tgexp(C/A + 1). (15)

This is a good approximation of the region in which the deviation occurs. In reality,
however, we may expect the deviation to take place before this approximation, or
before the minimum of Eq.(12). This minimum is given by

dlAV(t))/dt = Aln(t/tg)-C = 0. (16)
This yields as a solution, tp, = tg exp(C/A), which is identical to Eq.(8). This implies
that tp is both the critical time for pure annealing and the theoretical equilibrium
time, tp, when balance between the damage introduction rate and the annealing rate
occurs. Substituting ty, into Eq.(13), we obtain AV(tp) = AV, which is the maximum
value of AV(t):

AV = -ADty, = -ADtg exp (C/A). (17)

We can also determine another characteristic time, the time for half recovery, ti/g,
from Eq.(6) for pure annealing:

ti2 = to exp(C/2A), (18)

which is convenient for the treatment of experimental data.
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PREDICTION OF LONG-TERM IRRADIATION/ANNEALING RESPONSE

The long-term irradiation/annealing response (from several months to a few years) is
related to the region which includes tq or close to it. For this long-term region,the
case of non-linearity of radiation response relative to dose rate can be predicted by
shortening the time duration of the test with increasing dose rate, D.

We can increase the dose rate by three orders of magnitude and shorten the time
duration by the same factor and have close to the same value of the response. From
the family of response curves shown in Fig.7, we can extrapolate the value of the time
of deviation for flight conditions and time compression rate for a flight dose rate, as in
Fig.8.

In Figs.8 and 10, the method to make predictions of the radiation response from data
extrapolation is shown. Using the time deviation determined from the extrapolation
described in Fig.7, we can calculate the time compression rate relative to the
increased dose rate.

HIGH-DOSE IRRADIATION CASE

There is a wealth of experimental works which support the linear response theory
and indicate that the differential response is linear with impulse dose. However, any
physical system can exhibit a linear response only through a limited range of input.
Obviously, the shock to a system by a strong input is non-linear, especially when the
system is destroyed.

Although it is obvious that linear response theory cannot be applied for large dose
rates or doses, there have so far been no attempts to determine the limits of dose or
dose rate within which the system still exhibits a linear (with dose) response.

A number of projects strongly need the theoretical foundation and experimental
research which we propose here. Such a theoretical investigation can be used to find
the region of applicability of the linear response theory (LRT) as well as to develop a
generalized response theory (GRT). It seems promising that such a generalized
response theory can become the necessary tool, not only for the treatment of large
total doses and dose rates, but also for the case of low-dose irradiation in the region of
balance, when the damage introduction rate is equal or nearly equal to the rate of
annealing.

As is known from the previous part, Eq.(1) states the experimental fact that the
differential response is proportional to an impulse dose. By increasing the impulse
dose, we step to the case in which the response becomes proportional to some function
of dose, D, rather than the dose itself: '
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(Change in sensitive parameter) = R(t-t') F(D(t))). (H1)
In the case of MOS ICs, this looks like
AV(t.,.D) = R(t-t;) F(D(t)). (H2)
For a single impulse dose, it is convenient toset t’ = 0. Then Eq.(H2) becomes
h AV(t, D) = R(t) F(D). (H3)
For a fixed dose, D, one can determine R(t) as
R(t) = AV(t, DVF(D). (H4)

To determine the exact value of F(D), one must impose the condition that, at the
small-dose limit, F/D approaches unity.

To determine the response for continuous irradiation, one must integrate Eq.(H2)
over the irradiation time, tr,

tr
AV(t, D) = SR(t-t") dF(D(t)), (HS5)
0
or
tr
AV(t, D) = SR(t-t") F’(D) dD(t) = R(t) F(D(t,)). (H6)
0

For the case in which the observation time, t, is far removed from the end of
irradiation, i.e., t> >tr, R(t-t") = R(t), and Eq.(H5) yields

tr
AV(t, D) = R()SdF(D) = R(t) F(D(t,)). (H7)
0

Since the response, AV(t, D), is a product of two functions, each dependent on its own

variables, both the functions R(t) and F(D) can be determined. Then the response is
totally described by Eq.(H5).
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THEORETICAL APPROACH TO THE MODEL

The theoretical models!3-16 of basic internal processes in ICs, especially MOS ICs,
developed by various authors, were used to work out the common theoretical base of
the damage/annealing test. We will use these models of basic processes contributing
to the radiation response and annealing, and, consequently, to the various constants
of the LRF and their time-temperature dependence, especially the intensity of
annealing, A, to develop a link between the macroscopic (and phenomenological) LRT
approach, and microscopic processes. The schematic review of such basic processes
and, in particular, the annealing process of charge buildup is shown in Figs.11 and
12.

From experimental data, we also know that, in the long-term region, the shift in the
threshold potential changes its behavior. Thus, we see some deviation from a
straight line,i.e., the form of the previously-developed LRF vs. In(t). We can use the
annealing data of this region of deviation (i.e., the long-term region) to determine the
LRF constants for this region to treat annealing test data at elevated temperatures,
as was previously shown, and to convert these data to normal temperatures for
making predictions of the long-term radiation/annealing response for long-term
operation. In order to make such an approach reliable, calculations of temperature
dependence of LRF constants in the long-term region through theoretical models of
the processes in the bulk oxide are essential.

From the experimental and theoretical works22,23, which are consistent with each

‘other, it is known that the basic model of the positive hole trap refers to the trap
structure as a neutral center in the oxide with a ground state (singlet) below the Si
valence band edge and an excited triplet state above the Si conduction band edge, as
is shown in Fig.13. '

Annealing in these models is considered to be tunneling of electrons directly from the
bulk Si to the charged hole trap in the oxide. The formulation of this problem
corresponds to the case in which a current of electrons is incident on the potential
barrier.

The problem is related to the problem of determination of the probability of tunneling
of electrons into the bulk oxide. Assuming electrons are being transported through
the Si-SiO9 interface from the Si valence band to the ground state of the hole trap
center, as the best-known model of McLean indicates, we can write

Ptun = a exp(-bx),
where a is the escape frequency and b is connected to the tunneling barrier. The

probability of this tunneling depends exponentially on the tunneling distance from
the hole trap to the interface.
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According to the models13, 24, the rate of charge loss from the oxide, or the rate of
neutralizing of trapped holes inside the oxide is given by the differential equation:

dp(z, t)/dt = -a exp(-bx) p(x, t),
where p(x, t) is the density of charged trapped holes in the oxide.
Thiskequation yields
p(x, t) = po(x) exp(-a exp(-bx)t),

where po(x) is the initial distribution of trapped holes inside the oxide as a function of
x, which is a coordinate perpendicular to the oxide-silicon interface. These models
have used the concept of the tunneling front, i.e., the x-position, xm, of a surface at
which the maximum rate of tunneling is occurring. So, we can obtain this position of
Xm by differentiating the previous equation of p(x, t)/dt with respect to x and setting
the result equal to zero:

xm = (1/b) In(at). (DO)

This equation was used in direct calculation of the shift in the threshold potential in
Eqs.(D22) and (D23).

Direct calculation of shift in threshold potential

As is already known, ionizing radiation in MOS devices generates trapped positive
charge in the oxide layer and negative interface states which cause a shift in many
parameters for the MOS device, such as threshold potential, leakage current, noise,
capacitance, etc. To analyze these shifts, we developed a direct calculation, applying
Maxwell’s electromagnetic theory.

Though our primary goal is to deal with ionizing radiation, the method is also
applicable to deal with any net charge inside a system, regardless of how the charge

was created. For example, in the case of the theory of the new generation of electrical
charge memories, we can apply this method.

Calculating the shift in the threshold potential, we assume that the processes are
slow enough to apply the quasi-static approach.

Maxwell’s equation relates displacement field, D, and density of charge, p,
VD =p.

We assume that the x-axis is perpendicular to the oxide/semiconductor interface, x =
lox at the interface, and x = 0 at the metal/oxide interface. We also assume that the
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charge density, p(x, t), is independent of the two other spatial variables. In this case,
the displacement, D, also depends only on the distance, x, (and time) and is
perpendicular to the interface,i.e., D = D(x,t) and

dE(x, t)/dx = (1/ege) p(x, t), (D1)

where E = ((1/g0e)D and gg and ¢ are the dielectric constants. Integrating Eq.(D1),
we obtain

X

E(x) - E(0) = (1/g0e)Sp(x, t) dx, (D2)
0

where the integral is the charge inside the oxide layer between x = 0 and the current
coordinate x, per square unit of the interface, i.e., Q(x, t)/S. In this case, the potential
difference can be calculated from:

E =-VV. (D3)

However, a variable electric field creates a variable magnetic field, H, in accordance
with Maxwell’s second equation:

VxH=j+ eoedE/ 3t,
where j is electric current.
In electromagnetic theory, instead of Eq.(D3), one must use the following equation:
E =-VV + 3A/3t, (D4)
where the vector potential, A, defines the magnetic field by the equation:
H = -[VxA],

satisfying the third Maxwell equation: [V x H] = 0or{VxVxA]l= 0. Eq.(D4)
satisfies the fourth Maxwell equation:

[Vx E] = -aH/at, sinceV x VV = 0.
Taking into consideration the fact that the annealing process is slow from the
electromagnetic point of view, we can neglect the magnetic field using the quasi-
static approach. Eq.(D4) then takes the form:
E(x, t) = -dV(x, t)/dx. (D5)

The net oxide positive charge, Q, is given by:
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lox
Q = S/p(x) dx, (D6)
0

where 1,4 is bulk oxide thickness, p(x) is charge density and S is bulk crossection. The
shift in threshold potential AV, due to the net oxide positive charge, is thus given by:

lox
AV = -SE(x)dx, or
0
lox X
AV = -(1/epe)SdxSp(x’, t) dx’. (D7)
0 0

The equation we have just derived is quite general. It relates only to charge
distribution and may be applied for any method of charge generation and
compensation, for pure annealing, for simultaneous irradiation and annealing and
any kind of charge injection. For example, this equation enables us to investigate the
silicon-nitride-oxide-silicon (SNOS) memory device. Unlike an MOS device, the main
goal is to trap the positive or negative charge injected through the oxide into the
nitride by a positive or negative voltage pulse applied to the gate of the SNOS
transistor. The negative or positive potential shift is associated with a logic “0" or
“1* state, respectively. In this case, we could be interested in as slow annealing as
possible.

In deriving Eq.(D7), we neglected the magnetic field and its influence on the electric
field, i.e., the electromagnetic waves. In order to justify this approximation, we need

to estimate the order of magnitude of the wavelength of the main harmonic,
representing the vector potential as a Fourier integral over a range of frequencies:

A(t) = (1/2n) JA(w) expl(int) dw,
where A(®») has a maximum at wg = 1/tch and decreases to zero rapidly for w <wg and
w>wg and tch is the characteristic time, which determines the time scale for

significant changes in A(t).

If the time scale, as in the case of annealing processes, is on the order of 10-4 sec., the
characteristic electromagnetic wavelength for these processes can be estimated as:

A~ c¢/w~3x106cm,
where ¢ is the velocity of light.

‘Obviously this electromagnetic wavelength is extremely large, and the
corresponding magnetic field can thus be neglected.
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Considerable work has been done to analyze the mechanisms contributing to the
degradation of net charge. Physical models have been derived based on these
mechanisms. The advantage of Eq.(D7) is its possibility to be applied to any
particular mechanism of charge generation and degradation, or even to a
combination of several mechanisms.

Damage Introduction Rate and Annealing Rate for McLean Model

First of all, we make use of Eq.(D7), derived above, calculating the response, AV(t),
the relaxation of buildup of the net charge, not only to describe pure annealing, but
also simultaneous irradiation and annealing.

We apply Eq.(D7) to relate the damage introduction rate, C, to the radiation-induced
net charge, Q.

Suppose the impulse dose duration is much less than the characteristic time,
At< <tg. This means that annealing has not started yet and we can obtain

AV(AD) = -[C- A In(1 + At/tg)] DAt = -CDAt = -CAD. (D8)

For a very short impulse dose (10-6 sec), we can assume uniformity of charge density
inside the bulk oxide because of the incident character of primary ionization. We
then obtain

AV(At) = -CAD = -Qlyx/2¢ee0S, ' (D9)
where the net charge at time, t, is Q = ploxS.

For large impulse doses, 105 - 106 rad, a saturation effect may occur. Then, the
dependence of the shift in the threshold potential AV, on total dose becomes non-
linear:

AV(At) = F(D).

On the other hand, the total charge, Q, is linearly proportional, with a coefficient, k,
to the effective crossection, g, the total number of atoms, N = nly,S, where nis atomic
density, and the total dose, AD:

Q = konlySAD. (D10)
By substituting Eq.(D10) into Eq.(D9), we obtain

C = k10x2n0/80;8. (Dll)
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The coefficient of proportionality, k, can be determined from independent
measurements and can be calculated theoretically as well.

In Eq.(D8), we assumed a linear response, but linearity of response with dose should
be confirmed and the boundary between the linear and non-linear approach should be
determined, as we have shown in Fig.2.

The general equation (D7) can be used for any particular model of net charge buildup
and relaxation, i.e., annealing.

McLean13 suggested uniform charge distribution through a thin, 10 - 20 nm oxide
layer near the Si-SiOg interface, with a sharp front of decreasing charge density
moving from this interface through the bulk oxide to the metal. This model uses the
advantage of the principle of a tunneling front, xm, the location in the oxide at which
the maximum rate of tunneling occurs.

The distance, x’, from the Si-Sioz interface to the density front is proportional to In(t).
The charge distribution can be presented as a step function (see Fig.14):
Po, X’ > Xm(t)
p(x, t) = (D12)

0, x’ < xp(t),

where, according to Eq.(D0), 2, = (1/b) In(at) or xp, = %o In(t/to), po is the charge
distribution at t = 0 and xq is the width of the front.

The general equation (D7) can be used for any model and should be used for the
previously cited McLean model, where the distance between the interface and the
moving front is proportional to In(t). It is also noted that the model can be applied for
distances not less than 1.5 nm from the interface.
Since In(t) cannot be used for t = 0, we substitute it with In(1 + t/tp). With this
generalization, we can start from zero distance, x = 0 (or X’ = lox), and t = 0. We
thus assume that the front distance, xp(t) is given by:

xm(t) = lox -x0 In(1 + t/tg), (D13)
the front velocity is:

v = xgp/(t + to), (D14)

and the constant, xg, will be determined later.

Fort> >ty,
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xm(t) = lox -x0 In(t/to)), (D15)

v = xp/t, (D16)

and, for t< <ty,
v = xp/to. (D17)

The last equation states that, for small t, the velocity of the front is constant. On the
other hand, the annealing process, as a tunneling process, depends on the distance
from the interface. This means that xg is of the same order of magnitude as the
distance between the molecular layers of the crystal. It appears that the annealing
front involves several molecular planes and the space value of the front is likely equal
to xg. Also, tg is a time of annealing inside this front, when the distance to the
interface is constant.

In this case, the net charge distribution can be observed in the form (see Fig.14):
p(x, t) = po/{expl(x - xm)/xo] + 1}. (D18)
We can also calculate the rate of charge annealing:
dp/dt = po expl(x - xm)/xo)/{exp{(x - xm)/xo) + 1}2 d(xm/xp)/dt. (D19)
This function has a critical point at x = xp and
dp(xm)/dt = po d(xm/x0)/dt = polxo/(t + to)]. (D20)
Using a step function for the charge distribution, as in Eq.(D12), we have
Po, (Xm - X) > > Xg
p(x,t) = (D21)
0,(x-xm) > > Xp.
or
o, X < Xm
p(x,t) = (D22)

0,x > xn.

Substituting Eq.(D22) into Eq.(D7) and assuming that pg = pAD, where p is a
coefficient, we obtain

Xm X

AV(t) = -(1/ege)SdxSpo dx’ and
0 0
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AV(t) = -(1/2e¢¢) po(xm)2, or AV(t) = -(1/2¢e9¢) pl1 - xg In(t)]2AD. (D23)
When In(t) < < lox/x0, Eq.(D23) becomes
|AV(t)] = [C- Aln(1)]AD,

where C = (1/2e0e)plox2, A = (1/epe)ploxxo and C/A = 1yx/2x9. We can calculate the
total annealing time from Eq.(D23):

ln(ta/t()) = lox/xo.
If1,x = 50 nm, xg = 1.5 nm and tg = 10-4 sec, we obtain t, = 3.0 x 1010 sec. For
single-channel (we assume that hole traps can be different types, as we will see later
from the experimental data) annealing, we can derive the equation for R(t):

R(t) = C- Aln(t) + (A2/4C) In2(t). (D24)

This solution is crucial for long-term annealing. For simultaneous irradiation and
annealing, the third term of Eq.(D24), 1n2(t), enables us to extend a description of
annealing beyond the critical time region, In(t,) = C/A, asin Fig.15 The new critical
time can be calculated from:

In(t.) = 2C/A. (D25)

Using Eq.(D22) and (D7), we can also relate the change in the threshold potential to
the total initial charge, Q = poloxS,

AV(t) = -(1/2e0e) Qxm2(t)15xS, or, assuming uniform charge distribution, to the
charge at time, t:

AV(t) = -(1/2e0¢) Q(t) xp(t)/S, where Q(t) = poSxm(t).
Using Eq.(D9), we can obtain for our uniform charge distribution
AV/AV = xm2(t)/1ox2, (D26)
where AVyis the initial shift, -(1/2eg¢)polox2.
Eq.(D26) gives us the same response function, R(t),
AV/AVy = 1-(220/1ox) In(1 + t/tg) + (x02/12) In2(1 + t/tg).
For the long-term approximation, we can derive

AV(t) = -(pol2/2e0e)[1 - (2x¢/1ox) In(t) + (x02/15x2) 1n2(t)z.

Page 22



Simultaneous Irradiation and Annealing

The term In2(t), in Eq.(D24), which is non-linear with log(t), enables us to extend the
description of radiation response to the case of simultaneous irradiation and
annealing beyond the critical time point, In(tc1) up to time, In(tc2) = 2C/A.

We can also easily integrate Eq.(D24) according to Eq.(11) and obtain a more precise
description of the radiation response for simultaneous irradiation and annealing:

* AV/Dt = (A + C + A22C) + (A + A2/2C) In(t) - (A%/4C) In2(t). (D27)
In this case, the value of the balance time, where equilibrium between the damage

introduction rate and the annealing rate occurs, can be derived, determining the
balance value of the response:

d(AV/D)dt = -C + A In(tp) -(A2/4C) In2(tp) = 0, and
tp = exp(2C/A). The balance value of the response is derived as

AV} = -D(A2/2C) exp(2C/A). (D28)
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DEVELOPMENT OF THE TEST

Experimentally, annealing at elevated temperatures is known to be a factor which
enables a number of different devices to recover their operating characteristics after
radiation damage faster than at normal temperatures both during and after
irradiation.

It should be noted that, while simultaneous irradiation and annealing are taking
place, the device parameters will continue to change until an equilibrium condition is
reached between the damage introduction rate and the annealing rate, determining
the constant equilibrium value of the shift in the parameter.

In the foregoing part, we have developed a linear response theory (LRT) to be applied
to predicting the radiation/annealing response, i.e., the deviation of sensitive
parameters, for any type of device which exhibits radiation response and time-
dependent recovery in any parameter, for long-term (several months or years), low-
and high-rate radiation environments. The LRT developed here does not depend on
the device fabrication technology and can predict the equilibrium value of the shift in
any parameter if the response is linear with dose and dose rate. In the other case, we
have developed a non-linear approach, which can make predictions by calculation
and by approximation of data, as shown in Figs.6, 7 and 8.

Thus, to develop a program and short-term (several hours or days) test procedure for
making predictions for long-term annealing, we need to experimentally determine a
number of constants in this theoretical model. We need to construct a new linear
response function (LRF) for the very long-term region. At this point, our LRF can
only give us an estimate of the long-term response. To develop the LRF for the long-
term region, we need to compress the radiation/annealing process from several years
in real time to a few hours or days in the laboratory. This time compression can be
achieved if we subject the device to elevated temperatures.

From these tests at elevated temperatures, we shall determine the temperature
dependence of the constants and the LRF behavior in the very long-term region at
room temperature. Using approximations of radiation response for various dose rates
in the non-linear case and the LRT result, we can make predictions of the very long-
term radiation/annealing response of devices of any technology at any temperature.

1. Compression in time.

As has been shown in many experimental worksl, 10, 11, 12,17, 20, 21, an elevated-
temperature environment enhances annealing processes by decreasing the lifetime of
trapping sites in insulators, such as SiOg, increasing the probability of tunneling
processes and decreasing thermal activation energy for trapping sites for MOS
devices.
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The elevated-temperature technique is therefore a very basic tool for the time
compression of long-term processes for short-term observation in the laboratory.

a) Pure annealing.

As mentioned in the foregoing part, we have chosen to use the shift in threshold
potential, V(t), for MOS ICs as the sensitive parameter, although the LRT method
allows us to use any parameter which is affected by radiation.

We then obtain a family of experimental curves per unit dose at various
temperatures of the form:

AV(t)YD = -C + Aln(1 + tto),
as shown in Fig.16, or in the form from Fig.15:
AV(tYD = -C + Aln(1 + t/tp) - (A2Z/4C) In2(1 + t/to),

Note that the experimental curves of AV(t) per unit dose at various temperatures
intercept each other at the an ordinate value equal to -C and at an abscissa value
equal to In(tg). In this way, we can determine all the LRT parameters. The
temperature dependence of the parameters can also be estimated from the family of
experimental curves. According to the existing experimental data, we assume that
the parameter A is strongly dependent on temperature.

For the pure annealing case, measurement of the shift of the threshold potential at
large times, i.e., on the “tail” of the curve, is not possible because of limits in the
accuracy of voltage measurements.

b) Simultaneous irradiation and annealing.

In an analogous manner, we can obtain a family of curves of AV(t) and AV(t)/D(t) at
various temperatures, as shown in Fig.17.

We must explain that the similarity of the curves in Figs.16 and 17 is due to a
theoretical manipulation. The difference between them is that, in Fig.16, AV(t) for
pure annealing is divided by total impulse dose, D = DAt (see Egs.(4) and (5)), but in
Fig.17, AV(t) for simultaneous irradiation and annealing is divided by instantaneous
total dose, D = D(t) (see Eqs.(13 and (14)). This trick is important because it permits
analysis of experimental data for simultaneous irradiation and annealing
conveniently and directly. To prove this, we can transform any experimental curve of
the shift in the threshold potential for simultaneous irradiation and annealing into
linear dependence on log(t) by dividing the values by the instantaneous total dose (or
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the instantaneous time value if the dose rate is constant), as was done with
experimental data25 and shown in Figs.24 and 25.

In the previous paragraph, one method to determine the LRF parameters was shown.
To determine the LRF constants and their temperature dependence, we also intend to
use the experimentally-determined temperature-dependence curves of AV(t) which
can be observed in Figs.16 and 17 for both pure annealing and simultaneous
irradiation/annealing.

The determination of the LRF constants and their temperature dependence is
necessary because we need:

to estimate the critical region, i.e., the long-term region, where the LRF
changes its behavior and the value of the critical time, tc; we can determine the
value of the critical time graphically by the LRF intersection with the

abscissa;

to determine the “time compression rate* (TCR, the coefficient of time
compression, using critical time values and temperature dependence of the
time for half recovery) and to choose the temperature needed to compress the
time of a test;

to calculate the values of the required test time at elevated temperatures,
using the TCR;

to determine the LRF constants for the long-term region by extrapolation of
values of constants determined at elevated temperatures to room temperature;

to determine the LRF for the long-term region at elevated temperatures (the
critical time region, t¢, in Figs.16 and 17), then to extrapolate the LRF to room
temperature and calculate the response if the radiation response is linear wi th
respect to dose and dose rate.

2. Determination of LRF constants

a) Pure annealing.

To determine the constants A, C, and tg, we expand Eq.(7) in a power series:

R(t) =-C + Aln(1 + t/ty) = -C + A(t/ty) -(A/2)(Ut0»)2 + (A/3)(t/tg)3 - ... (E1)

The regions of the curve of Eq.(7), where the terms of this expansion are to be fitted
are seen in Fig.18. '
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It was also shown in the foregoing part that we can determine A immediately, since it
is the slope of a straight line, the response function, R(t), plotted vs. In(t). Assuming
C is constant, the points of interception of the family of R(t) curves at various
temperatures for pure annealing, as shown in Fig.16, gives us the value of In(tg).
Therefore, C and tg can be separated and determined from the coordinate of the
interception, [-C - A In(tg)]. We assume that C is temperature-independent, as the
experimental study22 shows.

The getermination of all the LRF constants from the family of curves for pure
annealing seems reliable, but errors in measurement of the shift in the threshold
potential in the long-term region can become comparable to the value of the potential
shift itself. Such a difficulty can be solved by using simultaneous irradiation and
annealing data divided by instantaneous dose, as shown in Figs.24 and 25.

Also, as will be shown later, we can determine all the constants from the temperature
dependence of the time for half recovery and the temperature dependence of the
critical time.

b) Simultaneous irradiation and annealing
To determine A, C, and tg, we expand Eq.(12) in a power series in (t/tg) as follows:

AV/D = -C + [A(Wt))/2 - [A(t/t0)2)/6 - [A(t/tp)3)/12 - ... (E2)
We will obtain a family of experimental LRF curves, as shown in Fig.186, for various
temperatures for both pure annealing and simultaneous irradiation and annealing.
The LRF constants and their temperature dependence will be established.

In order to demonstrate the possibility of determining the LRF constants in this way,
we obtained the experimental data shown in Figs.25 and 26. N- and p-channels of an
RCA CD4007 integrated circuit were given impulse doses of 1 MeV electrons up to 10
kRads. As a source of electrons (up to 1.6 MeV), we used the 2 MeV Van de Graaff
accelerator of the NASA/Goddard Space Flight Center Radiation Facility at
Greenbelt, MD. Radiation dose was measured with radiochromic films, using a FWT
Technology film reader. Doses are given in Rads-Si. The points in Figs.25 and 26 are
the experimental data and the solid lines represent Eq.(E2).

3. Determination of the time for half recovery, ti/2, for various temperatures
and the “Time Compression Rate" (TCR).

An additional method to determine all the LRF constants, as shown in Fig.19, is to
plot the dependence of the time required for half recovery vs. the reciprocal of
temperature. The time for half recovery is supposed to be the time needed to anneal
half of the quantity of damage in the sensitive parameter in the pure annealing case.
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Experimental data of the time of half recovery vs. reciprocal of temperature are
shown in Fig.19.
According to Eqs.(13) and (6), we can obtain:

tir2 = (tot)1/2 expl(C-A)/2A), (E3)
where t1/2 is the time for half recovery and t, is the time at which irradiation ceases.

Using Egs.(16) and (8), we can estimate the character of the temperature dependence
of the time of balance - the equilibrium time, ty, as follows:

tp, = to exp(C/A),

and, if the slope, A, of the response function is equal to b + aT, where a and b are
constants, T is the temperature and b< <aT,

In(ty) = In(tg) + (C/a)(1/T) and (E4)
In(ty/9) = In[(totr)1/2 exp(-1/2)] + (C/2a)(1/T). (E5)
Terrell et al.22 have presented experimental data of temperature dependence of the
time for half recovery plotted against the reciprocal of temperature. We can compare
these data to our Eq.(E5). Setting AT = 500C gives us t1/9/t'12 = 10.
To find the equilibrium time, ty, we used the time for halfrecovery, Eq.(18),
tp = (t1/2)2. (E6)

The temperature shift, AT = 500, gives us approximately ty/t'h, = 100.

We can also determine the time for half recovery, t1/2, more conveniently from Eq.(6)
for pure annealing:

t1/2 = tg exp(C/2A), or, for A = aT,
. t12 = tgexpl(C/2a)(1/T)). (E7)

We obviously have experimental confirmation of LRT efficiency, comparing Eqgs.(E7)
and (E5) with the experimental result22.

For a practical test procedure, it would be helpful to determine the time required for
one-third recovery, etc.

The “Time Compression Rate™ (TCR) for the critical-equilibrium time region could be
~ determined from the extrapolation as is shown in Fig.19. We can thus calculate the
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required test time at various temperatures to simulate the flight time. The
calculation is done using Eqs.(E7) and (E4) as follows, if T">T:

to(T) = to(T)t1/2(TVt/2(T)]2 or
tp(T) = to(T) exp{(T-T'VTT’]C/al,
i.e., time values in the long-term region can be calculated as follows:
‘ t(T) = «(T°) exp(C/a)(1/T - 1/T").

From this equation,

TCR = exp[(C/a)(1/T - 1/T)]. (E8)

4. The test procedure

The test procedure is a product of the linear response theory developed here applying
the procedure for determination of LRF constants and the non-linear approach (asin
Figs.7, 8,9 and 10). The main goal of this program is to develop short-term (several
hours or days) test procedures, accelerating annealing at elevated temperatures, for
linear radiation response with respect to dose and dose rate, or increasing the dose
rate for non-linear response with respect to dose rate, for making predictions for long-
term (several months or years) annealing in space.

In order to conduct the test, the test procedure program would consist of:
a) Determination of all constants of the LRF, taking into account the form of the
LRF equation, R(t) = -C + Aln(1 + t/to) (or a sum of similar equations, as we will
show later with experimental data, remembering the “tail®, -(A2/4C) In2(1 + t/tg),

from Eq.(D19), which is sufficient for the long-term region). The LRF constants
are:

- the characteristic time of annealing, to,

- the intensity of annealing, A, and

- the damage introduction rate, C,
which are obtained both from experimental data of pure annealing and
simultaneous short-term irradiation and annealing data. To calculate the value

of equilibrium, i.e., the value of the long-term region, when t> >tg, we can apply
the complete equation, Eq.(D19):

R(t) = -C + A In(t/to) - (A2/4C) In2(¥/to).
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b) Calculations performed in order to estimate the instant in time (the “critical
time", t. = tg exp(C/A)), at which the annealing begins to change its behavior. For
example, pure annealing of the shift in the threshold potential has been observed
to deviate from linearity with respect to the logarithm of annealing time.

The same calculations determine when simultaneous irradiation and annealing
can be expected to reach equilibrium:

' tp, = to exp(C/A) or ty, = to exp(2C/A) from Eq.(D21).

¢) The value of the balance of the shift in the sensitive parameter, for example,
the shift in the threshold potential:

AV = -AI.)to exp(C/A) (the equilibrium value) or, more precisely,

AV = -D(A2/2C)tg exp(2C/A), would be estimated.
d) Extrapolation. Since thermal time compression is applied, the test data would
be obtained at high temperatures. These data would be extrapolated to room

temperature for making predictions by using the temperature dependence of the
LRF constants.

Since the elevated-temperature technique enables us to compress the duration of
the radiation test from several years at room temperature to a few hours or days
at elevated temperatures, the experimental radiation/annealing occur as a family
of experimental curves of the shift in the sensitive parameter, for example, in the
threshold potential per unit dose at various temperatures, in the form:

AV(t)/D = -C + A In(1 + t/tg) and

AV(t)/I.)t = A(1 + t3't) In(1 + t/tg) -(A + C) or, in complete form:

AVHYD = -C + A In(1 + t/ty) -(A2/4C) In2(1 + t/tg) and for t> >tg,

AV/Dt = -(A + C + A22C) + (A + A2/2C) In(t/tg) -(A2/4C) In2(t/ty),
where A, C and tg are the constants of the LRF and dose rate f) = dD/dt,

for both pure annealing and simultaneous irradiation and annealing.

Thus, this practical procedure for development of the radiation damage/annealing
test consists of the following steps in order:

- todetermine dose limit for linearity of IC radiation response with respect to
dose and dose rate;
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to obtain the radiation damage/annealing data at various elevated
temperatures for the short-term and long-term regions;

to determine the form of the LRF, the LRF constants and their temperature
dependence for the short- and long-term regions;

to estimate the long-term region, i.e., the theoretical and experimental
value of the critical time, t¢, in the long-term region for various
temperatures, when the LRF changes its behavior; we expect to obtain a
value equal to tp exp(C/A);

to determine the theoretical and experimental value of the time for half
recovery, ty/o, for various temperatures; we expect to obtain a value equal to
to exp(C/2A) and a linear dependence on the reciprocal of temperature
which leads to a reasonably linear temperature dependence of the constant
A;

to determine the “time compression rate“ (TCR, the coefficient of time
compression) for the long-term region, i.e., the critical time region, and to
choose the temperature to compress the test time; we expect to confirm the
theoretical quadratic dependence of the critical or balance time, t¢ =
(1/to)(t1/2)2 which, as was shown experimentally gives us a TCR equal to
100 when AT = 500C22;

to caleulate the TCR for required test time to simulate spaceflight time;
to calculate the radiation response for the required test time;

to determine the IC’s response under increased dose rate (for shortened test
time) for various dose rates if the response is non-linear with dose rate;

to extrapolate the values of the radiation response at the increased dose
rates (see Fig.10), to the space dose rate.

This practical program enables us to construct the annealing test to make predictions
of radiation response of MOS devices for long-term (months and/or years) operations.

EXPERIMENTAL APPROACH

We have good evidence that our approach using LRT is more than just theory. We
can actually obtain the necessary experimental data, introduce our linear response
theory, evaluate the LRF constants and predict the radiation response by
extrapolation of the values of the LRF constants from elevated temperatures to
normal room-temperature operation.
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In observing the experimental results and theoretical models, we see that we must
describe the process of annealing through tunneling in a more complex way than
often theoretically described. The experimental results point to at least two different
tunneling models. We can actually presume many more channels of annealing.

In Fig.21, we can see the experimental results of pure annealing.
Itis clear, especially for 1500C, that we have at least two annealing channels:
‘1) the first, from the beginning of the curve up to 1 sec.;
2) the second, from 1 sec. to the of measurement of the experimental region.

We believe that annealing is taking place through two tunneling modes, not one as in
the McLean model. Asshown in Fig.13, the tunneling modes are:

(i) from electron levels above the Si conduction band to a temperature-dependent
excited (because of the parallel spin alignment of the electrons) triplet hole trap state
with energy about 1 -1.35 eV above the Si conduction band, and

(ii) from levels below the Si valence band to a temperature-dependent ground
(singlet, because the two electron spins are antiparallel in the same orbital) hole trap
state with energy about 3 - 3.5 eV above the SiO2 valence band (with 9 eV SiO2
bandgap).

We may also have thermal annealing by thermally excited electrons from the valence
band of the oxide25. We can therefore assume many more channels of annealing and
our main approach using LRT does not depend on it, as we will explain later.

From these experimental data, we determined the temperature dependence of the
quantity of hole traps distributed between the excited and ground states, i.e., the
value of the LRF constants, C1’, C2’, A1, Ag and their temperature dependence as seen
in Fig.22. The critical time and time compression rate temperature dependence are
shown in Fig.23 and the form of the LRT functions (Fig.21) is given by:

R(t) = Ry(t) + Ra(t), where Rj(t) = -C'1 + Ay In(t)/[1 + (t/te)2],

Ra(t) = -C2’ + A2 In(t).

We assume that C’ ~ N, where N is the density of charged states. According to the
theoretical thermal model26, we have:

N = k(T)3/2,

where k is a coefficient and T is temperature (0K). Comparing out results with this
model, we observe good agreement, as seen in Fig.22.
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We have assumed that the time units are in seconds. For convenient treatment of the
experimental data and easy determination of the initial shift, we use a new term, the
“primary time", t’, equal to 104 seconds,

Ri(t) =-Cy + A In(t’) = -Cyand
Rao(t) = -Co” + Ag In(t’) = -Ca.

Using such a technique, we can treat any experimental data obtained at elevated
temperatures for both pure annealing (for an impulse dose) and simultaneous
irradiation and annealing (dividing experimental values by instantaneous total
dose), derive equations, determine constants, time reduction coefficients and required
test time for elevated temperatures. Then we can make predictions of annealed-
equilibrium radiation damage for spaceflight time values directly from the
experimental curves or calculate the required value using the equation for this time
region.

Despite the seeming complexity in dealing with many annealing channels, the LRT
approach can manage each portion of the annealing curve if the radiation response is
linear with respect to dose. Principal attention should be directed to relating the
portion of the curve at one temperature to that at another temperature in order to
determine the LRF constants for the latest or necessary part of the annealing curve
and to calculate the value of the radiation response,i.e., the shift in the threshold
potential, for a certain time value and at the spacecraft temperature corresponding to
the related value at the elevated test temperature.

Let us examine the experimental data obtained at room temperature (250C) and at
elevated temperatures, i.e., 750C, 1250C and 1500C, which are shown in Fig.21. We
can immediately determine at least two straight line portions of each curve and the
LRF constants. Fortunately, we can also see that the annealing at 1500C is almost
complete. As can be seen, the annealing at the highest temperature is nearly
complete at 103 seconds. The annealing for the corresponding segment of the curve at
1250C would require 109 seconds to go to completion, or close to 30 years. The result
of the treatment of the experimental data of the same segment of the curves for 250C
and 750C is less reliable because of a lack of statistics, but the approximate value of
the time for completion of annealing would be about 1016 seconds. As is shown, the
time interval is significant for any long-term calculations. Thus such experimental
data can give us the law of approximation for the LRF constants (Fig.22) and the time
compression rate (Fig.23). Knowing the spaceflight time, we can calculate the test
time for elevated temperatures, choose the right time region and the essential part of
the annealing curve. We can then determine the value of the shift of the parameter
for the chosen time at the elevated temperature and approximate this value to the
value at room temperature, using the previously-obtained LRF curves for various
temperatures. We can directly calculate the prediction, using the the curves of the
temperature dependence of the LRF constants, or the temperature dependence of the
shift value. We can also determine the shift in the threshold potential using the

Page 33



curve of the shift at the elevated temperature and the decreased value of the required
test time from the graph.

Since the accuracy of the threshold potential measurement at the low-voltage region,
where annealing is almost complete is low, we can use the experimental data for
simultaneous irradiation and annealing divided by instantaneous dose, as shown in
the foregoing theoretical part. Such an operation yields a similar straight line with
respect to log(t) or a sum of such lines, as lines of pure annealing. Examples of the
experimental curves divided per instantaneous dose are shown in Figs.24 and 25.
The treatment of such experimental data would be almost the same as for pure
annealing.

Although the experimental data are not statistically complete and were obtained for
_only four temperatures, this approach has nevertheless given us the form and
constants of the LRF for long-term regions close to 1016 seconds. These efforts to
make predictions will be continued with more statistically complete experimental
data.

CONCLUSION

This paper is a report of three years’ effort in which we have seen great success in
applying the proposed linear response theory to make predictions of the radiation
response of ICs for long-term operation in space. The first experiments using the test
procedure developed with LRT to obtain experimental data showed us the usefulness
of the technique to produce predictions for very long-term operation (1016 sec.), at
least for this device. The approach for making predictions of radiation response
which is non-linear with respect to dose rate has also been demonstrated.

The theoretical result, based on the theoretical models of basic processes in the IC
during irradiation, gives the complete equation of the radiation response, Eq.(D19),
which could hardly be determined experimentally.

Although the LRT could not be applied for the non-linear case, we suppose thatit can
be used in the low-dose-rate space radiation environment along with our capability to
determine the additional difference due to the non-linear effect. The quasi-linear
approach and the method of extrapolation of data will help to determine this
difference.

In addition, we should note:
1. different devices have different characteristics of radiation damage and annealing

_curves, but the linearity of the response with log(t) on each part of the curve is a
‘permanent characteristic; the LRT can be easily applied for all such devices;
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2. observing the theoretical models, we were interested only in hole-trapped charge;
we did not concern ourselves with radiation-induced interface electron-trapped
charge, because this charge buildup is not temperature-dependent. However, the
LRT enables us to apply the LRF method in this case, if the linearity with dose is

observed.
The experimental program to obtain the prediction of radiation damage for long-term

space operation, using the LRT method LRT and the non-linear approach to different
devites will be applied in the CRRES Ground Simulation Experiment.
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Fig. 5. Continuous irradiation and the shift in the threshold potential, V(t).
The balance between the damage rate and annealing rate.
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