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FOREWORD

In the past 15 years, since Woodman and Guillen first obtained echoes from the
clear air in the stratosphere and mesosphere with the Jicamarca radar in Peru in 1974, the
mesosphere-stratosphere-troposphere (MST) radars (or clear air radars) have developed into
the most powerful ground-based technique for probing the atmosphere in this height range.
This technique has contributed significantly to the research of atmospheric dynamics,
especially small- and medium-scale time-varying dynamical phenomena, such as gravity
waves, turbulence, and convections. Recently, the technique has started to provide input to
numerical weather prediction experiments.

There are now more than 30 radars of this kind operating in the world and the field
is likely to grow in developing countries also. Currently, even commercialized radars are
available and have been installed in many countries. Actual and latent demands to learning
this new technique are very large, especially among young atmospheric scientists,
engineers, and others who want to join this field of research.

Thus, the Radio Atmospheric Science Center of Kyoto University decided to hold an
International School of Atmospheric Radar (ISAR) in order to provide a unique learning
opportunity for these people. The ISAR was held in Kyoto, Japan, during November 24-
28, 1988, prior to the Fourth Workshop on Technical and Scientific Aspects of MST radar
held in the same place. The ISAR was organized by S. Kato as Chairman and cosponsored
by SCOSTEP, URSI, the Society of Geomagnetism and Earth, Planetary and Space
Sciences, and the Meteorological Society of Japan. More than 90 participants attended the
ISAR from 17 countries.

This volume of the MAP Handbook includes ten lecture notes presented at ISAR.
The notes offer a rather broad, tutorial coverage of the technical and scientific aspects of
MST radars, i.e., radar system, control and signal processing, atmospheric waves, practice
and applications, We hope that this volume will be a good guide to those who are interested
in MST radar techniques which are interdisciplinary in nature.

We would like to thank the ten lecturers for writing the excellent notes. Special
thanks are also due to C. H. Liu, J. Rouger, and P. K. Rastogi for giving very helpful
suggestions. The expert effort in handling the manuscripts and correspondence by Belva
Edwards is greatly acknowledged.

Shoichiro Fukao
Editor
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Chapter 1

Historical Aspects of Radar Atmospheric Dynamics

Susumu Kato

Radio Atmospheric Science Center,
Kyoto University, Uji, Kyoto 611, JAPAN

1 Introduction

"Radar” stands for radio detection and ranging. It is well-known that radars were de-
veloped during World War II to detect aircraft for military purposes. However, the basic
technique.. for radars was used for the first time by Sir Edward Victor Appleton in his
ionosphere research in the 1920s. According to Robert Watson-Watt, "But for Appleton’s
scientific work, radar would have come too late to have been of decisive use in the Battle
of Britain.” (Nobel Lectures; Physics, 1964).

The scientific use began mainly after the war under the leadership of scientists working
on radars during the war.

There are very many applications of radar techniques now in use. However, we shall
below review the history of radar techniques which have been applied only for atmospheric
observation. We start with the ionosphere observation by ionosonde symbolizing the
earliest history of radar observation and proceed to later developments in the observation
by other types of radars as partial reflection, meteor, incoherent scatter radars. As to
lower atmosphere observation the historical development will be given mainly about MST
radars.

2 Radar Technique Used for the Ionosphere Explo-

ration in Early Days

The basic idea for radars was for the first time in 1924 put forward by Appleton who
located the ionized upper atmosphere now known as the ionospheric E region. He worked
on an experiment with Barnett who was the first graduate student under Appleton’s
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Fig. 1. Appleton and Barnett’s experiment in 1924.

guidance at Cambridge (Appleton and Barnett, 1926). It was December 11 in 1924
that they attempted to receive at Oxford radio waves which were transmitted from BBC
Station at Bournemouth, a coastal town south west of London. They found, as expected,
that the fading pattern maximized repeatedly with the varying radar-wave frequency due
to interference between those direct waves which arrived along the ground and those sky
waves which were assumed to be reflected from the suspected ionosphere. It is straight
forward to obtain the reflection height from the propagation path difference between the
direct and sky waves, D, given as

D D
"N TR W

where A are two wavelengths; between these two waves in irariaiion we have m maxi-
mum. The arrival direction was identified by a loop and a vertical antenna. This simple
system (Fig.1) by Appleton’s idea succeeded to determine the E region height as about
100 km, the success which remains as one of his great contributions to the study of upper
atmosphere physics leading to his Nobel prize winning in 1947. We see in this Appleton’s
work the basic idea of radar techniques, especially of FM (Frequency Modulation) type.
In 1925 in the U.S.A. Breit and Tuve invented the vertical sounding method which adopts
pulse-modulated radioc waves to be transmitted vertically, thereby simplifying the system
and, since then, being widely used in the world. Thus, the pulsed radar system now in use
was established. Appleton worked on theory of the ionized gas (1932). It was found that
fo the frequency at which radio waves is totally reflected at each height of the ionosphere



is related to the electron density of the ionosphere N at that height as

4m2eym
N=Tomp @)

where ¢ is the vacuum dielectric constant and m is the electronic charge and mass;
fo was found to be 0.75 MHz before down in winter. We see that (2) is based on the
refractive index n changing relatively to vacuum with the sounding radio frequency f as

n2=f2}.2f(’32 (3)

which is also applicable for understanding turbulent echoes from the mesosphere in MST

radar observations.

Initially, the constant frequency sounding was used, giving the reflection height to vary
with time. Note that the virtual height used in this sounding h’s is obtained as k' = %c
where At is the time of the round trip for a radar pulse between the transmitting and the
receiving stations, both at the same location and ¢ the light velocity; the pulse traversing
the ionosphere on the way is retarded depending on nc, the group velocity, which depends
on N on the way given by (2) and (3). In 1930, Appleton initiated to sweep f in order
to obtain h's versus f, namely, the electron density distribution with height h's, the
standard ionosphere observation which has routinely in use over the world even now.
The ionosphere, however, is probed by this method only in its bottom side lower than
the F region peak. The top side remained unknown before the rocket in situ sampling
was introduced in the 1950’s. The top side sounder on board satellite, based on usual
jonosonde techniques, began to supply data of the ionosphere topside on global scale in
the 1960’s e.g. by the Alouette 1 Satellite as in Fig. 2 (Warren, 1962).

As shown below, in the 1960’s novel radar systems were developed for ionosphere ob-
servation i.e. incoherent scatter radars which enable us to observe the top side ionosphere
as well as the bottom side from the ground.

Application of ionosonde observation to ionosphere dynamics is very limited. Quanti-
ties available by the observation is the electron density which corresponds to the proving
radio wave totally reflected at particular height by (2). We cannot choose certain height
for observation unlike in the case of incoherent scatter and MST radars which choose the
observing heights by gating the receiver so as to match the time at which echoes from
the chosen height arrive. However, some indirect approaches to the dynamical study were
attempted as in Fourier-analysing daily variation of ionospheric heights and electron den-
sity to find solar and lunar tides (e.g. Appleton and Weeks 1939, Martyn 1947, Rush et al,
1970). Note that the indirect approach depends often on ambiguous mechanisms which
connect the dynamics and the observed electron density variation. Ionosphere networks
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local and global are, still now, useful as a source of information regarding the propagation
of ionospheric disturbances.

3 Partial Reflection Radar Observation

In the late 1940’s, weak echoes were found to be returned from the D region in the
height range 75-90 km. Different from usual ionospheric echoes obtained by ionosonde,
as mentioned above, the height appeared independent of the frequency range over 1.6—
-4.0 MHz. In early times the sounding using the weak echoes, understood as partial
reflection sounding, was used mainly to measure the D region electron density as based
on different absorption between the magnets—ionic ordinary and extraordinary waves of
the echoes. We know now that these radar echoes from the mesosphere are utilized for
studying mesospheric dynamics. The echoes are now interpreted to be due to, beside
partial reflection, the scattering by irregularities of the refractive index for radio waves
(See (2)) irregularities which result from atmospheric turbulent mixing of the D region
electron density with a height distribution.

Vincent and Belrose (1978) discussed the echoes with 2.66 MHz to vary around 80 km
height above which the echoes are less aspect sensitive than those below this height; the
echo power spreads in wider angle from zenith in the former than in the latter case. A
similar feature was found later for much higher probing frequencies as 50 MHz by Fukao
et al.. in 1979 in their Jicamarca radar expériment. It is still open to question as to how
the turbulent mixing of the D region electron density distribution (Fig. 3) can explain
this difference around the mesopause. In the field of mesospheric dynamics RRD which
stands for partial reflection drift techniques is now regarded as to be important especially
for their stable operation for long periods and simple low—cost maintenance of the facility.

The principle of PRD technique is to receive the echo pulse around 2 MHz with its
width as 20 us by several antennas. Correlations among echoes received at different
antennas make it possible to decide the translation velocity of irregularities which cause
_ the diffraction pattern ; the height resolution depending on the pulse width amounts to
a few km.

The most sophisticated method, the Full Correlation Analysis, allows the diffraction
pattern to be anisotropic changing with time and gives a so—called true velocity. There
are many interesting observations of gravity wave and tides by PRD technique by Vincent
(1984) and Manson and Meek (1986).

Vincent and Reid (1983) have developed a Doppler radar using MF frequency of
this PRD technique, the antenna area having 1 km diameter to produce a 9 °beam-
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width. They were successful to derive the vertical momentum flux of gravity waves on an
interesting idea that two co-planar radar beams steered by an equal angle from zenith are
used to measure continuously and simultaneously perturbed winds along the line of sight
and the observed velocities squared after being averaged give the vertical momentum flux
of horizontal velocity of gravity waves. The deduced flux variation with height seems to
suggest a forcing which is consistent with gravity wave theory. This observation technique
is now applied to MST radars to other regions of the atmosphere. Details will be discussed
in other sessions of the present ISAR course and not be given.

4 Meteor Radar Observation

Meteors impinging on the earth’s upper atmosphere produce ionization trails along their
path in the height range between 80-100 km depending on their velocity as 10-70 km/s.
Appleton in his early observation of the ionosphere has suspected the sudden appearance
of the ionization around the E region to be due to meteors. Whilst meteors had been
studied by radio methods for astronomical interests before 1960 (McKinley and Millman,
1949) meteor trail movement became a subject of study for observing winds at meteor
heights in the 1950s (Manning et al., 1953).

The meteor trail is a column ionization with electron density as 10'?/m; the effective
diameter is much shorter than the probing radio-wave frequency, thereby producing co-
herently scattered echoes over the Fresnel zone along the meteor trail. Meteor trails, with
a short life time {< 0.1s), were expected to move with the local wind. The meteor radar
technique is based on this principle and first was used at Stanford, California by Manning
who successfully measured winds at meteor heights in the early morning hours in the sum-
mer of 1949 to be on the average ”125 km per hour with motion’s from south-southwest
and north the most common” (Manning et al.,, 1953). It seems interesting to know that
he used a rotating radar beam along azimuth to increase the meteor detection frequency
with an array of 4 antennas, each changing the phase of the transmitted wave. Later,
many (more than 40) meteor radars have been constructed, contributing significantly to
the study of winds, called meteor winds, over 80-—110 km in heights centered at 95 km
where the meteor trail occurs most frequently. The system has been much improved es-
pecially in the height resolution which is essential for the study of winds changing rapidly
with heights. There are two important improvements; one is the establishment of radio
interferometry system to increase the accuracy of the arrival direction of meteor echoes
and the other is the use of computers to discriminate echoes on-line. The Kyoto Meteor
Radar is one of the standard type of the facility adopting these improvements (Aso et al.,



1980). The resolution of elevation angle of the system is 1° averaged over 25°—70° of
elevation angle of the echo arrival direction; this corresponds approximately to 3 km in
height resolution.

An advantage of meteor radars over other radars, especially of the standard type, is to
be handy in the operation i.e. in unattended fashion suitable for long period observation.
The Kyoto Meteor Radar was in operation almost continuously for several years. As
done by Meek and Manson (1987) by PRD, the accumulated data made it possible to
deduce lunar tides at meteor heights (Tsuda et al., 1981). In general, the facility suits
the climatological study of dynamics at meteor heights for atmospheric waves i.e. tides,
planetary waves (Tsuda et al, 1988). For obtaining much more data with less height
resolution as is required in these dynamical phenomena, the decay height method is used
where the principle depends on the measurement of echo decay time i.e. meteor trail
life time at each heights which as the molecular diffusion time is calculated using certain
model atmosphere as CIRA.

A sophisticated observation of gravity wave was attempted by the Kyoto Meteor
Radar. The area at meteor heights illuminated by the radar with an elliptical shape
of 100 km in length and 50 km in width, is divided in five strips orthogonal to its major
axis. Phase variation of winds from one strip to the next is measured by interferometry,
thereby deducing the phase velocity of gravity waves passing in the area(Yamamoto ef
al., 1986).

The most powerful meteor radar used power as large as I MW, receiving tremendous
number of echoes (Bowhill et al, 1978). But usual meteor radars receive fairly small
number of echoes around dusk, resulting in the overall time resolution of a few hours.

Meteor echoes are also received by both main and side lobes of MST radars and a
care must be taken to avoid the echoes which are erroneously detected by the side lobes
in wind determination.

5 High Power Radar Observation

In 1958 Gordon pointed out the possibility that a powerful radar can be constructed to be
able to detect incoherent scatter echoes by ionospheric free electrons in thermal motion,
whereby measuring electron density and electron temperature. His idea was to realize
the construction of a radar with "a megawatt transmitter, a 300 meter diameter dish
(60 per cent efficiency), a bandwidth of 100 kilocycles matched to the expected Doppler
spread, a noise figure of two, 20 decibel signal to noise improvement by averaging pulse,
and cable losses of two decibels (Gordon, p.1827, 1958). He further went on saying "'The



radar is powerful, but megawatt transmitters are available. The antenna is very large;
but since the signal-to—noise does not depend on wavelength, the large area may be
obtained with coarse mesh and moderate tolerances by selecting the longest wavelength
(about 1.5 meters) consistent with cosmic noise limitations. The antenna may be fixed
and pointed vertically”. Gordon's idea has introduced in the 1960’s the novel powerful
ground-based tools called IS (Incoherent Scatter) radars for the study of ionospheric
plasma structure and dynamics. The IS radar technique led us in the 1970's to a further
development towards MST radar techniques for the study of Mesosphere Stratosphere and
Tropospheric dynamics. Before referring to observations of these radars, we have to learn
somewhat about how radio waves are scattered in these frequencies where the scatterers
are refractive index irregularities, very weak, and filling the entire atmospheric volume
illuminated by the radar beams.

We shall follow Villars and Weisskopf in their work on the scattering of electromagnetic
waves by turbulent atmospheric fluctuations (1958). The scattered electric field amplitude
Es at a distance R from the scattering volume V (R3 > V) is

Es = 7B | [ dran(me™T | (4)

for back-scattering; A and k the radar wavelength and wavenumber respectively; Ey is
the incident wave amplitude. Now n includes neutral-atmospheric effects in addition to
that of plasma by (3) as

P P_I-f

n?=1+074= +1.55 x 0"1

= T (5)

where P and P’ are the atmospheric and water vapour pressure in the mb and T the
temperature. The scattering cross section ¢ per unit volume per solid angle is
2
od§l = AnQFC(Qk)dQ (6)

where Q is the solid angle and

C(2 ) ( 1 3 ‘/A x2k-r_dr |2§ (i):;/ C(r)eiﬂ(‘r.dr (7)

(An2) 27 -

where C(r) is the auto—correlation function of An(r). Thus, by (4) ¢ is proportional to
the spectrum intensity of An for 2k; the spectrum is the Fourier transform of the auto-
correlation function. This implies intuitively that radars pick up as their targets only
those irregularities whose size along the radar line of sight is 7 as called Bragg's law in
crystal physics.
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To ionospheric plasma (4) is given by (3) and (5)

— AN 2 1, AN
< An? >=| —N—IQ(Zf—}%)szl TIQ(%)" (8)
for f > fo thus, by (6)
o = (const)C(2k) (9)

i.e. independent of f.

(7) is also applicable to mesosphere observation where free electrons are mainly re-
sponsible to the echo scattering.

To the stratosphere and troposphere, the third and second terms in (5) are mainly
responsible, respectively. Then, we have by (6)

o = (const) f1C(2k) (10)

In (9) and (10) "const” is proportional to the mean square fluctuation of each tern in
(5). Physics to produce refractive index irregularities is different between the regions we
observe, i.e. the ionosphere and the lower neutral atmosphere.

In the case of the ionosphere, the scatterers are free electrons in random thermal
motion which should produce incoherent scattering. It is expected then that o is 4772
where 7, is the classical electron radius; ¢ ~ 10~2m? as proved strictly by Fejer in 1960.
Bowels (1958) has made for the first time the incoherent scatter experiment using a 41
MHz radio wave, 4-6 MW, 1024 antennas in a (116 x 140m) area etc. He received echoes
as expected by the Gordon’s idea in their intensity but not in the Doppler width which
was to be due to electron thermal motion equivalent to the F region electron temperature
as 10% Kelvin in daytime i.e. as large as several ten KHz. What he really obtained was
much less than that. Later it was found that if, as in the present case, the probing radar
wavelength is much longer than the Debye shielding length which is less than 1 cm in
the F region, the Doppler width is mainly due to ions which is in thermal motion of
much lower temperature than that of free electrons; the observed Doppler width must
be narrower by, at least, 1072, the mass ratio between electrons and ions. This finding
which had not been expected before the experiment opened much more possibilities for
this technique so as to be able to observe physical states of ions as well as electrons in the
ionosphere. Further, based on close physical coupling between ions and neutral particles
due to their similar masses, the thermospheric gas dynamics has also been developed by
IS radar observation.

IS radars are regarded in ability as to be rivals and also complements to in situ sampling
by rockets and satellites (Evans, 1974). This type of radars was constructed at Arecibo
in Puerto Rico and Jicamarca Peru and later at St. Santin in France and Milstone Hill in



QUALITY 11

L i 1 1 1 -d
150 120 90 60 30 o
RANGE , xm

Fig. 4. Observation of a high power radar by Bowles 1958. Note that a strong
echo is found around 75 km.

U.S.A. and recently in Scandinavian countries. Details of their contributions will learned
in other sessions.

History shows that sciences enjoy often remarkable progresses through unexpected
findings. This is true, as above-mentioned, for IS radars, detecting the observed wide
Doppler broadening due to ions. Another finding came unexpectedly around 1970 when
the Jicamarca radar, which usually obtained only IS echoes from the ionosphere, detected
unknown echoes presumably from the mesosphere. Few seemed to believe Woodman'’s
report on this finding at International Equatorial Aeronomy Conference in Nigeria in
1972. The echoes showed Doppler shifts corresponding to several ten meter per second in
velocity. Soon, Woodman and Gullén (1974) identified the echoes with those of scattering
due to refractive index irregularities which are caused by turbulence moving with local
winds in the mesosphere.

It seems impressive that as in Fig. 4 Bowles in his first IS experiment in 1958 found
without noticing any significance intense echoes around a 80 km height. This is an example
that scientific significance may vary with time! The finding by Woodman implies the
beginning of a novel radar technique to be able to observe mesospheric winds, the MST
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technique which enables us to observe the mesosphere, stratosphere and troposphere on
the same principle i.e. due to "Clear Air Turbulence (CAT)" echoes in meteorological
terms.

We call the mesosphere and stratosphere combined the middle atmosphere which had
remained as ignorosphere before 1970, but were required immediate scientific elucidation
in the 1970s. This was mainly because of the environmental assessment demanded by
threatening pollution by artificial pollutants as Freon, NOx etc. Under the circumstance,
Middle Atmosphere Program (MAP), an internationally cooperative scientific program
for the purpose, was planned in the 1970s and realized between 1982-1985. MST radar
techniques developed very rapidly just parallely along the MAP course and played a
central role in the program. This is the case even beyond MAP to date.

Let us go back to (9) and (10), the base for MST radar techniques, where C(2k) is
now the spectrum of atmospheric turbulence which is known as

C(2k) x k¥ or o=/(const)k™¥ (11)
and
o = (const)k? (12)

provided that the radar wavelength is within the turbulence inertia subrange; (11) and
(12) are applicable, respectively, to the mesosphere, and the stratosphere; (12) is also for
the stratosphere. Note that (11) and (12) show the basic principle for designing MST
radars; in terms of the radar frequency, the lower the better for the mesosphere, whilst
the reverse is true for the stratosphere and troposphere. However, the wave length must
always be in the intertia subrange; otherwiée, in the viscous range, the spectrum intensity
is so weak. The minimum size giving the inertia subrange is approximately several meters
in the mesosphere, decreasing monotonously down to 1 cm in the troposphere. Now, the
radar wavelength of 5 m is of a fairly standard i.e. 50 MHz. The maximum output is
usually 1 MW and the antenna area is 10* m? or more. By (11) we know that PRD
techniques as in Section 4 can use a very weak power as a few kW, the frequency used
there (~ 2M H?2) is (1/20) which gives 6 x 10* times in the turbulent spectrum intensity
to that for 50 MHz of MSP radars by (11). In (11) and (12) o contains a constant which
depends on the height distribution of n implying that as in (5) o depends on the height
distribution of water vapour, air density and electron density. Their distributions are
disturbed by turbulence; the turbulent diffusion is the basic process. Villars and Wisskap
(1958) failed to notice this process assuming.unrealistic air compression by turbulence.
The pioneering Booker-Gordon theory (1950) was also unrealistic, resulting in such a o
as virtually independent of k, unlike either (11) or (12).
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Atmospheric gravity waves (GW's hereafter) had drawn little interests among mete-
orologists, say, before 1970. Ionospheric people showed some interests in those events
in which GW cause remarkable disturbances named TID (Traveling Ionosphere Distur-
bance). GW’s, which are produced mainly in the troposphere, are so weak that they play
no significant role in tropospheric dynamics. However, GW’s travel upwards, growing
exponentially with the decreasing ambient air density and reaching tens of meters per
second in velocity. In the 1970’s people began to suspect that GW’s may play an impor-
tant role in the mesosphere. Around the end of the 1970’s a theory by Matuno (1982),
Holton (1981) and Lindzen (1981) predicted that GW’s, after growing to certain degree,
tend to break near the mesopause, whereby releasing their momentum against the local
wind, working as a dynamic brake. This dynamical brake can explain why winds tend to
weaken around a 80 km height as observed; Without this effect, winds should have been
indefinitely increased with height. Thus, GW'’s are regarded as to play an important role
in the middle atmosphere general circulation and became one of the most interesting sub-
jects in MAP. Temperature observed by remote sensing techniques from satellite cannot
be relevant because of inferior vertical resolution due to the technique and also inferior
time resolution due to satellite motion. We need on many occasions 1 km in rolution
along the vertical direction and a few minutes in time resolution which can be attained
only by MST radars. Among various MST radars now in operation over the globe, that in
Japan, named the MU radar to observe both middle and upper atmospheres, is outstand-
ing because it can steer the beam so rapidly by electronic phase-shifting, a characteristics,
which makes it possible to measure the GW structure instantaneously within the cone
suspended by 30 °from zenith. There are many studies on peculiar GW behaviors by MST
radars. The pioneering works around 1980 owes mainly to Balsley’s group in Boulder and
Rottger and Max Planck’s group in Lindau(e.g. Balsley and Gage, 1980). These works
will be discussed elsewhere through the present course.

We have now networks for global observation of the mesosphere dynamics consisting
of both MST radars, PRD radars and meteor radars. One of the unique cooperative ob-
servations has been done between Kyoto and Adelaide which are located at geographically
conjugate points at 35 °in lat. with respect to the equator. So far, tidal waves have been
successfully studied by this cooperation.

There are radars smaller in size mainly for stratosphere and troposphere observation
as at Sun-Set near Boulder constructed in the 1970’s (e.g. Green et al., 1979); they are
ST radars which may replace the conventional routine meteorological balloon observations
after distributed at many locations over the globe in future. They are fairly low in cost
of construction and can operate continuously and almost unattended.
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Rapid progress seen in radar atmospheric dynamics has been successful only by a good
cooperation among people of different disciplines especially between ionosphere radio-
physicists and meteorological dynamists. This cooperation will be essential for future
advancement in this field.

6 Future Radar Observation

Now the atmosphere is found to be one large and complicated system, each part coupling
with each others, both horizontally globally and vertically from the ground to the middle
and, further, upper atmosphere. Anthropological pollution has become serious problems
on atmospheric environments. Under the circumstance we need to understand the atmo-
spheric dynamics increasingly accurately with time. For this purpose, radars will present
useful and powerful techniques. These radars must be distributed globally making up an
effective and comprehensive network relevant for the purpose.

At present we have none of powerful radars in the equatorial region which is receiving
the maximum solar energy input driving almost the whole atmosphere in motion. Inter-
action of the atmosphere with the ocean there is also important but not well understood.
For completing a global radar network the powerful radar construction there is essential.
This is the Equatorial Radar Project which has been in planning mainly between Japan
and Indonesia. The Indonesian district is the most intensively convecting region together
with the equatorial Africa and the Amazon in South America. The MU radar, Adelaide
radars (PRD radar), Chung-Li radar (ST radar) and some other radars to come in the
Asian Sector will make up a very desirable network with this equatorial radar along the
Asian longitude. )

The planned system is very ambitious one (Fig. 5), able to measure the entire atmo-
sphere from near the ground to the ionosphere with an excellent resolution with a 300
m diameter of the antenna area and one MW power, beam-steerable by 20 °from zenith.
Beside the central radar, there will be meteorological radars together with other support-
ing facilities. This is the essence of the International Center for Equatorial Atmosphere
Research which we desire to be realized in the future. Good Luck for our future!



Fig. 5. Artistic view of the equatorial radar.
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Chapter 2

RADAR PRINCIPLES

Toru Sato

Radio Atmospheric Science Center
Kyoto University, Uji, Kyoto 611, Japan

1 Introduction

Radar is a general technique, which has a wide range of variability depending on the type
of targets to be measured. A radar can be designed to measure a bullet, while another
may observe a planet. The radio frequency spectrum employed also spreads out over
many decades.

The target of radars described here is the earth’s atmosphere. More precisely, it
is so called clear air echoes from the earth’s atmosphere produced by fluctuations of
atmospheric index of refraction. We will refer this kind of radar as the atmospheric radar
here. There is also a category of radar called weather radar, which observes precipitation
as its principal target. Although much is common, in principle, to the weather radar and
the atmospheric radar, we do not discuss the former here. Those who are interested in
weather radars are referred to standard text books such as Battan (1973) or Doviak and
Zrni¢ {1984).

It is possible for powerful weather radars to observe the clear-air echoes. Actually,
the name clear-air echo is given in the history of development of the weather radar to
classify echoes from unknown targets. Above mentioned text books also discuss about
the clear-air echoes in some details, but the major difference between their approach and
ours is simply that we discuss radars specially designed to observe the clear-air echoes.
As we will see later, this difference affects the choice of frequency, requirement on the
sensitivity, and the way data are processed. As a consequence, these two types of radars
often look surprisingly different.

Weather radar usually use frequencies of SHF band (3-30 GHz), while atmospheric
radars make use of much lower HF (3-30 MHz), VHF (30-300 MHz), or UHF (300 MHz-
3 GHz) bands. Antenna size of weather radarsis a few to about ten meters in diameter, but
an atmospheric radar may require a diameter of more than a hundred meters, depending
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on its target region. Operational atmospheric radars have antennas with diameter of 10—
300 m. Weather radars cover a wide horizontal area of up to several hundred kilometers in
radius by scanning their antenna with low elevation angle. Most of atmospheric radars,
in contrast, observe narrow angular range around the zenith, but with larger vertical
coverage than the weather radars. The hardware of atmospheric radars is examined in
detail in a separate chapter.

It should be noted that the atmospheric radars can, at least in principle, and often
in reality, also observe precipitation echoes, which is one of important applications of the
atmospheric radars.

Atmospheres of other planets can be, in principle, observed by a similar way as those
discussed here. However, the extremely large distance between the radar and the target
will cause many problems peculiar to such an application. It is also possible to design a
radar to observe clear-air echo on board the vehicles such as ships, airplanes, and satellites.
Additional Doppler shifts due to motion of the vehicles will be one of major problems, as
well as the problem of size limitations, in such cases.

In the following sections, basic characteristics of echoes are examined, and important
concepts concerning techniques of the atmospheric radar are introduced.

W e
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2 The Target

One of important features which make the atmospheric radar unique and different from
other kinds of radars is that it observes basically transparent earth’s atmosphere. We
examine here the nature of the atmosphere as a target of radar.

2.1 Vertical Structure of the Atmosphere

The target of the atmospheric radars is the entire earth’s atmosphere which extends from
the ground (or ocean surface) to the upper boundary of the atmosphere which is usually
defined as the highest region rotating together with the earth, whose height ranges from
20,000 km to 40,000 km. Of course, this upper boundary has not yet been observed
by means of radar, and only a few of existing radars can observe the atmospheric region
above 1,000 km height, most of others with much poorer sensitivity. The lowest observable
height, which is usually limited by the switching speed from transmission to reception,
ranges from a few hundred meters to several kilometers.

The atmosphere shows a significant variation in its nature even within this limited
height range of 0-1,000 km. The largest distinction is between neutral and ionized atmo-
spheres, which are roughly separated by a height of around 100 km. Below this height,
the atmosphere is treated as a neutral fluid, while ionized plasma plays an important
role above it. These two regions had long been studied independently, and it was widely
understood only recently that both can be studied with the same principle.

The other common way of dividing regions is the one based on the vertical structure of
atmospheric temperature. Figure 1 shows a typical temperature profile, which is a model
profile of mid-latitude equinox taken from the U. S. standard atmosphere (1976). The
right ordinate shows the atmospheric pressure in millibars. The atmosphere is classified
into 4 regions of troposphere, stratosphere, mesosphere, and thermosphere in ascending
order of height.

The troposphere is characterized by a constant decrease in temperature with height.
The lapse rate of the model is 6.5 K km~!. The main heat source for this region is the
solar radiation absorbed by the surface of the earth. Temperature ceases to decrease
at 10-15 km, at the tropopause. The height of the tropopause has a clear latitudinal
variation, being highest in the equatorial region and decreasing with increasing latitude.

The stratosphere is the region in which temperature increases with height. The stable
stratification of the air due to positive temperature gradient accounts for the origin of the
name of this region. Temperature reaches its maximum of about 270 K around 50 km
at the stratopause height. The heat source for this maximum is the absorption of solar
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ultraviolet radiation by ozone.

Temperature decreases again in the mesosphere until it reaches the minimum of 180-
190 K at the mesopause height of 80-90 km. The heat balance in this region is determined
by the radiative heating of molecular axygen and infrared radiative cooling of carbon
dioxide.

Above 80-90 km, the temperature increases monotonically with height to the limit of
1,000-2,000 K due to radiative heating of atomic oxygen etc. This region is called the
thermosphere in this nomenclature, but it also corresponds to the ionosphere in the above
distinction.

2.2 Radio Refractive Index

Characteristics of the atmosphere seen by radio waves in the absence of liquid water is
expressed in terms of the refractive index n. As is the case of optics, n is defined as

' (1)

n=

[ R,

where c is the speed of light in free space and v is the velocity of the radiowave in the air.
Macroscopic changes of n in space cause refraction or reflection, and microscopic changes
cause scattering, the latter being of major concern to the atmospheric radar.

Although we are interested in the fluctuations of n from its background, it is important
to examine what determines the background n. Major contributions to n at frequencies
of HF through UHF bands are expressed approximately as (Balsley and Gage, 1980)

h 1= 3.75 x 107 e + 7.76 x 107°P N,
- T? T 2N’

(2)

where e (mb) is the partial pressure of water vapor, P (mb) is the total atmospheric
pressure, T (K) is the absolute temperature, N, is the number density of electrons, and
N. is the critical plasma density.

The first term represents the contribution from water vapor. As is well known, the
water molecule has a dipole moment, which varies with frequency. At extremely high
frequency of visible light, only the polarized electric field of the water molecules counts
for the refractivity. At lower frequencies of radiowave, the water molecules are not only
polarized but they also reorient themselves rapidly enough to follow the changes of electric
field. As a result, the contribution of the water vapor to n is greater for radio than for
optical frequencies (Battan, 1973).

Above the tropopause height of 10-15km, the partial pressure of water vapor becomes
negligibly small. The second term due to dry air becomes dominant at this region. Since
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the major constituents of the earth’s atmosphere, N, and O3, do not change their mixing
ratio largely throughout the middle atmosphere of up to around 100 km, the coefficient
stays unchanged. Ubnlike the first term due to the water vapor, this term is frequency
independent, being the same for light and radio waves.

While these two terms concern the neutral atmosphere, the third term gives the con-
tribution from free electrons. This term is negligible below about 50 km, but is dominant
at ionospheric heights of above around 80 km. It should be noted here that Eq. 2 gives
an approximation valid only when N, > N,, and the effect of the third term is expressed
more precisely as

n=y/l- & (3)
N
The critical electron density N, thus determines the condition with which total (or perfect)
reflection occurs in the ionosphere. It is given in MKS units by

Ne

1.24 x 1072f2, (4)

where ¢, is the dielectric constant in free space, m, and e are the mass and the charge of an
electron, respectively, and f is the radar frequency (e.g., Stix, 1962). The electron density
N, in the ionosphere usually takes its maximum value of 101-10'2 m=3 at 200-400 km
height. If N is smaller than this maximum, the radiowave is reflected at some height
where the condition N, = N, is met. Otherwise, the entire energy associated with the
radiowave is radiated out of the earth’s atmosphere except for a tiny fraction absorbed or
scattered by the atmosphere. Under most of ionospheric conditions, N, is larger than N,
at all heights for frequencies of VHF or higher. '

Figure 2 shows a typical variation of these three terms with height. The pressure
and temperature are taken from the U.S. standard atmosphere (1976). The saturation
pressure is used for the water vapor. The electron density is adopted from Mechtly et al.
(1972).

2.3 Fluctuations of the Refractive Index

In the absence of total reflection, scattering from fluctuations in the refractive index
n-dominates the received echo of the atmospheric radar. Statistical fluctuations of the
electron density due to random thermal motion of electrons and ions can be strong enough
in the ionosphere to cause detectable scattering. This component is called incoherent
scattering because scattered wave from individual electrons are random in phase, so that
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they add up incoherently. Received echo power is then proportional to the number of
electrons illuminated by the radar.

Fluctuations due to atmospheric turbulence is known to be the major source of scat-
tering in the lower and the middie atmosphere. This component is often called coherent
scatlering in contrast to the incoherent scattering in the ionosphere. The main difference
of the coherent scattering from the incoherent scattering is that the fluctuation of n is
caused by macroscopic motion of air parcels, each of which contains a large number of
molecules and/or electrons which contribute to the scattered electric field coherently in
phase. As a result, the scattered echo power is roughly proportional to the square of the
number density of scatterers instead of the linear proportionality of the incoherent scatter-
ing. This substantial enhancement in the echo power is the basis for the MST (Mesosphere
Stratosphere Troposphere) radars being able to observe the neutral atmosphere with a
relatively small system compared to powerful incoherent-scatter radars.

A large difference of the atmosphere from other targets of radars is its distributed
pature. While usual targets as airplanes, ships, cars, or missiles, which are referred
to as hard targels based on their physical nature, have clear boundary, which enables
identification of the target, it is usually absent in spatial distribution of the echo from
the atmosphere. It is thus necessary to distinguish parts of the atmosphere by means of
spatial coordinates of direction and range. This type of target is often called as the soft
target.

A direct consequence of this limitation, for example, is the fact that decreasing the
size of identified volume in order to improve spatial resolution results in a decrease in the
echo power, and thus a decrease in sensitivity. On the other hand, the rate of decrease
of the echo power with increasing range to the target is much slower with the soft target
than with the hard target, because the volume, and thus the size of the scatterer, usually
increases with increasing range in case of the soft target.

Mathematical relations which determine the strength of the echo are derived in the
following section.
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3 The Radar Equation

In designing a radar system, we first need to know how strong the echo of interest is. We
will derive a relation between transmitted and received power, called the radar equation,
for various situations which concern observations with the atmospheric radar.

3.1 The Radar Equation for a Hard Target

Before discussing the scattering from fluctuations in the radio refractive index, let us
first examine a simpler case of the scattering from an isolated hard target located in free
space. Suppose we transmit radiowave of power P, out of an omni-directional antenna
which radiates the power into all directions with uniform strength. The density of the
power P, passing through a unit area located at a point sufficiently far from the antenna
and perpendicular to the direction of propagation is given by
P
P T (8)
where r is the distance of the point from the transmitting antenna. The antenna used for
a radar usually has a strong directivity with which a narrow region can be illuminated
selectively. The above equation is thus modified as
PgGg
i = ’ 6
4nr? (6)
where G, is the directional gain, or simply, the gain, of the antenna, which is a function
of the azimuth and the zenith angles.

We now consider a target located at this point which intercepts the power and scatters
it into various directions. The density of the scattered power P, per unit area at a distance
' from the target is expressed in terms of the scattering cross section o of the target as

__R
*T 4

a, (7

where o is defined as an effective area of the scatterer, the power illuminating which area is
scattered isotropically. It should be noted that an alternate parameter of the differential
scattering cross section o4 = of4w which expresses the scattered power per unit area
and per unit solid angle is also used often, and occasionally the difference is not clearly
mentioned.

It is known, for example, that a perfectly conducting sphere with a radius much larger
than the wave length of the radar has a scattering cross section equal to its physical cross
section (e.g., Skolnik, 1980).
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If we receive the scattered power with an antenna which has a capability of collecting
_ all power passing through an effective area A., the received power P, is expressed as

P, = PA.L, (8)

where L is the loss factor which represents various attenuation of the received signal due
to antenna, transmission line, connectors efc. By combining Egs. 6-8, we obtain
PGiA.L
" T [@rr2)drr?) 7

This equation gives the received echo power from a given target by a radar, and hence
is called the radar equation. We have so far considered a general case in which the
transmitting and the receiving antennas are not the same. Although this type of radar,
which is called the bistatic radar, or the multi-static radar in case there are more than
one receiving antennas, is used in reality for some applications, it is much more common
to use the same antenna both for transmission and reception for simplicity. This type of
radar which uses a single antenna is called the monostatic radar, and we will limit our
discussion below to this type of radars.

The two parameters G, and A, used in the above equations seem to indicate, at a
first look, distinct properties of an antenna. There is, however, a useful universal relation
known between the two (Silver, 1951), which is

47 A,
“="

(9)

(10)

where A = ¢/f is the radar wavelength. Although A, is a function of direction since G, is
so, it is implicitly assumed that the antenna beam of the radar is pointed to the direction
of the target, so that both G, and A, take their maximum value.

" For a monostatic radar, the radar equation thereby reduces to

PAZL
= ——0. 11
" 4n )P (1)
This equation gives the basis for radar system design of choosing appropriate transmitter
power P, and effective antenna area A. for a given target with a scattering cross section

o at aranger.
The minimum detectable power F, is limited by the noise power P, which contaminates

the received signal from the target. In most cases, the dominant component of the noise is
the white noise which is defined as a random time series of signal with a uniform frequency
power spectrum within the receiver bandwidth B. The power of white noise produced by
a resistor at a temperature T and for a given bandwidth B is given by (Dicke et al., 1946)

P,=kTB (12)
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Fig. 3. The sky noise temperature versus frequency (after Skolunik, 1970).

where k is the Boltzmann constant (= 1.38x10"2 WsK™1).

Since this formula can be applied to any type of white noise, it is common to express
the noise power of the radar in terms of this equation where T is called the eguivalent
notse temperature. This noise temperature represents all kind of noise sources, and is
decomposed as

T=TL+T, (13)

where T, is the sky noise temperature due to cosmic, solar, and atmospheric radiation, L
is the loss factor, and T, is the noise power generated by the receiver itself. The sky noise
temperature varies largely depending on the radar frequency and also on the direction of
the antenna beam. Figure 3 illustrates it versus frequency (after Skolnik, 1970). Solid
curves are for various elevation angle @ of the antenna beam direction for geometric-mean
galactic temperature, sun noise ten times quiet level, sun in unity-gain side lobe, cool
temperate-zone troposphere, and 2.7 K cosmic black body radiation. The upper dashed
curve is for maximum galactic noise at the center of galaxy, sun noise 100 times quiet
level, zero elevation angle, and other factors the same as for the solid curves. The lower
dashed curve is for minimum galactic noise, zero sun noise, and elevation angle of 90°.
The maxima at 22 and 60 GHz are due to water-vapor and oxygen absorption resonances.
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3.2 The Radar Equation for Distributed Targets

The radar equation derived above applies to a single target. If there are more than one
target in the same volume V of the air observed by a radar, the received electric field is
expressed as the sum of the electric field components caused by individual scatterers. For
a situation where they are random and have no correlation between each other, the total
received echo power becomes the sum of the echo power from individual scatterers. In
this case, the scattering cross section ¢ in Eqgs. 7, 9, and 11 are simply replaced by Zo. If
the number of scatterers is very large and if scatterers are distributed uniformly in space,
o increases linearly as V increases. It is thereby suitable to define the volume reflectivity

7, or the scattering cross section per unit volume as
do

It should be noted that 5 has a dimension of [m~'] unlike the ordinary reflectivity, which
is dimensionless.

This situation applies, for example, to the incoherent scattering due to free electrons
in the ionosphere observed with a sufficiently high frequency of above about 1 GHz, for
which the volume reflectivity is given by

n= Nco., (15)
where o, is the scattering cross section of an electron, which is given by
e4
% = 4medm2ct (16)

9.98 x 107%® (m?).

The condition sufﬁp:gntfy high frequency’ is necessa.ry because otherwise interactions
between electrons and ions through the Coulomb forces modi fy significantly the motion
of the electrons reacting to the radar wave field. For a sufficiently low frequency of VHF
and lower UHF bands, an extra coefficient of 1/2 should be multiplied to the right-hand
side of Eq. 15 (Fejer, 1961).

This type of approach based on a microscopic viewpoint is practical only for idealized
situations as discussed above. We need to treat the problem from a more macroscopic
viewpoint of regarding scattering as due to fluctuations in the refractive index n in order
to discuss the cross section of the neutral atmosphere. Here n is a continuous function of
space, and represents all of the effects caused by scatterers.

The scattered power P, produced by small fluctuations of the refractive index An is
expressed formally as (e.g., Dovia.k and Zrnié, 1984)

P = 7r2r2 l/ Anexp(i2k - r)dV (17)
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where k (= 27/)) is the radar wavenumber, k is the propagation vector, and r is the
radius vector to a point in the scattering volume. By comparing Eq. 17 with Eq. 7, and
applying Eq. 14, we obtain

4
n = %C (18)
C = %(l/v Anexp(i2k - r)dV 2)

where () denotes an ensemble average. Although this equation gives a universal expression
for the scattering cross section and the volume reflectivity, it is not easy, in general, to
perform the integration to determine C. Specific results will be presented in a separate
chapter.

For a uniformly distributed target, V is determined by the spatial resolution of the
radar. Namely, for a radar with a circular antenna, it is expressed in terms of the half-
power beam width of the antenna 6y, in radians, and the size of the range cell Ar, which
is examined in the next section, as

6
V=rn 'T")?Ar. (19)
The beam width of the antenna has a direct relation with the gain of the antenna G\
because both of these parameters express the degree of concentration of the transmitted
power of the radar in space. Probert-Jones (1962) expressed the relation as

Ta
Ge=(3)% (20)
b
where a is a non-dimensional factor which concerns the non-uniformity of illumination of
the antenna. Combining this equation with Eq. 10 we obtain

al
O = — ad
h De (I' )7 (21)
where D, is the effective diameter of the antenna given by /4A./7. For a circular array
antenna with uniform excitation for which D, is roughly equal to the physical diameter
of the antenna, @ = 1 gives a good approximation.
With the aid of Egs. 10, 19, and 20, the radar equation Eq. 11 can be rewritten for

distributed targets as
_ P.A.ma?ArL

P =
64r2
Comparison of this equation with Eq. 11 for a hard target immediately reveals a

(22)

few of interesting features of the scattering from distributed targets. First of all, the
proportionality of the received echo power on the range r is to the square, not to the
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forth power as is the case for a hard target. This means that the echo power decreases
relatively slowly with increasing r, as mentioned in the preceding section.

Secondly, P, depends only linearly on the effective antenna aperture A,. While the 4?
factor in Eq. 11 counts for the antenna gain both for transmission and reception, the linear
dependence in Eq. 22 can be interpreted that all of the radiated power is intercepted by the
distributed scatterers, and thus the antenna gain does not count during transmission. It
should also be noted that Eq. 22 does not contain any factor which contains a dependency
on the radar frequency. These properties makes the power aperture product P, A. a good
indication of the sensitivity of an atmospheric radar.

Finally, the Ar term in Eq. 22, which does not appear in Eq. 11 means that any
attempt to improve the range resolution of an atmospheric radar should be made at an
expense of reduced sensitivity.

3.3 The Radar Equation for Specular Echoes

We have so far considered two extreme cases of a single target and uniformly distributed
target. Although it is not the purpose of this chapter to get into details of various
scattering mechanisms, let us examine a few more cases for which the radar equation
takes alternate forms.

The first example is the Fresnel (or partial) reflection induced by a horizontal layer
which has a slightly different refractive index from that of surrounding air and extends
over a sufficiently wide area. This layer can be treated like a planar mirror, but with
a small reflectivity p for incident electric field (Friend, 1949). Note that p here is the
reflectivity in an ordinary sense which has no dimension, and has a complex value of
lol < 1.

The derivation of the radar equation for this case is rather simple, because we can
consider the case to be a one-way transmission from an antenna to its mirror image
located at a distance 2r, with an extra power loss factor of [p|2. Figure 4 shows the
situation schematically. The received power is thus given by

PG,
47(2r)?

PA2L, ,
LA

P = AeL'plz

(23)

Although the echo power depends on the range by r? like the case of distributed targets, it
is proportional to A2/)? like that of a hard target. One of important aspects of the Fresnel
reflection is its aspect sensitivity. The above equation assumes that the antenna beam is
directed perpendicular to the layer, for which the received echo takes its maximum value.



il

3

mirror image

Fig. 4. Equivalent ray path for the Fresnel reflection. The dashed lines denotes
the mirror image of the radar due to the layer.

The echo power falls off rapidly as the angle of the antenna beam is changed from this
position. The rate of decrease is a function of the beam width of the antenna, and can be
readily computed by considering the relation between the transmitting antenna and its
mirror image due to the layer. It is not so easy, however, to calculate this function when
the layer has some roughness of the order comparable to or larger than the wavelength.
Such situation needs a more rigorous treatment based on Eq. 17.

We next examine a case where the scatterer has a linear shape in space. The most
important application of such case is the reflection from meteor trails which appear at
around 100 km height. Meteor trail is a strong localized ionization produced along a path
of a meteor caused by the frictional heating when it penetrates into the earth’s atmosphere.
Since the echo is strong enough to be detected with relatively low sensitivity radars, it
has been extensively studied (e.g., McKinley, 1961). There is a category of atmospheric
radar called the meteor radar which makes use of the meteor echoes to investigate the
dynamics of the lower part of the ionosphere.

The scattering element in this case is an electron as is the case for the incoherent
scattering for which element the radar equation is given in the form of Eq. 11 by

= I’ (24)

Py
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Fig. 5. Coordinates for deriving the effective length I, for scattering from a meteor trail.

Unlike the case of incoherent scattering where contributions from individual electrons
add up randomly, scattered electric fields from electrons aligned in space have a strong
coherence. Since the effective diameter of the meteor trail which affects the scattering is
shorter than the wavelength of meteor radars, we can safely assume that all electrons are
aligned on one line with a line density of g. (m™'). We also assume a straight line without
any curvature for simplicity, and that the line is located sufficiently far from the radar.
Electric-field contributions from electrons at distinct points on the line have similar
amplitude, but have various phase. We introduce an idea of the effective length defined
by -
l.= I/;w exp{—i2k(r' — r)}ds|, (25)

where r is the distance of the line from the radar, and ' is the range of a line element
ds on the line. Figure 5 shows the coordinates. The idea is to represent contributions
from all parts of the line which have distinct phases by an effective length in which
contributions are assumed to have the same phase at the receiving antenna. By making
an approximation r’ — r ~ s2/(2r) where distance s is measured along the meteor trail
from the perpendicular point, we obtain

rA
l.= > (26)

Since the number of electrons within . is l.q., and since the electric fields of scattered
waves from these electrons have the same phase, the total echo power is given by

P

(leQe)zprO
P;AELU 2
BaArd el

(27)
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This equation has a range dependence of r~2 which lies between the cases of a hard target
and distributed targets.

3.4 Near Field Correction

In deriving these radar equations, we have assumed that the target is located at a point
‘sufficiently far’ from the radar without giving any explicit reason or quantitative limit
for it. Here we examine how large should be the range r in order that equations we have
derived are valid, and what happens within this limit.

The antenna of an atmospheric radar is, whether it is an dish antenna as a paraboloid
or an array of Yagi’s or half-wave dipoles, designed to form a beam of the transmitted
wave as sharp as possible, because it is the condition to maximize the gain G, and effective
area A, as shown in Eqgs. 20 and 21. In order to make the beam sharp, it is essential to
produce a planar wavefront over the antenna aperture to the extent as wide as possible.
The transmitted wave thereby propagates as a plane wave at a distance near the antenna
without changing its outer boundary which keeps the shape of the antenna aperture. As
it propagates further, it gradually spreads out into a conical region and finally forms a
spherical wave with its center located at the center of the antenna aperture.

The region where the wave can be regarded as a planar wave is called the near field
of the antenna, while the region where it is a spherical wave is called the far field In
another word, the far field is a region from which the antenna can be seen as a point.
This condition is stated mathematically that the distance of a target point measured from
any point on the antenna aperture falls within a difference sufficiently smaller than the
wavelength.

Conventionally, the boundary between the near field and the far field is defined as a
range where the cylinder with a diameter equal to the diameter D of the antenna intercepts
the cone with an angle 8, and with its apex located at the center of the antenna as shown
in Figure 6. This range r, is given by

To= -1 (28)

at which the difference of the distance measured from the center and from an outer edge
of the antenna aperture becomes A/8. As is shown in Eq. 28, r, is a function of the
diameter of the antenna and the radar frequency. The largest value of r, associated with
the existing atmospheric radars is 129 km for the Arecibo UHF radar, which operates at
430 MHz and has an antenna with a diameter of 300 m. All regions of the atmosphere
except the upper ionosphere falls within the near field for such case. On the other hand,
r, is much smaller for VHF radars. The MU radar of Japan, for example, operates at
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Fig. 6. A conventional definition of the boundary between the near field and the far field.

46.5 MHz and has a 103 m antenna, for which r, is only 1.6 km. Since the minimum
height (or range) that the MU radar can observe is about 1.5 km, the far field condition
almost always holds. -

In the near field of an antenna, Eq. 6 should be thereby rewritten as
P
i
Also, Eq. 8 should be modified because the phase differences of the received waves on
different parts of the antenna aperture, which differences cause interference and thus

P= (29)

reduction of the echo power, is important for the case of the near field. The effective
area A, should then be replaced by an area which represents the effect of adding waves
with different phases. This area is obtained by a consideration similar to that of Eq. 26
for the effective length of the reflection from a meteor trail, and is given by #Ar/4. This
area also agrees with that of the first Fresnel zone which is defined as a zone on a plane
in which a wave radiated from a point sourte arrives with a phase difference of less than
x /2. Figure 7 shows the situation schematically. Thus Eq. 8 becomes '

PrArL
P = '“4 r . (30)
With Eqs. 29 and 30, the radar equation for a hard target Eq. 11 is rewritten as
PAL
P, = 'erJO'. (31)

The most striking feature of this equation is that the received power is inversely propor-
tional to the effective area of the antenna, meaning that a smaller antenna gives a stronger

[l
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Fig. 7. Scattering due to a hard target within the antenna near field.

echo than a larger one. This is due to the fact that the power density of the transmitted
wave is higher for smaller antenna as far as the target is within the near field. It should be
noted, of course, that the upper boundary r, of the near field also decreases as the size of
the antenna is reduced. The other important difference is that the echo power decreases
only by r~! with increasing range r in contrast to the very steep r~* decay shown by
Eq. 11.

Similarly, the radar equation for distributed targets Eq. 22 can be modified for the case
of the near field. Besides the corrections we have made, the scattering volume expressed
by Eq. 19 should also be changed as

V = A.Ar. (32)

Applying Eqgs. 14 and 32 to Eq. 31, we obtain the radar equation for distributed targets

within the antenna near field:
_ PgATALT’

=

16r
Note that this equation contains no dependence on the antenna size parameter. What
Egs. 31 and 33 tells us is that increasing the size of the antenna in order to improve the

(33)

sensitivity of the radar works only for targets outside the near field of the antenna.

In section 3.3, we also made an implicit assumption that the effective size of the target
for specular reflections, which is determined by phase coherence of the scattered electric
field, is smaller than the lateral dimension of the beam at that range. It can be shown
that the range at which I, for the meteor trail becomes the same as the beam size is
coincidentally given by r,. The /T dependence of l. thereby verifies the use of Eq. 27 for
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r > ro. A similar condition r > r,/2 can be derived for the validity of Eq. 23 for Fresnel
reflection by considering the condition that the size of the first Fresnel zone of the mirror
image becomes larger than the size of the antenna.
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4 Basic Techniques

The radar equation derived in the previous section tells us the intensity of echo, which
is essential to estimate the necessary transmitter power and the antenna aperture, but
nothing more. In this section, we briefly survey basic techniques used in the atmospheric
radar in determining the range of desired target and also in deriving other information
concerning the target. Details of individual technique will be discussed in following chap-
ters.

4.1 Pulsed Waveforms

Ranging, or measurement of the range to a target, is one of important functions of radar.
We, again, start with the case of observing a hard target. The ranging is made by mea-
suring the time delay of the received echo from the target with respect to the transmitted
signal.

As far as the refractive index n satisfies |n—1| < 1, speed of the radio wave can be well
approximated by that in free space as shown by Eq. 1, the error of which approximation
is given by Eq. 2. In the lower and the middle atmosphere of below about 100 km,
[n—1] < 1073 as shown in Fig. 2, thence the error is negligible for all practical applications.
The error becomes larger, however, in the ionosphere of above 100 km depending on the
frequency f and the electron density N, as shown by Eqs. 3 and 4. At a relatively low
frequency of 50 MHz, for example, the maximum value of n — 1 during daytime reaches
~ —0.02 at around the peak height of F2 region of 200-300 km. A care must be taken
of this error for an accurate ranging of a hard target above the ionospheric height using
lower VHF band. For oblique beam waves, refraction of the ray path is not negligible
either under such condition.

Assuming n = 1, the range r of a stationary point target is given by
cr
2
where 7 is the time delay of an echo. In order to measure this time delay, we need to add
some ‘feature’ to the transmitted wave so that a part of the wave can be identified from
others. Although there are a variety of ways to do this, many of which are of practical
use, the simplest and most widely used way is to transmit a short pulse of a waveform

T =

(34)

E,sin(2nft) (0 <t < AY)

) (35)
0 (t<0, t>AL)

E(t) = {

where E, is the amplitude of the electric field of the wave. It should be noted that it is not
common to use such an idealized waveform in a real radar because of various restrictions,
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so that the amplitude E, is usually a smoother function of time than this one. When
we transmit a pulse of length At sec, we receive the echo from this pulse for a duration
of At sec right after a 7 sec of delay. Since we measure the delay in terms of the range
according to Eq. 34, this duration is interpreted as if the target has a finite length

At
Ar = CT (36)

in the radial direction, which length is called the range resolution.

It is thereby necessary to reduce At in order to improve the range resolution. Un-
fortunately, however, there is a conflicting relation between the length of the pulse and
its frequency bandwidth. For a rectangular pulse waveform of Eq. 35, the half-power
frequency bandwidth B is given by

0.886
B=="5"

Since the receiver should cover this bandwidth, the noise power contaminating the echo

(37)

increases linearly as increasing B as shown by Eq. 12, thus resulting in a linear decrease
of the signal-to-noise ratio, which is, as a consequence, proportional to At.

This dilemma can be solved by means of pulse compression which allows a radar to
utilize a long pulse without sacrificing the range resolution. The basic idea of the pulse
compression is to put extra features within the long pulse so that each part of the pulse
can be identified, which idea is just the same as the one used above in introducing the
pulsed waveform. This is realized, in this case, by applying further modulation to the -
already pulse-modulated waveform. Among various ways of modulation, binary phase
modulation (or coding) is most widely used for the atmospheric radar application. This
form of pulse compression is performed by sending N consecutive pulses with the phase of
carrier wave 0 or # different from that of the first pulse. The advantage of utilizing only 0
and 7 of the phase is that they can be interpreted as plus and minus signs of the envelope
E,, so that no special hardware for phase modulation and demodulation is required. Each
component pulse of length At is referred to as a sub-pulse of an N-element coded pulse of
length NAt. The choice of the time series of phases (0 or ) is a subject of mathematical
considerations, and will be discussed in details in a separate chapter (see, for example,
Nathanson, 1969, or Skolnik, 1980 for reference).

Here we choose a random phase coding as an example, with which sub-pulses have
random and independent phases with each other. The received signal time series from
a stationary point target is a weakened and delayed copy of the transmitted time series,
which is a series of pulses with a random sequence of signs. We can ‘compress’ the received
signal by displacing sub-pulses to the position of the first sub-pulse with corrected phase,



41

/

At sample t

transmission’

Fig. 8. Time-height section showing the relation of the size of a range cell and the
length of a pulse for distributed targets.

and by adding them together. Mathematically, this procedure is expressed as taking the
cross-correlation of the transmitted and received time series. This procedure enhances the
signal power, which has equal phase for all sub-pulses, by N? times, while the statistically
independent noise power only by N times, thence the signal-to-noise ratio by N times.

Since the phases of sub-pulses are random, the entire pulse has the same bandwidth
as that of each sub-pulse. The range resolution also stays unchanged because the cross-
correlation disappears outside an interval of At due to random phases between adjacent
sub-pulses. As a summary, N-element binary phase compression improves the signal-to-
noise ratio by N times compared to a single pulse of length 1/N, without changing the
range resolution.

We now consider the case of distributed targets. If the distribution is uniform with
range, the received echo power decreases with the time ¢ after transmission of a pulse
as =2, which simply reflects the r~2 dependence of the radar equation through Eq. 34.
The object then becomes to determine the nature of the target at a given range, instead
of détermining the range of the target. The meaning of the range resolution also should
be changed from the ambiguity in determination of the range of a target to the radial
size of scattering volume which contributes to the echo at a given time. Actually, the
range resolution Ar given by Eq. 36 corresponds to the difference of the range of echoes
returned from the leading and trailing edges of a pulse of length At at the same time of
receiving as shown in the time-height section of Figure 8. It is thereby appropriate to call
Ar as the size of a range cell as already quoted in Eq. 19. Echoes from distinct ranges
can be obtained by sampling the received signal at an interval of ~ At. A sampling
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interval of less than At produces overlapping regions between the samples, while a spars
sampling results in missing regions. It is therefore common to sample at an interval just
equal to At. The sampled time series provides a range (or usually, height) profile of the
atmosphere. We should note that the impulsive sampling intended by Fig. 8 does not
represent a realistic situation where the receiver has a bandwidth equal to that of the
transmitted pulse. In this case, an instantaneous sample of receiver output contains the
echo spreads over a duration of At. Although this effect broadens the range cell from a
rectangular shape of width Ar into a triangular one of width 2Ar, the *half-power’ size
of the cell is still given by Ar.

As we have seen, the signal-to-noise ratio is proportional to the length of pulse At
for the case of a hard target. For the case of distributed targets, we need to take into
the account the linear proportionality of echo power on Ar as shown in Eq. 22, which
represents the number of scatterers in a range cell. The signal-to-noise ratio thus becomes
proportional to At?, setting a severe restriction in improving the range resolution. For
example, dividing a single pulse into N sub-pulses with binary phase coding improves the
range resolution by N times without sacrificing the signal-to-noise ratio of a hard target,
while the same alteration offers the same improvement only at an expense of a reduction
of the signal-to-noise ratio to 1/N for the case of distributed targets.

4.2 The Doppler Principle

We have so far concentrated our attention only to the echo power. Physical meaning
of the echo power is, however, clear only for the case of incoherent scattering from the
ionosphere, for which case it can be interpreted in terms of the electron density. It is
difficult to make use of the echo power from the lower and the middle atmosphere in a
quantitative manner in terms of physical parameters of geophysical interests. »

The Doppler shift of the echoes, on the other hand, has a great importance for these
regions as well as for the ionosphere, because it is directly related to the motion of the
target, which is wind. The Doppler frequency shift of echoes from a moving target relative
to the radar is given by

fa= 7Ud, (38)

where v, is the line-of-sight component of velocity vector v of the target relative to the
radar.

Since the maximum velocity encountered in the atmosphere is on the order of 100 ms™,
|fa] < 1 kHz for any frequency f of less than 1 GHz. A typical value of fq for 50 MHz band
is, for example, around 3 Hz, which corresponds to a line-of-sight velocity of 10 ms™!,
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Bandwidth of transmitted pulses is, on the other hand, 100 kHz-1 MHz corresponding to
the minimum length of sub-pulses of 1-10 us. It is thereby very difficult, if not impossible,
to detect such small Doppler shift of a pulse relative to its bandwidth from each received
pulse.

Instead, the method of time-series analysis is applied to the series of received signal
from consecutive pulses at the same range. If a stationary target is observed, all received
pulses should have the same phase relative to the transmitted pulse. It is then interpreted
that the received time series has the DC component only, which means that the Doppler
shift is zero. Next we suppose that the target is moving at a sufficiently slow speed of
vq in the radial direction so that it does not move out of a range cell into the next one
within the period of interest. We examine samples of echoes obtained at the same range
cell from adjacent pulses separated by an inter-pulse-period (IPP) of T. Then the phase
difference A¢ between the two samples is given by

A= 2nfyT = T

Ud. (39)

This equation can be applied not only to a hard target but also to distributed targets as
far as they move with a mean speed of vq. The phase difference can be determined from
a pair of pulses, while the Doppler frequency shift f4 can be directly derived by a spectral
analysis of the time series of samples taken from many pulses.

A limitation of this method arises from the requirement |A¢| < 7 so that f4 can be
determined without ambiguity, together with the one T > 2rnyay/c which comes from the
restriction that we cannot transmit a new pulse before receiving the echo of the previous
pulse from the longest range rmax of interest. By combining these two requirements, we
obtain 2

Jd|Tmex < 553 (40)

8f

which gives the condition that both the range and the velocity of a target can be de-
termined unambiguously. Since the quantities on the left-hand side of this equation are
limited roughly by 100 ms™! x 100 km = 107 m?s~!, this condition is usually satisfied for
a frequency of below about 1 GHz, which is the frequency used for atmospheric radars.

Considerations made above assumes that the echo is perfectly correlated in time, which
assumption is not valid for the case of the atmospheric radar, where echoes have finite
correlation time 7. due principally to random motion of scatterers within a scattering
volume. This correlation time is inversely proportional to the spectral broadening due to
the random motion and other observational effects, and given by

T_i_ be
C—U{—Qfav,

(41)
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where o¢ and g, denote the standard deviation of the random motion in terms of Doppler
frequency and radial velocity, respectively, and b is a numerical coefficient of order unity
which is determined by the velocity distribution of the random motion. For a Gaussian
distribution, b = 1.18.

The value of o, differs largely depending on the height, since it is the order of mean
thermal motion of ions of more than 1 kms~! in the ionosphere, while it is the mean
velocity of turbulent eddies of the order of 1 ms~! in the lower and the middle atmosphere.
For ionospheric observation, for which o, » v4, the v4 term in Eq. 40 should be replaced
by oy, which determines spectral width and thus the minimum sampling interval. It is
easily understood that the condition for unambiguous sampling is then no more satisfied,
meaning that spectral information of the scatterers must be derived within an interval of
order of 7.. A special technique called multi-pulse method was developed for ionospheric
observations, and has been widely used (e.g., Farley, 1969).

4.3 Velocity Field Measurements

As shown in Eq. 38, velocity of targets measured by a radar with the Doppler technique
is a line-of-sight velocity, which is the projection of velocity vector to the radial direction.
We will briefly examine here two distinct techniques of determining the three components
of the velocity vector: the Doppler- Beam-Swing (DBS) method and the Spaced- Antenna-
Drifts (SAD) method.

The DBS method makes use of multiple antenna beams each of which is oriented to
observes the radial velocity at a different direction. The velocity vector is computed from
the line-of-sight velocities from these directions. Here we need to make an assumption
that the velocity field is uniform in space over the volume which contains the range cells
used to compute a velocity vector. In the atmospheric radar application, it is common
to determine a velocity vector from line-of-sight velocities of range cells with the same
height assuming the uniformity only in the horizontal plane, so that a height profile
of the velocity vector can be obtained. This is because the horizontal velocity is usually
much larger than the vertical velocity in the stratified earth’s atmosphere, thus making the
horizontal uniformity of the velocity field much better than in the vertical direction. Also,
the fact that the zenith angle of antenna beams is usually kept within about 30°supports
this assumption, in contrast to the case of weather radars, which use almost horizontal
beam directions,

The line-of-sight component of the wind velocity vector v = (v, v,,v,) at a given
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height is expressed as

Vg = v-i

v, c080, + v, cosfy + v cosb,, (42)

where i is a unit vector along the antenna beam direction, and 6., 6,, and d;, are the angle
between i and the z, y, and z axis, respectively. If we measure v4 at three beam directions
i1, iz, and i3 which do not constitute a plane, we can obtain an estimate of v as

-1

cosf,y, cosby, cosf: Va1
V= COSGZQ, cos 9y21 co8 0:2 V42 . (43)
cosf,3, cosb,s, cosf. Va3

If we observe more than three directions, then the estimate of v can be determined in
a least-squares manner, with which the residual given by the following is minimized:

2 (v, €08 B, + v, c0s8y; + v, €08 0,5 — vai)?, (44
v v 14

s

|
—

€

L
where m is the number of beam directions. The necessary condition for v to give the
minimum is that partial derivatives of €2 with respect to all three components of v are

zero:

ac? .
im0 (=nu2) (45)
This set of equations can be solved in terms of v as
T cos? 8,4, Y cosf,; cosby;, T cosbicosl; -t S vgi €08 Bz
v=| X cosb,cosb, T cos? b, 3 cos By cos b T wvgicosfy |, (46)
3 cos8,;cos8,, T cosb,;cosby, T cos? b, T vg; c0s b,

where the summations are taken for i = 1 to m.

A special case of this type of multi-beam measurements called the Velocity-Azimuth
Display (VAD) method, which uses beam directions with a fixed zenith angle # and
uniformly distributed azimuth angles ¢;. The line-of-sight velocity va of Eq. 42 is then
rewritten as

vgi = vy sin @ sin{¢; + B) + v, cos b, (47)
where v, and g are the amplitude and the direction of the horizontal component of r,
respectively, and given by
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Fig. 9. Coordinates of the Velocity-Azimuth Display method (left panel), and an
expected variation of the line-of-sight velocity vy as a function of azimuth ¢ (right

panel}.

Figure 9 illustrates coordinates of the VAD method and an expected variation of v4 as
a continuous function of azimuth ¢. The thin curve on the right panel represents a case
where the horizontal component of the velocity is toward the r axis, and the thick line
shows a general case.

As understood from this illustration, the vertical component of the velocity is indi-
cated by the DC component, and the horizontal component by the amplitude and the
phase of the sinusoid. The fitting procedure given by Eq. 46 thereby reduces to fitting
a sinusoid with a DC offset to line-of-sight velocities plotted versus azimuth angle. Any
inhomogenuity of the velocity field is indicated by deviations of the curve from a sinusoid.

Although there is nothing superior, in a mathematical sense, of the VAD method
compared to other choices of beam directions, there are practical advantages which made
the method popular: First, this method is suited for radars with a mechanically steered
aperture antenna, of which azimuth and zenith angles are often driven separately. This
is the case for most of weather radars, although it is not for phased-array antennas with
electrical or electronical steering often used for atmospheric radars.

Secondly, quality of data is readily visualized on a display without numerical compu-
tations. Systematic error due to an undesired hard target at some direction, for example,
can be picked up easily by human intelligence, but it may require an elaborated software

for a computer to find it out.
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Thirdly, a systematic error due to specular echoes from the vertical direction can be
avoided with the VAD method by choosing the zenith angle @ properly. The specular
echoes from horizontally stratified layers often dominate over isotropic scattering from
turbulence (Gage and Green, 1978, Rottger and Liu, 1978), which make the apparent
zenith angle of the antenna beam direction smaller than the physical one for beam di-
rections near the vertical direction. This effect is most prominent for lower stratospheric
region, where data from beam directions with small zenith angles must be treated with
care (Tsuda et al., 1986).

This caution applies, of course, to all DBS observations. On the other hand, use of
too large zenith angle makes the assumption of a uniform velocity field unreliable.

The alternate technique of the Spaced-Antenna-Drifts method makes efficient use of
this specular echoes in determining horizontal velocities. It was originally developed to
study characteristics of irregularities in the lower ionosphere (e.g., Ratcliffe, 1956), and
applied to observations of velocities in the middle atmosphere (e.g., Vincent et al., 1977)
and lower atmosphere (e.g., Rottger and Vincent, 1978). Its principle is to measure a
spatial correlation of received signal patterns from a reflecting layer with spaced antennas
on the ground.

For a given angular pattern of the echo power from the reflecting layer, the spatial
correlation function on the ground is given by a two-dimensional Fourier transform of the
angular pattern as (Ratcliffe, 1956)

plz,y) = /w /w W(S}, S2) exp (21rim) dS,\dS,, (48)
=00 4 —00 A
Sl = sin 91
Sg = sin 02

where W(S}, S2) is the power pattern of the echo with respect to the zenith angle 8, and
6, measured in z-z and y-z plane, respectively. Note that the integrand takes a real value
within a range (—1,1) for Sy and S;. If W is symmetrical with the azimuth angle, which
is valid for most of practical cases, Eq. 48 can be rewritten in a polar coordinates (4, ¢)
as

pla) = /o * /_ ' W(S) exp(2rias cos $)SdpdS, (49)

where § = sin 6, and a = /(22 + y?)/ ) is a distance measured in units of the wavelength.
The integral with respect to ¢ is the Bessel function of zero order Jo(27aS) so that

oe) = 2r jo” W(S)Jo(27aS)SdS. (50)

For randomly distributed irregularities in a thin horizontal layer at a height z = h,
the power flux in the angular range 6 to 6 + d@ depends only on the antenna pattern of
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Fig. 10. normalized correlation function p(a) between fluctuations recorded by
two receivers separated by a distance a. It is assumed that the irregularities are
isotropic and randomly distributed, and that both the transmitting and receiving
antennas have a pattern of exp(—sin?4/sin? §,) (after Briggs and Vincent, 1973).

the transmitting and receiving antennas, and given by (Briggs and Vincent, 1973)
W(8)d8 x h™2T(8)R(8)sin 8 cos 6d9, (51)

where T(#) and R(f) are the transmitting and receiving antenna patterns, respectively.
Figure 10 draws examples of the correlation function for Gaussian antenna patterns with
different width, but assuming the same pattern both for transmission and reception (after
Briggs and Vincent, 1973). '

We have so far considered the spatial correlation only. As implied by Eq. 41, the
received signal is also characterized by its temporal correlation function, which is a Fourier
transform of the frequency power spectrum. The spatial and temporal correlations can
be treated separately for the case of a stationary pattern, while they are mutually related
when the layer, and hence the pattern, has a mean motion. A generalized method called
the full-correlation analysis was developed by Briggs (1984) in order to retrieve the velocity
and other information from such correlation functions. We now introduce the space-time
correlation function of the received signal pattern f(z,y,t) on the ground plane:

_ (En0fE ey tnt+n)
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where () means to take an ensemble average, which is often replaced by a temporal average
in practical applications. This correlation function represents the statistical relations of
the signal pattern at two points with a separation (¢,m) on the ground and with a time
difference of 7. We assume that for a stationary pattern, the correlation function has a

form
p(&,m,7) = P(AE? + Bn® + K7° + 2HEn). (53)

This assumption implies that the spatial and temporal correlations have the same func-
tional shape, but the shape is arbitrary. Although this is not real in a rigorous sense,
it is an acceptable approximation for most of correlation functions at least around their
origin.

We next suppose that the pattern is moving at a velocity V = (V;, V;). If we move the
coordinates also at this velocity, then Eq. 53 remain unchanged for the moving coordinates.
the expression for the stationary coordinates is therefore obtained after a linear transform
of coordinates that

pl&,m,7) = p{A(E = Var)? + B(n = Vy7)? + K2 + 2H(§ = Ver)(n - V,7)}, (54)
which is rewritten as
p(€,1,7) = p(AE® + Bn? + K12 + 2F€7 + 2GnT + 2HEn). (55)

If we have two spaced receivers, we can determine the shape of the cross-correlation
as a function of 7 for a given set of (¢,n). Since Eq. 55 is a function of a second-order
polynomial of 7, it is possible to determine three unknowns by fitting it to the measured
cross-correlation function. It is thus clear that three spaced receivers, which provides us
two sets of independent cross-correlation functions, is sufficient to determine all coefficients
in Eq. 55. If we have more than three receivers, we can determine the coefficients in a
least-squares manner as is the case of the DBS method.

Once the coefficients are determined, we can retrieve the velocity vector V from these
coefficients. By comparing Egs. 54 and 55, we obtain

AV, +HV, = -F

56
BV,+HV, = -G (36)

These equation can be readily solved to give (Vz,Vy). The vertical component of the
velocity vector needs to be determined separately from the Doppler shift of the echo.
An important point which needs to be mentioned is that an apparent velocity V/
calculated from the distance between the receivers and the time delay which gives the
maximum value of the cross-correlation function does not agree with the true velocity
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No wind Wind V

Fig. 11. Contours of equal correlation versus distance £ and time delay 7. The
left panel shows a case with no mean wind, and the right panel is with a uniform
wind. The true velocity V estimated with the full-correlation analysis is denoted
by the solid line. The dashed line indicates the apparent velocity V' determined
from the time delay of maximum correlation.

V of the pattern, which is correctly estimated with the full-correlation analysis. These
two time delays coincide when the temporal correlation of the pattern is perfect, which
means that the pattern is drifting without evolving with time, while a finite correlation
time significantly affects the shape of the cross-correlation function.

Figure 11 illustrates this difference schematically. The left panel shows concentric cir-
cles which represent contour lines of equal correlation versus distance ¢ along the baseline
and the time delay 7 for a case of no mean motion. The abscissa and the ordinate are
normalized by the correlation distance and the correlation time of the pattern, so that the
contours become circles instead of ellipses. If a mean motion of V is added, the contours
deform into ellipses as shown in the right panel. Note that the solid line which indicates
the true velocity V' is drawn by connecting tangential points of the ellipses with horizontal
lines as implied by Eq. 54.

Since the cross-correlation function with respect to 7 at a distance £ is given by the
values of contours along a line of constant £ (i.e., a vertical line), V' obtained from
its maximum has a slope indicated by the dashed line in the figure, which is drawn by
connecting tangential points of ellipses with vertical lines. The difference between the true
velocity V and the apparent velocity V' therefore becomes larger as V becomes smaller.
One of reasons that the full-correlation analysis is widely used is that it is free from this
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Fig. 12. Motion of a reflecting layer and its echo pattern on the ground.

iind of error.

We should also note that the velocity V we have discussed is the velocity of the pattern
»n the ground, which is exactly twice that of the layer as schematically shown in Figure 12.
This is intuitively understood by considering the motion of a shadow of a screen projected
on a wall where the light source, the screen and the wall are arranged with equal intervals.
It is, of course, possible to derive this relation mathematically by examining the motion
of an interference pattern on the ground due to echoes from two or more targets moving
horizontally at the same velocity.

From a practical point of view, the DBS and SAD methods have their own advantages
and disadvantages which are difficult to compare on the same ground. The advantages of
the SAD method are that the complete velocity vector can be determined from a single
volume of the target, and that the enhanced specular echoes from the vertical direction
can be used efficiently. However, it requires at least three sets of receiving antennas and
receivers with equal capability. The DBS method requires, on the other hand, a steerable
antenna, which is not necessary with the SAD method. The accuracy of the velocity
estimates is known fairly well for the DBS method, while it has not yet been studied in
details for the SAD method, which is anticipated to have a variable accuracy depending
on the velocity itself.
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Chapter 3

THE INSTRUMENTAL PRINCIPLES
OF MST RADARS AND INCOHERENT SCATTER RADARS
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ABSTRACT

The principle of pulse modulation used in case of coherent scatter radars
(MST radars) and incoherent scatter radars (IS radars) is first discussed. Cohe-
rent detection and the corresponding system configuration is delineated. Antenna
requirements and design are outlined and the phase-coherent transmitter/receiver
system is described. Transmit/receive duplexers, transmitters, receivers, qua-
drature detectors are sxplained. The radar controller, integrator, decoder and
correlator design as well as the data transfer and the control and monitoring by
the host computer is delineated. Typical operation parameters of some well-known
radars are finally summarised.

1. INTRODUCTION TO PRINCIPLES OF THE ATMOSPHERIC RADAR TECHNIQUE

This tutorial Jlecture note aims to give a general summary and overview on
the MST radar and the incoherent scatter radar technique. With the MST radars
the mesosphere, stratosphere and the troposphere are investigated, whereas with
incoherent scatter (IS) radars the ionosphere 1is investigated. ”It_is not 1in-
tended to present here a review for experts working in this field, but rather to
give an overview to newcomers to allow a basic introduction for those who are
joining this research field. For more specific technical descriptions of the
radar technique in general and the atmospheric radar technique in particular,
the reader 1is referred to other books and articles, such as those by SKOLNIK
(1970), HARDY (1972), WILSON and MILLER (1972), BATTAN (1973), GOSSARD and
STRAUCH (1983), DOVIAK and 2RNIC (1984). very specified descriptions of MST
radar techniques can be found in Handbooks for MAP (BOWHILL and EDWARDS, 1983,
1984, 1986), an explicit and useful explanation of the MST and incoherent scat-
ter MU radar was published by FUKAO et al. (1985a,b), and a review of UHF and
VHF radar techniques for atmospheric research and wind profiler applications was
recently prepared by ROTTGER and LARSEN (1989). Good overviews on the incoherent
scatter radar technique are given by EVANS (1969), BARON (1977) and HAGFORS
(1977). Since important features of the MST and IS radar hardware result from
certain principles of the basic radar technique, the scattering mechanisms and
the data acquisition procedures, these will be briefly outlined in the course of
this lecture note, which, however, mainly aims towards the description of radar
instrumentation. Further tutorial introductions to the applications of MST and
IS radars in atmospheric and ionospheric research can be found in the other ar-
ticles published in this volume of the Handbook for MAP.

wWe will describe here the very basic technical principles, which are pro-
found in all radar applications but are usually adjusted according to specific
requirements of certain scientific experiments and operational realizations.
Some of those are outlined in the following chapters and for more details than
given in this tutorial or the in mentioned reviews the reader is referred to the
relevant literature summarized in the reference list at the end of this paper.
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1.1. Basics of Pulsed Doppier Radars

Usually the MST radars as well as the incoherent scatter radars apply the
conventional pulse modulation technique, i.e. a short radar pulse is transmitted
as shown 1in the sketch of Fig. 1, and the backscattered radar echo from a range
r (or altitude z) is received after the time t. Sampling the received echoes as
function of time then allows to evaluate the echoes from different ranges
r =ct/2, where ¢ is the propagation velocity of the radar signal, namely the
speed of light for the radars operating in the VHF and UHF bands.

A r2

range r
e}

——
fo

Figure 1. Principle of a pulsed Doppler radar:
A transmitted radar pulse is scattered by some refractive
index irregularity at the ranges r. The backscattered radar
signal is received after the time of flight t from the
ranges r = ct/2, where ¢ is the speed of light. Usually the
power or Doppler spectrum (as shown in the lower 1insert) is
computed for signals received in certain range gates and the
basic parameters total power P, Doppler shift fo and the
spectrum width o are deduced. In addition further useful
parameters can be determined from the particular shapes of
Doppler spectra.

The procedure of pulse radar is described in some more detail in Fig. 2.
Let a pulsed electromagnetic wave be transmitted at the time Ti. The pulse
duration of this radar signal shall be dte. For simplification the pulse shape
is assumed to be rectangular, but in real applications it may be a smoothed
trapezoid or triangle or Gaussian shaped. In a nondispersive propagation medium
(at the high freguencies used in the MST and IS radar application the refractive
index is very close to one such that dispersion does not have to be considered)
the pulse travels with the speed of light c and reaches the range ra after the
time t1 = ra/c. A target at ra can scatter or reflect the radar signal in some
directions. A small fraction returns to the location of the transmitter, where
this radar echo will be received after the time ti1’' = 2t1 = 2ra/c. This yields
the basic relation r = ct/2, which allows determination of the range of any
radar target by measuring the round-trip time t. This relation holds for mono-
static radars (transmitter and receiver are at almost the same location). For
bistatic radars (with the receiver separated horizontalily from the transmitter
by a distance comparable to or larger than the ranges to the target) a modified
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Figure 2. Range-time diagram explaining the main features
of pulse transmission and scattering from a volume target
at the range r and the reception after a time t (see text
for the explanation of the other parameters).

expression has to be applied. Bistatic or multistatic operation will not be
discussed in detail here, but is Jjust mentioned for completeness (see Evans,
1969, for more details).

Since the transmitted pulse has a finite duration dte, its trailing edge
will reach the range ra at a time ti1+5te, and reach the receiver at 2ti+5te =
t1'+8te. If the radar target is a thin reflecting surface (called discrete,
single or hard target scattering), the shape of the received pulse is the re-
plica of the transmitted pulse. Now assume that many scatterers fill all ranges
along the radar beam (called soft target or volume scattering). It 1s then
obvious from Fig. 2 that echoes from the range between ra-5r/2 and ra reach the
receiver simultaneously at ti’, and those from ra to ra+dr/2 are received at
ti’'+5te. The pulse of duration 5te, thus, at one time illuminates a volume at ra
extended along a range &r = ¢-5tt/2. This is the range gate or range cell from
which the radar echoes are received. Fig. 2 shows that most of the echo power
results from the range ra, and minimum power is received from ra+bér/2. Thus, the
resulting range weighting function of the single range gate centered around ra
is a triangle.

Because of the finite receiver bandwidth (usually matched to the bandwidth
of the transmitted pulse) the receiver gate has a finite width in time. The
receiver pulse response (given by about the inverse of the receiver bandwidth)
distorts the received pulse by smoothing its leading and trailing edges and thus
delaying it by about the receiver response time. The transmitter pulse length
5tt, to which the receiver response time is matched, determines the range reso-
lution 8r. The instrumental distortions of the radar pulse are not depicted in
Fig. 2 to maintain the c¢learness of survey, but they eventually have to be
considered in the final analysis of the radar data.

In radar applications short pulses are normally transmitted periodically,
j.e., the n-th pulse follows the (n-1)-th pulse after a specified time. For
convenience this time period is set here to be a multiple (K>1) of &te. This
time (Tn-Tn-1) 1is called the jinterpulse period Tipp, IPP, Ti or just T. Its

L
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inverse is called the pulse repetition frequency fprt = 1/Tipp. The off-on-ratio
of the transmitter Tipp/8tt—~1 determines approximately the range from which
radar achoes can be unambiguously received (in units of range resolution). It is
more customary, however, to use the ratiod = 8tt/Tipp, which 1s called duty
cycle or duty factor., The average transmitter power Pa, to be averaged over
(more than) one interpulse period, is the product of the duty cycle and the
transmitter pulse peak power Pp, 1.e. Pa = d-Pp. In Table 1 the basic technical
terms used in radar applications are summarised.

TABLE 1

DEFINITION OF TECHNICAL TERMS
USED IN ATMOSPHERIC RADAR EXPERIMENTS:

transmitter
pulse radar p
signal F

T = interpulse period (IPP), also Tipp
1/7 = puise repetition frequency (PRF)
Ste = transmitter pulse length (duration)
Pp = transmitter peak power

5t /T = d = duty cycle

dPp = average transmitter power

r = cte/2 = one-way distance to the radar target

Assume that the radar echo power is due to volume scatter and that isotro-
pic scatterers totally fill the radar beam. Then the received radar echo power
Ps 1s given by the radar eguation:

A P Br n
Pe = — ———— , (1)
8nr2

where A 1s the effective antenna area and n is the radar reflectivity,

If the radar echo is due to reflection from a large surface of a refractive
index discontinuity, which is stratified perpendicular to the radar wave propa-
gation, the received radar echo power Pr 1is given by:

Po A2 |92
pp z ———————— (2)
4Nog2r2

where ¢ 1s the amplitude reflection coefficient of the surface. For MST radar
applications the reflection coefficient can be very small, resulting in partial
reflection. In many cases of radar observations scattering takes place, and
particularly in 1onosphere observations with IS radars the only mechanism 1s
(incoherent) scattering. The partial reflection mechanism 1is difficult to be
distinguished from anisotropic scatter, which both have a pronounced aspect
sensitivity (dependence of echo power on beam direction) observed with the long
wavelength MST radars. We refer to detailed explanations of these effects. which
are for instance outlined in other articles of this book (e.g., HOCKING. 1989).
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As compared to radar echoes from single hard targets (e.g. airplanes),
whare the echo power is proportional to r~4, Pg and Pr are proportional to r-%,
This is simply explained by the fact that the volume or the partially reflecting
surface or layer of the atmosphere, which is illuminated by the radar beam, is
not constant but increases with the square of the range. We particularly have to
note the direct dependency of the received signal power on the transmitted peak
power Pp and the antenna area A, which means that both these quantities should
be optimised. For the reason that the sensitivity of the radars is directly
determined by these two parameters, transmitter power and antenna aperture, the
quantity "power-aperture product P-A" is used often as the main indicator of the
radar capability or sensitivity and it allows a better comparison of measure-
ments done at different radars. Also the term signal-to—noise ratio (SNR), which
is the ratio of signal power Pa,r and noise power Pn, is used freguentiy to
determine the echo signal strength although this can be misleading because the
noise level varies particularly with frequency and antenna look angle, with
receiver front-end sensitivity and with loss rates of the antenna and feed

systems.

Because in normal radar operations the pulse repetition frequency is kept
constant, i.e. the transmitted pulse train 1is periodic, range-aliasing may
occur. This ambiguity 1is depicted in Fig. 2. At time t2’ an echo of the pulse
at Tz 1s received from range ra, and an echo of the pulse at T: is received from
range ro. Of course higher order range-aliasing can occur from ranges rn =
c(t+(n-1)Tipp)/2. Because these echoes return from separate scatter volumes, the
echo signals are uncorrelated but still their power accumulates in the same
receiver range gate. If no special arrangements {(e.g. pulse-coding, freguency
changes or non-periodic Tipp) are being made, the maximum unambiguous range is
rmax = C-Tipp/2. The minimum range rmin Obviously i1s given by the pulse duration
&tt plus some instrumentally entailed transition time between transmission and
reception.

Assume that a bulk motion carries the scatterers or reflectors in the
volume at range r. Because of the Dopplier effect, the rate of change of phase &
of the returned signal is then dg/dt = 4n/Ne-dr/dt, where flo is the radar wave-
length. When V' is the (radial) velocity in direction of the radar signal path,
Vv’ = dr/dt. The phase change dg/dt is the angular Doppler frequency Qo = 2nfp,
which yields fo = -2V'/No. Since the radar signal is pulsed at a frequency fprs,
i.e. the radar echo 1s sampled at a rate Tipp, this yields the maximum Doppler
frequency to be resolved by pulse-to-pulse analysis (Nyquist frequency): fomax =
forr/2 = 1/2Tipp. This corresponds to a maximum radial velocity V’max =
Nofomax/2 and V'max = NoC/8reax. V'max. as defined here, 1s much larger than any
realistic velocity observed in the lower and middlie atmosphere.

In cases of tlarge Doppler shift and/or 1large spectrum widths, 1i.e. the
inverse of the signal correlation time, which are observed for incoherent scat-
ter echoes from the ionospheric E- and F-region, the maximum frequency cannot be
resolved by the pulse-to-pulse technique and other means have to be applied. The
difference of "coherent signals”™ observed in MST radar applications and "incohe-
rent signals"” observed in 1S radar applications is sketched in Fig. 3. For short
signal correlation times (shorter than the 1interpulse period) all samples for
the autocorrelation function and the spectrum analysis have to be taken during a
single interpulse period (incoherent signal). For long correlation times (longer
than the interpulse period) these samples need to be taken during several inter-
pulse periods (coherent signals), which is called "pulse-to-pulse” technigue.
Details of the corresponding instrumental configurations are discussed in the
following Chapter 1.2 and of the data acquisition in Chapter 5.
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figure 3. Range-time-amplitude diagrams for coherent (underspread) and
incoherent (overspread) signals. The dots mark the sample points, which
are used to compute autocorrelation functions ACF. The tables symbolize
that for coherent signals coherent integrations (£1,12,...) are performed
for fixed range gates over several interpulse periods, then the ACFs are
computed which are finally accumulated (IACF). This is called "pulse-to-
pulse technique”. For incoherent signals the ACFs are computed within
every interpulse period (ACF1, ACF2,...) and are accumulated (ZACF).

1.2. An Overview of Particular Radar Systems

Radars operating in the extended freguency range from MF (medium frequency)
to UHF (ultra-high frequency) are used to investigate the structure and dynamics
of the troposphere, stratosphere, mesosphere and thermosphere/ionosphere. In
Table 2 different kinds of radars and their basic technical parameters are
summarized. The MF radars, making use of partial reflection from electron den-
sity irregularities, are particularly applied to measure electron density pro-
files of the ionospheric D-region and lower E-region as well as the horizontal
wind velocity in this altitude range, comprising the mesosphere and lower ther-
mosphere. The HF radars (conventionally known as ionosondes) and the onospheric
irregularity scatter radars (somewhat ambiguously also called "coherent radars")
are used to study total reflections from the ionosphere and scattering from E-
and F-region plasma irregularities. The meteor radars make use of echoes retur-
ned from meteor tratls to measure wind velocities in the upper mesosphere and
lower thermosphere. The mesosphere-stratosphere-troposphere (MST/ST) radars,
detecting echoes from turbulence-induced inhomogeneities of the radio refractive
index, are applied to investigate winds, waves, turbulence and stability 1in the
indicated altitude regions. Incoherent scatter (also called Thomson scatter)
radars, making use of scatter from free electrons, are applied to study the
jonosphere and thermosphere. IS radar echoes from the D-region also have long
coherence times like MST radar echoes. We concentrate here on the basic prin-
ciples and applications of the incoherent scatter (IS) and the MST radars, but
we note that many principles apply also to the other kinds of radars.
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TABLE 2

RADAR HMETHODS FOR INVESTIGATIONS OF THE LOWER AND MIDDLE ATHOSPHERE
AND THE THERMOSPHERE/IONOSPHERE

Typical operation paraseters lapproximate)

Radar Frequency | Navelength | Average fAntenna Height
Method Range fins Power Dimension | Region
in k¥ inf

MF Radar MF-HF 150-30 0.01-1 1-10 mL
HF Radar® HF 300-10 0.01-35 0.5-1 Th/leo
Coherent Radar*| HF-VHF 30-1 0.1-1 5-50 Th/le
Neteor Radar HF -VHF 10-¢ 0.1-10 2-10 KLY
MST Radar VHF 67 1-100 5-50 5,1
Incoherent
Scatter Radar VHF ~UNF 1.4-0.25 100-300 100-300 LR
ST Radar VHF -SHF 6-0.1 1-500 10-500 8,7

NF = 0.3-3.0 MH2 N = Nesosphere

HF = 3.0-30 MH: S = Stratosphere

VHF = 30-300 MH2 T = Troposphere

UHF = 300-3000 MH: LT = Lower Thersosphere

SHF = 3-30 bH: Th/To = Thermosphere/{cnosphere

* = lonosonde + = Irreqularity Scatter

The MST radars operate in the lower VHF band around 50 MHz, corresponding
to wavelengths around 6 m. Since quasi-vertical antenna beam directions are
used, ranges are roughly equal to altitudes. For MST radar observations of the
lower and middle atmosphere the range limits reax are between 10-20 km and 100
km. This yields typical pulse repetition frequencies between 10 kHz and 1 kHz.
Altitude resolutions from about 1 km down to at least 100 m are regquired to
resolve typical vertical scales in the troposphere, stratosphere and the meso-
sphere. This corresponds to pulse lengths of about 1-10 us. Thus, typical duty
cycles ars betwaen about 10-' and 10-3. Longer coded pulses are frequently used,
which is discussed 1n Chapter 4.5.

MST radars make use of scattering and reflection from variations of humi-
dity, temperature and electron density, induced by turbulence in the lower and
middle atmosphere. Essentially, MST radars can observe: the 3-dimensional wind
vector, atmospheric reflectivity and stability, and morphology of turbulence andg
waves. The continuous measurements with MST radars offer very good quality and
quantity middie atmosphere observations of wind velocities. MST radars operate
at frequencies around 50 MHz, and therefore are also called VHF radars (VHF =
very high freguency band between 30 MHz and 300 MHz). Higher freguency radars
mostly cover only the troposphere and stratosphere. Typical peak powers of VHF
radars are between 1 kW and 1 MW. Range resoiutions down to about 100 m and time
resolutions down to some ten second are possible. The antenna arrays with typi-



61

resolutions down to some ten second are possible. The antenna arrays with typi-
cal dimensions of 1000 m2 to some 10000 m? point close to the zenith direction.
Coherent detection, digital control and data acquisition are mandatory as is
described in Chapter 4.

There are basically two methods which are applied by MST radars, in parti-
cular to measure velocities, as is sketched in Fig. 4. One method uses a narrow
radar beam pointed into various directions and measures the Doppler shift ot
achoes scattered from irregularities. This method is usually called the "Doppler
method” and for this reason these radars are also called “Doppler radars”. The
other method uses three or more spaced antennas and the received echoes are
cross-correlated to determine the drift speed of irregularities and is called
"gpaced antenna or SA method”. Since the irregularities are usually moving with
the wind velocity, both methods are capable to measure the wind velocity. Al-
though both methods are basing on the same physical mechanism, in praxis the
technical implementation may favour one or the other of these methods. The
spaced antenna method can also be applied in the spatial domain radar interfero-
meter mode, which is advantageous for studying the structure of the scattering/-
reflecting 1irregularities. In all these applications a phase-coherent radar
system is applied, it is even required for the Doppler and the interferometer
method.

3-DIM VELOCITY MEASUREMENTS WITH VHF-RADAR
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Figure 4. The two principle methods of three-dimensional velocity measurements
with monostatic mesosphere-§tratosphere—;roposphere {MST) radars. These
methods are the Doppler method using oblique beams to deduce the horizontal
and vertical velocity from the measured radial velocity. and the spaced
antenna method apply-ing drifting pattern measurements to deduce the horizon-
tal wind velocity.
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The smaller versions of this Doppler radar category, the stratosphere-
troposphere (ST) radars operate according to the same principle like the MST
radars, but frequently operate on higher frequencies in the UHF band with smai-
ler powers and antenna apertures of several ten square meters only. They are not
capable to detect echoes from the mesosphere since either their power-aperture
product is too small, yielding too low a sensitivity, or their fregquency is so
high that their wavelength 1is in the inertial subrange of refractive index
variations such that the scatter echoes are not detectable. These radars apply
the Doppler method to measure velocities and are mostly very capable to investi-
gate the lower atmosphere (particularly the troposphere and the boundary layer)
with a very good height resolution of some 10 meters or better.

The state of the art of the ST radars and their suitable applicability to
measure continuously the wind profiles in the troposphere and the lower strato-
sphere has attracted wide attention in the meteorological community. As a conse-
quence such ST radars are included 1into meteorological research networks and
particular instrumentation 1s being designed to allow long-term routine opera-
tions of these so~called wind profilers. Since this 1s a development by in-
dustrial companies, we will not discuss these particular designs in the context
of this tutorial. A short summary of system specifications of wind profilers,
however, can be found in Tables 6 and 7 in Chapter 6.

' ““m “m“m m“ mn h I,

gty

Figure 5. The principle of tri-static incoherent scatter
(IS) radar measurements of the auroral tonosphere by the EISCAT
UHF system with transmitter and receiver in TromsS, Norway,
and remote receivers 1in Kiruna, Sweden, and Sodankyl&d, Finland.

The incoherent scatter radars operate at VHF and UHF frequencies with a
much larger power-aperture product than the MST or ST radars. Mostly these
radars have large dish antennas or phased arrays occasionally with diameters of
several ten to hundred meters. Their peak powers are usually 1larger than 1 Mw,
their duty cycle can be up to 12 percent and their fastest interpulse period is
mostly not smaller than 1 ms. Pulses as long as t ms are used, but frequently
amplitude- or phase-coded. Typical altitude resolutions are 0.3 ~50 km and time
resolutions of some minute to several 10 minutes are achieved. Thase differences
result from the fact that because of the very small volume reflectivity of in-



Ln

63

coherent scatter, the signal-to-noise ratios are mostly well below unity, where—
as the SNR is usually much larger than 1 in the MST radar case. The incoherent
scatter radars particularly measure electron density, electron temperature, ion
temperature and ion velocity in the ionosphere. Fig. 5 shows the tri-static
incoherent scatter UHF-radar system of the EISCAT Scientific Association which
1s operated in northern Scandinavia to study the auroral ionosphere. The tri-
static radar configuration is most useful to measure the three-dimensional
velocity with the best achievable accuracy. A1l the IS radars were also used for
studies of the stratosphere and the troposphere, although some instrumental
constraints had to be considered such as ground clutter, receiver recovery and
dynamic range limitations.

A list of these radars is found in Table 9 at the end of this article.
1.3. The Principle of Phase-Coherent Radar Systems

Incoherent or Thomson scatter 1is caused by fluctuations in the radio re-
fractive index at the radar Bragg wavelength resulting from thermal motions of
free electrons in the presence of ions in the ionosphere. Due to these random
motions the incoherent scatter signal is widened in frequency and it needs to be
sampled fast enough to resolve the complete Doppler spectrum. In the lower
jonosphere collisions between ions and neutrals 1impose the fluctuations of the
neutral atmosphere on the plasma and conseguently on the electrons. Since these
fluctuations, although they can be strong in amplitude. do not contain such high
frequency components as the thermal motions, the incoherent scatter signal
displays a narrower spectrum, i.e. a longer coherence time 1n the lower iono-
sphere. Eventually, the structure of the plasma in the mesosphere (D-region)
will be completely governed by the fluctuations due to neutral air turbulence.
Instead of 1incoherent scatter this latter process 1s called coherent or turbu-
lence scatter. Usually the signal spectrum due to turbulence scatter 1is much
narrower than that of incoherent scatter. In addition to the widening of these
signal spectra, they are shifted in frequency if there is a bulk radial velocity
of the scattering medium. We would like to explain here that both these scatter-
ing processes are being studied with phase-coherent radar systems.

Knowing that fluctuating velocities and radial velocities with quasi-verti-
cal MST radar beams do not exceed several 10 ms-', the Doppler freguency will
barely exceed 10 Hz for MST radars operating at VHF and will be just an order of
magnitude larger for UHF. Applying fpr¢ > 1 kHz, the MST/ST radar echo will be
oversampled, i.e. its phase and amplitude does vary little from pulse to pulse
as 1t was sketched in Fig. 3. This is called a coherent radar echo, in contrast
to an incoherent radar echo, which, because of the much shorter correlation or
coherence time of the ionospheric scatter medium, randomly changes phase and
amplitude from one pulse to the next. Also the velocities in the ionosphere
measured with incoherent scatter radars is usually much larger than the veloci-
ties in the middle and lower atmosphere, which additionally causes a more rapid
change of the phase of the incoherent scatter signals. One does make efficient
use of the characteristic coherency of MST radar echoes to improve the data
acquisition procedures., which will be discussed in Chapter 4. These difterences
of the signal coherence times also determine the principle way of the data
acquisition structure and instrumentation.

The differences between "coherent signals” detected bv the MST/ST radars.
used to study the lower and middle atmosphere, and "1incocherent signals"” detected
by the incoherent scatter radars, used to study the ionosphere, is elucidated by
the schematics of Figs. 6a and 6b. Since the coherence time, i.e. the inverse of
the width of the Doppler spectrum, generally increases from the lower to the
middle and to the upper atmosphere (ionosphere) due the increasing variations of
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Figure 6a. Block diagram showing the basic configuration of an
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Figure 6b. Block diagram showing the basic configuration of an
incoherent scatter radar system (data acquisition for incohe-
rent signals).
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the scattering medium. Whereas 1in the jower atmosphere the coherence time (de-
termined principally by turbulent fluctuations) is generally much 1longer than a
typical interpulse period of an MST/VHF radar of say 1 ms, it is generally much
shorter (given by thermal fluctuations) than an interpulse period of incoherent
scatter radars. This means that coherent integration and the autocorrelation
functions (ACFs) or Doppler spectra are computed on the pulse-to-pulse basis for
coherent signals (“pulse-to-pulse technique”). On the other hand, the ACFs have
to be immediately computed without coherent integration for each single inter-
pulse period using single long or coded pulses in the case of incoherent sig-
nals. The ACFs (from which the spectra are computed) are then postintegrated.
The definition of a coherent signal, which we use here, is consequently that the
coherence time is much longer than the interpulise period. The incoherent signal
is defined by a coherence time which is much shorter than the interpulse period.
At some places in the early ionosphere literature the terms under-spread and
over-spread signals are used instead of coherent and incoherent signals, respec-
tively. Both kinds of signals anyhow result from the scattering process being
coherent in the former and incoherent in the latter case, and both are studied
with phase-coherent radar instrumentation.

We notice that the instrumental technique as well as the data acquisition
and analysis of the MST radars as well as the IS radars are basically similar,
they are well developed, elaborated and fairly mature, although further refine-
ment 1is always going on. We now will briefly outline the two only striking
differences of the instrumental design of these two main radar categories. which
result from the coherent and incoherent signal properties and later will discuss
particular parts of the instrumental hardware and their principles.

In order to allow the measurement of all signal parameters, particularly
the Doppler spectrum, all MST radars and IS radars are phase-coherent. This
means that the receiver (RX) and the transmitter (TX) are controlled by or
phase-locked to the same main oscillator (see Figs. 6a and 6b). The transmitter
radiates through the antenna the electromagnetic signal S, which propagates to
the radar volume in the atmosphere or the ionosphere. From there a small frac-
tion of the electromagnetic energy is backscattered to the antenna (which can be
a separate or the same antenna, provided that a transmit/receive duplexer can be
used). External noise, received by the same antenna and internal receiver noise
adds to the atmospheric/ionospheric echo and the total signal plus noise C’ is
amplified in the receiver and mixed to base band by the same oscillator signal
§9, which 1s used to control the transmitter. The resulting base band signal C
is converted to a digital series in the analog-to-digital converter (ADC), which
is controllad by a series of sample pulses from the radar controller. The radar
controller also generates the transmitter modulation and other control pulses.

Following the ADC, the data acquisition procedures are different for MST-
and IS-radars as delineated in the Figs. 6a and 6b. This difference results from
the different coherence times as described earlier. Because of the long cohe-
rence times of echoes from the mesosphere, stratosphere and troposphere, the
digital data are usually coherently added 1in the 1integrator of an MST radar
(Fig. 6a), followed by a decoding procedure if the transmitter pulses are coded
(see Chapter 4 for details). These raw. but pre-integrated and/or decoded, data
are either directly dumped into the host computer or analyzed in terms of auto-
correlation functions or Doppler (Fourier) spectra. The host computer is used to
store the raw data together with other operating system parameters and the time,
on file or tape, perform an on-l1ine quicklook analysis or some further prepro-
cessing such as computation or post-integration of ACFs or spectra. The host
computer alsc supervises the entire system by loading and starting the radar
controller etc. as well as checking the system performance and issuing inter-
rupts in case of system malfunctions. In the case of an incoherent scatter radar
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(Fig. 6b) first a decoding has to be performed, then usually ACFs are computed
on-line which are post-integrated and then dumped into the host computer. In
particular pulse coding schemes also an additional decoding procedure has to be
applied after the ACF computation. Otherwise the instrumental design of an IS
radar is principally similar to an MST radar.

2. RADAR ANTENNAS
The radiation pattern of MST- and IS-radar antennas has to be carefully

designed in order to optimize the wanted atmospheric/ionospheric scatter signal
as compared to interfering external influences. These are summarized in the

sketch of Fig. 7. It is evident that all the unwanted components, - ground
clutter, sea clutter, airplane or satellite echoes, radio interference and
scatter received through antenna sidelobes - , have to be properly eliminated or

minimized. To achieve a high sensitivity and a reasonable angular resolution the
antenna gain should be large and thus the antenna beam width small. The cosmic
noise level picked up by the antenna is unavoidable in the low VHF band. In the
high VHF and in the UHF band the noise level is not given by the sky noise but
by the system noise. This can be minimized by optimum design of the receiver
front-end amplifier and adapted data processing.

The antennas of MST- and IS-radars usually consist of an ensemble of single
elements which are phase-coherently combined to a large antenna array or are
large dish antennas. Usually the dimensions of MST radar antennas are more than
several ten radar wavelengths, their gain is mostly exceeding 20 dB, correspond-
ing to a beam width of less than 10 degree. The IS radar antennas usually have
antenna gains larger than 40 dB in order to detect the weak incoherent scatter
signals. The beam directions can be mechanically or electrically positioned
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Figure 7. Schematic view of an atmospheric radar in an interference and clutter
environment. The radar antenna is depicted here to consist of a phased array
of Yagis, but could principally be any other kind of antenna system.
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Figure 8. Near-zenith pointing
antenna beams of a 403 MHz
phased array antenna of an
ST radar (after FRISCH
et al., 1986).

(e.g., Fig. 8) in order to observe spatial variations of the scatter process and
to measure three-dimensional velocity components. The principle of measurements
of the velocity components is explained by the schematics of Fig. 9. At a zenith
angle & in the direction of the wave vector k the radial velocity v = u'+ w'ois
measured, which consists of the projections w' of the vertical velocity w and
the projection u’ of the horizontal velocity u. The combination of the veloci-
ties measured in the directions & and -5 vields the horizontal and the vertical
velocity component. Depending on the reguirements to measure all velocity compo-
nents and their divergence as well as vorticity, more beam directions are ne-
cessary. Multi-static radars (e.g., Fig. 5) can also be used to measure the
velocity components. The discussion of these possibilities and reguirements is
out of the scope of this lecture note but can be found elsewhere (see ROTTGER
and LARSEN, 1989, who discuss the applications of MST radars and give further
references).
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Figure 9. Principle geometry of two antenna beam directions kot and ko2 at
zenith angles & and -5 for the deduction of the horizontal velocity compo-
nent u and the vertical velocity component w. The measured radial velocity
components v1 and vz consist of the projections u’ and w' of the u and w wind
velocity components, respectively.
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We now will briefly describe the basic antenna theory in order to allow an
understanding of the antenna functions and the design optimization and then will
describe some typical antenna systems used in MST radar applications.

2.1.'Some Basic Antenna Parameters

The main parameter determining the antenna gain and the corresponding beam
width is the size or the area of the antenna, which is also called the antenna
aperture. The antenna aperture can be either regarded as a continuous radiator
if it 1s 1lluminated by an independent feed system, or it can consist of several
sub-elements which are electrically fed from a common transmitter source. Both
approaches can be basically treated by a similar formalism, which we will ex-
plain for the simpie case of a line of antenna dipole elements. Assume that N
individual antenna elements with equal spacing d are horizontally lined up to
form a multi-element array (see Fig. 10), In the array far-field (r > (Nd)2/no)
the antenna polar diagram is

En (5)exp(1( 35533129 sind + on)), (3)
[+

1

E(3) =
n

H ™M Z

where En(5) is the pattern of an individual element and ¢n i1s a relative phase
placed on this element. Thus, the polar diagram 1s just the Fourier transform of
the spatial aperture distribution. If all the elements have similar En(8) and
on. the polar diagram 1s a function sin Nx/sin x with x = w-d-sind/No. If d <
fio, there is only one main lobe at & = 0° (for ¢ = 0). If d > Mo, grating lobes
at & = arcsin(No/d) occur, for En(d) = const with amplitudes similar to the
main lobe. The width of the main lobe is &8 = arcsin (No/Nd). In radar applica-
tions also the two-way beam width 8s/J/2 is used. If 88 is small, it is directly
proportional to the ratio of the wavelength fo to the aperture dimension Nd. The
radiation pattern has minima (nulls in theory) at &» = % nds, where n = 1,2....,
N/2, and sidelobes occur at &s = &n t58/2. If equal weighting Wn is applied to
each of the single elements (e.g., En’'(8) = Wn-En(5), with Wn = const for all
n), the first sidelobe closest to the main lobe 1s suppressed by 13.2 dB plus
the fall-off of the individual element pattern En(3) at Be1. '
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Figure 10. Schematic drawing of wave vectors of a plain wave
radiated under a zenith angle & from N isotropic antenna
elements with spacing d.
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The antenna pattern, particularly the desired variation of the direction e
of the main lobe, can be changed by applying a 1linearly progressing phase ¢n
from element to element, which has to be on = 2nd(n-1)sinbe/Nec. This beam
steering should be within reasonable Tmmits of the individual element pattern
En(8d) to avoid undesirable degrading of the antenna radiation. Furthermore the
effective area of an antenna, which is fixed on the ground, is reduced with
larger zenith angles because the illumination changes by sin &.

To obtain improved sidelobe suppressions, a tapering of the antenna array
can be applied by either changing the weighting function Wn (electrical weight-
ing, 1.e. feeding the outer elements of an array with less power than the inner
elements), or by using unequal element spacings dn (spatial weighting, i.e.
applying larger spacings for the outer elements of an antenna array). The price
one has to pay for the improvement of sidelobe suppression by tapering is always
a broadening of the main lobe and lowering of the antenna gain G. Using a tri-
angular weighting, for instance, improves the one-way suppression of the first
sidelobe to -26 dB, but widens the main lobe by a factor of 1.44 and reduces the
gain by 25%, as compared to uniform weighting. The respective values for a cos2-
weighting, which 1is a good approximation to a Gaussian weighting, are -32 dB,
1.64 and 33%.

These one-dimensional considerations can be extended easily to a realistic
two-dimensional radar antenna array by using, instead of d, the projections d’
of all element positions onto n axis elongated 1in the azimuth direction a. The
total antenna pattern then can be calculated by (3) for any a and &. For a real
radar antenna we also have to consider that the radiation c¢an be 1into only one
half-sphere. For an array system this means that reflections from the ground, a
screen or reflector elements have to be included 1in the calculations. The an-
tenna gain G is defined as the ratio of the maximum radiation intensity (in the
main beam) to the average radiation intensity (averaged over all & and a). For
an antenna array with reasonable sidelobe suppression it is proportional to the
antenna area and is given approximately by the inverse of the two orthogonal
beam widths &’ and &’’ (in radians):

an A 4an
G = = . (4)
n°2 6516311

The effective area A or aperture of the antenna 1s the product of the physical
area of the antenna and the efficiency of 1ts illumination, which for instance
may be reduced by tapering. It 1is noted that A does not inciude the losses of
the antenna elements and its feed system.

The considerations of antenna arrays, consisting of several discrete ele-
ments. can generally be extended also to antennas with continuous aperture
illumination, such as dish antennas. The aperture A of a phased array or a dish
antenna is used to calculate the power—aperture product P-A, which defines the
sensitivity of an MST radar. Note that P is the effective average power, which
is radiated by the antenna, i.e. it is smaller than the output power of the
transmitter due to losses in the antenna and feed lines.

This very brief outline is useful for estimating some basic values needed
to plan and design a radar antenna system. The minimum requirement for investi-
gations of the troposphere and stratosphere 1s a power aperture product P-A =
106 Wm2, where P = Pa is the average transmitter power. We assume that the radar
sensitivity is a function of Ak, where 1 < k < 2 depending on the reflected con-
tribution (see equation (2)). It means that in practice one should favour an
aextension of the antenna area against an 1increase of the transmitter power. For
a commonly achievable transmitter power P = 103W, P-A = 108 wWmZ yields the
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dimension of a circular antenna array to be about Nd = 36 m, and A = 1000 m2,
For No = 6 m we can obtain a half-power beamwidth s = 9°, and a gain G = 27 dB.
This estimate assumas that the array is optimally filled with elements. A single
dipole element over a proper reflector screen has an effective area of about 15
m2 (at fNo = 6 m). Thus, about 64 dipoles are needed to fill the array. For a
square array with 8x8 elements the resulting spacing is d = 0.75 Mo, and a
grating lobe will not occur. The first nulls are at &n = #9°, and the first
sidelobes at 5 = *13.5°. To use such an array to measure reliable velocities,
the antenna beam has at least to be steered to a zenith angle 8¢ = 9° to place a
null into zenith direction (minimizes influences of aspect sensitivity). Even
then a sidelobe at -4.5° is a problem.

when designing a radar antenna for atmospheric research one has to trade
between the choices to optimize the effective aperture or to optimize the side-
lobe suppressions. An optimization of the aperture increases the sensitivity,
but does not minimize the side 1lobes. Suppression of sidelobes by tapering
attenuates undesirable signals which spoil the estimates of reflectivity and
velocity, but it reduces the antenna gain. Principally, any sidelobe effects or
their minimization, however, are equivalent to a broadening of the antenna beam.
This is generally a minor shortcoming as compared to the tedious procedures to
remove sidelobe effects from the signal during the data analysis procedure. As
an example of a well optimised MST radar antenna pattern we show 1in Fig. 11 the
antenna diagram in two vertical planes of the mobile SOUSY VHF Radar (from
CZECHOWSKY et al., 1984). Note the suppression of near-zenith sidelobes by 25 dB
as compared to the main lobe and the grating lobe at 40°,

The radar echo signal 1s given by the product of the antenna pattern with
the spatially varying reflectivity structure of the atmosphere. Thus, knowing
the antenna pattern, it should be 1in principle possible to find the wanted
signal parameters which however is generally an ambiguous and time-consuming
inversion procedure. For vertically pointing main beams the sidelobe effects are
efficiently suppressed if there 1is anisotropic scattering with maximum aspect
sensitivity in zenith direction (e.g., for the 50 MHz MST radars). It follows
that sidelobes in such cases are a minor probiem for investigations with verti-
cal beams. However, they can be crucial for methods applying off-zenith beams
with 50 MHz MST radars. If a sidelobe 1is pointing towards the zenith a larger
power may be received from the vertical than from off-vertical directions when
there is an aspect sensitivity due to horizontally stratified scatterers or
partially reflecting layers.
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Figure 11. Computed radia-
tion pattern of the mobile
SOUSY VHF radar (53.5 MHz)
phased array, consisting of
576 Yagi antennas. This
antenna system 1s located on
Andoya, Norway. (From
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Also sidelobes at low elevation angles have to be considered since these
can cause strong echoes from the non-atmospheric targets in the surroundings of
the radar antenna (particularly the ground clutter seen in Fig. 7). The super-
position of ground reflected (hatched 1ine in Fig. 7) and direct radiation does
very effectively reduce the radiation at grazing angles (5 > 85-90°) since the
antenna elements of a phased array are horizontally polarized and the ground-re-
flected wave then suffers a phase reversal during reflection. This even can
suppress low sidelobes of the array pattern which may be regarded as cructal if
one would not take into account ground reflections. The location of an MST radar
antenna array at a flat ground (extending out to several 100 m) may be suffici-
ent, but a shallow valley generally should be preferred to further suppressing
the low angle radiation effects. However, high extending targets, such as radio
towers or mountains in the close vicinity, will sti11 cause considerable clutter
echoes, even when optimising the antenna array for low angle radiation suppres-
sion. For IS radar antennas the criteria of low angle radiation suppression are
not so stringent, because ground clutter barely comprises a problem since the
ionospheric target regions are usually at much larger ranges. However, for IS
radars in auroral regions care has to be taken to suppress coherent echoes from
ionospheric irregularities.

2.2. Antenna Types and Feed Systems

MST radars generally operate with gquasi-vertical beams, i.e. the zenith
angles are smaller than about 20°-30°. As shown in Fig. 8 usually zenith angles
of 152 are chosen. IS radars mostly apply a variety f beam directions, also
those very close to the horizon. For MST radar operation linear polarization is
sufficient, but circular polarization 1is needed for incoherent scatter radars
since the polarization can change due dispersion in the ionosphere. Essentially
four different types of antenna systems are in use: dish antennas, dipole
arrays, coaxial-collinear arrays (COCO) and Yagi arrays. In Fig. 12 we show as
an example the 32-m dish antenna of the EISCAT incoherent scatter radar 933-MH:z
receiving station in Sweden, which can be pointed in all directions by mechani-
cal steering. In Fig. 13 the 200m x 200m MST radar antenna of the Poker Flat
Radar in Alaska is shown which has only a few fixed pointing directions to the
vertical and at 15° off-vertical.

Figure 12. The 32-m receiving
antenna dish of the incohe-
rent scatter radar of the
EISCAT UHF (933 MHz) radar
system in Kiruna, Sweden.
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Figure 13. The 200m x 200m coaxiai-collinear antenna array of
the Poker Flat MST radar in Alaska, operating on 50 MHz with
two off-vertical beam directions (from BALSLEY et al., 1980).

Dish or cylinder antennas are rarely used for MST radar applications be-
cause of their large dimensions, but they are quite frequently applied in IS
radar facilities. Only one or a few elements are applied as primary feed anten—
nas of the dish antennas. The beam steering 1s done either by moving the posi-
tion of the feed antenna (e.g., at the Arecibo Observatory (WOODMAN, 19880)) or
the entire dish (e.g., at the other UHF IS radars, see Table 9 at the end of
this article). This has the advantage that no complicated power distributions
and phasing network has to be used to feed the antenna. The EISCAT VHF radar
uses a long line feed to 1illuminate a 120m x 40m dish and allows mechanical
steering 1n one plane and side-steering by phasing in the other plane (HAGFORS
et al., 1982). Because of the limited size of the primary feed antennas of dish
antennas, the low-angle sidelobe suppression is usually not sufficient, which
results in strong clutter echoes. particularly when such antennas are also used
for MST radar applications.

Usually the antenna systems of MST radars are phased array antennas con-
sisting of many single elements as can be seen for instance in the Yay-out of
the antenna system of the MU radar in Japan which consists of 475 crossed Yagi
antennas (F1g. 14). In the case of the MU radar modules of four antenna elements
are fed by single phase-coherent transmitters. which allows very fast electronic
peam steering. 1n many other cases the tndividual elements or modules are fed
from a single transmitter through a cascading network of cables, hybrids and
phase shifters. A relatively simple antenna array is the COCO antenna (goaxial-
collinear), which is built 1n form of an array (see Fig.15) by using coaxial
cable as radiating elements (e.g.. BALSLEY et al., 1980). It has the advantage
that the feeding of elements 1n one line is just done by interchanging the inner
and outer conductor of a coaxial cable everv halt wavelength. The earliest
application of the COCO antenna can be found at the Jicamarca VHF radar in Peru
(see Fig. 16). The outer conductors of the aligned coaxial tube or coaxial cable
act as collinear dipoles. The feeding 1s done from the center of a line, which
may typically consist of 16-48 dipoles. Positioning several of these strings or
rows in parallel at spacing d < No , and feeding these by a suitable matching
network results in a COCO array (see Fig. 15). The radiation and the loss 1in a
coaxial string comprise some natural tapering, having the intrinsic advantage of

[T
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the 46.5-MHz MU radar in Japan sunset ST radar in Colorado, USA
(after FUKAQD et al., 1985a,b). (from Green et al., 1975).
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Figure 16, Part of the phased-array Figure 17. Yagi antennas and power
antenna of the 50-MHz Jicamarca dividers of the SOUSY-VHF-Radar
radar in Peru and a close view of in wWest Germany.
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suppressing sidelobes 1in the piane of the string but the disadvantage of degra-
ding the antennna efficiency. Because of the phase relation along a string is
fixed, a beam steering parallel to the COCO string is not possible. Beam steer-
ing perpendicular to the string rows is achieved by inserting appropriate phase
delays in the cables feeding the parallel rows. The COCO dipoles have to be
lined up a guarter wavelength over reflector wires or screens. This antenna type
is relatively 1nexpensive, because coaxial cable 1is used for antenna elements
and the matching network is simple. The successive phasing from one collinear
element to the next, however, degrades the bandwidth of this antenna type.
Instead of coaxial cable as radiator, halve-wave dipoles can also be used which
are fed in a properly adjusted phase to form a collinear antenna. The applica-
tion of collinear dipole lines limits the stearability of an array, and for this
reason frequently three antenna arrays are used with three different fixed beam
directions (®8.g9., GREEN et al., 1975; BALSLEY et al., 1980).

single dipole or Yagi antenna elements (see Fig. 17) are often set wup to
form a phased array (see Fig. 14 and Fig. 18). They are fed by a cascading
network of open wire or coaxial cable systems, when a single transmitter 1is ap-
plied. The cascading is most appropriately done in 2" branchings (n = 1.2,...),
as for instance shown in Fig. 19. By these means one can also feed parts of the
antenna array with 1/2, 1/4,... power to provide tapering without dissipating
power (see for instance Fig. 20). The branching is best done in couplers, power
dividers or 3dB-hybrids, which prevent RF-power, reflected from a mismatch to
return to the transmitter or other antenna elements rather than being dissipated
in the resistor port of the hybrid. These hybrid installations also minimize
effects due to mutual coupling between the single antenna elements. The coupling
can be critical if phase control is applied to steer the antenna beam. The phase
shifting, as shown in Fig. 21, 1is usually inserted close to the final elements,
which may also be connected to form modules of 4 or more elements. For continu-
ous beam steering phase shifting has to be done continuously, which mostly 1is a
sensible and difficult procedure particularly when narrow antenna beams are
used. The phasing is more easily done by inserting discrete phase delays in
steps of 2n/16 with a binary phase shifter, which is shown in Fig. 22. The
switching can be achieved by only four relays, allowing phase delays of 22.5°,
456, 90° and 180° to be inserted in all possible combinations, which are suffi-
cient for commonly applied beam width of several degrees. Another way of phase
shifting can be done with hybrids as is shown 1n the schematics of the later
Fig. 32.

N2/ A5 4 S8

A8 0 M A3 N 5 N6
A1 A8 A NSNS SB SN
/25 /2 /21 /28 /29 /30 /3N /3R

—a—
/33 /36 /35 /36 /31 /38 /39 /W0 N
/80 A2 A3 Ak A5 A6 AT /48 1670
A9 /50 /51 /52 /53 /Sb /55 /56 "oy
/51 /58 /59 /60 /61 /62 /63 /Bl S
64 (8xB) ELEMENT YAGI ARRAY BEAM POSITION

Figure 18. tay-out of one 64-Yagi-antenna module of the 52-MHz
Chung-Li VHF radar in Taiwan (after BROSNAHAN et al., 1984).
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positions: vertical (& = 0°) and north, east, south and west
at & = 16.7° zenith angle (from BROSNAHAN et al., 1984).
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Figure 20. One quarter of the power divider system of the mobile
SOUSY VHF radar antenna, allowing for tapering of the antenna
elements by staggered power dividing hybrids (from CZECHOWSKY
et al., 1984).
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Antenna Feed Distribution System
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Figure 21. Schematics of a typical antenna feed distribution system
using hybrids for power division. The two output ports of a hybrid
are phase shifted by 90° with respect to each other. This has to
be compensated by the phase shifters, which are also used to insert
certain phase shifts for beam steering. The power, which 1s reflec-
ted from the antennas due to an impedance mismatch, is attenuated
in the resistor port of the hybrids and does not return through the
transmitter-receiver port.

Binary Phase Shifter

T8 T4 T2 m
s s’ s /
. 7 , s P ’ P I J
A ’ ., B ’ s, ¢ ’ ’
., ’ . 4 ~ 7
/ g s K

D
s
.l/

Figure 22. Principle of a binary phase shifter, allowing all the combi-
binations of phases:

Phase shift: n/8 2n/8 3n/8 4n/8 5n/8 6n/8 Tn/8 n
Phase delay A: 1 0 1 0 1 0 1 0
(1=on) B: 0 1 1 Q Q 1 1 0
(0=0ff) C: 0 0 0 1 1 1 1 0

D: 0 0 0 0 0 0 0 1

The phases between n and 15/8n are achieved by keeping the phase
delay D in the on-position.
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The advantage of Yagi against dipole antenna elements 1s that no ground
screen is needed bacause of the Yagi reflector. The multi-element structure of a
single Yagi allows for a higher gain (improving the filling factor of an array)
and a negligible coupling (<-25 dB) between adjacent Yagi antennas 1in an array.
Mostly Yagi antennas can be constructed in such a way that the bandwidth is
several Megahertz. The bandwidth 1imiting factors 1in a Yagi system essentially
are the phase shifters. The losses of a Yagi system are also considerably lower
than those of a COCO antenna. However, such a Yagi system is obviously more
expensive than a COCO system. The feeding of an array system can be from one
transmitter, but also sub-modules can be fed separately by severa)l phase-con-
trolled transmitters (FUKAO et al., 1980). The transmitter phase control can
even be used to steer the antenna beam. This, however, needs a similar phase
control of the receiver channels.

3.  TRANSMIT-RECEIVE SYSTEM

Separate antenna arrays can be used for the transmission and for the recep-
tion mode as shown 1in the graph of Fig. 23. Such an antenna combination was
first used with the SOUSY-VHF-Radar for MST measurements with the beam-swinging
as well as the spaced-antenna mode, which was added at a later time. For a newly
designed radar a combination of the two measurement modes using one antenna for
transmission and reception is useful as shown in Fig. 24. While separate antenna
arrays allow for sufficient decoupling of the receiver from the transmitter, a
fast and highly insulating transmit-receive duplexer (ATR = antenna-transmit-
receive switch or duplexer 1in Fig. 24) has to quickly switch the antenna from
the transmitter to the receiver and vice versa, if only one antenna is used. The
principle of a duplexer 1is outlined 1in Fig. 25. During the transmission phase
the pin-diodes are short-circuited and the power at the hybrid output ports is
reflected back into the hybrid from where it exits through the antenna port to
the antenna. The small leakage through the diodes is combined in phase in the

(R) SOUSY-VHF -RADAR

Antenna Systems

Antenna I 196 Yagis Antenna T = 3 x 32 Yogis
steercble beam fixed vertical beams
(Doppler velocity) (drift velocity)

gain=31dB  area=3155m? gaine3x72dB area=3x35m’

Figure 23. Antenna systems of the SOUSY-VHF-Radar in W.Germany consisting of
phased arrays of vagi-antenna elements. The complete system is designed for
peam steering in the Doppler mode with antenna I and in the spaced antenna
mode with antenna I and antenna II. For the latter purpose the antenna I is
pointed vertical and the separated three subunits of 32 Yagis of antenna II,
which are forming a vertical beam also, are used for reception.
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Figure 24. Radar system using three separate receiver-transmitter-antenna
modules, which can be operated phase-synchronized to allow beam steering as
well as spaced antenna measurements with the same full antenna array. The
system is laid out for range multiplexing (RMUX), on-line integration (INT},
correlation computation (CORR) and on-1ine analysis (AN), as well as data
telemetry (TEL) and remote control (CAMA). The latter additions of remote
control and data transfer are usually needed when such a radar system would

be used in operational applications as a wind profiler.
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Figure 25. Transmit-receive duplexer (also called T/R switch)
using 3-dB hybrids and pin-diode switching.
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receiver hybrid and exits through the resistor port. In the reception case the
diodes are open and the split power from the antenna is combined in-phase 1in the
receiver hybrid to pass through the receiver port to the receiver input. Any
noise, which is still generated in the transmitter during the reception phase is
combined into the resistor port of the receiver hybrid. The response and re-
covery time of the duplexer should be in the order of the range sampling time,
i.e. typically 1less than 10 ps. To insulate a peak transmitter pulse amplitude
of 105W to a fraction of Watt, which will not affect the receiver, the decoup-
1ing attenuation has to be better than 60 dB. These specified values can be
obtained with the described pin-diode hybrid switch. Other kinds of transmit-
receive duplexers, using quarter-wave coax lines or parallel and serial reso-
nance circuits are also used. These are not so suitable because of the resonance
circuits, which cause ringing effects and affect the data in the first sample
range gates. If circular polarization is applied (in IS radar operations) the
duplexer can be replaced by a hybrid, which provides some 30 db decoupling
petween the transmitter and receiver port. The remaining RF signal leaking
through the receilver port is usually attenuated by a so-called receiver protec-
tor, which 1s a fast pin-diode switch disconnecting the receiver input from the
hybrid receiver port during the transmission phase. In order to further protect
the receiver during eventual malfunctions of the duplexer or the receiver pro-
tector the status of these devices is monitored by proper hand-shake and inter-
Jock systems, which prevent the transmitter to be turned on 1in case of a fai-
Ture.
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Figure 26. Block diagram of the Chung-Li VHF radar, which bases
on the principal lay-out of Fig. 24 (from Brosnahan et al.,
1983).
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In Fig. 26 a block diagram of the Chung-Li VHF radar is shown, which 1is a
dual-mode radar. Dual-mode means that the radar can be used 1in the Doppler as
well as 1n the spaced antenna mode (for velocity and interferometer measure-
ments). For the spaced antenna mode it has three separate antenna arrays for
reception which are combined in phase for transmission. In the Doppler mode the
antenna arrays can be either combined to point into the same direction during
transmission and reception, or they can point at the same time into three dif-
farent directions. The beam steering is done by phase shifters and the power
distribution by power dividers, which are made from coaxial cables. The trans-
mit-receive duplexer is called 7T/R switch (transmit-receive switch) in this
diagram. Three transmitters are feeding the three antenna arrays. For providing
the essential phase eguality at the three antenna arrays, the transmitter drive
RF signals are phase-controlled. In order to provide the phase-coherent radar
system, the same oscillator controls the transmitters as well as the three
receiver channels. Following the sample-and-hold (S/H) circuit and analog-digi-
tal converters (A/D) the data are preprocessed, i.e. coherently integrated, and
transferred to the mini-computer. From there the data are dumped on tape. By the
computer also the radar operation is controlled, particularly by loading the
system synchronizer (radar controller) and starting the operation. The system
synchronizer also steers the antenna beam directions. We now will briefly de-
scribe in more detail some typical sub-units of such a radar system.

3.1. Transmitters, Receivers and Oscillators

In Fig. 27 the principle block diagram of a transmitter is shown. The os-
cillator generates a continuous wave signal, which is pulse modulated (in ampli-
tude and/or phase) by a fast switch controiled by pulse trains from the radar
controller. The switching needs to be done with transition times, which are
reasonably faster than the duration of the shortest pulse 1n single puise appl1i-
cations or the pulse element in phase coding. Thus the switching of 1-us pulse
elements needs to be done within 100 ns or so. The puised RF signal, usually at
a level of several mW, is amplified in driver stages up toc peak power levels of
several kW. The final amplifier of MST radars usually yields sevaral ten kW peak
RF output power. Most frequently vacuum tube amplifiers are applied 1in the high
power stages, which need power supplies with at least 5~10 kV high voltage.
Semi-conductor devices needing much lower voltages are now getting in more use,

TRANSHITTER

] TRANSHIT- ANTENNA
DL b siten |of oiver (of PN e o
' DUPLEXER
DIRECTIONAL
COUPLER
RONITOR
ECEIvER RADAR POWER SUPPLY RADAR !
CONTROLLER CONIROLLER  RECEIVER

Figure 27. Principle block diagram of a typical MST
or incoherent scatter radar transmitter.
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particularly when distributed antenna modules are employed instead of one large
antenna array. Because of the high output power requirements of more than 1 MW,
the 1incoherent scatter radars apply klystron tubes in the final transmitter
stage, which need pulsed power supplies with 50-100 kV high voltage. The high
power - high voltage power supplies usually are equipped with a very fast pro-
tection switch (a so-called "crow bar”), which discharges the power supply
within small fractions of a second 1in case of a transmitter malfunction to
protect the final power amplifier tubes from damage.

Following the final amplifier the transmit-receive duplexer switches the
antenna either to the transmitter or to the receiver as described in the last
chapter. To allow a measurement of the output power a directional coupler is
used after the duplexer output. By measuring the forward as well as the re-
flected power with two directional couplers the matching (i.e., the voltage-
standing-wave-ratio: VSWR) of the antenna 1s wusually monitored. If a phase
controller is needed to provide exact phasing of separate antenna arrays, it
usually is 1nserted in the low power stages of the transmitter. Such a device 1s
principally described by the block diagram of Fig. 28. The signal from the
transmitter output, measured with the directional coupler, is compared with the
local oscillator (LO) reference signal with specified phase (for multiiple
transmitter beam steering). The phase offset between both these signails 1s
sampled and used to control the phase shifter, which changes the phase of the
input signal (RFin). The RFout signal, available with the corrected phase at
the output of the phase controller, is then fed to the next amplifier stage in
the transmitter.

Usually the Jlocal oscillators are more complex because of necessary fea-
tures, which are outlined in Figs. 29 and 30. For a super—heterodyne receiver,
j.e. a multiple mixing of the receiver 1nput signal to one or two intermediate
freguencies with subsequent mixing to baseband, a main oscillator in any 1n-
stance allows for the phase synchronization between these different frequencies
(Fig. 29). 1In case of multi-frequency channel operation, also a set of phase-
locked frequencies has to be generated. In practice the transmitter as well as
the recejver oscillator signals have to be further processed as shown 1in Fig.
30. The main local oscillator signal 1s divided 1nto two signals 1n the trans-
mitter and the receiver path, respectively. In the transmitter path frequently a
phase flip between 0° and 180° 1is implemented to allow phase coding (phase
modulation), followed by the switch to turn on and off the transmitter signal
(pulse amplitude modulation). In the receiver path a switch turns off the locat
oscillator signal during transmission to reduce any feed-through of leakage of
the transmitter signal into the receiver. After power dividing of the loca)
oscillator signal one path is phase shifted by 90° to allow baseband mixing to
the gquadrature components, i.e. real (Re) and imaginary (Im) part of the base-
band signal. The control signals (FLP = flip, TXP = transmitter pulse, and LOP =
Jjocal pscillator protect) are generated by the radar controller {see Chapter 5}.

RF 1

m'__.- § b—el S/ [—e{ CONTROL |l PHASE Figure 28. Block diagram of
DIRECTIONAL SHIFTER an automatic transmitter
COUPLER phase-controlier, which 1s

needed to phase-synchronize
multiple transmitters feed-
1ng parts of an antenna.
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Lreferencel SAMPLE PULSE RF OUT



82

0SCILLATORS FOR
SUPERHETERODYNE RECEIVER

SYNCHR. | LOCAL
0SCiL- | RE&E,:VER
LATOR 1
E:gé:- i::::::> TRANSHITTER
LOCAL RECEIVER
0SCIL- | — 102
SYACHR. | LATOR 2

Figure 29. Block diagram of an oscillator circuit for super-heterodyne
receivers with two local oscillators LO1 and L0O2 and the phase-
coherent transmitter oscilliator control.
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Figure 30. Block diagram of the master oscillator to control the
transmitter and the receiver, showing the particular phase
shifting and switching circuits for the transmitter and receiver
oscillator signais.
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Figure 31. Block diagram of the principle
raceiver c¢ircuitry of MST and IS radars.

The receiver 1is principally described by the block diagram of Fig. 3. The
low-level signal from the antenna (either directiy in case of separated trans-
mitter and receiver antennas or via the transmit-receive duplexer in case of a
common receiving-transmitting antenna) is fed to the low-noise preamplifier
through a band-pass. Frequently also a calibrated noise injection, which 1is
turned on and off by the radar controller, is directly fed into the receiver
front end. This is necessary to allow a wel) calibrated estimate of the receiver
amplification factor and thus a deduction of the system temperature and the
absolute power of the received signals. In the first mixer the receiver signal
is mixed with the signal from the first Jlocal oscillator (LO1) to the inter-
mediate frequency (IF). Again a pass-band filter separates the wanted IF from
the unwanted mixing products. Before further ampiification usually a variable
attenuator is implemented to adjust the total amplification of the receiver and
thus the output levels for the final baseband mixer and the analog-digital con-
verters. Following the mixing to baseband with the LOZ signal, i.e. the qua-
drature detection (Re and Im), a lowpass filter is applied which usually should
match the signal bandwidth (given by the bandwidth of the transmitted pulse for
MST radars and by the bandwidth of the scattering process for IS radars). An
example of a low-noise receiver front-end of a UHF incoherent scatter radar,
which allows the calibrated noise 1njection, the reception of circular and
elliptical polarization as well as sideband conversion, is shown in Fig. 32. Tne
polarization adaption is achieved by phase changes of the horizontal (H) and the
vartical (v) signal components 1n the polarizer and the sideband conversion by
mixing from the upper side (1053.5 MHz) or the lower side (813.5 MHz). Depending
on the output from the last hybrid of the polarizer alsc the sense of rotation
of the polarization (left- or right—hand rotation) can be selected.
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Figure 32. Block diagram of the 933-MHz receiver front-end of the
EISCAT incoherent scatter radar receiving stations. The hori-
zontal (H) and vertical (V) components of the signal from the
shift and hybrids) and mixed to the intermediate frequency 120 MHz.
A noise generator, which is switched on and off by the radar con-
troller, injects a calibration signal into the receiver front-ends.

3.2. Examples of Radar Systems

There are some technical system specifications, which principally apply for
all atmospheric/ionospheric radar systems. A block diagram of a typical trans-
mitter/receiver system of an MST radar 1is shown in Fig. 33. It depicts the
design of the portable SOUSY Mini-VHF-Radar (46.8 MHz), which was operated at
the Arecibo Observatory 1in 1980. According to individual requirements, many
variations and modifications of such a system can be done, but Fig. 33 describes
a generally basic design. The 120-MHz signal of the main or master oscillator
(MO) is divided by four to obtain a 30~-MHz intermediate frequency (IF) which can
be modulated (MD) in amplitude (RFC = RE control) and phase (FLP.= flip). This
is to provide phase coding and DC-elimination (see Chapter 4 for more details).
A similar divider generates the 0° and 90° signals, which are necessary for qua-
drature detection. The operational frequency 46.8 MHz 1s generated by mixing (X)
with the local gscillator (LO) signal at 76.8 MHz. It is amplified in the trans-
mitter (TX) and fed through the transmit-receive duplexer (TRX) to the antenna.
The signal received at 46.8 MHz is gated (RGT = receiver gate), amplified in the
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Figure 33. Block diagram of the transmitter-receiver system of
the portable Mini SQUSY-VHF-Radar, which was used with the
Arecibo Observatory dish antenna for MST studies.

receiver (RX), mixed with the LO-signal to an intermediate frequency (IF) of 30
MHz, and mixed down (X) to the baseband 1n the quadrature detector. The two
quadrature outputs, the real part (Re) and the imaginary part (Im), are low pass
filtered (LP) to match the receiver bandwidth to the bandwidth of the trans-
mitted pulse.

The transmitter peak power typically 1s between 1 kW and 1 Mw for MST
radars with duty cycles up to several percent, while i1ncoherent scatter radars
use duty cycles of some 10% and peak powers above 1 MW, The transmitter band-
width must cover the shortest pulse length of 1 us (=2 MHz RF bandwidth). The
transmitter 1s normally operated 1in class-C mode to achieve an optimum effi-
ciency. Incoherent scatter radar transmitters use mostiy high power klystrons.

The receiver linearity range usually exceeds 60 - 80 dB 1in order to avoid
saturation with strong clutter signals or 1in the case of large dynamic range
variations of the atmospheric signal. The phase flip and the quadrature detec-
tion must be within less than a few degrees accuracy, and the amplitude ratio of
the guadrature components must not deviate from unity by a few percent 1n order
not to distort the Doppler spectrum analysis. The stability and the phase noise
of the oscillators 1s usually better than 10-4 Hz/ms to allow a good accuracy of
coherent detection. The receiver base-bandwidth (postdetection) has to be about
1 MHz to provide the resolution of the shortest pulses of 1 us. The intermediate
frequency bandwidth needs to be at least twice as large as the base-bandwidth.
Besse]l filters are usually applied after the quadrature detector as low-pass oOr
post-detection filter in MST radars, but Butterworth filters in IS radars.

The receiver noise figure of an MST VHF radar need not be better than a few
dB {(some 100 K), since the sky noise 1level (> 1000 K} determines the sensiti-
vity. A noise calibration signal of 1000 K, say, shouid be 1njected 1nto the re-
ceiver frontend in order to provide an absolute power calibration (which also
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right ascension on 64 MHz (after KO, 1958).
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needs a continuous monitoring of the transmitter power). However at higher
frequencies 1nh the UHF band the sky noise is no more the determining factor as
can be seen from Fig. 34. Therefore above several 100 MHz (e.g. 1in case of the
incoherent scatter radars or for the UHF ST radars where the signal-to-noise
ratio is usually very low) the receiver frontend has to be carefully designed
for lowest equivalent noise temperatures. Usually system temperatures of several
ten Kelvin can be achieved at some incoherent scatter UHF radars. The sky noise
(from galactic radio sources) changes as function of time of the day and antenna
pointing angle as depicted by Figs. 35 and 36 for frequencies of 64 MHz and
53.5 MHz, respectively. This changes the signal-to-noise ratio even if the
reflectivity of the radar volumes would be constant. The known variation of sky
noise and 1in particular the well known ephemeris and flux density of point-like
radio sources (e.g. Cassiopeia or Cygnus) yield on the other hand a well suited
means to calibrate antenna diagrams and antenna gains,
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Figure 36. The dyurnal variation of sky noise level on
30./31. August 1978 measured at the antenna of the
53.5-MHz SQUSY-VHF-Radar (52°N) 1in West Germany.

The eguivaient noise figure of 0 dB corresponds to
a system temperature of 290 Kelvin,

In Figs. 37, 38 and 39 we show more block diagrams of three other raagars,
the Poker Flat MST Radar operating on 50 MHz, the MU radar operating on 46.5
MHz, which 1is used for MST as well as 1ncoherent scatter observations, and the
EISCAT radar systems, which operate as incoherent scatter radars in the 933 MHz
and the 224 MHz bands. In Fig. 40 a block diagram of a 915 MHz wind profiler
radar and in Fig. 41 the block diagram of the Arecibo bistatic S-band (2380 MHz)
CW-radar is shown. The latter radar operates on 2380 MHz 1n phase-coded continu-
ous wave (CW) mode. The experienced reader will notice several of the basic
features in these schematic diagrams which we have mostly outlined 1n the tore-
going chapter. More technical details of these radars should be found in the
relevant literature.
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4. RADAR SIGNAL ACQUISITION AND PREPROCESSING

The simplified schematics of radar systems, shown in Figs. 6a and 6b, are
used for a basic explanation of the radar operation and data-acguisition proce-
dure. After we have briefly explained the lay-out of antennas, transmitters and
receivers, in the last chapters we will now explain the formalism of a basic
coherent system, the quadrature detection, the digital sampling as well as
subsequent data acquisition and phase decoding procedures. For more details see
WOODMAN and GUILLEN (1974), ROTTGER and SCHMIDT (1979), SCHMIDT et al., (1979),
CARTER et al., (1980), CLARK and CARTER (1980), SATO and WOODMAN (1982), RASTOGI
(1983), for instance. Since these signal processing steps are mostly done 1n
spacially designed hardware processors, we now briefly summarize the underlying

concepts.
4.1. Coherent Detection

The oscillator generates a signal s® at the angular frequency Qo = 2unfo
whare fo = ¢/No is the center radar operation frequency. A pulse train, gener-
ated by the radar controller, imposes a modulation to this signai. After am
plification in the transmitter (TX in Figs. 6a and 6b) the radar signal

s(t) = a(t) exp(i(Qot + #(t))) (5)
is transmitted, where a(t) determines an amplitude modulation (by the pulse
train) and @(t) corresponds to a phase modulation (for coding), and i = y-1,
a{t) and #(t) are slowly varying as compared to Qot. The radar signal is scat-
tered/reflected from the radar volume and reaches the receiver (RX) via the same
or a separate antenna. Additionally, noise (sky noise and interference) is
received and adds to the radar echo.

C-2
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For simplifying the explanation we will assume for a while that the trans-
mitted signal s(t) is not modulated, 1.e. a(t)=const and @g(t)=const, and the
echo results only from a small radar volume at a given range. The echo signal
s’(t) plus noise r(t), which are both band-1imited because of the scattering
process and/or the receiver bandwidth, can be represented by

c'(t) = s’(t) + r(t) = ar1(t)cos Qot + jaz(t)sin Qot,

where ai1(t) and az(t) are independent Gaussian variables 1in a pure scattering
process. The uncorrelated noise r(t) contributes only uncertainties to these
estimates. After linear amplification 1in the receiver, c’(t) 1is coherently
detected by multiplicative mixing with s°. After low-pass or post-detection
filtering (to eliminate high frequency components 2Qo, which are generated
during the mixing procedure), this yields

c(t) = a*(t)cos O*(t) + ja*(t)sin 68*(t),

where a*(t) (a12(t) + a22(t))1/2/2, (6a)

g*(t) = arctan (az(t)/a1(t)).

The phase ©*{t) = Qot - 8'(t) is given by the Doppler frequency Qo = -4nV’/fo,
which is due to the bulk motion V' of the scatterers. The time variable phase
e'(t) = 8(t) + p(t), where 8(t) is caused by the fluctuations of the scatterers-
/reflectors in the radar volume. The amplitude a*{(t) is a measure of the reflec-
tivity of the scattering/reflection process. These latter statements are only
valid if the noise contributions are separated from the signal. The coherently
detected complex signal (+ noise) can be expressed in the form

c(t) = x(t) + y(t), (6b)

where the real part x(t) = a*(t) cos 8*(t) is called the in-phase component, and
the imaginary part y{t) = a*(t) sin 6*(t) 1is called the quadrature component.
Both components, x and vy, are called the guadrature components. The Fourier
transform of c(t) is

A(Q) = lc(t)exp(-iQtidt = X(Q) + iy(Q),

which yields the periodogram P(Q) = X2 + §2; it 1s often also called power or
Doppler spectrum. The measured P(Q) is the convoiution of the spectrum of the
refractive index or the reflectivity fluctuations in the radar volume with the
spectrum Pr(Q) of the transmitted wave form (for the common case of pulsed
transmissions), multiplied by the bandpass characteristics Pr(Q) of the recei-
ver. Since P(Q) is much narrower than the envelope of PT(Q) and Pr(Q) in MST
radar investigations, these instrumental effects can mostly be disregarded.
However, in inccherent scatter applications the spectrum of the scatter process
Pr(Q) is mostly wider than the envelope of Pr(Q), which leads to the fact that
the instrumental effects of receiver and transmitter pulse bandwidth have to be
accounted for during the signal analysis.

4.2. Digital Sampling

We now take into account that the signal c(t) results from scattering and
reflection 1n certain altitude ranges. Frequently these signals which originate
from scatter or reflection of a transmitted radar signal are called "radar
echoes”. We now have to note that the transmitted signal is modulated 1in order
to resolve the range from where the radar echoes arrive from. As sketched 1in
Figs. 1 and 2, the echoes from different ranges then occur at different times at
the analog receiver output. In order to allow adapted signal processing of
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Figure 42. Range-time-amplitude diagram of single-pulse
transmitter modulation and coherent MST radar signals.

digitized data, the signal c(t) is sampled at discrete time intervals tk = kdts
in the analog-digital converter (ADC). This 1s ililustrated 1in Fig. 42, which
shows the amplitude variations of one of the quadrature components of a coherent
MST radar signal as they could be monitored with an oscilloscope connected to
the output of the postdetection filters, which follow the quadrature detectors.
The sequences n = 1,2,... can be assumed to represent successive oscilloscope
beam deflections (along the vertical axis), triggered by the leading edge of the
transmitter pulse. This pulse is strongly attenuated by receiver gating, as was
explained in the last chapter. It is flipped in phase by 180° from one pulse to
the next (change from positive to negative amplitude), for the reason of DC-
elimination (see details in the following Chapter 4.3). Corresponding to the
transmitter-pulse phase ¢, the sign of the radar echo alsoc changes from one to
the next interpulse period. For convenience the phase of the radar echo 1s shown
here to be similar to the transmitter-pulse phase. The echo phase can take any
values, however, depending on the length of the phase path from the transmitter
to the radar volume and depending on the relative changes of the scatterers
within the radar volume.

On the vertical axis of Fig. 42 the time tx 1s given, which directly can be
converted to range by means of the definitions of Chapter 1.1. The sampling time
interval 3ts should be equal to the radar transmitter pulse length 5tt, since
this usually (in case of volume filling scatter) yields an optimum matching to
the range gate width or resolution ©&r. However, 1in certain cases when narrow
reflecting layers shall be resolved, shorter sampling intervals 5t® < &t can be
useful; this is called "range oversampling”.

The signal and the noise had passed the receiver and postdetection filters
and are therefore bandlimited. The response time of the receiver, which 1s
approximately inversely proportional to the filter bandwidth, should also be
equal to Ob&ts, respectively &te. The subscript k of tk is the serial number of
the range gate with K = 0,1,..., K-1, where k = 0 corresponds to the beginning
or a certain level of the transmitter puise. Since the quadrature components are
digitally sampled, we can write equation (6b) in the form ck = xk + 1yk. We also
call cx the complex raw data samples.
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The number of sampling time steps between successive radar transmitter
pulses is K, which 1s also the number of sampled range gates. The interpulse
period 1s Tipp = K 5ts. The cycle k = 0, ..., K-1 is repeated once with
K> = 0, ..., K'-1 with a reversed phase of the transmitter pulse. Both cycles,
denoted by k and k’ (with k’ 2 k and K’ £ K}, determine one radar cycle 2+Tipp
(note that here the radar cycle is two times the interpulse period, because of
the introduced phase flip). The serial number of radar cycles 1is given by
n=1,...,N. One radar burst is determined by N radar cycles, which last for ti
= 2N-Tipp. The generation of all pulse trains, needed to control these cycles of
the transmitter and receiver-ADC-integrator system, is done in the radar con-
troller, as described in Chapter 5.

4.3. Coherent Integration and Preprocessing

we will discuss here a standard preprocessing procedure of the pulse-to-
pulse technique applied with MST radars. The spectrum which one would obtain for
a coherent echo (MST radar) with the sampling rate Tipp is very wide and mostly
contains high frequency noise power. The signal power is confined to relatively
Jow freguencies only (f = 1/te << 1/2Tipp), where te is the signal coherence
time. It is evident therefore that low pass filtering of a coherent signal, done
before the spectrum analysis, will not change the signal characteristics but
eliminates high frequency noise contributions. The simplest form of low pass
filtering is just the complex addition of the signal + noise samples over an
interval ti << Te. A readily noticed effect of such an averaging over N inter-
pulse periods is the reduction of the number of total samples by a factor 1/N.
We have to note that this processing step of coherent integration cannot be
applied for incoherent signal processing, because the signal coherence time is
shorter than the interpulse period. This also means that the described DC- and
clutter-elimination is not applicable for incoherent signals. The standard
procedure of autocorrelation function and spectrum computation, however, is
compatible in both applications.

Since the noise (r) and the signal (s) are independent of each other. their
quadrature components add to Ckn = Ckn" + Ckn®, where Ckn” ( = xkn" + 1ykn" )
are the quadrature components of the noise and ckn® those of the signal. A DC-
bias can result from a constant, instrumentally 1introduced volitage at the recei-
ver output ckn', or due to radar ciutter ckn© (clutter = echo from a tixed
target). A1l these contributions are additive:

Ckn = Ckn" + Ckn® + Ckn? + Ckn®.

We have to take into account that each radar cycle yields two samples per range
gate, namely k and k'. The samples of signal and clutter are shifted by 180°
from k to k’, because the phase @#(t) of the transmitter was fl1pped by 180°
(change @g(t) by 180° 1in equations (5) and (6)). This can be accounted for by
changing the sigh of ck'n when averaging

1N
Ck,k* = N Z (Ckn - Ck'n}
n=1
1N
= ﬁ T (Ckn" - Ck’'n” + CknB® = Ck’'n® + Ckn' = Ck’ni * Ckne — Ck’'ncl.
n=1

Since for the instrumental DC-bias ckn' = Ck’n’, 1l 1S eliminated by averaging.
This i1s called instrumental-DC elimination (DC = direct current, better 1o say:
constant voltage contribution).
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Because of the transmitter phase flip, we find that: ckn® = -~ ck’'n® and
Ckn® = - Ck'n®. Since the noise is independent from one to the next interpulse
period, a change in sign of ckn” does not change its statistical properties. We
thus obtain, since k' = K:

Ck =

zin
H M 2Z

(Ckn"™ + Ckn® + Ckn€) (7)

n=1

This averaging, commoniy called “preintegration” or better "coherent integra-
tion”, has become a standard process 1in MST radar operations. It yields cohe-
rently integrated data samples ck1 (1=1, ....L) at the time

t1 = 2-1-N-K-5tse
for the coherent integration period ti = 2-N-K-6ts = 2-N-Tipp.

If the summation in eguation (7) extends over a time period ti = 2-N-Tipp,
which is much Tonger than &tes, the high-frequency noise contribution vanishes.
For a coherent integration period tL = 2-L-N-Tipp, With (L »>N), which 1is much
longer than Tte, the signal contribution approaches zero since it is fading 1in
amplitude and phase. Only the clutter contribution

1 L
Ck€ = [ Z Ck1
1=1
remains, since it is constant in amplitude and phase. This can be used to elimi-
nate the clutter component by means of a digital high pass filter operation: cki

= ¢ck1 - ¢x¢. This operation is called clutter-DC elimination, and 1is done after
the coherent integration.

For the coherent integration given by equation (7), the number N of added

samples has to be selected carefully. It is evident that the integration period .

has to be much shorter than the typical time scale of signal variations due to
the fluctuating scatter process as well as due to the freguency changes resul-
ting from the bulk motions of the scattering or reflecting medium. The advantage
is, however, that the processing can be made very efficient since only additions
(subtractions) but no multiplication of the raw data series with a weighting
function are necessary. It is also required that the real part x and the imagi-
nary part y of the detected signal are correctly in quadrature (orthogonal),
Ideally they must be phase-shifted by exactly 90° and must have equal amplitudes
on the average, otherwise a distortion of the Doppler spectrum results. Accu-
~racies of less than a few degrees phase difference and less than a few percent
amplitude difference are tolerable, however, and can be obtained by proper hard-
ware adjustment.
The coherent integration of the guadrature components, formulated by equa-
tion (7), 1s normally done in a digital preprocessor, called adder or integra-
tor. Since this coherent integration is a low pass filter process it can be done
also in an analogue filter, such as the clutter elimination which is a notch or
high pass filter operation. Obviously the digital processing is much more versa-
tile and flexible. Both analogue and digital preintegration reduce the number of
data samples by some orders of magnitude, and compress the huge data flow from
the ADCs to make it manageable for the host computer. This is the evident advan-
tage of this preintegration process. We have to note, however, that this cohe-
rent integration process looses 1its advantages for higher freguency (>500-1000
MHz) radar applications. The reason is that the signal coherence time is in-
versely proportional to the radar operating frequency and consequently the
coherent integration time has to be reduced. It is often thought that this
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process of coherent integration also increases the signal-to-noise ratio since
the voltages of the coherent signal but the power of the incoherent noise add.
This leads to an improvement of the signal-to-noise (power) ratio by the factor
N, since the noise bandwidth is reduced by the factor 1/N, whereas the signal
bandwidth remains unchanged. If one reasonably defines the noise in such a way
that its bandwidth is equal to the signal bandwidth (e.g., ROTTGER and LARSEN,
1989), the coherent integration process only reduces the wide noise bandwidth to
the acceptable 1imit close to the signal bandwidth, and the signal-to-noise
ratio does not change by this coherent integration. The advantage of the coher-
ent integration process is still the essential reduction of the number of raw
data samples, without giving away information on the signal.
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Figure 43. Range-time-amplitude diagram of a long-pulse
IS radar modulation and inccherent signals.

This kind of coherent integration used in the pulse-to-pulse technigue
cannot be applied for incoherent scatter signals, because the signal coherence
time is shorter than the interpulse period, and thus the preprocessing needs to
be done differently as was principally explained already in Fig. 3. For clear-
ness the same example of an 1incoherent signal (Fig. 43) 1s drawn in the same
manner as for the coherent MST radar signal (Fig. 42). We notice in Fig. 43 the
"incoherence” from one to the next 1interpulse period, which leads to the fact
that the correlation-function and spectrum analysis has to be done within one
interpulse period and the ACFs and spectra then are integrated subsequently. The
Fig. 43 shows that a fairly long pulse is stil1l needed to obtain samples for the
Jongest lag of the autocorrelation function (ACF) in order to achieve the neces-
sary frequency resolution. This obviously deteriorates the range/altitude re-
solution. To overcome this problem, so-called multi-pulse modulation is applied,
and is explained in Fig. 44. This modulation is most efficiently applied by
modulating different frequency channels F1-F6 (within the passband of the trans-
mitter and receiver) in order to fi11 the gaps between the sub-pulses of this
puise pattern. This increases the average power to the maximum allowable level,
but needs a particular multi-frequency channel design of transmitter and recei-
ver. To improve the range resolution further the subpulses can be Barker-coded.
Such a multi-pulse multi-frequency Barker-code scheme is successfully used in
the EISCAT incoherent scatter radar systems (e.g.. TURUNEN, 1988).
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Figure 44, Multi-pulse multi-frequency-channel pulse pattern used
in incoherent scatter applications to improve the range reso-
lution and allow measurements of the lag products of the signal
autocorrelation function for the temporal lag indices j = 1 to 6
(after TURUNEN, 1986).

The application of this modulation scheme as well as the successing "alter-
nating code scheme” has become standard praxis inh incoherent scatter work as has
the “complementary code scheme” 1in the MST radar work. We will explain the
latter coding scheme after we have briefly outlined some basic formulations of
the correlation analysis, which is applied 1in principle also in the decoding
procedures. Again we have to consider that most of the described preprocessing
can be done by specially designed digital hardware.

4.4, Correlation and Spectrum Analysis

After the preprocessing by appropriate coherent integration (for coherent
signals) or immediate correlation function processing (for incoherent signals)
one usually deducts specific signal parameters, such as signal power, Doppler
shift and spectrum width, Usually these are the standard parameters in MST
applications, whereas 1in incoherent scatter applications more information is
extracted from the spectral shape {see BARON. 1977) by special fitting routines.
Before doing this, one has to eliminate the noise which is remaining within the

bandwidth given by the signal. The elimination of "the nofse and further signal
processing can be done in the time domain by correlation (covariance) function
analysis or in the freguency domain by spectrum analysis. These data processing
steps, which follow the hardware preprocessing, can be suitably done by speci-
ally designed software in real time in the host computer or off 1ine in separate
computers by reading the data from tape. In incoherent scatter applications
usually the corretation function computations are done 1in a special purpose
hardware correlator, whereas in MST radar applications the essential preprocess-
ing procedures, which need special hardware. are the coherent integration and
decoding. In the latter case further processing to obtain the ACFs or spectra
need to be done after the preprocessing.

Since the covariance function and the power spectrum are Fourier transforms
of each other, both contain the same relevant information. Depending on the
purpose and the feasibility of the analysis, either of both approaches, is used
in practice (RASTOGI and WOODMAN, 1974; WOODMAN and GUILLEN, 1974; Hagfors,
1977; ROTTGER and SCHMIDT, 1979; SCHMIDT et al., 1979; CARTER et al., 1980;
CLARK and CARTER, 1980; SATO and WOODMAN, 1980; RASTOGI, 1983).
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The complex autovariance function of the guadrature components c(t) is

§(r) = [ c(t)-c*(t + T)dt,

where T is the temporal displacement, and the * denotes the complex conjugate.
In digital form
p H3
Rk(t3) = 53 T Ck1-°C*ki+j = Cki-C*ki1+3, with 3=0,...,J-1 and J < L,
J 1=1
where j is the lag index defining the lag tj. For a fixed range k, we find c1 =
x1 + iy1, and the covariance function becomes

R(t3) (X1X1+5+y1y1+43) + T(X143y1=-X1Y145)

Rr(ts) + 1 Ri(t;),

or  R(t;) = |R(t3)| exp(i(ts)),

with [R} (Rr24R;i2)% and @ = arctan (Ri/Rer).

In radar applications the term correlation function is often used for R(t;)
instead of covariance function. The correct definition of the correlation func-
tion ¢(t;) is given by the normalized covariance function:

¢(t;) = R(ts)/ R(0).

As well as the autocorrelation function of the series c(t) we also compute
cross-correlation functions for two different series, ci(t) and c2(t), in the
spaced antenna applications and use their modulus in the drift analysis and
their phase and amplitude in the interferometer analysis. In a principally
similar way also cross spectra are computed from two time series.

The power spectrum is the Fourier transform of ¢(T). woighted by W(T):
P(Q) = [ W(T)-¢(T) exp(-iQr)dt

or in digital form:

J-1
1 ) .
P (Qm) = ] I Wi -Re; exp(-iQmiti),
j=0
where W; is an arbitrary weighting function (e.q., W; = J-1' for all j, etc.) and
On =mmu/J - ti: m=0,.... J. The length of the integration time interval is
t; = 2-N-Tipp in the case of a coherent signal. For an incoherent signal, ti

corresponds to the time interval over which lag samples of the ACF are collec-
ted.

4.5. Phase Coding

Another preprocessing step which is generally similar to preintegration is
the decoding procedure. The principal reason for applying coding/decoding (pulse
compression) is to achieve a maximum average power at optimum resolution and
maximum unambiguous range. A fairly low duty cycle of 0.1% and hence a low
sensitivity would for instance result from using a single pulse of 1 us duration
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(5r = 150 m) and an interpuise period of 1000 us (reax = 150 km). Increasing the
puise length to 32 us would increase the duty cycle to 3.2%, but deteriorate the
range resolution to 4.8 km. The range resolution of 150 m can still be achieved
by phase-coding the transmitter pulse in time (lag) increments of, say 1 us. The
decoding has to be done by cross correlating the received complex time series cx
(separately for real and imaginary part) with the transmitted code sa:

M-1
Ck#’ = I Ckesm - Sm (8)
m=0

where M is the length of the code and k* corresponds to the range gate k at lag
zero where the correlation function cks’ has a maximum. Thus, the decoding is
nothing else but an integration of the signal amplitudes over several range gate
samples, which are multiplied by the weighting factor sm.

The simplest and most versatile phase coding scheme 1is the binary code,
where the phase is flipped between the two states -1(=0°) and +1(=180°). Since
here the weights sm are +1 or -1, the multiplication needed in the decoding
process reduces to an addition/subtraction operation. For this reason the decod-
ing can be done 1in a preprocessor similar to a hardware preintegrator, or the
integrator/decoder can even be one unit, as we will outline in Chapter 5. Note
that the decoding has to be done for the amplitudes, since these contain the
phase information An advantage in MST radar applications is also that the deco-
ding/integration processes are interchangeable, which reduces the number of
operations by about two orders of magnitude (e.g.. WOODMAN et al., 1980).

The best codes for radar applications obviously are those where the range
sidelobes of the correlation function (8) at k* } k are a minimum. Reasonable
sidelobe suppression is achieved with Barker codes. where the phases are flipped
in a sequence (e.g., +++++-——++-+-+ for the 13-baud Barker code). The correlation
function is 13,0,1,0,1,0,1,0,1.0,1,0,1. The best range sidelobe suppression,
achievable with a Barker code, is M-'., The reason is that these sidelobes con-
tain power from other range gates k* $ k, which cause ambiguities. The sidelobes
of the code extend out to ranges M-5ts on both sides of the center peak. Since
the codes cannot be infinitely long, because the minimum range 1is extended with
the length of the code (which obviously increases the minimum range from where
echoes can be received), the sidelobe suppression of Barker codes 1is limited. A
good sidelobe suppression is for instance needed if strong echoes occur only in
a limited number of range gates.

A better sidelobe suppression can be gained by application of quasi-random
codes, which however need decoding before the preintegration as well as to
transmit a long series of different code sequences. Also alternating codes
appear useful 1in incoherent scatter applications (e.g., LEHTINEN and HAGGSTROM,
1987). The most suitable codes for MST radar work are the complementary codes
(e.g., SCHMIDT et al., 1979), which theoretically have no sidelobes. A comple-
mentary code consists of a pair of two code seguences si1 and sz. These have the
property that their correlation function sidelobes are exactly equal, but oppo-
site in sign. Normally both code sequences are transmitted at one and the next
interpulse period, and the range samples of these two periods are preintegrated
and decoded separately. The coherent addition of the decoded seguences then
yields the total elimination of the sidelobes (kx } k) if the signal is coherent
from one to the next interpulse period. The zero lag value kx = k contains the
total signal amplitude. As an example the 8-baud complementary code pair A,B:

St = A = HHi—di-+ and S2 = B = +44———+-
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vield the correlation functions:
ct - 8,-1,0,3,0,1,0,t and c2 = 8,1,0,-3,0,-1,0,-1
and the addition yields:
ct + ¢z = 16,0,0,0,0,0,0,0.

The peak value of this decoded function at k* = k is 2M. There 1is still the
shortcoming of a long code, that it extends the shortest observable range. This
can be overcome by transmitting a sequence of a complementary code and a short
single pulse in one radar cycle. In Fig. 45 the range-time-amplitude diagram for
the simplest 2-baud complementary code with additional phase-flip for instrumen-
tal DC-elimination is shown. A1l these decoding preprocessing steps are most
suitably done 1in a special purpose hardware integrator-decoder. For coding
purposes, the hardware radar controller needs to generate the necessary ampli-
tude and phase control pulse trains for the transmitter.

. P
B >~
- \\\\
Ti TRANSMITTER
SIGNAL— PULSE
t
//
B* 2NT;
2 -
Ti /
2T;

Figure 45. Range-time-amplitude diagram of a two-baud
complementary code modulation with DC-phase flip
used in MST radar applications.

5. RADAR CONTROL AND DATA ACQUISITION

we will here briefly describe the basic system units which are needed to
process the digitized data in terms of coherent 1ntegration, correlation func-
tion computation and decoding as well as the principle lay-out of a radar
controller,

We first describe in Fig. 46 the basic lay-out of an integrator or adder.
The data from the ADC are range-gate by range-gate stored into memory. According
to equation (7), the data from one interpulse periods are added onto the corre-
sponding data from the successive interpulse period in the arithmetic-logic-unit
(ALU). This is recurrently done as 1long as the integration period is chosen,
i.e. the number of 1interpulse periods preselected for the coherent integration
(controlled through the host computer). After the completion of the integration
cycle, the coherently integrated data are dumped via the direct-memory-access
(DMA) to the host computer.
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Figure 46. Biock diagram of an
integrator/adder preprocessor

_____I for coherent signal acquisition.

RADAR
CONTROL
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coherent integration can also be done 1n the same unit as is used for
and the correlation function computation is done. Both the correlation
decoding operation consist of a multiplication and an addition cycle,

former needs compliex processing and the latter needs to be done for
ature components separately. In Table 3 we have outlined the principles
mputation of correlation function, decoding and coherent integration in

form, which should allow better understanding of the hardware configu-
etched in the diagram of Fig. 47.

TABLE 3

COMPUTATION DF CORRELATION FUNCTION, DECODING, COHERENT INTEGRATION

1=0 { 2 3 . L-1 L
() | () ] C4) | (=) | (#) Dita Series Cl
(range (k) or tise (1))
(A} Correlation Function:
Rj = f EI'CIGj (lag j)
(B} Decoding:
€ =IC § {I=k)
1 lta "n
[ ]
+ + + - + S-baud Barker code
+ + + - + (C) Integration:
€ =EC (I=k)
1 In
+ + + - + n -
+ + + - +
+ + + - + ;
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The square blocks in Table 3 indicate data samples at range or time gates.
The samples in the first row are supposed to be the original data. The hatched
part of the diagram indicates data samples which are accessible at a register
through which the original data are shifted. The correlation function 1s com-
puted according to the formula A in Table 3. To compute the zero lag, the range
(time) samples of the first (unhatched) row with indices j=J and its replica in
the last row j=0 are multiplied for each range or time label 1, and then all
products are summed up over 1. To obtain the first lag, the last but one series,
which is delayed by one sample with respect to the last row, is multiplied and
added in the same way. According to this algorithm all the following lags are
computed. In praxis, the last lag is computed first, since the data samplie at
j=J-1 is available first after the original data series had been shifted by one
in a shift register (see explanation of Fig. 47 on the next page).

In a very similar way the decoding is performed (formula B8 in Table 3),
since it comprises a cross-correlation function computation which can be per-
formed by the same hardware setup. The only difference to the correlation func-
tion computation is, that instead of the data time series the code 1s used in
the delayed data series. In the example of Table 3 a 5-baud Barker code is
shown. It is to be noted, that the first completely decoded data point is avail-
able only after 5 steps of j at J-5, when the 5 bauds of the code are completely
existent in the shift register (for Jlonger codes of course the corresponding
longer delays have to be considered). The combination (i.e., multiplication and
addition according to the formula B) of series j=J-5 with j=J yields the decoded
value at 1=0. As another example for instance j=0 with j=J yields the decoded
sample at 1=3. Note that a further shift than given by 1=0 does not allow the

CORRELATOR - DECODER - INTEGRATOR
CODE SHIFT REGISTERS
{ !
BUFFER 2
OUADRAT - P b3 b eirt o] 2 B e
TECTOR HENGRY
bE W1 A
RADAR l-- ]
CONTROLLER nux 8 !
I3 X X L
2
- I I 1
WL DI
}
:
]
CONPUTER !
h—1 3 RESULT MENORY L | wur 2
W1 ¢

Figure 47. Block diagram of a hybrid version
of a correlator-decoder-integrator.
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complete decoding unless the data time series j=J 1s further extended bevond 8
samples in this example. In praxis this means that always a data set has to be
available which is longer than a single data series by number Lc, where Lc is
the number of bauds in a code minus one. Decoding of complementary codes is done
in principally the same way, but as a final step the two cross-correlation
functions resulting from the decoding of code s+ and its complement sz have to
be added. The coherent integration is simply done, according to formula C in
Table 3, 1in the same hardware processor by just adding the samples for each 1
(or k) separately over a preselected number of interpulise periods.

We have to note that all these procedures have to be done separately for
the real part as well as for the imaginary part of the quadrature components.
For convenience we explain only the integration, decoding and correlation func-
tion computation for a single component.

In Fig. 47 we show a block diagram of such a described hybrid "correlator-
decoder-integrator™. We admit that other realizations may be more practicable,
but this layout should show that such a hybrid processor is feasible in prin-
ciple. The different modes can be understood by following the paths which are
selected by different multiplexer positions. In the integrator mode the multi-
plexer A (MUX A) 1s connecting ports 1 and 3, multiplexer B ports 2 and 3,
multiplexer C ports 1 and 3 and multiplexers D1 and D2 provide that each multi-
plier is connected to the correct range gate. The data are transferred from the
buffer memory to the multipliers, where the sign 1is changed according to the
corresponding phase flip of the transmitter pulse. The multiplier of course
could be eliminated if provision would be made to allow also subtractions in the
adder. For each range gate the data are added in the accumulator, from where
they are multiplexed into the result memory after the specified number of cohe-
rent integrations. Depending on the size of the result memory several sets of
coherently integrated data are stored and afterwards dumped to the main compu-
ter.

For correlation function computations the multiplexers have to be in the
positions A: 1-3, B: 1-3 and C: 1-3. The main part of the correlator is the
shift register by which the data series is shifted according to the 1lag indices
of the decoding or correlation function. Each data sample of the shifted series
is then multiplied with the data sample of the non-shifted data series. For
decoding the shifted data series is the code, and for auto-correlation computa-
tion the shifted series is the same unshifted data series. After this multipli-
cation the data are accumulated, i.e. summed up, and after completion of the
correlation analysis dumped into the result memory from where they are transfer-
red into the host computer. The correct selection of the lag products and their
redistribution to the result memory is again provided by multiplexers Di and D2.

For decoding of the original data series, the multiplexer A is in position
2-3, multiplexer B in position 1-3, and multiplexer C 1in position 1-3. The
original data are existent at the multipliers and according to the position of
the code in the shift register, the decoding 1s performed by multiplication. If
the multiplexer A is 1in position 2-3, B in 1-3 and C in 2-3 a coherently inte-
grated sample set could be also decoded in the same processor and afterwards
dumped to the computer. It is noted that also a correlation function computation
of decoded as well as coherently integrated data could be possible 1f the pre-
processed data are fed back by multiplexer C in position 2-3 to the result
memory. Although the described Tlayout of a multi-purpose integrator-decoder
correlator explains the three main processing procedures of MST and IS radars
and the solution looks feasible, it may in praxis be more realistic to use three
separate units for integration, decoding and correlation function / spectrum
analysis.
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TABLE 4

RADAR CONTROL

cycle | cycle 2
Prp N n
Ry 1 I L
[} (— L | 1
FLP —I U 1
FRI 1
FRZ i I S
R I 1 1
|- 1 |
RIA n n_
AL LR T
SeN 1
CaL 1 r
ANT J
alx 1 n
PRP = prepulse (trigger!} RGT = receiver gating on
TRX = transaitter-receiver duplexer LOP = local oscillator protect on
TXP = transmitter on Ri& = reset integrator address
FLP = phase flip (coding) ADC = analog-digital conversion
FR1 = frequency | S6N = sign for integration
FRZ = frequency 2 CAL = calibration (noise injection)
ANT = antenna control AUX = auxiliary

A1l the timing control of the outlined procedure results from the radar
controller or system synchronizer, which of course also generates the control
pulses for the transmitter, the receiver and the ADC. A typical exampie of pulse
trains of control pulses, which are generated by the digital radar controller,
is demonstrated in the example of Table 4. Following a pre-pulse (PRP), which is
used to to trigger external control or monitor devices, the transmit-receive
duplexer (TRX) is switched on, followed by a receiver gate pulise (RGT) and the
pulse to turn off the local pscillator (LOP). Then the switch on of the trans-
mitter radio frequency is controlled (RFC), which is phase flipped (FLP) between
0° to 180° for coding. The analogue-digital-converter starts sampling (ADC)
after RFC off and the TRX, RGT and LOP have opened the receiver and after the
reset of the integrator address (RIA) has taken place. At certain range gates a
calibration signal (CAL) is injected. The whole sequence 1is repeated after one
interpulse period when only the phase flip is inverted (for DC-elimination). For
application of the complement®ry coding scheme a second double pulse code (con--
sisting of the complementary pattern) is transmitted, and this radar cycle 1s
repeated N times to yield one radar burst. Additionally, difterent frequencies
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(FR.) and pulses for antenna control (ANT) and other purposes can be generated,
which can change from one to the next interpulse period or radar burst. In more
advanced systems multichannel receivers and ADCs are used (e.g. spaced antenna
parallel processing (e.g. ROTTGER, 1981)).

The MST radar operation, which is synchronized and which is usually started
and stopped by external clock control (in the host computer), takes place in
several nested sequences : (1) the radar cycle, 1.e. the transmission of one
code unit of radar pulses with preselected duration and the sampling of the real
and imaginary signal at preselected range gates (e.g. 128). (2) the integration
cycle (burst), i.e. the repetition and coherent integration of an externally
selected number of radar cycles. (3) record cycle, 1i.e. the repetition of a
preselected number of 1integration cycles (e.g. 64) to form one total record
which 1s stored in memory. Together with the time and other system parameter
information (such as the radar controller program etc.) the data record is then
dumped via the computer to file or magnetic tape.

A1l the control sequences for the radar system are generated by the radar
controller, of which a basic block diagram is shown in Fig. 48. The computer
loads the instructions, which pulses should be generated and for how long these
should be switched on (duration) as well as how many interpulse periods should
be coherently integrated, into the radar controller memory. The computer can via
the real-time clock start and stop the radar controller. Further interlocks,
either via the computer or other fast hardware devices, inhibit under certain
failure conditions radar controller pulses in order to protect the radar system
from malfunctions or damage if transmitter pulsing would be during the receiving

phase.

B3ADAR COMNTROLLER/SYSTEM SYNCHROW[TER

from Toag
CONPUTER
INSTRUCTION RATE T
TENN
L {PROGRAK) {DURATION) 19P5) :gu:not 10
TRANSMITTER, NENORY NEWORY NEMORY ANT.
PREPROCESSOR

COUNTER AND COMPARATOR

START/$TOP REAL TINE
CLOCK

Figure 48. Block diagram of a radar controller or system synchronizer.
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It is generally found that 8-bit ADCs are sufficiently matched to the line-
arity range of the receivers (> 60 dB). If strong clutter signals are present
the capacity must eventually be extended to >12 bit or a range~dependent attenu-
ation has to be used. Applying an 8-bit ADC and a 16-bit 1integrator allows to
add samples from at least N = 256 radar cycles in one channel. If more samples
would have to be added, the adder and result memory word length would have to be
extended. The dump could still be at 16-bit word length if a scaler would be
used to scale down the result data according to the number of 1integrations. The
preintegration time for 256 integrations would be ti = 2N-Tipp = 128 ms for Tire
= 250 us, corresponding to a maximum unambiguous range of 37.5 km and a maximum
resolvable radial velocity of 12 ms-' (fomax = 4 Hz). Applying a 4-bit comple-
mentary code and a 300-m range resolution would result in a transmitter duty
cycle of about 3%.

MUFFIN FUNCTIONAL BLOCK DIAGRAM

Vlrtual MUX Channel
channe > number
R
Cha:nel ps1C FIFQ Dat‘a
number ou
FIFO SCAL ING p—# 0
Comp lfx DECODING | UNIT Corr.
data in UNIT E Buffer
FROM T3 7 Memory
AsD- H
converter —A A i
a
s L ACCUMU-
—1 i U LATION
. MEMORY
b
Cycle 4 b $26¢ 08¢ NI 5 X SR
gg:;*ef ﬂég:gg; P:éggg; PROGRAM  |LOADING ﬁ%ﬁ?;;- ERROR QCCUHULQT]OM‘*-;E:bAD
¢ Y —_—
Radar CONTROL | CONTRDLLER REMOR LOGIC | ywyr [ LOGIC CONTROL from
Controller 1 Radar
From Host Controller
Computer

Figure 49, Block diagram of a multi-channel finite-impulse response
filter and integrator (MUFFIN) under development as preprocessor
for particular coding schemes applied at the EISCAT radars.

There exist many more sophisticated data preprocessing units at several
radars and it cannot be in the scope of this 1lecture to describe those in de-
tail, as 1t was not possible to line-out all the different variations of the
transmitter-receiver-antenna systems. We finally would only Jlike to add the
block diagram (in Fig. 49) of a multi-channel finite-impuise-response filter and
integrator which 1s presently under design at the EISCAT radar facilities and
shall be used for on-line preprocessing (integration, decoding, correlation
computation and radar control) of incoherent scatter and coherent scatter data
(POSTILA, 1988, personal communication).
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6. AN OVERVIEW ON SOME RADAR SYSTEMS AND THEIR TECHNICAL PARAMETERS

Descriptions of the early VHF radar systems were given by WOODMAN and
GUILLEN (1974). GREEN et al. (1975), CZECHOWSKY et al. (1976), ROTTGER et al.
(1978), BALSLEY et al. (1980), and design considerations were summarized by
BALSLEY (1978a,b). GAGE and BALSLEY (1978) and BALSLEY and GAGE (1982). More
recent developments and technical details were described for instance by
CZECHOWSKY et al. (1984), KATO et al. (1984), ROTTGER (1984), STRAUCH et al.
(1984), FUKAO et al. (1985a,b), FRISCH et al. (1986), ECKLUND et al. (1988) and
ROTTGER and LARSEN (1989).

We present in Table 5 the technical parameters of the MU radar (Middle and
Upper atmosphere radar) of the Radio Atmospheric Science Center of the Kyoto
University (from FUKAO et al., 1985a,b), in Table 6 the basic parameters of a
405 MHz wind profiler radar (from FRISCH et al., 1986), in Table 7 the primary
system specifications for an operational wind profiler (from UNISYS, 1987) are
repeated, which 1is supposed to be used in meteorological routine applications.
In Table 8 the basic parameters of the EISCAT incoherent scatter radar systems
operating in the 833 MHz and 224 MHz bands are summarised. We then display in
Table 9 a most complete list of all the MST, ST and incoherent scatter radars as
well as some wind profiler systems. Finally we show tn Fig. 50 photos of a few
well known research radar facilities.

TABLE 5

Basic Parameters of the MU {Middle and Upper Atmosphere) Radar
Operated by the Radio Atmosphere Science Center of the Kyoto Umiversity
{from FUKAO et a)., 1985a,b)

LOCATION Shigaraki, Shiga, Japan
[34.850K, 136.10%¢)
RADAR SYSTEM ponostatic pulse radar:
active phased array system
OPERATIONAL FREQUENCY 46.5 M2
ANTERNA circular array of 475 crossed Yagis

aperture 8330 m* {103 o diameter)

Beam width
Steerability
Bear directrons
Polarizations
TRANSHITTER

Peak pover
Average power
Bandwidth

PP
RECEIVER
Bandwidth
Dynamic range
If
A/D converter
PULSE COMPRESSION

3,69 tone way: half power for full array)
steering 15 completed tn each IPP
1§57; 09-308 off-zemith angie
linear and circular

473 solid state amphifrers

{TR modules: sach with output power
of 2.4 k¥ pegk and 120 W average)

1 WY (maximum)

50 ki (duty cycle of 5%) (maximunm}
1.65 WHz (maximum)

(pulse width: 1-512 us variable)
400 us to 65 ms (variabie)

1,85 Wiz {maximum)

70 dB

5 NHz

12 bits x 8 channels

binary phase coding up to 32 elements,
Barker ang comrplementary codes
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Figure 50. Photos of radar observatories:
Jicamarca/Peru. Arecibo/Puerto Rico,
SOUSY/West Germany, Poker Flat/Alaska,
MU Radar/Japan, EISCAT/Norway.

ORIGINAL PAQE IS
OF POCOR QUALITY



111

REFERENCES

Balsley, B.B. (1978a), The use of sensitive coherent radars to examine atmo-

spheric parameters in the height range 1-100 km, Preprint vol, 18th Conf, on
Radar Meteorology, 190-193 (publ. by Amer. Meteor. Soc., Boston, MA).

Balsley, B.B. (1978b), Design considerations for coherent radar systems for
probing the troposphere, stratosphere, and mesosphere, Preprint Vel, 18th
conf. on Radar Meteorology, 387-390 (publ. by Amer. Meteor. Soc., Boston,
MA).

Balsley, B.B. and K.S. Gage (1982), On the use of radars for operational wind
profiling, Bull. Amer. Meteor. Soc., 63, 1009-1018.

Balsley, B.B., W.L. Ecklund, D.A., Carter and P.E. Johnston (1980), The MST radar
at Poker Flat, Alaska, Radio Sci., 15, 213-223.

Baron, M.J. (1977), The Chatanika radar system, 1n: Radar Probing of the Auroral
Plasma (Proc. of the EISCAT Summer School, 1975; A. Brekke, ed.), 103-141
(publ. by Scandinavian University Books, Oslo).

Battan, L.J. (1973), Radar Observation of the Atmosphere, The University of
Chicago Press.

Bowhill, S.A. and B. Edwards (Eds.) (1983, 1984, 1986), Handbogk for MAP, 9, 14,
20 (publ. by SCOSTEP Secretariat, Dept. Elec. Engin., University of Illinois,
Urbana, IL).

Brosnahan, J.W., J.K. Chao and J. R&ttger (1983), Chung-Li, Taiwan dual mode
(Doppler and spaced antenna) VHF radar: preliminary specifications, Handbook
for MAP, 9 (S.A. Bowhill and B. Edwards, eds.), 383-386 (publ. by SCOSTEP
Secretariat, Dept. Elec. Engin., University of Il11inois, Urbana, IL).

Carter, D.A., B.B. Balsley and W.L. Ecklund (1980), The Poker Flat MST radar:
signal analysis and data processing technigues with examples, Preprint Vol,
19th Conf. on Radar Meteorology, 563-567 (publ. by Amer. Meteor. Soc..
Boston, MA).

Clark, W.L. and D.A. Carter (1980), Real-time scaling of atmospheric parameters
from radars using the MST technique, Preprint Vvol. 19th Conf. on Radar
Meteorology, 599-604 (publ. by Amer. Meteor. Soc., Boston, MA).

Czechowsky, P., J. Klostermeyer, J. Rottger, R. Rister, G. Schmidt and R.F.
Woodman (1976), The SOUSY-VHF-Radar for tropospheric, stratospheric and meso—
spheric sounding, Preprint Vol. 17th Conf. on Radar Meteorology. 349-353
(publ. by Amer. Meteor. Soc., Boston, MA).

Czechowsky, P., G. Schmidt and R. Ruster (1984), The mobile SOUSY Doppler radar
- technical design and first results, Radio Sci., 19, 441-450.

Doviak, R.J. and D.S. Zrnic (1984), Doppler Radar and Weather Observations,
Academic Press, Inc., Orlando, FL.

Ecklund, W.L., D.A, Carter and B.B. Balsley (1988), A UHF wind profiler for the
boundary layer: brief description and initial results, J. Atmos. Ocean.
Techn., 5 (in press).




112

Evans, J.V. (1969}, Theory and practice of ijonosphere study by Thomson scatter
radar, Proc, IEEE, 57, 496-500.

Frisch, A.S., B.L. Weber, R.G. Strauch, D.A. Merritt and K.P. Moran (1986), The
altitude coverage of the Colorado wind profilers at 50, 405, and 915 MHz,

J. Atmos. Ocean. Techn., 3, 680-692.

Fukao, 8., S. Kato, T. Aso, M., Sasada and T. Makihira (1980), Middle and upper
atmosphere radar (MUR) under design in Japan, Radio S¢i., 15, 225-231.

Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi and T. Makihira (1985a), The
MU radar with an active phased array system: 1. antenna and power amplifiers,
Radio S¢i., 20, 1155-1168.

Fukao, S., T. Tsuda, T. Sato, S. Kato, K. Wakasugi and T. Makihira (1985b), The
MU radar with an active phased array system: in-house equipment, Radio Sci.,
20, 1169-1176.

Gage, K.S5. and B.B. Balsley (1978), Doppler radar probing of the clear atmo-
sphere, Bull. Amer. Meteor. Soc., 59, 1074-1093.

Gossard, E.E. and R.G. Strauch (1983), Radar Observation of Clear Air and
Clouds, Elsevier Publ. Comp., Amsterdam.

Green, J.L., J.M. Warnock, R.H. Winkler and T.E. VanZandt (1975), A sensitive
VHF radar for the study of winds, waves and turbulence in the troposphere,
stratosphere and mesosphere, Preprint Vol. 16th Conf, on Radar Meteorglogy,
313-315 (publ. by Amer. Meteor. Soc., Boston, MA).

Hagfors, T. (19877), Incoherent scatter radar observations, 1in: Radar Probing of
the Auroral Plasma (Proc. of the EISCAT Summer School, 1975; A. Brekke, ed.),
75-101 (publ. by Scandinavian University Books, 0Oslo).

Hagfors, T., P.S. Kildal, H.J. Kércher, B. Liesenkotter and G. Schroer (1982),
VHF parabolic cylinder antenna for incoherent scatter radar research, Radio
S¢i., 17, 1607-1621.

Hardy, K.R. (1972), Studies of the clear atmosphare using high power radar, 1in:

Remote Sensing of the Troposphere (V.E. Derr, ed.), chapter 14 (publ. by Wave
Propag. Lab., NOAA/ERL, Boulder, CO).

Hocking, W.K. (1989), Target parameter estimation, Handbook for MAP (this
issue).

Kato, S., T. Ogawa, T. Tsuda, T. Sato, I. Kumura and S. Fukao (1984), The
middie and upper atmosphere radar: first results using partial system, Radio
Sci., 19, 1475-1484.

Ko, H.C. (1958), The distribution of cosmic radio background radiation, Proc,
JRE, 46, 208-215.

Kraus, J.D. (1966), Radio Astronomy, McGraw-Hi1l Book Comp., New York.

Lehtinen, M.S. and I. Héggstrbm (1987), A new modulation principle for incohe-
rent scatter measurements, Radio Sci., 22, 625-634.



113

Ochs, G.R. (1965), The large 50 Mc/s dipole array at Jicamarca radar observa-
tory, NBS B772 (publ. by National Bureau of Standards, U.S. Dept. of
Commerce, Boulder, CO).

Rastogi, P.K. (1983), Data processing techniques used with MST radars - a re-
view, Handbook for MAP, 9 (S.A. Bowhil)l and B. Edwards, eds.), 477-488 (publ.
by SCOSTEP Secretariat, Dept. Elec. Engin., Univ. of Illinois, Urbana, IL).

Rastogi, P.K. and R.F. Woodman (1974), Mesospheric studies using the Jicamarca
incoherent-scatter radar, J, Atmos. Terr, Phys., 36, 1217-1231.

Rottger, J. (1981), The capabilities of VHF radars for meteorological observa-
tions, ESA SP-165 (Nowcasting: Mesoscale Observations and Short-Range Predic-
tion), 143-148 (publ. by European Space Agency, Paris).

Rottger, J. (1984), The MST radar technique, Handbook for MAP, 13 (R.A. Vincent,
ed.), 187-232 (publ. by SCOSTEP Secretariat, Dept. Elec. Engin., Univ. of
I1linois, Urbana, IL).

R&ttger, J. and M.F. Larsen (1989), UHF/VHF radar techniques for atmospheric
research and wind profiler applications, in: Radar in Meteorology (D. Atlas,
ed.) (to be publ. by Amer. Meteor. Soc., Boston, MA}.

Rottger, J. and G. Schmidt (1979), High-resolution VHF radar sounding of the
troposphere and stratosphere, IEEE Trans, Geosci. Electr., GE-17, 182-189.

Rottger, J., J. Klostermeyer, P. Czechowsky, R. Rlister and G. Schmidt (1978),
Remote sensing of the atmosphere by VHF radar experiments, Naturwissenschaf-
ten, 65, 285-296.

Ssato, T. and R.F. Woodman (1982), Spectral parameter estimation of CAT radar
achoes in the presence of fading clutter, Radio Sci., 17, 817-826.

Schmidt, G., R. Ruster and P. Czechowsky (1979), Complementary code and digital
filtering for detection of weak VHF radar signals from the mesosphere, IEEE

Trans. Geosci, Electr., GE-17, 154-161.
Skolnik, M.I. (1970) (ed.), Radar Handbook, McGraw-Hill, Inc., New York,

Strauch, R.G., D.A. Merritt, K.P. Moran, K.B. Earnshaw and D. van de Kamp

(1984), The Colorado wind-profiling network, J, Atmos, QOcean., Techn., 1,
37-49.
Turunen, T. (1986), GEN-SYSTEM - a new experimental philosophy ftor EISCAT

radars, J, Atmos, Terr, Phys., 48, 777-785.

Wilson, D.A. and L.J. Miller (1972), Atmospheric motion by Doppler radar, in:
Remote Sensing of the Troposphere (V.E. Derr, ed.), chapter 13 (publ. by Wave
Propag. Lab., NOAA/ERL, Boulder, CO).

Woodman, R.F. (1980), High-altitude resolution stratospheric measurements with
the Arecibo 2380-MHz radar, Radio Sci., 15, 423-430.

woodman, R.F. and A. Guillen (1974), Radar observations of winds and turbulence
in the stratosphere and mesosphere, J. Atmos, S¢i., 31, 493-505.

woodman, R.F., R.P. Kugel and J. Rottger (1980), A coherent integrator-decoder
preprocessor for the SOUSY-VHF-Radar, Radio Sci., 15, 233-242.



s N91-26617 1

Chapter 4

Statistical Characteristics of MST Radar Echoes and its
Interpretation’

Ronalwp F. Woobman
Jicamarca Radio Observatory
Instituto Geofisico del Peni

Introduction

As we shall see later, radar backscattering is produced by fluctuations in
the refractive index of the illuminated medium with scale sizes equal to 1/2 the
wave length of the electromagnetic probing wave. The fluctuations are a random
process, and so are, consequently, the signals received by the radar. Both have
to be characterized statistically. The power of the technique is based on the fact
that the statistical parameters that define the signal received are related to the
statistical parameters of the medium. This allows us to remote-sense the
medium from the ground.

It is important, then, in order to understand the technique, to know the
statistical ways of characterizing 1) the fluctuations in refractive index and 2)
signals received. The second may be familiar to many of you. The first may not.
The second is easler to understand since it is a one dimensional process (time).
The first is harder, since involves processes in four dimensions, 3 in space, and 1
in time; on the other hand, it uses extensions of concepts developed originally
for one dimension, and should present no difficulties if these one dimensional
concepts are understood.

Fluctuations in index of refraction come about mainly as a consequence of
atmospheric turbulence. If we are going to use these fluctuations to study the
atmosphere, it is important, in order to interpret the signals received, that we
understand some of the fundamental concepts related to atmospheric turbulence.

Because of above reasons, we have decided before entering on the main
subject of our lecture, that of the characterization of radar echoes and its
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interpretation, to review some fundamental concepts in random process statistics
and in atmospheric turbulence.

Some statistical concepts

There are two concepts of fundamental importance which should be
reviewed: Autocorrelation Function and Frequency Power Spectrum. They are
interrelated. One can be defined in terms of the other. Mathematically it is much
simpler to define the first, although many find easier to grasp the physical
significance of the second.

Given a time series, either as a sequence of numbers in time §,S5,..S,.., OF
as a random function of time, s(t), (We will use s(t) for both cases for
convenience, unless we want to stress the discrete nature of a sequence ), its
autocorrelation function is defined as:

p(t)= E[s(t),st+1)] M

where E[ ] stands for the expectation of its argument. Good estimators of this
expectation are:

p'(1)= ST 5 @)

if the process is stationary ,or, under more general conditions,
p'(t)= <s(t)s(t+1)>, . 3)

The overbar stands for a time average of duration T, and the brackets
stand for averaging over n identical experiments or observations.

The second estimator allows us to evaluate correlation functions even in
the case the process is not stationary. When the process is not stationary, we
should write p(t; 1) , to stress the dependence on t, the time at which the
correlation is evaluated.

Let us see what a correlation function means physically. Let us take
equation (2) as a good definition (it is, for all practical purposes, if the time T
taken for the average is long enough ). Fig. 1 show a sample function of the
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random functions s(),s(t+rt) and s(t)s(t+t) for three displacements, t=0, 1= "small”
and = "large". When 1=0, we get s(t)’ for the product function, the integral of
which corresponds to an estimation of the power of the process, which we use as
a reference.

If we increase t by small amount, s(t)s(t+t) does not vary much from the
1=0 case, and the integral is slightly smaller than the power . If t is large
enough, it is equally probable for the product to be positive or negative, and the
integral is zero.

But, what is small enough and what is large enough? The answer is
given by autocorrelation function itself. Note that, between the two t's depicted in
figure 1, there should be a 1, 1., at which the correlation is equal to 0.5p(0) and
that the correlation function decays from its maximum value to zero in a
characteristic time, 1, . This characteristic time or, alternatively, one derived from
the normalized second moment of p(t), has a ready interpretation and gives us
an idea of how fast the process varies. It can be centuries (changes in the
global temperature of the earth) or hours (changes in the ambient temperature)
or, seconds (changes in the punctual temperature of a turbulent process) or any
other time scale. This is the most usual interpretation given to the correlation
function. There is more information , of course, besides the power and the
characteristic time of the process in the functional shape of the correlation
function; for instance, if the shape is oscillatory it tells us that the process is
quasi-sinusoidal with a period given by the period of the oscillations.
Nevertheless, in many cases, it is sufficient to give only this simple interpretation.

Power spectrum — when defined carefully (e.g. Papoulis, 1965 is defined
as the Fourier Transform of p(t), namely

F(w) = 1/2r f -p(r) exp(—jor) dt “)

This is is a modern definition. The earlier definition and, in any case, a
good interpretative way of looking at it, is that the power spectrum, Flw),
measures the power density of a process at different frequencies. This means
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that, if the process is fed to a bank of filters centered at frequency w, The
average power of each filter would be proportional to F(w ), where w, is the
center frequency of the filter. There are many estimators of F(w) which conform
to this definition. For instance

-f(t) exp(—jwt) dtj>«
Flex <|UT (t) exp(-jwt) dtj> )

This is equivalent to getting the Fourier transform of a subset of the
sequence, obtain its power (square it) and average many sub-sequences.

Extension to 3-D and time processes

A good example of a three space dimensions and time random process is
the temperature or the velocity of a boiling pan of water, or any other turbulent
process. These processes are alsoc characterized by its autocorrelation function,
p(rt). It is defined in a fashion similar to its one dimensional case. For
instance, if we take n to stand for the deviations in density, or the refractive index
of a medium , its autocorrelation function is defined as :

p(r,1) = E[n(tn(X+7,t+1)] (6)

That is, it is the expectation (in practice,the average) of the product of the
density at point x at time t , multiplied by the density at a point displaced r from
X, at a time t units later. If the medium is stationary and homogeneous p does
not depend on x or t Otherwise, we should write p(r,1;xt), since the
autocorrelation would be different if measured in a different place or at different
time.

As in the case of one dimension, there is a characteristic length, r. , and a
characteristic time, 1, much beyond which the autocorrelation is small or zero. If
the medium is isotropic, the characteristic length is the same , regardless of the
direction of the displacement, r. In this case we can use the magnitude , r,
instead of the vector , r. If the medium is anisotropic, there can be as many as
three characteristic lengths, one in each major axis direction.

As in the case of onedimension, the characteristic time gives us an idea of
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how long we have to wait before the three dimensional structure of a sample
process changes significantly. Similarly, the characteristic scale gives us an idea
of how far we have to move from a specific point, from which we have taken a
snap shot at the process for a second snap shot, taken at the same instant, to
differ significantly and yet show some resemblance.  The directions of
displacement should preferably be taken along the three major axis of the
correlation function.

To envision the meaning of statistical anisotropy, let us consider the two
dimensional case of the vertical displacement of the surface of a choppy ocean
produced by a wind of constant direction. Here, there would be a tendency for the
waves, or even swell, to form in with preference in one direction, that of the wind.
If we displace ourselves along the crests of the waves, we have to move much
further for observational snapshots to look different than if we displace ourselves
along the direction of propagation of the waves (direction of the wind). The
characteristic lengths in this case are different, being shorter along the direction of
the wind.

Again, for the purpose of an introductory interpretation, we have talked
about a single parameter per dimension. This is over simplified. One or few
parameters does not replace the whole correlation function unless we accompany
it with knowledge of its functional shape (e.g. Gaussian, Lorentian, sinusoidal,
exponential,etc.), or by a sufficient number of evaluated points.

There is also a counterpart in 3-D processes to the concept of frequency
power spectrum. In this case we speak of wave-number—vector (extension of
wave-number) power spectrum, or k-spectrum.. In an analogous fashion, we
define it as the 3-D spatial Fourier transform of the space—-time autocorrelation
function, p(r,t), specifically,

800 1@’ [ p(r0) exp(-e) o M

Note that we have set t equal to zero . Therefore in this definition, we are
performing the displacements in space at the same instant of time, i.e. no time
dynamics is included. We could also have used p(r) as a symbol for the same
concept. Again, its interpretation Is similar to the frequency power spectrum. We
can interpret ¢(k) as a function which describes the "power” density of the
different wave number components of the process. We imagine the process to
result from the ( Fourier ) superposition of different spatial waves with different
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directions and wavelengths , each with a power ( amplitude squared) given by
o(k).

There is an important concept in talking about the directional scattering
properties of a medium. One talks about the aspect sensitivity of the scatterers. It
is a consequence of the anisotropic character of the ¢(k) which characterizes
anisotropic turbulent fluctuations. This anisotropy is sometimes better perceived
from the shape of the autocorrelation function, p(r). In this regard it should be
kept in mind that, in any Fourier pair, like ¢(k) and p(r), wide functions transform
into narrow functions and viceversa. This means that if we have a horizontal,
pancake-like spatial autocorrelation function, it transforms into a vertical pencil-
like k-spectrum,

We can relax, above, the restriction for t© to be zero. We would obtain a
function, ¢(k,t), which associates certain dynamics to each spatial wave
component. Each component will have a characteristic time associated to its life
time. This does not mean that the process no longer has power at that particular
wave-number vector, but rather that wave component is completely independent
of the one observed a few characteristic times ,1., ago.

To further complicate matters, we can perform an additional Fourier
transformation in time on p . We would obtain

&k,w) = (12x ) f ) p(r, 1) exp(—k.r—jr) d’rdr . 8)

In this case the dynamics of the process, for each wave—number vector, k, is
represented by a superposition of temporal oscillations with frequency o, and
power density ®(k,m).

We are not presenting this concepts for purely academical reasons. As we
shall see later, the signal statistics of the echoes received in a MST radar are
directly related to the spectrum ¢,(k,t) (or ®,(k,w) ) which characterizes the
density fluctuations of the medium. Although here, k, is no longer a variable but
an specific wave—number vector determined by the frequency and geometry of
the radar. We should, then, be familiar not only with the mathematical definition of
these concepts, but with their physical significance as well. Only then we can
attribute physical significance to the rasults of a MST radar expariment.

We have used the terms stationary and homogeneous. In the theory of
random process, they are defined as follows. A process is said to be stationary, if
the expectation of any function of its value, or values ( for instance E[s(t)] and
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E[s(t)s(t+t)] ), is independent of the time of the sample function taken. It is said
to be homogeneous, if the expectation is independent of where the values of the
sample function are taken.

In the exact context of this definition, the time and physical space have to
be infinite in extend. In practice one uses the concept of quasi-stationarity and
quasi-homogeneity, in which the "any time" or "any point™ implicit in the strict
definition is replaced by finite intervals of time and finite regions of space,
sufficiently large as to contain a large number of characteristic times and length
scales. The assumption of stationarity or homogeneity is considered to be valid if
they hold within a particular observation time or region.

For further reading see Papoulis (1965) and Tatarsky (1961).

Some turbulence concepts.

The MST radar depends on turbulence to obtain echoes from the clear
atmosphere. It uses turbulence as a tracer of the dynamics of the background
atmosphere. Also, since the statistical parameters of the received signal depend
on the statistical parameters of the refractive index fluctuations —produced by
turbulence—, the radar can also be used to study the turbulence process proper.
It is important, then, to understand some of the basics of atmospheric turbulence.

We would like to underline "basics™ since turbulence theory is a difficult
subject. In fact, as a consequence of its highly non linear behavior, and in spite
of all the advances in its mathematical description, we are still not able to predict
its behavior, even in a statistical sense.

The meaning of turbulence varies from a general dictionary type definition
to controversial and more limited definitions. For us, it suffices to define it as the
state of a fluid in which the velocity field is rotational and random in three
dimensions and time.

Although some atmospheric physicists envision the existence of two
(space) dimensional turbulence in the atmosphere, we will use the term only in a
three dimensional context. We are interested in 3-D turbulence with length
scales no larger than about a few hundreds of meters in the stratosphere and
stable troposphere (non—convective) and a few hundred to slightly above a
thousand meters in the mesosphere. We are also occasionally interested in the
small scales (meters to hundred of meters) as well as the larger ( kilometers )
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scales of tropospheric convectional turbulence.

For turbulence to exist we need a fluctuating velocity field. Radars, on the
other hand, are sensitive to fluctuations in refractive index or, equivalently,
fluctuations in density or temperature at constant pressure. Fortunately, in most
cases, velocity fluctuations bring about density fluctuations, aithough this is not
always the case.

If we consider a non stratified atmosphere (no gravity) at constant
pressure, velocity fiuctuations would not produce density fiuctuations. Different
parcels of air would interchange positions, but since they have the same density,
no fluctuations would be produced. But, if a gradient of density exist, for any
reason, then, regions of higher density would be brought to regions with lower
density and viceversa, producing fluctuations in density and hence in refractive
index.

It we steer pure water, for instance, we could not perceive optically any
change, but if we mix it with clear syrup, it would produce a whitish fluid (while
the smulsion last) as a consequence of the light scattering the small scale
fluctuations in refractive index are capable to produce.

Mixing in a gravitational stratified atmosphere is slightly more complicated.
We have to introduce in this case the concept of "potential density” and "potential
temperature”.

Let us consider a medium with a constant temperature profile. Under the
influence of gravity it would have a density like n = exp(-z/H). If we interchange
two parcels of different altitudes adiabatically and in pressure equilibrium, we
would cool by decompression the parcel moving up into a lower pressure, and
heat the parcel moving down into higher pressure. So, if we steer locally an
atmosphere with a constant temperature profile, we end up with fluctuations in
temperature, apparently contradicting ourselves. It is more convenient -
conceptually and mathematically — to characterize, instead, the state of the
medium by the temperature it would have if it were to be brought to sea level
adiabatically. This "temperature” is called potential temperature. It is a conserved
property of the medium, i.e. it does not change as it is moved adiabatically to
other altitudes. In the language of turbulence theory it is said that it behaves as
a passive scalar. We can define a potential density in a similar fashion.

For turbulence to produce fluctuations in density or temperature we need a
gradient in potential density. Constant potential density backgrounds do not
produce fluctuations. When an atmosphere has such profile, we say that the
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(actual) temperature has an adiabatic lapse rate (about 1 every 100 meters).
The stratosphere has either a constant or positive gradient temperature profile,
hence it deviates more from an adiabatic lapse rate than the troposphere. K is
potentially capable, then, to produce larger fluctuations for the same mixed layer
thickness than the troposphere.

In the mesosphere the refractive index is produced by the density of free
electrons. The gradient of both potential and real electron density gradient is
positive and hence capable of producing refractive index fluctuations when mixed
by turbulence.

Assuming an initial gradient in a passive scalar, one can derive (e.g.
Tatarsky,1961) a quantitative formula relating the standard deviation of the scalar
(like potential temperature or potential refractive index) in terms of the original
gradient and the depth of the turbulent mixing layer thickness. Assuming further
a Kolmogorov power spectrum density law (see below), that is a dependence of ¢
on k of the form k™* . He derived and expression for the standard deviation of
the fluctuations of the form

¢,(K= a 0.033L,° (grad n)** " 9

As expected the fluctuation density at any wavelength is directly
proportional to positive powers of the original gradient and the scale of the largest
mixing eddy, L,. "a" is a constant of arder unity.

We can also estimate roughly the variance on the velocity field in the
following way. If we mix a (stable) gradient in potential density we produce work,
since we are moving up potentially heavier and down potentially lighter parcels of
air. We need then an energy source. This source comes from shear. Without
shear, there is no source and no turbulence. The original shear after turbulence
is reduced to very low value due to turbulent viscosity. The excess of kinetic
energy resultant from the difference in velocity of the originally shear profile and
the new constant velocity profile (see fig. 2) has to go into potential energy, result
of the work we mention earlier, and the random turbulent kinetic energy. It we
assume equipartition of the energy derived from the shear into 4 parts, 3 for the 3
different orthogonal components of the turbulent velocity (<u™, <v'*>, <w”> ) and
one for the potential energy, and we further assume a normal distribution of
velocities, we can derive that the variance of any of the velocity components
would be approximately (Woodman and Guillen, 1974; Sato and Woodman, 1982):
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Figure 2 — Schematic profile of the turbulent fluctuating component, u, and
its relationship to Av, the shear component that is randomized by
turbulence
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<u™> = 1/48(Av)? (10

where Av is the difference in velocities between the top and bottom of the layered
region that went turbulent i.e.

<u™ = 1/48( L, dv/dz )’ (1m

A normal distribution of velocities is a fair assumption, since it parcel of
fluid is influenced by the superposition in space and time ( velocity is the integral
of force) of many independent forces and the limit theorem applies. This is an
important additional statistical property of the medium with consequences in the
shape of the cormrelation and spectrum of the signal.

A related subject to that of equations (10) and (11) is that of Richardson’s
criteria for stability. It says that a layer is unstable if

Ri = (g d/dz In@y (dv/dz)’ < 1/4 (12)

The criteria can be interpreted as a condition for turbulence to be energetically
possible, namely the available kinetic energy in the shear has to be 4 times larger
than the gain in potential energy after the mixing. This is in agrement with above
arguments.

Some of these criteria can be used to extract hidden information from MST
radar experiments, information that on first thought should not be available.
Woodman and Guillen, for instance, using above relations, assuming that the
original shears are marginally unstable, and from the measured values of the
spectral width, deduced that the turbulent layers in the stratosphere were of the
order of 50 meters, even though the resolution of the instrument was 5 km. Sato
and Woodman have later validated this arguments by measuring <u”> and L,
with the 150 meter resolution 430 MHz radar at Arecibo.

Richardson’s criteria tells us that turbulence is energetically possible, but it
does not tell us how it comes about. We need an unstable process that would
make small disturbances grow and eventually brake down into the non-linear
regime that we call turbulence. One such a process is the Kelvin—Helmholtz
instability. The process is analogous to the way wind, blowing on the ocean
surface, peaks a particular wave, that which has a phase velocity equal to the
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wind velocity, and make it grow until it breaks down. In the atmosphere shear
effectively produces a wind that blows with respect to the denser fluid undemeath,
it peaks a particular gravity (buoyancy) wave, and makes it grow until eventually
brake into a billow and this in turn into smaller scale turbulence. The phenomena
is confined to the layers within which the process is energetically possible, i.e.
were Richardson’s criteria is satisfied.

Turbulence is also possible without shear, if the numerator in equation (12),
that is if the gradient in potential temperature, is also zero or negative. We then
say that the atmosphere is statically unstable. We effectively have a heavier fluid
resting on top of a lighter one, a condition that is definitely unstable (Raleigh—
Taylor instability).

Both processes mentioned above, Kelvin—-Helmholtz and Raleigh—Taylor
instabilies, can come about in the atmosphere as a consequence of large
amplitude gravity and lower frequency waves in the atmosphere. These waves
have a velocity field which is transverse to their k . Their k—vector is almost
vertical. It is then possible, as the waves grow in amplitude with height, to
produce almost horizontal shears that satisfy Richardson's criteria. The slight tilt of
the velocity field of the wave is also capable to lift regions of higher (potential)
density above regions of lower density, making them statically unstable.

An often quoted and very important conclusion that has come out of
turbulence theory is Kolgomorov's wave—number spectrum. it says that within a
given range of wave—number values the wave-number power spectra is of the
form

K'o(k) = k™ (13)

We have place the k* factor on the left hand side to conform with the —5/3 power
law which is often quoted in the literature. The difference comes from the use of
what is referred as the one dimensional ( in three dimensions ) spectrum, in
which the Fourier transformation from r-space to k-space is performed by
transforming in one dimension integrating along the magnitude of r.

The range within which this law is valid is called the "inertial subrange”.
The relationship can be derived on pure dimensional arguments with the
assumpﬁoﬁ that for scales smaller than the primary 7éne'rﬂgy containing scales, but
large enough so that molecular viscosity does not play a role, there should be a
dimensionless relationship between eddies of different sizes and that they should
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be isotropic. The law brakes down at dimensions close to the largest eddy
possible, and on the other end, at small dimensions where the inertial forces are
comparable to the ones produced by molecular viscosity , i.e. at scales where
molecular viscosity becomes important in extracting energy ( into thermal) from
the eddies. Within the inertial subrange, kinetic energy is cascaded from the
larger to the neighboring smaller eddies.

Kolmogorov’s law is isotropic and valid for non stratified media. In the case
of the gravity stratified atmosphere, Kolgomorov's law is valid for the smaller
scales, where potential energy is smaller than kinetic energy. On the larger scale
it fails before it reaches the largest scales. The region between the "outer scale "
and the inertial subrange, where potential energy is significant is referred to as
the "buoyancy subrange®. Not only the —5/3 power law fails; isotropy is no longer
true, gravity, and the unstable phenomena responsible for the larger eddies, have
preferred directions which spoil the isotropic symmetry.

The turbulent state of a fiuid is often specified by the outer scale, i.e. the
size of the largest eddies, and the energy dissipation rate, & (e.g. Hocking,1983). 1t
can also be specified by the outer scale and the velocity variance, the second
being also related to the energy levels involved. Both are theoretically related
through the molecular viscosity of the fluid. We prefer the velocity variance for
MST radar work, since it involves a radar measurable quantity, as compared to a
theoretically derived €, which involves certain assumptions.

For further reading see Batchelor (1953), Tennekes and Lumley(1972),
Bolgiano(1968) and Tatarsky

Relationship between radar signals and atmospheric medium _statistics

Signal statistics

The usefulness of a MST radar is based on the close relationship there is
between the statistics of the signal received and the statistical properties of the
atmosphere. It is our intention to show and discuss this relationship, its
implications and limitations. Before we get into this task, let us first review the
statistical nature of the signals received and ways to characterize their properties.

The experimental setup of an atmospheric radar has been covered by the
previous lectures (See also Balsley and Gage,1980). Regardless of the possible
variations of radar systems, it is convenient to think of the signals as a two
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dimensional process, but in which both dimensions have units of time. The idea
is depicted in figure 3. The figure shows radar signal returns for a sequence of
identical pulses. We are showing the signals after filtering and decoding, so we
can still talk about identical pulses even if we have used a complementary puise
scheme. In one of the dimensions we have the delay time after the time of pulse
transmission. On the other dimension, we have the time of pulse transmission.
The process is discrete in this dimension. We can then represent the signal
received as s(tt’), where t stands for the (discrete) time at which the pulse was
transmitted, and t' the delay time after the pulse. t’ is continuous as an analogue
output of the receiver, but in practice it is also discretized by the sampling and
digital processing. As before we will be careless in differentiating the continuous
vs. the discrete representation of signals.

It is convenient to make a change of variables and replace t' by 2h/c,
where h stands for the radar range defined by the delay {', considering a pulse
propagation at he speed of light, c. We can then write s(t,h) to describe the
signal, dropping the 2/c factor from the notation for convenience. In this way we
get around the disturbing dependence on two times as independent variables.

The radar signal is intrinsically a non-stationary time process as a
consequence of the non-homogensous nature of the atmosphere. By writing it in
the form s(i,h) we have converted it into multiple (practically) stationary processes
in time t, one for each range of interest. We can change our notation once more
and write s,(t) to stress the parametric nature of h. We can now think of h as a
label, labeling parallel processes, one for each altitude.

We know how to characterize a random stationary process: by its
autocorrelation function. If the echoes come from a (practically) homogeneous
turbulence, we can further argue using the Ilimit theorem (sum of many
independent contributors) that the process is Gaussian, in which case all the
information we can extract from the process is in its autocorrelation function.
Gaussian or not, C, (1) is defined as

Cy(1) = E[s\(B)s,(t+1)] (14)

A good estimator of C, is <s,()s,(t+1)>, where the average has been evaluated by
taking n pairs of sample points. Alternatively, as we have already seen, we can
characterize the signals by its frequency power spectrum, F.(w), given by the
Fourier transform of C(t). Good estimates of F (w) can be obtained from
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Figure 3 — Two dimensional schematic representation of the radar signals.
t is the time of each radar pulse and t" the radar range delay. The
process of interest is S,(t), i.e. the sampled signal at a given range,
h, as a function of the time t of pulse transmission.
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discrete Fourier transforms of C,(t) or directly from the sequence by the
techniques that will be described {ater in the lectures.

So far we have considered in the introduction and the discussions above
that the radar signals received are real. Indeed they are. We live in a real world.
On the other hand, for practical reasons, the signals which originally have a
frequency almost equal to the transmitter frequency are converted to base band.
To preserve all of the information contained in the original signal we need two
converted signals, The so call Q and | components ( see lecture on radar
hardware). It can be shown (e.g. Woodman and Kohl, 1976) that if we form a
complex signal with the Q and | component as real and imaginary component,
everything we have say is valid, if we replace s(t)s(t+r) by s(i)s’(t+r). We can
recover the statistics of the signals before baseband conversion by muitiplying the
correlation function by exp(jm,t), where «, is the transmitter frequency, and then
taking the real part. Any complex phase can then be interpreted as a real phase
with respect to the transmitter frequency. In particular a Doppler shift in the
received signal is manifested as a complex phase of the form wyt in the
converted signal, and as a complex phase of the form @,t in the cormelation
function.

In the frequency domain, that is in the corresponding frequency power spectra,
the effects are simpler , a spectrum of the form F(w-w,) is converted to a
spectrum of the form F(w). A Doppler shift shows as a displacement in both.

A _general relationship

In the appendix we have derived a very general relationship between the
statistical of a radar signal and the statistics of the fluctuations in density ( we
could have used the dielectric properties, the temperature, electron density or any
other relevant linearly related quantity) of a scattering medium. There, we take the
approach of considering the most general conditions the least amount of
approximations. Particular cases allow further approximations and specific
expressions that one can use in practice to estimate medium parameters or to
discuss instrumental effects. it has the advantage of going from the most general
to the particular keeping good track of the approximations involved and their
limiting implications. Furthermore, it does not take any additional conceptual effort
to derive the most general expression, namely

WO e
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Cr, t) = f d3xd’r dt'dr’ x(tt, %) X A+t+o . x+r) p(r,7';%) (15)

Cumbersome as it looks, because of the variety of arguments, the expression
represents linear operations involving only two functions of easy interpretation,
and p. p is the space- time autocorrelation function of the fluctuations
responsible for the scattering. It characterizes the medium and depends only on
the properties and dynamics of the medium. The function x(; t',x) may be called
the "instrument function™. It can be interpreted as the output of the instrument as
a function of time as a consequence of a given arbitrary transmitter output shape
(pulsed or continuous) having placed a point scatterer at point x in space, for an
Instant, at time t'. It is analogous to the impulse response of a system, although
here the impulse is in the system characteristics: the scattering density.

The instrument function , y, includes the pulse shape of the transmitter,
any (amplitude, phase or frequency modulation) coding and decoding, match
fitering , the geometry of the experiment, the transmitting and receiving
characteristics of the antennas and the propagation properties of the medium,
including any refraction if necessary. The determination of p is a statistical
problem related to the physics of the medium. the determination of x is an
electronics and electromagnetics problem. As far as the characteristic of the
medium, it includes non homogenaous and anisotropic cases. It is also valid for
ionospheric radars including the incoherent scatter technique.

Although not discussed here or in the appendix, the approach can be
extended easily to the case the system has two outputs, like in the case of a
radar interferometer. We just replace the product of identical x's by the product
XX, Where the a and b label stand for the outputs of the two antennas, or the
two frequencies in a frequency domain interferometer (Kudeki and Stits , 1987)

At the appendix we have derived expressions which include explicitly the
transmitter puise shape , the receiver filter and decoding impuise response, and
the antenna pattern. In order to perform some of the integrations and make
discussion possible, we have also assumed that the scattering volume, defined by
the antenna patterns and the effective pulse width is larger than the characteristic
sizes of the fluctuations, although this assumption can be relaxed if necessary. It
is possible to reduce the complexity of the expressions further, taking
approximations which are valid for specific cases.
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The MST case

In the case of MST or clear-air radars it is well justified to assume that
the characteristic time of the medium is much larger than that of the pulse and
matching filter. In that case we can use equation A.15 and write (with a slight
change in notation):

C(t,h) = f d’sdh’ K’(s,h") o(k,(s),t;8,h") p(h-h")p'(h—h'+1) (16)

It differs from the appendix notation in the use of h' for the range (delay) variable
of integration and h for the "range"” sampling time. We have aiso conveniently
selected length units such that ¢/2 ( half the speed of light) is unity. This allows
us to use h and h' for a spatial as well as a time variable. The coordinate
system of integration is defined by surfaces of equal delay and an arbitrary two
dimensional coordinate, s, in the transverse direction. k is in the direction of h.
The directional dependance of ¢ on 8 Is shown explicitly. This dependance is
important in the case of anisotropic turbulence and will be responsible for aspect
sensitive effects. The possibility of non-homogeneous turbulence is also shown
explicitly in the dependance of ¢ on h and s. This is important since it is known
that turbulence occurs in layers thinner than the usual range resolution of the
radar. The formula is valid for mono-static and bi-static radars, and K(s,h) stand
for the product of the transmitter and receiver antenna weighing patterns. The
dependance of K in h is usually siow ( mainly the inverse of range squared ) and
can be taken out of the integral.

It is important to stress the fact that k, is not the variable vector k; it is a
constant vector defined by the vector difference of the incident and the scattered
wave number vectors which characterize the incident and scattered
electromagnetic wave which leaves the transmitter and arrives to the receiving
antenna, respectively. In the case of a. backscatter radar it has a wave number
twice the corresponding wave number of the illuminating wave, and the same
direction.

If we crosscorrelate, as we should, only samples which correspond to the
same range, then we have an expression for the auto correlation of the time
stationary process s,(t) we defined above. This is equivalent to restricting the time
of the second sample to be at even multiples of the pulse repetition period. In
which case, since the filtered pulse function p(t) is periodic, i.e. since p(t)=
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pt+nT), we can replace the product of displaced p’s above by |p(h-h").
If we further assume that the medium is homogeneous in the transverse
direction s, we get a simpler but yet very general expression for C,(t):

Cu = [ ds Kits) [ o otk,(s)% ) Ipth-nF amn

Before we continue with the discussion of this equation it is convenient to
make one further approximation, discuss the results and then come back to this
more general expression.

If we further assume that we have a homogeneous atmosphere in all
directions, and that the antenna has a beamwidth much narrower than the
characteristic angular width of any aspect sensitivity which ¢(k.(s),r) may present,
we can take ¢ out of the integral and write

C(r) = B d(k,,7) (18)
or
F(w) = B dk,,m). (19)

The success of radars to study the atmosphere is based on these simple
formulae. Even in the case that the approximations behind them are not quite
valid, its discussion allows us a first order approximation of the results. We shall
discuss the significance of this equation first, and then remove some of the
approximations that make it valid.

We will discuss only the implications of the terms ¢ or ® on above
equations. Since both expressions are interrelated, we will most of the time limit
our discussions to the time domain expression, i.e equation (18) and extend it to
the frequency domain (equation (19)) when desirable. We will not discuss the
proportionality term, B, since that is equivalent to a discussion of the radar
equation, which we have already seen in the previous lectures.

The first conclusion we can derive from these expressions is that the
amplitude and dynamics of the radar signal depends linearly on the amplitude and
dynamics of only one Fourier component of the density fluctuations of the
medium, that which has a wave-vector equal in amplitude and direction to twice
(backscatter case )the wave-vector of the probing electromagnetic wave. In
terms of wavelengths, the radar is sensitive only to fluctuations with a wave
length half the wavelength of the probing wave and a direction equal to the line
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of sight. The radar effectively filters out very sharply all the spatial Fourier
components which are not equal to k,. This wave component is still a random
process. lts dynamics is characterized by its temporal correlation function, ¢(k,,1).
The signal received has the same dynamics as this particular wave component.
The "power” , i.e. the amplitude squared averaged, of the particular wave
component of the density fluctuations the radar is sensitive to, is given by ¢(k,,0).
Therefore the power of the radar signal is proportional to the "power” of the same
spatial wave component. Furthermore, if we assume that the k—spectrum follows
a Kolmogorov law, we can indirectly infer the power density at other wavelengths.
If the medium is inmoble with respect to a frame of reference, in this frame
of reference we can show that ¢(k,t) is real. This is a consequence of the
invariance of p(r, t) under an interchange of r with —r for any 1. If it were not
invariant we would violate our inmoble assumption since there would be
dynamically a preferred direction. An observer moving with respect to this
reference at velocity v would measure instead a correlation function of the form
p(r-vt, 1), as a consequence of a transformation X' = x—vt in the defining equation
(6) for p. Using the displacement theorem of Fourier transform pairs, we derive a
k-spectum of the form ¢(k, t)exp(—k,.vt). Replacing this spectral form in
equation (18), and remembering that ®(k,, ) is real,we conclude that the phase
slope of the signal correlation is a measure of the projected velocity of the
medium with respect to the radar. The projection is along k,. In terms of the
frequency power spectrum F, (w), again using the displacement theorem, we get a
new expression, F (w—a,), where , is , not surprising, the Doppler frequency,

o, = K.V = (v/20)0, . (20)

Our next step is to show that the characteristic time of the signal
correlation is determined by the variance, <w, of the turbulent velocity. This is
better shown in the frequency domain. If the scattering volume is larger than the
largest eddies, we are sure to have a good sample of all possible velocities within
the volume. Normally the eddies are much larger than the wavelength of the
fluctuations the radar is sensitive to. We can then divide the scattering volume
into many scattering sub—volumes. The signal received would be equal to the
sum of each of the contributions of these sub-volumes, each of which would
impose a Doppler shift proportional to its averaged projected velocity w™ . This
projected velocity would not differ much from a corresponding local w', since we
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know from turbulence theory that most of the energy is in the largest scale
eddies. Therefore the power frequency distribution ( spectrum) of the
backscattered signals is going to be distributed in the same way as the probability
distribution of w' . Its second moment, o’, would be proportional to the variance
of the velocity <w™>, with the same constant of proportionality as the one which
relates the velocity to the Doppler shift, but squared, namely

& = 0, <W>/4c* . 1)

Furthermore, we have mentioned before that from experimental results as
well as from limit theorem arguments, we expect the random turbulent velocities
to be normally distributed, therefore, we also expect the frequency power
spectrum of the radar signals to be distributed likewise.

A normal frequency power spectrum is defined by three parameters: its
area( total power), displacement and width; or, alternatively, by its three first
moments. it transforms to an autocorrelation function which is also normal,
although complex. The three parameters transform into : the amplitude , phase
slope and width of the autocorrelation function, respectively. That is all the
statistical information either one of them contains, and that is all we should look
for in this case. On the other hand we have seen that they are related to very
important parameters of the medium. In fact, the relation and importance holds
even if normality is not assumed.

Let us come back to the more general equation, (17). The whole
expression can be taken as a weighted averages of ¢, averaged over all ranges
weighted by the filtered pulse shape squared, and over all angles weighted by the
antenna pattern. In the case of a bi-static arrangement, the averages are taken
over surfaces of equal delay ( "range”) and over appropriate transverse
coordinates ( "angle™).

The pulse function is non-zero for values close to h—h'=0 , and a depth
equal to its width after convolving it with the filter function (similar shape for
matched conditions). this means that the range integral is effectively sampling ®
at h'=h , averaging neighboring values within approximately a pulse width.

Similarly, the antenna weighing function is non-zero for values close to the
axis of the beams, and a width given by the beamwidth of the antennas.

If the dependance of ¢ on s or h is relatively slow as compared to the
width of the weighing functions p* and K’, an average value of ¢, representative
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of the center point of the sampled scattering volume at range h and center angle
of the beam pattems s= s, can be taken out of the integral. The integrand is
reduced to the two weighing functions, which integrate to a volume V, as large as
the non zero regions of p* and K° multiplied by the proportionality constants
imbedded in them. The result,

C.()=bV ¢k, 1 h), (22)

is a proportional expresion as the one in (18) and (19), which we have already
discussed. @ We have replaced k(s,) by k, where k, stands for the
corresponding one at the center of the beam. The only difference being the
explicit linear dependance on the volume, V, and the averaging nature of the
integral operation

An important use of equation (17) is in the evaluation and discussion of
broadening of the spectrum, F(w), as a consequence of finite beamwidth and wind
shear. The evaluation should be done by actually using the equation, and a
model of the medium characteristics and the radar system in the integrand. But, it
is possible to get a feeling of how the broadening comes about by breaking the
integral into the sum of integrals over smaller volumes sufficiently small for
equation (18) to be valid. Each subvolume will contribute to the spectrum with
comparably shaped spectira but with different Doppler shift, k,.v. The Doppler
shifts would be different either because k, varies in direction within the beamwidth
(beam broadening) or because v varies (shear broadening). The resultant
spectrum would be significally wider if these shifts are larger than the ones
produced by the random turbulent velocities. ( See Hocking, 1983, for further
discussions).

Notice here that it is possible for non isotropic turbulence to have a @
dependent on s through its dependance on the direction of k, , that is an aspect
sensitivity. If the aspect sensitivity is wider than the beamwidth, the radar would
be able to resolve it and actually measure the angular dependance, provided of
course that the beam is steerable. If the aspect sensitivity is sharper than the
beam pattern, then the weighing in the integrand will be performed by the aspect
sensitivity function , and the statistics of the echoes will be mainly that
comresponding to the most favored aspect angle. The contributing volume will
also be correspondingly smaller.(See Doviak and Zmic, 1984, for further
discussions).



137

Something similar would happen if the h dependance of ¢ is smaller than
the pulse width. The most important consequence being that the volume would
be smaller than that defined by the pulse. Thus, the actual strength of turbulence,
¢(k), would be underestimated if the h dependance of ¢ is not taken into account.

Partial reflection.

So far we have considered only radar echoes that have been produced by
random turbulent-produced fluctuations in refractive index. It is possible to have
in the atmosphere stratified structure sufficiently large in the horizontal extent as
to be considered deterministic for all practical purposes. In fact, the aspect
sensitivity that has been measured is so sharp that has let some researchers (
Rottger and Liu,1978 ; Fukao et al,1979; Gage and Green 1978 ) to postulate that
the echoes are produced by partial reflection from stratified gradients. In this
case is more convenient to talk, borrowing from optics, about the reflectivity of the
structure, R. It is a coefficient, defined by the ratio of the intensity of the reflected
over the incident electromagnetic wave, incident on the structure. A formula
often used in the literature to evaluate R is

R= fi% %Q—BXD(—]K,Z) dz .

Recently, Woodman and Chu, 1988, have shown that the limits, L/2, if they fall at
points where the integrand has not gone to zero on its own, can introduce
artificial discontinuities in the first derivative which overestimate the reflectivity by
many orders of magnitude. Nevertheless, partial reflection is possible if step like
structure of a fraction of a degree Kelvin exist within a length scale of a meter or
so. The existence or not of such a discontinuous structure would have to be
established with an independent technique. The aspect sensitivity observed with
radars can also be explained in terms of anisotropic turbulence at the edges of
the turbulent layers observed with the same technique (Woodman and Chu, 1988).

h risti t noise and clutter interference
Radar echo signals are always contaminated, in variable degrees, with sky

and receiver noise and echoes from undesirable targets, like mountains, other
ground structures, ocean waves, etc.. The latter is referred as clutter. In order to
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propery interpret the desired signals, and be able to discriminate between them
and noise or clutter, we need to know the spectral characteristics of the latter as
well.

Sky and receiver noise, after passing through the receiver, has a
bandwidth determined by the receiver filter. The filter in turn is normally matched
to the transmitter pulse width, or Baud width if coded. The pulse width is a small
fraction of the pulse repetition period, which also determines the sample time of
the sequence s,(t). Therefore, at this sampling rate, the noise samples are
independent. They are also statistically independent with respect to the signal.
Hence, the noise contribution to the autocorrelation function of the received
signals is a Dirac function centered at the origin. its contribution to the frequency
power spectrum is a flat threshold. It behaves, then as white noise.

The characteristics of ground clutter are the opposite to those of noise.
They are very narrow in the frequency domain and wide in the time domain. To
first approximation clutter shows as an spectral line in the frequency domain,
centered at zero frequency, since it comes from rigid structures with no relative
velocity with respect to the radar. At low VHF frequencies, this is practically the
case. At UHF frequencies, the reported clutter characteristics (Sato and
Woodman, 1981) have two components, an spectral component accompanied by a
weaker narrow, but finite, width component both centered at zero frequency. The
spectral line comes as in the VHF case from the rigid ground structures, the
wider component is believed to come from wind induced motion of tree branches
or from phase modulation of the spectral component induced by changes in the
effective phase path length between the radar and the target. Both are possible.
Changes in the width of this component with different surface wind conditions
support them both. Fortunately, except under very windy conditions, the wider
component is stil a few to several times narrower that the width of the
atmospheric echoes and one can discriminate against them (Sato and Woodman,
1981). The task is made easier by its confinement to the center ot the spectrum.
Under windy conditions, specially when one is interested in the small vertical
component, ground clutter is a problem at UHF frequencies.

For those radars near the ocean or large lakes, ocean clutter is a source
of interference. It can compete in strength with the atmospheric echoes, specially
at the higher ranges. Ocean clutter comes from wavelets on the surface with a
wave length equal to half the wavelength of radar. It is Doppler shifted by a
frequency corresponding to the phase velocity of the wavelet. This velocities are
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of the order of a few meters per second, and hence comparable to the
atmospheric velocities we are interested in. This should not surprise us, since
the wavelets are exited by matching velocity components the surface wind speed.
To make matters worse, ocean clutter echoes have spectral widths which are also
comparable to that of the desired echoes (Sato and Woodman, 1982b) . Still it is
possible to discriminate against them, fakihg advantage of the predictable
frequency shift and their constancy — in amplitude and frequency— as a function
of range and time. The problem being limited to those altitudes where the wind
profile crosses the value corresponding to the velocity of the wavelets, and only in
the case its strength is comparable or weaker to the interference.
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APPENDIX
Scattering of EM Waves from Dielectric Density Fluctuations*

R. F. Woodman
Arecibo Observatory, Arecibo, PR

Radars are used for remote probing of the upper atmosphere. Monostatic and bistatic
configurations have been used. The echoes are obtained from the scattering of the illuminating
wave by fluctuations in the dielectric properties of the medium under study.

The fluctuations in the local dielectric constant of a medium are direct consequences of
fluctuations in the density of the medium or, more properly, on the density of that component or
components in the medium responsible for its dielectric behavior, e.g., electron density in an
ionized gas, "air" density and water vapor in the low atmosphere, etc.

In the case the medium is in thermodynamic equilibrium, the fluctuations are reduced to a
minimum (thermal level). In such a case, and for an ionized plasma, we refer to the technique as
incoherent scatter. These fluctuations are never at zero level due to the discrete nature of matter
(Summations of delta functions will always produce fluctuations.)

Density fluctuations are statistically characterized by the density space-time correlation
function p(r, T, X) defined as

p(LT X)=<n(x)n(x+ ,t+1)> M

where n(x,t) is the microscopic random density of the medium at position x in space and time t. In
(spatially) homogeneous medium p is independent of x and p(r,t) = p(1,T; X).

Hagfors has treated the problem of how fo find p(x,t) for an ionized medium in
thermodynamic equilibrium (or quasi-thermodynamic for the case T, # T;). Farley has described
the different techniques for obtaining estimates of p(r, T; x) from the scatter echoes.

We shall develop here the functional relationship that exists between the statistical
characterization of the signal received in a radar experiment and the fluctuations in the medium
characterized by p(r, 7; x). The fluctuations need not be at the thermal level, so we are not limited
to the incoherent scatter problem. We should point out that the usefulness of large radars for the
study of the upper atmosphere is not limited to incoherent scatter. Proof of which is found in the
large number of papers produced by the Jicamarca Observatory by studying backscatter echoes
from E- and F-region irregularities and from turbulent fluctuations in the neutral atmosphere. In
fact, some smaller radars are built (STARE, SOUSY and the TS radars) which depend on the
enhanced reflectivity produced either by instabilities or turbulence. This could be the case in
EISCAT when observing auroral phenomena or the effects of artificial heating. It will also be the
case when studying neutral dynamics using backscatter signals from turbulent fluctuations.

Said functional relationships can be found in the literature but it is usually derived from
very simplified conditions with assumptions which are not necessarily valid. The derivation is
usually heuristic and in many cases difficult to assess the range of validity of the derived
expressions. Such approach is, of course, useful for didactic purposes and when the purpose of
‘the paper is on other aspects of the problem. Derived expressions in the literature are usually
derived for a specific technique (out of the many described here by Farley) and for specific
conditions (e.g., homogeneous media, continuous illumination, slowly varying echoes, narrow
pulses, etc.). We shall derive here the functional relationship between the statistical properties of
the echoes and the statistical properties of the medium under very general conditions.

*Lecture presented at the M.P.I. EISCAT School, January 1979, Oberstdorf, W. Germany
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We shall consider an experimental configuration as depicted in Figure 1. The medium
under study is illuminated by an EM wave of frequency w,, modulated by an arbitrary complex
signal p(t), scattered EM waves are received at a different location (or at same as a particular case),
coherently detected, properly filtered and decoded (if necessary). We are interested in evaluating
the complex autocorrelation of the signal received, O@), i.e.,

Ct)y=<OM O*(t+1)> )

in terms of the space and time density correlation of the medium.

The signal O(1) is a random process, usually nonstationary, is fully characterized by its time
autocorrelation function C(t,t). The dependence on t can normally be associated with a given
range, h, corresponding to the delay.

We assume: (1) that there is only primary scattering (first Born approximation valid), i.e.,
the medium is transparent, the illuminating field at a point x within the medium is due to the
primary illuminating field and the scattered fields at x are negligible; (2) the system is linear, i.e., if
04(1) is received for py(t) and O,(t) for po(t). The cO1(t) + BO,(1) is received for an excitation
apy(t) + 5 Py(t). The linearity of the propagation in the medium is guaranteed by the linearity of
Maxwell equations.

The linearity of the system allows us to evaluate the output signal as the linear
superposition of the contributions of each differential volume, d3x with density n(x,t). This
differential contribution can be evaluated in terms of the linear operators depicted in Figure 2. Here
we have modeled the propagation of the transmitter to the scattering point by a delay operator with
delay T(x) and an amplitude factor K;(x) which represent the effect of antenna gain and other
system parameters. The scattered signal is proportional to the local instantaneous (random) density
n{x,t) of the medium times the volume d3x. The dielectric properties of the medium, the receiver,
antenna, and other propagation properties are contained in a constant gain (in time) Ko(x). There is
a delay block with delay T5(x), a detector and a filter before we finally get our output from the
differential contribution fromn( x,t). The filter is characterized by the complex input response h(t)
and includes any decoding scheme. Decoding is a convolution operation and can be considered as
part of the filter.

The evaluation of the delay functions Ty(x), T»( x) and the constant terms K;(x), Ka(x)
does not concern us here and are assumed to be known. The output of the system can then be
written as

o(t,x)d3x = d3x .[ dt’ K(x) p(t" - T(x)) e~ ¥,T® n(x,t” - To(x)h(t - t) 3
where we have already operated on the "signal" with the delay operators 8(t — T;(x) and
8(t — To(x)). Here we have used T(x) = Ty(x) + Tp(x) for the total delay and K(x) = K;(x) *
Kj(x). The total signal output is then” - - - -
o) =] % o(tx) @
and the autocorrelation, C(1,t) = < O(t) O*(t + 1) >, can then be written as:
C(r,p) = J d3x d3xdr'dr"K(x) K(x") p(t-T(x)) p*(t”’~-T(x)e- ¥o(T& - T(x))
Bt =) h(t+ T ) pIx’ = %, €~ = (Ta(6) - Tox); x] ®)
It is convenient to write this expression in terms of variables
r=x-x

tI=tll_tl
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C(t.t) = j d3 X d3£ dt’ dv” K(x) K*(x + 1) p(t' — T(x )) p*(t' + 7' = T(x + 1))
» e W (T -TE+ D) h(t—t) h*(t+1-t' - 1) plr,¥' — (To(x) -T2 X + D) },‘]
©)

This expression is simplified considerably if we take advantage of the fact that in most cases the
characteristic length of the density correlation function, r;, (equal to the Debye length in the LS.
case) is much smaller than the characteristic length of K(x) and the characteristic length, ctp
corresponding to the width of the pulse p(t). This allows us to replace K(x + r) by K(x) and p(t -
T(x + 1)) by p(t — T(x)) in the integrand with no appreciable effect on the integral.

Also, the difference in propagation time To(x) — Ta(x + r) is of the order of r/c for points
within a correlated volume. This is much smaller than the characteristic time of the decay of the
correlation function unless one is dealing with relativistic plasma. Therefore we can ignore this
term in the time argument of the correlation function. In addition, the oscillatory nature of the
exponential, with a wavelength comparable to the wavelength of the probing wave, makes the
integrand unsensitive to any possible long scale structure of the correlation function across the
surfaces of constant T.

Furthermore, the almost linear behaviorof T(x +r)on r for| {_l <1, allows us to linearly
expand T(x + r) in the exponent around X and write:

WoT(X + 1) =wo T(X) + WV I T(x) o1 = wy T(x) + k(x) * r D

where k(x) = kj(x) - ka(x), and k(x) and ky(x) are the local wave number of the incident and
scatteréd wave, respectively. Withthis approximation we can write:

C(r.t) =) d3x dr'dv’ K2(x) p(t' - T(x)) p*(t’ + T - T(x))
*h(t-t) h*t+1-t' - ) fk(x), 7 x) @®

where p = (;, T, X) is the spatial Fourier transform of p(r, T; x) defined by

pE&T X =) Bre 1 x) )
Notice that as far as r is concemned, X can be considered as a constant parameter. Also notice that
the output of the experiment depends only on the Fourier component evaluated at a particular set of
wave numbers k(x), which for most cases is a constant. It is equal to 2k; in the backscatter case.
Equation (8) is the general expression we are after; it involves only two basic assumptions and one
approximation regarding the length scale of p(r). It can be used as the starting point for simpler
expressions applicable to the particular cases.

Next we consider a few particular cases as illustrative examples.
Case 1. Continuous excitation.

In the case of a cw bistatic experiment, e.g., the French incoherent scatter radar, we have
p(t) = a, where a is a constant.

In such a case the output of the experiment is time stationary and the correlation function,
C(1) = C(t,1), is given by

C(t) =a? ] d3x K2(x) .[ dv’ p(k(x), T X) Ot — ) (10)
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where the second integral is the usual convolution of the correlation function of the input signal to a
filter by the autocorrelation function, ¢py(t) of the filter characteristic. The spatial integral
represents a weighted average of the contributions of each differential volume, weighted by the
beam patterns of the antenna (and the 1/R2 dependence). For homogeneous media and constant
k(x) = k, the spatial integral is independent of p and defines a volume, V, and we have

C(t) = a2K2 V J p(k,7) dpp(t — ) dv’ (11

The above equations, if expressed in the frequency domain, take an even simpler form where the
convolution integral is transformed to a product of frequency functions.

Case 2. Filter time scale smaller than characteristic time of p.

In this case the integrand is different from zero for small values of the argument of h(s),
i.e., when

t=t
T=T+1t -t
Thus, p(k(x), T, x) can be taken out of the T integral evaluated at " = t. We can then write (8) as
Cr.y) =} d3x K2(x) fk(x), T; ) PA-T(x)) p*(t + T - T(x)) (12)
where p is defined as
p(v) = J' dtp(t) ht - t") (13)
that is the pulse shape passed through the filter or decoder. In optimum designs h(t) is identical to
p(t), and p(t) is then the autocorrelation of the pulse shape. In multiple pulse experiments the filter
is identical to a pulse element of the sequence and p(t) is a sequence of autocorrelated pulses.
Surface of constant delay, T = T(x), can be used as one of the variables of integration
(e.g., range in a backscatter case with plane wave fronts) and a suitable set of two transverse
coordinates, s, for the remaining two. We can then write:
d3x = d2s cdT (14)

where c is the local phase velocity of light taken to be a constant for simplicity, d2§ is a surface
differential. Equation (2) then takes the form

Clrh) =c J d2s I dTKX(s,T) A(k(x), T ) Bt —-T) p*(t—T +7) (15)
Case 3. Backscattering from a (quasi-) homogeneous andisotropic medium.

This case illustrates the effect of decoding and filtering on the dependence of the
autocorrelation function. The assumptions involved allow us to replace Ak(x), T’; x) by ;5(15, )
and to take it out of the spatial integral. For quasi-homogeneous cases we can take Bk, ©; x) with
the value it has at the center of the volume, which corresponds to the particular delay t of the
measurement. Therefore we will write p(k,t’) to extend the generality.

We can also perform the spatial integral in terms of the variables s and T, Only K2%(x) is a
function of s and we can perform the integral with respect to this variable. If K2 is a factor which
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groups all the dimensional factors in K2(x) then the spatial integral gives us K2A(T), where A(T) is
an equivalent area defined by the s dependence of the beam pattern. On most cases of interest A(T)
is a slowly varying function of T; slower than the pulse length and can be taken out of the integral
evaluated at the sampling delay t. Considering the above we write equation (8) as

C(t,t) = CK2A(1) J dv’dvdT ﬁ‘ljg Dpt -Dps W+ -Tht-t)ht+1-7 -1)

=CK2A(t) J dt'pyk,t) J d h(t—t) h*(t -t + t- 1) J dT p(t' - T) p*(t' + U - T)
(16)

or

C(t.1) = CK2A () j dr Ak, T) bpp () Opy (T~ T) an

where 0., (7) is the autocorrelation function of the pulse shape and ¢y, () the autocorrelation
function of the filter and decoding system.

Hlustrative Examples

In order to gain a better understanding of the significance of the formulas derived for cases
2 and 3, we have constructed Figures 3 and 4, respectively, corresponding to two often used pulse
schemes. Case 1 does not need an illustration since in this case the spectrum of the signal received
is just the product of the spectrum of the medium with the systems filter characteristics.

Figure 3 depicts the different shapes of the functions involved for a double-pulse
experiment, in a backscatter mode, in which two narrow pulses are sent, g apart. In this case the
experiment provides information on the correlation function gy(k t"), at only one delay, T = Ts
corresponding to the pulse separation. In practice the correlation function is evaluated only at this
delay. To obtain the value of the correlation function at other delays, another pair of pulses is sent
with the proper spacing.

Notice that C(1,t) is different from zero only in the vicinity of T, the useful part, and in the
vicinity of 17 = 0 corresponding to a power measurement. Such power measurement is not useful
since it contains not only the contribution from the desired height but also the "self-clutter”
contribution from t — Tg, as illustrated in the two-dimensional plot of p(t—T) p*(t—T + 1).

Multiple pulse schemes can be illustrated in a similar fashion, the main difference being that
several correlation delays can be estimated in a single sequence and that the self-clutter is larger and
coming from several different altitudes.

Figure 4 illustrates the case in which a long pulse (as compared to the medium correlation
times) is sent. The receiver impulse response is narrow and considered square for the sake of
simplicity. Two effects are clear from the picture, the medium correlation function is multiplied by
a triangular function, ¢,,(t), and the result convolved with a narrower function, ¢pp(T), given by
the self-convolution of the filter input response.
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Chapter 5

Data Acquisition and processing

Toshitaka Tsuda

Radio Atmospheric Science Center, Kyoto University

1 INTRODUCTION

This chapter is devoted to describing fundamental methods of signal processing used in
normal MST radar observations. Complex time series of received signals obtained in
each range gate are converted into Doppler spectra, from which the mean Doppler shift,
spectral width and signal-to-noise ratio (SNR) are estimated. These spectral parameters
are further utilized to study characteristics of scatterers and atmospheric motions.

Since it is beyond a scope of this note to describe general techniques developed in radar
engineering, readers are encouraged to study a comprehensive textbooks on modern radar
techniques such as Cook and Bernfeld [1967], Barton [1976], Skolnik [1981]). Fundamental
and advanced techniques of digital signal processing are also summarized by Gold and
Rader [1969] and Bendat and Piersol [1971].

Detailed descriptions of clear air radars operating at frequencies ranging from VHF
to a microwave are given by Gossard and Strauch [1983] and Doviak and Zrni¢ [1984].
General MST radar techniques are also reviewed by many authors [e.g., Gage and Balsley,
1978].
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2 RECEIVER HARDWARE

Fig. 1 schematically shows the simplified structure of an MST radar system and the flow
of received signals. A VHF or UHF sine wave carrier generated by a stable oscillator is
modulated by a rectangular pulse with a width of a few microseconds. This is commonly
called a pulsed continuous wave (CW). The transmitted radio wave is backscattered
toward the radar. The radar echo is fed to a receiver system through a TR-switch that
protects the receiver from damage caused by the high power of the transmitter during
the transmission. The received RF signal, which is usually a replica of the transmitted
signal, is pre-amplified by a radio frequency (RF) amplifier. The RF signal is mixed with
a coherent local (LO) signal and is down-converted to an intermediate frequency (IF)
signal.

After maximizing the peak-signal-to-noise power ratio in the IF amplifier, the IF
signal is detected by a quadrature detector, which produces a time series of sine and
cosine components of the received signal. The detected signal is finally converted to
digital signal by an analogue-to-digital (AD) converter, then transferred to a digital
signal processing system.

The pulse may be compressed by phase modulation, which is decoded before or after

the AD conversion by an analogue or digital correlator, respectively.

3 MATCHED FILTER

The IF-amplifier is generally regarded as a filter with gain, which should be designed to
maximize the peak signal-to-noise power ratio SNRp. Note that the peak signal power
defined here corresponds to the maximum instantaneous power, and not to the integrated

signal power within the bandwidth. Thus, the SNRp is not equal to the SNR, which is a
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ratio of the integrated signal power to the integrated noise power within the bandwidth.

The latter is used in later sections.
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Fig. 1. Block diagram of a typical MST radar system, together with signal waveforms.
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Fig.2 shows typical frequency spectra of a pulsed CW signal with a width (duration)

7 and of noise. The former is approximated by
Iy o
where f is a frequency normalized by 1/7, while the noise can be considered to be white,
i.e., its intensity is statically independent of frequency. Although the received signal
contains many Fourier spectral components, the receiver amplifies only components that

are within a finite bandwidth.

>
=
0
4
w
Q
-~
P
o
-
Q
w
& oa 1 I ] I I 1 I |
il
[s) . 47 ka 3
-2, -1 0 1 2
FREQUENCY

Fig. 2. Frequency spectrum of a pulsed CW signal (top panel) and white noise

(bottom panel). The frequency is normalized by the inverse of the rectangular pulse

width.
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Fig. 3 shows the integrated power of the signal and noise spectra shown in Fig. 2
as a function of double-sided bandwidth B. Since noise spectral density is distributed
uniformly in the frequency range of the signal, the integrated noise power is proportional
to the receiver bandwidth B. On the other hand, the signal power increases rapidly when
B is small, then approaches a constant value as B becomes larger.

When B is considerably narrower than the bandwidth occupied by the signal, the
signal energy is not effectively detected by the signal processing, although the noise
energy is reduced. On the other hand, if B is wide compared with the signal bandwidth,
extraneous noise is introduced by the excess bandwidth, which lowers the output SNRp.

Thus, there is an optimum bandwidth depending on the signal spectrum.
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Fig. 3. Integrated power of the signal (upper curve) and noise (lower curve) spectra

shown in Fig. 2. The bandwidth is a double-sided frequency range.
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The optimum filter is obtained by applying a matched filter design [e.g., Barton, 1976;
Skolnik, 1981], which is generally defined as a network whose frequency-response function
is matched to the pre-filter signal spectrum in order to maximize SNRp.

The frequency-response function of the IF-amplifier H(f) specifies the relative ampli-
tude and phase of the output signal with respect to the input when the input is a pure
sinusoid. For a received signal voltage spectrum S(f), H(f) for the matched filter can
be expressed as

H(f) = GuS*(f) exp(—i2n fta) (2

where G, and t4 are the gain of the network and the time delay. H{f) is the complex
conjugate of the signal spectrum except for a phase shift due to the time delay.

As a result, the normalized amplitude spectrum of the matched filter, which corre-
sponds to the filter passband characteristics, is the same as the amplitude spectrum of the
signal, but the phase spectrum of the matched filter is the negative of the phase spectrum
of the signal plus a phase shift proportional to frequency. By using phase spectra ¢s(f)
and ¢x(f) for the signal and matched filter, respectively, Eq. (2) can be rewritten as

follows:

[H() =15(f)
¢u(f) = —¢s(f) +2n fta (3)

Specification of the optimum receivelj characteristics involves the frequency-response func-
tion and the shape of the received waveform, which is usually a replica of the transmitted
signal spectrum. The transmitted signal spectrum is usually tapered from the spectrum
of a rectangular pulsed CW in order to suppress harmonics and spurious transmission.
Therefore, the matched filter design largely depends on the transmitter characteristics.

It is often impractical to construct the exact matched filter. If the signal wave form
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is a rectangular pulsed CW, to simplify the filter hardware the matched filter for the
IF-amplifier is approximated by a band-pass filter (BPF). The optimum IF bandwidth
B;r is the order of 1/7. More precisely, it can be shown that B;r should be 1.4/7 for

the optimum rectangular filter.

4 OUTLINE OF A DIGITAL PROCESSING SYSTEM

Fig. 4 shows the flow of the signal processing for a digital signal transferred from the
receiver. This processing can be done either in real-time or in an off-line computation,

depending on the capability of the system-installed computer system.
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FOURIER TRANSFORM

INRCOHERENT INTEGRATION ]
(SPECTRAL AVERAGING)

NOISE LEVEL
ESTIMATION

SPECTRAL

-

ECHO POWER
DOPPLER SHIFT
SPECTRAL WIDTH

Fig. 4. Flow diagram of a typical digital signal processing system.
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The sampled digital signal is arranged as a function of a round-trip time from trans-
mission to reception, which is generally called ranging, and is coherently integrated in
order to increase a signal-to-noise ratio SNR. The complex time series of the received
signal is Fourier transformed into Doppler spectra. After incoherently averaging the
Doppler spectra, the noise level is estimated. Speétra] parameters such as the SNR,
mean Doppler shift and spectral width are estimated from the Doppler spectra. They
are usually stored in a mass storage system for further analysis of radar reflectivity, wind

fields and turbulence parameters.

5 RANGING

For a monostatic pulse radar, the distance, or range R to the scatterer from the radar
becomes
CTR

rR=52 )

where ¢ is the speed of light ¢ = 3 x 108 m/s, and Ty is the time interval between the pulse
transmission and detection. The denominator 2 appears in (4) because T, corresponds to
the round-trip time interval for radio wave propagation over the range R. In convenient
units (4) becomes

R(km) = 0.15Tx(ps) (5)

Fig. 5 schematically shows a time-height chart between the range and the round-trip
time interval for a radar echo. The interval ¢;pp between successive pulse transmissions
is called the inter-pulse-period (IPP), and the corresponding frequency is called the pulse
repetition frequency (PRF). Normally MST radars are operated with uniform IPP, which

is, for an example, set equal to 1 ms in Fig. 5. H, in Fig. 5 is defined as ctippf2.
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The SNR is linearly dependent on the average transmitted power in the IPP. There-
fore, in order to increase the SNR, the IPP should be as short as possible when the pulse
length and peak transmitting power are fixed. On the other hand, a sufficient length of
time must elapse after a pulse is transmitted in order to receive all of the radar echoes
before the transmission of the next pulse. Thus, the IPP is determined primarily by the

longest range at which targets are expected.
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Fig. 5. Time-height chart for MST radar observations when when IPP is 1 ms. Thick
and thin solid lines correspond to propagation of transmitted and scattered radiowaves,
respectively. The received signal is sampled 10 times with equally spaced range gates as
indicated by the dash lines. The dot-dash lines show a second-time-around echoes due

to ionospheric scattering.
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If the IPP is too short, echo signals from some targets might arrive after the trans-
mission of the next pulse, as indicated by the dot-dash lines in Fig. 5. These echoes from
a range greater than ct;pp/2 are received during the same interval that as echoes from
targets nearer than ct;pp/2 return echoes from the next pulse. As a result, instead of
their actual range R, they appear to have a range R — H,, or R minus a multiple of H,,.

This ambiguity in the ranging is called a range aliasing. Signals that arrive after the
transmission of the next pulse are generally called second-time-around (or multiple-time-
around) echoes. The range H,, is called the maximum unambiguous range, beyond which

targets appear as second-time-around echoes.
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Fig. 6. Time-height chart for an MST radar whose antenna beam is steered every

IPP into three directions as shown in the right panel.
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For normal MST radar observations, clear air echoes are usually detected at heights
lower than 100 km, which corresponds to t;pp = 667us. So, the IPP is usually set equal
to less than 1 ms. Then, echoes scattered from the ionosphere would be received as shown
in Fig. 5. These can be considered as a kind of multiple-time-around echoes, although
characteristics of radar echoes are fairly different between the first and multiple-time-
around echoes. The normal ionospheric echoes are much weaker than the clear air echoes
and have much a broader spectral distribution, therefore, they may instead act as a
white noise added to the normal cosmic noise. Although range-aliased ionospheric echoes
increase the noise level, depending on the electron density, they do not usually present
a large problem in estimating the spectral parameters of the Doppler spectra when the
SNR is significantly large.

However, the intense radar echoes that are sometimes received from jonospheric irreg-
ularities such as sporadic E layers or meteor trails may seriously contaminate the clear
air echoes. In such cases, ¢;pp should be made large enough to remove the range aliasing.

Another way to weaken the effects of range aliasing is to change the antenna beam
direction between every pulse. Fig. 6 shows the time-height chart for an MST radar that
is steered sequentially into three directions, eastward, vertical and southward, denoted 1,
2 and 3. Thus, the effective IPP in each beam direction becomes three times the original
IPP, which is usually large enough to remove the multiple-time-around echoes from the
jonosphere. Of course, this technique can only be used with a directionally agile radar

such as the MU radar [Kato et al., 1984].
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6 RADAR SAMPLING VOLUME

Normal MST radar observations assume that the volume illuminated by the radar antenna
beam is filled with scatterers. Fig. 7 schematically shows transmission and receptioﬁ ofa
purely rectangular pulse with a width 7. The leading edge of the transmitted pulse covers
distances from zg to zp -+ ¢7/2, while the tail end of the pulse goes from zy — ¢7/2 to z,.
In total, the sampling volume extends from zg — c7/2 to 2o + ¢7/2 with a thickness of cr.
The right panel in Fig. 7 shows that the weighting function of the sampling volume has
a triangular distribution partly overlapping the weighting function of the adjacent upper
and lower sampling volumes. The range resolution is usually expressed as ¢7/2, which

corresponds to the half power width of the weighting function.
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Fig. 7. Time-height chart and sampling weight when a rectangular pulse is transmit-

ted.
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The effective direction of radar echoes is usually assumed to be aligned with the
antenna bore-sight direction. Therefore, the height of the radar sampling volume can
be calculated by multiplying the range times cosf as shown in Fig. 8. In the vertical
direction, the height resolution is the same as the range resolution. On the other hand,
since the sampling volume for an oblique antenna beam is inclined to the horizon, the
vertical distance between the highest and lowest points of the sampling volume is usually
larger than the range resolution. That is, ARcos§ is not necessarily equal to AH as

shown in Fig. 8.

HEIGHT

RADAR

Fig. 8. The sampling volume for an oblique antenna beam.
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The actual shape of the sampling volume depends on the exact shape of the transmit-
ted pulse and antenna gain pattern. Fig. 9 shows an example of the weighting function at
a range of 10 km when the pulse length and half-power, full-width antenna beam width
are 1 us and 3.7°, respectively. In order to optimize the range resolution, the pulse width
should be as short as possible within the limitations of the radar system. However, the
height resolution in oblique directions may not be improved by shortening the transmitted
pulse width when the antenna beam is not narrow enough.

So far we have assumed that radar scatterers are uniformly distributed in the radar
sampling volume. In the real atmosphere, scatterers are sometimes horizontally stratified
in layers with thicknesses thinner than the sampling volume. When these thin layers
are distributed unevenly in the sampling volume, the effective antenna direction becomes
different from the antenna bore-sight direction, which causes an error in converting from

range to altitude [e.g, Fukao et al., 1988; May et al., 1988].

HEI1GHT (km)

« s s e s e e« e
OO0 A0 O0O0O0C0O0O

DISTANCE (km)

Fig. 9. The sampling weight for MU radar observations when the transmitted pulse

width and half-power, full-width beam width are 1 ps and 3.7°, respectively.
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In the lower stratosphere scattering from stratified layers is usually not isotropic, but
has characteristics of specular reflection. In this case, the effective antenna direction is
determined by the product of the antenna pattern and the angular distribution of the
reflectivity. This usually biases the beam direction toward the zenith. [e.g., Rdtiger,

1981; Tsuda et al., 1986).

7 COHERENT INTEGRATION

The detected quadrature signals are usually integrated for many pulses in order to increase
the SNR. This digital signal processing is called a coherent integration, which requires
that the phase of successively received signals be consistent with that of the local reference
signal.

Before proceeding to a discussion of the effects of the coherent integration, it might
be useful to review briefly the concept of a x2-distribution, which is commonly used in
expressing noise power charaétér%s;ics. We first assume that a random variable z has a

Gaussian probability distribution function, expressed as

2
a(z) = 7‘2—— exp(~ ) (6)

where the mean value and standard deviation are assumed to be 0 and 1, respectively.

When intensities of T are integrated M times as
y=12+2i+23+...+1, (7)

it can be shown that y has a y2-distribution given by

_ (y/2M*Vexp(~y/2)
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where I'(M/2) is defined as

T'(M/2) = (% -1 {when M=even integer)

M M 1
=(5 -7 - 2)...§J1?

(when M=o0dd integer and AM>3)

=7 (when M=1) (9)

The mean value  and standard deviation o of the y2-distribution are
p=M

o=V2M (10)

Therefore, when the square of a random variable is integrated M times, the resultant
mean value is increased by M, where M is called the degrees of freedom of the x2-
distribution. It is noteworthy that the ratio between the standard deviation and mean
value is

o=\ (11)

which means that after M of integrations, as in (7), the distribution about the mean
becomes narrower.

Now we investigate the inm:ease of the SNR after coherent integration. If N, coherent
signals with the same SNR are integrated, the resultant signal amplitude becomes N,
times that of a single value, therefore, the signal intensity is increased by N2.

On the other hand, when uncorrelated noise amplitudes are integrated over N, sam-

ples, the resultant noise power can be expressed by (7). Because we can assume that the
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noise amplitude has a Gaussian distribution, the noise power follows the x2-distribution
with degrees of freedom equal to N, so that the integrated noise power is increased by
N.. As a result, coherent integration over N, pulses improves the SNR by N..

Coherent integration corresponds to digital filtering with a boxcar weighting in the
time domain. The signal power spectrum after coherent integration becomes the product

of the original IF-signal spectrum and a weighting function expressed as

inC7Ap) 370 (2
where At = N.t;pp.

In order to increase the SNR, the number of coherent integrations should be selected to
span the interval over which the received signals are phase coherent with each other. There
are two effects that make the integration time finite: movement of the scatterers relative
to each other within the radar sampling volume, and the mean motion of scatterers
relative to the radar due to background wind fields.

The relative motion of the scatterers is estimated by the correlation time, which is
defined as the half-power width of the auto-correlation function of the received signal.
It depends on the radar wavelength, antenna beam width and altitude [Gossard and
Strauch, 1983] and becomes of the order of 0.1 to 1 sec for MST radars operating at VHF
or UHF (radar wavelengths ranging from 0.1 to 10 m).

As described later, the inverse of the coherent integration time corresponds to half of
the maximum frequency range of the Doppler spectra. Therefore, the integration time
should be short enough to determine unambiguously the maximum radial wind velocity.

This condition usually puts a practical limit on the length of the coherent integration.
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8 DOPPLER VELOCITY

As shown in Fig. 4 the main procedure of digital signal processing is Fourier transforma-
tion of the time series of the received signal constructed at each range gate after increasing
the SNR by coherent integration.

For a monostatic radar, signals received from stationary targets have time indepen-
dent phase ¥ = —2x(2R/)\)+constant, where A is the radar wavelength. If R increases
with time because of the radial component Vz of the motion of the scatterer, the phase
decreases and the time rate of change of phase becomes

dy  4rdR _ 4m .
@A @ A R=THD (13)

which appears as the Doppler shift from the carrier frequency of the scattered radiowave.

The Doppler frequency shift is related to the radial Doppler velocity as
A
Ve = 3 fp (14)

The shift is positive for motion toward the radar.

In the earth’s atmosphere the horizontal wind velocity can range up to about 100 m/s
near the peak of jet streams, while the vertical wind speed is only of the order of one tenth
to a few m/s. Thus when radial wind velocities are sampled at zenith angles of 10 to 30°,
they can be as large as 10 to 50 m/s. The Doppler spectrum should be constructed by

taking into account the wind velocity resolution and the maximum unambiguous velocity.

9 DISCRETE FOURIER TRANSFORM
The Fourier transform F(f) of an infinite time series X(t) is defined as

F(f) = / X(t)e2 /gt (15)

(=]
-0
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where f is the frequency. An actual signal processing system treats only a finite time
series that is discretely sampled N times at intervals of At. Thus the total length of the
time series is T,, = NAt.

Fig. 10 shows three sinusoidal oscillations with slightly different frequencies. The
vertical lines indicate sample timings. The oscillation plotted by the dashed curve has a
frequency fv = 1/(2At), which is half of the sampling frequency. When an oscillation
has a frequency lower than fy, it can be detected if the sampling is continued long
enough, while oscillations with frequencies higher than fy cannot be correctly estimated.
In order to specify completely a sinusoidal oscillation, at least two sampling points are
needed within one cycle of the oscillation. Therefore, fv, called the Nyquist frequency, is
the highest frequency that can be unambiguously measured in a discretely sampled time’

series.

AMPLITUDE

TIME

Fig. 10. Three sinusoidal signals with frequencies lower (solid), equal to (dash) and
higher (dot-dash) than the sampling frequency. The sample timings are indicated by the

thin vertical lines.
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The Fourier transform of a discrete complex time series X,, (n=0 to N—1) is usually
approximated by a finite series of harmonic functions, called a discrete Fourier transform.
The coefficient of the k-th harmonic component Fi (k=0 to N—1) is defined as

1 M=l

Fo=— Y X,W™ (16)
N n=0

while the time series of data X,, (n=0 to N—1) can be recomposed as

N-1
Xo= Y RW™ (17)
k=0
where
12wt 127
W = exp(— T )= exp(—-ﬁ) (18)

Note that Fiyn = Fi_y = Fi, because WV = 1; that is, the width of the unambiguous
frequency range of a discrete Fourier transform is 2fy. Doppler spectra are usually
plotted in a frequency range from —fy to fn. The frequency resolution of a discrete

Fourier transform then becomes 2fy /N = 1/(NAt) = 1/T,,.

10 FREQUENCY ALIASING

We demonstrate in this section that a time series X, sometimes cannot be related to a
unique frequency because of the finite sampling resolution. We assume three oscillations
with different frequencies. The dot-dash line in Fig. 11 shows an oscillation with a
frequency of 0.8fw, while the solid and dash lines correspond to 2.8fy and —1.2fy,
respectively, which differ by 2fx in the frequency domain. When these three oscillations
are sampled at the same timings indicated by the vertical lines, they produce the same
data time series. This effect, which occurs when frequencies of signals are separated by

an integer multiple of 2fy, is called a frequency aliasing.
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If there are signals with frequencies outside of + f», they contaminate the signal within
+fn. However, because the weighting function of the coherent integration has the filter
pass characteristics described by (12) and also plotted in the center panel in Fig. 12, the
intensities of the components outside of £ fy are significantly reduced, as shown in the
bottom panel in Fig. 12. It should be noted that thé power spectral density"within tfn
is also reduced because of the weighting. Note also that when the spectral width is large
the mean Doppler shift is slightly shifted. This is due to the asymmetric weighting of the

signal spectrum by the coherent integration.

AMPLITUDE

TIME

Fig. 11. The same as Fig. 10 except that the frequencies are at 0.8 (dot-dash), ~1.2

(dash), and 2.8 (solid) times the Nyquist frequency (after Doviak and Zrni¢, 1984).
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Fig. 12. Schematic diagram of frequency aliasing. The top panel shows Doppler spec-
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(dot-dash), where fy is the Nyquist frequency. The center panel is the weighting func-
tion due to coherent integration, while the bottom panel shows the resultant spectrum.
Vertical solid lines indicate the limits of the frequency range, while the dash line is at 0.8

fn.
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11 FAST FOURIER TRANSFORM (FFT)

Some recent MST radars have installed an array processor which is suitable for a large
matrix calculations such as the discrete Fourier transform shown by Eq. (16). Most of
them utilize a sophisticated technique called fast Fourier transform (FFT) [Singleton,
1967] in order to reduce computation time in analyzing the Doppler spectra.

Equation (16) indicates that N? multiplications are required to calculate a discrete
Fourier transform. However, when N is a power of 2, part of the computation can
be eliminated by using the characteristics of harmonic functions. For example, when
N = 8 = 2%, (16) becomes

NF. = Xo+ XiW* + XoW2 4 XaW3 4 X W4 4 X W 4 XWo 4 X, Wk

= (Xo + XoW 4+ X, W4 4 XWO) + (X, WF + XoaW3 + X W3 4 X, W)

= (Xo + XoW + X W 4 XeW) 4+ WE( X + XaW 2 4+ XWo* 4+ X, Wy (19)

which can be further rewritten as

Nj2-1 Nj2-1
Fi= Y XagW¥ 4+ Wk 3 X W2 = G, + WH, (20)
1=0 1=0

Note that G and H are a matrix with a size of N/2. Therefore, total number of matrix
computations becomes 2(N/2)?, which is reduced by a factor of 2 from (16). If N/2 is
again a power of 2, then G, and H; can be further divided into smaller matrices to further
reduce number of calculations. When N is a large power of 2, it can be shown that the
total number of additions and multiplications to calculate an FFT increase approximately
as Nlog, N and %N log, N, respectively, which is significantly less than N? when N is
large. The basic idea of the FFT can also be applied in cases when N is expressed by a
mixed radix [Singleton, 1967).
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12 INCOHERENT INTEGRATION
AND DETECTABILITY

A typical Doppler velocity spectrum is shown in Fig. 13, which was observed by the MU
radar in the lower atmosphere at a zenith angle of 10°. The horizontal axis corresponds
to the radial wind velocity, while the vertical axis shows relative power spectral density.

The signal is the broad enhancement centered at about 9 m/s, and the peak signal
spectral density is indicated by Ps. Random fluctuations spread in frequency ranges
located at the left and right of the signal are due to white noise with a mean value and

standard deviation of Py and oy, respectively.
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Fig. 13. A typical example of a Doppler velocity spectrum taken by the MU radar.
The peak signal spectral density is indicated as Pg, while the noise level and standard

deviation of noise are denoted as Py and oy, respectively.
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The detectability of a Doppler spectrum can be defined as

P,
D=3
OS+N

(21)

where Ps is peak spectral density of the signal spectrum, and o5,y is standard deviation
of spectral densities. When the fluctuation of the signal spectral densities is much smaller

than that of the noise, (21) becomes

Pg
D=
- (22)

which is more commonly used as a definition of the detectability [e.g., Gage and Balsley,
1978; Balsley and Gage, 1980]. 7

The noise spectral density has a x2-distribution with 2 degrees of freedom, because the
noise spectral density is a summation of the squares of the real and imaginary components
of the amplitude spectrum, which are assumed to have a Gaussian distribution.

For a single spectrum oy is equal to Py. When Doppler spectra are integrated
incoherently by averaging N; times, the mean values of the spectral densities of both
the signal and noise are not changed. But, on/Py becomes 1/\/N; according to (11),
because IV; incoherent integration of the noise produces a x2-distribution with 2V; degrees
of freedom. As a result, D is increased by V/N;.

Fig. 14 demonstrates the effects of incoherent integration by using a numerical simu-
lation. The signal portion is not clearly recognizable in the spectrum plotted in the top
panel in Fig. 14, which does not include any incoherent integration. On the other hand,
the signal spectrum becomes easily visible in the bottom panel, which is the result of 20
incoherent integration. In normal MST radar observations, spectral parameter estimation

can be done reasonably well when D is larger than about 3.
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Fig. 14. Doppler spectra produced by a numerical simulation. The top panel shows
a single spectrum, while the bottom panel shows a spectrum after 20 incoherent integra-

tions.
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13 NOISE LEVEL

In explaining Fig. 13 we have defined Py as the mean value of the y2-distribution of
the noise spectral density. A correct estimate of Py, commonly called the noise level,
is important in determining SNR, from which the characteristics of the radar scatterers
such as reflectivity or reflection coefficients are derived.

Since a x2-distribution approaches a Gaussian distribution as its degrees of freedom
becomes larger, a simple averaging of noise spectral densities might give an estimate of
the noise level. However, the simple mean could be easily biased toward larger values due
to spurious enhancements of the noise power by radio interference or airplane echoes.

Another estimate of the noise level can be obtained by taking the median values of
the noise spectral densities. A median filter is more insensitive to spurious enhancements
than simple averaging, and therefore it gives a more reliable estimate: Nevertheless, since
calculation of the medians needs a large memory area axi;i significant computation time,
it cannot be practically realized in a real-time data processing systems.

We here introduce a convenient method to estimate the noise level, which can also
be applied to determination of the echo power profile of incoherent scattering in the
ionosphere [Sato et al., 1988]. First, we need to pick up a portion of Doppler spectra
that includes only noise, and separate it into K, sub-sets each of which includes I,
spectral points. Second, in each sub-set the noise spectral densities for K, data points
are averaged. The resultant value follows a x2-distribution with the degree of freedom of
2K,. Repeat this process K,, times for all of sub-sets and get a series of averaged noisc
spectral densities. Finally, among these I{,,, determinations we need to find the minimum
value P,,.

For any distribution Q(z) in order for a to be a minimum, the other K,,—1 events
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must have a value larger than o, whose probability § becomes
B=Kn([ Qa)dz)="! (23)

where the factor K,, appears because we do not specify the order of occurrence of the
events.
The expectation of the minimum value can be given by calculating the first moment
as follows
oo oC K
e= / aQ(a) K / Q(z)dz)*"'da (24)
—00 a
When Q(z) is a normalized Gaussian distribution with a mean value and standard devi-

ation of 0 and 1, (24) can be simplified to
e= /" aQ(a)Km%(l — Er f(%))da (25)
where Erf is the error function defined as

Erf(y) = —?ﬁ [ exo(-eyat (26)

Note that e is always negative, since it is the expectation of the minimum value for the
normalized Gaussian distribution with zero mean.

In our case Q(z) is a x?-distribution with 2K, degrees of freedom, whose mean value
and standard deviation are Py and Py/+/K,. However, when I, is large enough, it
can be approximated by a normalized Gaussian distribution. In this approximation, the
z-axis must be nbrmalized by the standm:d deviation and displaced by the mean value.

In summary, e for the normalized Gaussian distribution can be related to P, as
Py
P = P -_ y
m = Pn M?Ka (27)

which is further modified to
P,

Py = TV

(28)
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Since the denominator of {28) is a constant for fixed K, and K,, Py can be estimated
by a simple computation when Py, is determined from observed Doppler spectra.

The SNR is defined as the ratio between the integrated signal and the noise power.
If the signal spectrum is approximated by a Gaussian distribution with a peak value and

standard deviation of Ps and o, the SNR becomes

V2105 Ps

SNR = Py B,

(29)

where Bp is the bandwidth of the Doppler spectra.

14 OBSERVATION PARAMETERS

We need to obtain a Doppler spectrum with large SNR and detectability in order to
estimate easily the spectral parameters such as the SNR, mean Doppler shift and spectral
width. Likewise, we need to take into account the effects of range or frequency aliasing
50 as to remove ambiguities in the range and velocity measurements.

Fig. 15 schematically shows the relations among observation parameters. The /PP
is proportional to the maximum unambiguous range of the observation H,,. The time
interval At of samples after coherent integration should be determined in order for the
Doppier spectra to include the maximum radial wind velocity V;,, expected in the observa-
tion height range. The number of colierent integrations Ne.n, which is the ratio At/IPP,
is required to be as large as possible to improve the SNR; that is, I PP should be as short
.as possible, and At should be as long as possible.

The velocity resolution AV of a Doppler spectrum in c/s is equal to the inverse of
the maximum time length T,, of the data samples. The number of FFT points Ngpr,

which is determined by dividing T,,, by AT, needs to be a power of 2. Since AV does not
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necessarily correspond to the velocity resolution of a spectral parameter estimation, AV

could be adjusted in order to get an appropriate value of Nppr.

Hrn Vi AV AT
\ | \
IPPacH At=—1 1
m 2Vm m Ay
_ At - Tm AT
Neon"1pp | MFT e | Nin Ty

Fig. 15. The relations among observation parameters. H,, and V,, are the maximum
range and radial velocity, respectively. At is the interval of data sampling. The minimum
unit of the Doppler velocity spectrum is AV, while T;,, is the total length of data samples.
AT corresponds to a time resolution of Doppler spectra. Ny, Nppr and N, are the

number of coherent integrations, FF'T points and incoherent integrations, respectively.
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The time resolution At of the spectral parameter estimation ranges from a few minutes
to several hours, depending on the time scale of the phenomena to be detected by the
MST radar observations. The number of incoherent integrations IV;,. is the ratio of AT
to T, which is required to be larger than about 10. Because the observation parameters
are closely related to each other, we may need some experience to find a set of optimum

observation parameters.

This chapter is concentrated on the description of basic concepts of the digital signal
processing used in normal MST radar observations. The author hopes it will contribute

to the understanding of Doppler spectra and stimulate further MST radar observations.
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Chapter 6

SPECTRAL AND CORRELATION ANALYSIS WITH APPLICATIONS
TO MIDDLE-ATMOSPHERE RADARS

Prabhat K. Rastogi

Electrical Engineering and Applied Physics Department
Case Western Reserve University, Cleveland, Ohio 44106

1. Intr tion

The first Doppler radar observations of waves and turbulence in the
stratosphere and mesosphere were reported in VHF experiments conducted
at Jicamarca, Perd by Woodman and Guillén [1974]. Doppler radars at
frequencies near 450 and 50 MHz, and lately even at 2-3 MHz, continue to be
used in extensive studies of middle-atmosphere dynamics. They are
collectively called MST radars in view of their ability to probe parts of the
Mesosphere-Stratosphere-Troposphere region [Balsley, 1981; Réttger,
1987}]. Information about the dynamics of the medium - in terms of its bulk
velocity (v) along the radar axis, spread (o,) in this velocity due to turbulence
and background wind shears, and on the intensity of refractivity fluctuations
(Cy?) induced by turbulence - is obtained from the low-order moments of the

,,,,,

spectrum density may also be obtained equivalently from its Fourier
transform, the autocorrelation function, often with reduced computations.
Indeed, the latter method was used in the early experiments at Jicamarca.

Nearly simultaneous Doppler observations along three or more beams allow
measurements of the bulk velocity vector. The measured velocity
perturbations are indicative of atmospheric wave-like phenomena. Velocities
along coplanar beams, symmetrically offset from the vertical, provide a
direct measurement of the vertical momentum flux in the middle atmosphere
[Vincent and Reid, 1983]. Power spectrum density is once again of interest in
data analysis of time series {v[k]; k=1,2,3...K} of velocity components v, as it
yields information about gravity-wave events [Rastogi and Woodman, 1974]

(J@\
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and on the almost turbulence-like ensemble of atmospheric waves [Balsley
and Carter, 1982].

In this lecture we review the correlation and spectral analysis methods for
uniformly-sampled stationary random signals, estimation of their spectral
moments, and briefly address the problems arising due to nonstationarity.
Some of these methods are already in routine use in atmospheric radar
experiments. Others methods based on the maximum-entropy principle and
time-series models have been used in analyzing data, but are just beginning to
receive attention in the analysis of radar signals [Klostermeyer, 1986]. These
methods are also briefly discussed.

We begin with a recapitulation of random signals (or processes) in Section 2.
Several definitions used in the later sections are also introduced here. The
nature of radar signals, with several different sampling time scales, and the
contribution of unwanted components e.g. system noise and ground clutter, is
outlined in Section 3. In Section 4, white Gaussian noise is used as a
prototype to illustrate the salient statistical properties of the periodogram,
obtained via the squared discrete Fourier transform (DFT). Use of the time-
averaged periodogram to estimate the power spectrum density (PSD or
power spectrum) of a wide-sense stationary signal is also discussed. In
Section 5, methods for estimating the autocorrelation function (ACF) as
lagged-product sums, and indirectly through the DFT, are introduced. We
emphasize in Section 6 that, for nonstationary signals, the time-averaged
periodogram may give a severely distorted estimate of the power spectrum
and is not simply related to the true ACF via the Fourier transform. Use of
windows or normalized weighting functions to improve the statistical
properties of the PSD estimates is discussed in Section 7. The need for
windowing and trend removal in spectral analysis of nonstationary signals,
‘and the consequences of coherent integration are also discussed. Spectral
parameters or moments can be estimated either directly, or by fitting an
assumed shape (e.g. Gaussian or Lorenzian) to the spectral components by
using a minimum mean squared error criterion. These fitting methods are
discussed in Section 8. An efficient way of estimating the spectral moments
from derivatives of the ACF at zero lag is discussed in Section 9. Limitations
of this two-pulse technique, so called as a sequence of two closely-sapced



186

pulses suffices for obtaining the ACF derivatives, are also noted. Finally,
high-resolution spectral-analysis methods based on maximizing the entropy
for given ACF or data values, and through autoregressive moving-average
models of the time series, are briefly introduced in Section 10.

Random Signals; Recapitulation Definition

In this section we review the salient concepts for wide-sense stationary
random signals and introduce the definitions of the autocorrelation function
(ACF), the power spectrum density (PSD) and spectral moments, and the
notion of an estimate. An overall familiarity with the material of this section
is assumed. The following recapitulation serves also the purpose of
introducing the notation and other definitions used later. Further details may
be found in standard engineering texts on random processes [e.g. Davenport
and Root, 1958; Papoulis, 1983] and signal analysis [e.g. Stearns, 1975;
Oppenheim and Willsky, 1983; Brigham, 1988].

Random Signals Suppose we perform some chance experiment E with
outcomes and events defined as points ({) and subsets in a sample space §. A
random signal or process g(t,{) is a mapping of these points { to real
functions of some independent variable, usually taken as the time (t) or some
spatial coordinate. The dependence on { is usually implied, hence g(t,£) is
often written as g(t). By a random process g(t) we mean the ensemble of all
time functions {g(t,{)} with chance outcomes ¢ in the sample space S [see
Fig. 2.1]. For a given t, g(t) is merely a random variable. Associated with the
random process g(t) are the joint probability density functions of successive
orders at times (t)), (t1,t2), (t;,t2,t3) etc.. This allows one to form statistical
averages or moments of various products such as g(t;), g(ti)g(tz),
g(t1)g(tz2)g(ts) etc.. Statistical averaging implies averaging over the entire
sample space, i.e. over the ensemble {g(t,{)}, with respect to an appropriate
probability density function.

Stationarity An important class of processes that we deal with has joint
densities and averages that do not depend on the choice of the time origin.
Such random signals are called statistically stationary, or simply stationary.
The statistical average or expectation E[g(t)]=p,(t)=y; of a stationary process
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FIGURE 2.1. A random process g(t) as an ensemble of time functions
corresponding to the outcomes (£) in a sample space (S) for some chance
experiment E. A suitable probability assignment is defined over S. Averages
may be defined in two different ways as discussed further in the text. The
time average m({,) of a realization g(t,{,) is obtained by averaging it over a
time window (-T/2,T/2) which is eventually made infinitely wide. The
ensemble average u(t) is obtained by statistical averaging at some fixed time t
over all realizations. If the process is stationary and ergodic, then u(t) is
independent of t, m({,) is independent of n, and the two averages are equal.
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g(t), evaluated with respect to the density function associated with it at time t,
does not depend on t. Its ACF is the second moment defined as the expectation
Rg(ti,t2)=E[g(t1)g(t2)]=R(t2-t)=R,(z) of the product g(t,)g(tz) of its values
at times t, and t,=t; + 1, and it depends only on the time lag t=t,-t; In a strict
sense, stationarity requires that similar conditions should hold for the joint
probability densities and moments (or correlations) of all orders. We limit
ourselves only to wide-sense stationary processes for which stationarity holds
for any two times (t,,t;), the average value p, is a constant, and the ACF R(x)
depends only on the time lag <.

Time Averages and Ergodicity A single realization or sample function
g(t,t) may be averaged in time over an interval (-T/2,+T/2) or (0,T) of
duration T. In a time averaged sense, the mean value of g(t,{) may be
obtained as mg({) = <g(t,{)>r and its ACF as r,1(1) = <g(1,0)g(t+ ©.O)>r .
Higher order averages may be similarly defined. The dependence on the
interval duration T is removed by letting it become infinitely wide in the
limit. In this limit, < >7 is denoted by < >. We then find that the time averages
mg({) and ry(t.{) depend on the identity { of the realization. Do time averages
equal statistical averages? Usnally not, but if they do then we say that g(t) is
an ergodic process. An ergodic process must also be stationary. For an
ergodic process, moments can be obtained as time averages over just one iong
(ideally, infinitely long) realization, as though different segments of the
realization correspond to different members in the ensemble. The concept of
ergodicity originated in statistical mechanics where it holds well for systems
with a large number of molecules. Ergodicity is a useful assumption for
atmospheric radar signals, but it is often quite difficult to verify.

Gaussian Processes A Gaussian process is one for which the first, second,
and higher order probability density functions are jointly Gaussian . These
processes are of interest for several reasons. First, it follows from the central
limit theorem that a linear combination of many statistically independent
identically distributed random variables tends to become Gaussian. In
atmospheric radar experiments the scattered signal often arises from many
small independent scatterers, hence its probability density functions
approaches Gaussian. Exceptions occur when there are only few dominant
components, due e.g. to coherent reflections from facets of turbulent layers



189

or from irregular terrain. Second, the joint probability density functions of
any order for a Gaussian process can be expressed in terms of a correlation
matrix R, i.e. from a complete knowledge of its ACF. Finally, uncorrelated
Gaussian variables are also statistically independent. This implies that if the
ACF R,(7) of a zero-mean Gaussian random process g(t) vanishes for t > 1,’
then successive segments of a realization g(t,{) over windows (0,T),
(T,2T),... etc of duration T >> 1, become uncorrelated, therefore statistically
independent. In essence, a Gaussian process whose ACF has a finite support is
also ergodic. Uncorrelatedness does not usually imply independence for non-
Gaussian random variables and processes.

Complex Processes In radar experiments, the low-pass receiver output z(t)
following coherent detection is a complex signal in the following sense. It
comprises an in-phase part x(t) after demodulation the received signal with a
reference carrier cos(2nf,t), and a quadrature component y(t) after a similar
demodulation with the orthogonal reference -sin(2nf,t). Since both x(t) and
y(t) exhibit random fading, the signal z(t)=x(t)+1y(t), where 1=V-1, can be
regarded as a complex random process [see e.g. Papoulis, 1983, or Miller,
1974]. The probability density of z(t) is simply the joint density function of
{x(),y(t)}. Higher-order densities are similarly defined as joint densities of
x and y at times (t;,t;), (t;,t2,t3), etc. Statistical averages of a complex random
process are defined with respect to these densities, but may also be evaluated
as time averages under the ergodic assumption for a stationary process. Then
the mean or average of the process z(t) is a complex constant (§+1n). The
autocorrelation function may then be obtained in either of the following
equivalent ways

R,(1) = E{z(t)z* (t+1)} = (1) = <z(t,))z" (t+1,{)> 2.1]

R; ensemble average (independent of t), T, time average (independent of {) )
where * denotes the complex conjugate. Different ordering of the lagged
term and conjugation gives three other forms, but we use the one above. The
signal power P, defined as <z(t)z*(t)> is real, but the autocorrelation function
R,(1) is generally complex. It may be expressed in the cartesian form as
R (1)=Rx(1)+1R (1), or in the polar form as R,(t) = IR,(z)l exp{1¢,(t)}. It is
readily seen that R,(t) has a Hermitian symmetry, i.e.
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Ry(7) = Rz(-1) [2.2]

which implies that its real part R,,(t) and magnitude IR,(t)! are even, but the
imaginary part R, (t) and phase ¢,(t ) are odd in the time lag <.

The Wiener-Khintchine theorem relates the ACF R,(z) and the PSD S,(f) of
z(t) as a Fourier transform pair (see e.g. Whalen, 1971; Miller, 1974),

SAf) =3{R, (1)} = -ro R,(1) exp(-2nfT) dT [2.3]

R1) =37 {S:(D} = Iw S:(f) exp(12nfT) df (24]

~o0

The signal power or variance P,=<z(t)z*(t)>=R,(0) is obtained by integrating
the PSD S,(f) over the entire frequency range. Since the power in each
frequency band (f,f+6f) must be real and non-negative, we infer that the PSD
S,(f) must also be real and non-negative everywhere.

Periodogram Each realization of the complex random signal z(t) is a
deterministic signal. We assume that it has a Fourier transform Z(f). Its
energy spectrum is obtained as E,(f) = IZ(f)I2. By the Rayleigh energy
theorem, the signal energy can be obtained either as the time integral of Iz(t)i2
or as the frequency integral of IZ(f)I2. It follows that for signals of finite
power P,, the PSD S,(f) may alternatively be obtained as the time average of
IZ(f)I2 over an interval (0,T) as T becomes infinite. Signals with infinite
energy or power may be handled by including generalized functions e.g. the
Dirac impulse. Consider now a truncated signal zr(t) which is zero outside
the interval (0,T). Then

T-US[2r(1)]12 = T-HZ(H)12

and the right hand side has properties similar to the PSD S,(f). It is called the
periodogram or sample spectrum. The time-averaged periodogram is often
used as an estimate of the power spectrum. The importance of periodogram
in power-spectrum estimation of uniformly sampled signals is due mainly to
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the availability of efficient Fast Fourier Transform (FFT) algorithms for
computing the DFT [see e.g. Cooley et al. 1977; Brigham, 1988]. As we see
later, the use of time-averaged periodogram as a power-spectrum estimate
requires several assumptions which do not always hold for atmospheric radar
signals and data.

Spectral moments Radar signals scattered form the atmosphere are slightly
Doppler shifted due to bulk atmospheric motions, and also undergo a
Doppler broadening due to local fluctuations in the bulk velocity. In the
absence of other components in the complex signal z(t) at the receiver
output, the PSD  S,(f) has a symmetric off-center peak. The area under the
peak corresponds to the signal power P, its location or center frequency fc;
to the Doppler shift fg, and its width of, about the center frequency f; to the
Doppler frequency spread ow. We note that, except for normalization to unit
area, the PSD S,(f) shares all the properties of a probability density function.
Hence the location parameters that we seek may be derived from spectral
moments, defined almost identically to the moments E{Q¥} of a random
variable Q, with respect to its probability density function fo(q).

The first few noncentral spectral moments of z(t), denoted here by s,©), s,(1),
s,(2) are are obtained by averaging f0, f1, and f2 with respect to its PSD S.(f)
over all frequencies. The zeroth moment s,(0) is the same as signal power P,.
S.(f)/P,isthen a probability density function. The location parameters fc, and
squared width (og;)? are obtained in the sense of mean and variance (or the

second central moment) of S (f)/P,. These may also be derived by
transforming s,(1) and s,(? as follows. First, s,(1) and s,(2) are normalized by
dividing with 5,00 i.e.

sD = 5,(1)/5,0) = f; and 5,(2) - 5,(2)/s,0).
Next s,2) is modified as
8,2 = [5,@ - {5, (0}2] = (o).

A Doppler shifted peak of Gaussian shape P, N(fc;,0¢2) is fully specified by
the (central) spectral moments P,, fc;, and o2 as shown in Fig. 2.2.
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FIGURE 2.2. Power spectrum density and the corresponding spectral
moments for an off-center Gaussian spectral peak. Parameters P, f;;, and o,
define the shape of the peak through its area, center frequency and standard
deviation. These parameters also correspond to the zeroth, first and second
order normalized spectral moments s,@, s,(1), and s, interpreted as signal
power, Doppler frequency shift and Doppler frequency spread. Note that the

frequency spread is G, , whereas s,(2) equals (G, )2.
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If the signal z(t) at the receiver output contains components other than the
scattered atmospheric signal, then extra steps may be necessary to relate P,
f.z, and o2 to the signal power, Doppler shift and Doppler spread of the
scattered signal. Finally, just as the moments of a random variable may be
obtained from successive derivatives of its characteristic function at the
origin, it is possible to infer the spectral moments via the autocorrelation
function.

Estimation In statistical signal and data analysis we frequently estimate a
random quantity 6 by some function 8(6;,6;,.. 6,) of n data points 8,,6;,.. 6,.
There can be many possible estimates of 6, e.g. 91,82,.. @m etc. We prefer
those that satisfy some reasonable properties viz. unbiasedness, minimum
variance, and consistency. An estimate § of 6 is unbiased if the statistical
average E[0-8] of the bias or error e=6-9 is zero. An unbiased estimate §, on
the average, neither overestimates nor underestimates 6 i.e. E[6] = E[8]. Of
all the available estimates, we also prefer the one(s) whose variance var § is
minimum. It may often be justifiable to use a biased estimate, if it has lower
variance. Finally, when the number m of data points is made infinite, we
should expect var @ to approach zero, otherwise taking more observations
would be futile. In that case we say that the estimate § of  is consistent. It is
often possible to obtain a theoretical lower bound on the variance of an
estimator using the Cramer-Rao inequality of statistics. An estimator that
meets this bound is called an efficient estimator.

3. Nature of Radar Signals and Radar Data.

Essential statistical characteristics of sampled radar signals and time series of
derived velocity data are summarized in this section. Choice of a suitable
spectral-analysis scheme depends critically on these characteristics and the
sampling time scales. We also take a first look at the rudiments of spectral-
analysis methods using the DFT.

In radar experiments, an amplitude and/or phase modulated pulse train is
transmitted in which each pulse has the form p(t) exp(12nfot) at a carrier
frequency f,. The carrier term is removed in coherent demodulation, in
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which the received signal is effectively multiplied with exp(-12xfot). The
receiver should optimally have a bandpass frequency response to match the
modulated pulse shape p(t). Hence the receiver bandwidth B about f, is
decided primarily by the the correlation width Ty of the pulse shape p(t). A
simple way of defining Ty is as the distance between points at which the
magnitude of the ACF Ry(1), defined as <p(t)p*(t+1)>, becomes 1/2 Rp(0).
Roughly, it corresponds to the smallest modulation time scale in p(t). Then
Tp, is nearly equal to the pulse duration for amplitude-modulated pulse trains,
but it is approximately equal to the baudlength Ty, for binary phase-coded
pulses used in high-resolution experiments. The receiver output is sampled
in range with a time resolution T,, which should be somewhat less than Tp to
avoid undersampling. Typically, T; is 1-10 us for a nominal range resolution
of 0.15-1.5 km.

The pulses p(t) in the pulse train are repeated at an interval Tj, typically
about one ms. The fading rate of the received signal is related to the nominal
Doppler frequency shift. It is, nevertheless, very much smaller than the
Nyquist frequency of ~500 Hz implied by Ti. The complex signal z(t) is
therefore coherently accumulated or integrated, range by range, over I
successive pulses to obtain an effective sampling time T=1.T. Typical value
of I may be 100 in VHF experiments and 10 for the UHF case. The receiver
output signal is thus sampled in time as the function of two indices, j and i
denoting range and time. After coherent integration, the index i is changed to
k corresponding to the coarser time scale T=1.T;. As the signals are analyzed
separately for each range, in our subsequent analysis we need only consider a
single complex time series z[k]. A range index j and a sampling time T are
then implicit.

The complex series z[k] not only includes the scattered atmospheric signal
s[k], it also comprises a wide-band noise component n[k] due to the system
and sky noise, a very slowly fading ground clutter term c[k] due to sidelobe
returns from terrain, vegetation, weather etc., a sporadic interference
component i[k] due to unwanted transmitters in the receiver passband, and
possibly a residual d.c. or drift d[k] due to slow changes in the receiver
circuits. The drift term d[k] is easily removed. Due to the intermittent and
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sporadic nature of the unwanted interference, its identification and treatment
is done on an ad-hoc basis. The only remaining terms are s, n, and c. The
ground clutter component c[k] is the most problematic of these as it is often
nonstationary over the measurement interval.

The signal z(t) is sampled in time as z[k] = z(kT). The frequency range for its
PSD S,(f) is then limited to the Nyquist interval F=(-0.5T-1,+0.5T-1). Any
components of S,(f) outside F are aliased or folded back into it. The aliasing
effect is most clear-cut for the wide-band noise component n(t), originally
limited by the receiver bandwidth B >> T-1. Hence the noise component is
aliased many times over. The eventual effect is to impart a nearly flat or
white-noise platform to S,(f), even when n(t) is nonwhite. The slowly-fading
ground clutter component should be manifest in S,(f) as a near d.c. or very
low-frequency spike. This would be true if the measurement interval were
either too small or too large compared to the typical fading-time for the
clutter. We see later in section 6, that the clutter component usually appears
as an f-2 platform in the PSD estimate.

Only a finite number K of signal samples z[k] is generally available for
spectral analysis. The limitation on K is due to finite memory or storage in
the on-line processor. An intermediate step in estimating S.(f) is the K-
sample discrete Fourier transform (DFT) of z[k]. The DFT pair is defined as

K-1
Z[m] = Fx{z[k]} = Z z[k] et 2K where m=0,1,...[K-1] [3.1]

k=0
K-1

z[K] = F2 {Z[m]) =é}_“ Z[m] e# 20K where k=0,1.,[K-1]  [3.2]
m=0

The DFT converts K time samples of z[k]=z(kT) to K samples of its Fourier
transform Z(f), evaluated at equispaced frequency points in the Nyquist
frequency range F as Z[m]=Z(m/KT). The effect of sampling in the time
domain is to render Z(f) periodic outside the Nyquist range. Conversely, due
to sampling in the frequency domain, z(t) is also treated as periodic, with a
period KT. Thus both z[k] and Z[m] are periodic K-point sequences. Full
implications of time and frequency sampling in the DFT pair, and its
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equivalence to the continuous Fourier transform, has been discussed by
Brigham(1988). The sampled signal z[k] has a finite power, but infinite
energy. It can be shown that the following form of Parseval's relation holds
for z[k] and Z[m)],

K-1 K-1
Y lzk]? =% Y 1Z{m]? [3.3]
k=0 m=(0

The use of DFT in estimating the PSD, S,(f), by time-averaged periodograms
is examined in the next section.

Spectral analysis of derived parameters, e.g. the time series of a velocity
component v[k], is also of interest here. We note that v(k] are samples of a
real random process, and the index k denotes either the time or some spatial
coordinate with a basic sampling interval. The power spectrum S.(f) often
shows a power-law decay of the form af-# with a spectral index p. Here f may
be a temporal or a spatial frequency. The power-law shape must be limited at
the low-frequency end by some frequency fi, else the power in v(t) may
become infinite for some B. Unless the frequency fp is fully resolved, its
effect is manifest in v[k] as a non-stationary trend, similar to the ground-
clutter component c[k] in the radar signal z[k]. Implications of such trends in
spectral analysis are discussed in Section 6.

4. Time Averaged Periodogram Analysis

The sample spectrum or periodogram P,(f) of a complex signal z(t) has
been briefly discussed in section 2. Suppose the signal z(t) is first truncated
over an interval of duration D, and Zp(f)=3{zp(t)} is the Fourier transform
of the truncated signal zp(t). Then the periodogram P,(f) is defined as

=1 2 4,
PAD) D IZp(D)l [4.1]

In the uniformly-sampled case, zp(t) is available at K sample points spaced an
interval T apart over a total duration D=KT. For simplicity denote these
sample values by the sequence {z[k], k=0,1....(K-1)}. The DFT F{z[k]} of
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this sequence is another complex sequence {Z[m], m=0,1....(K-1)}. The K
points in Z{m] have a frequency spacing (KT)! or (D)-! over the entire
Nyquist frequency interval £1/(2T). The rightmost point Z[K] is excluded as
it equals Z[0] by periodicity. The periodogram in the sampled case is defined
in analogy with eqn. [4.1] as

P,[m] =-I%| Z[m] 12 [4.2]

The sum of P,[m] over all m, after scaling with the frequency spacing (KT)-,
gives the signal power P,. The distinction between the symbols used for the
periodogram P,[m] and the signal power P, should be noted.

In the limiting case we expect that the statistical average of the periodogram
will approach the PSD. This actually gives a physically reasonable alternative
definition for the PSD,

SN =E { limp_,., % 1Zo(H1?} [4.3]

The above asymptotic equality will not hold for periodogram estimated from
samples of a single short realization. Hence we briefly state the statistical and
sampling properties of the periodogram defined in equation [4.2] as a PSD
estimator. Further details may be found in Blackman and Tukey(1958),
Cooley et al. (1977), Koopmans (1974), Marple (1987), and Oppenheim and
Schafer(1975).

The periodogram can be computed at any continuous frequency f. The signal
z(t), however, has been truncated beyond the interval (0,D) or, in effect, a
rectangular window has been applied to it. Hence Zp(f) is obtained by the
convolution of Z(f) with the window transform D sinc(fD). Then IZp(f)I2 is
similarly obtained by convolving 1Z(f)I2 with D2sinc2(fD). The convolving
functions are modified slightly for K equispaced samples of z(t); the sinc
function is now replaced with the Dirichlet kernel sin(rfTK)/sin(rfT). Those

frequency component in IZ(f)i2 that fall exactly at a sampled frequency
point, when convolved with sin2(nfTK)/sin2(rfT), produce a null response at
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all other sampled frequencies. Hence the periodogram values at the sampled
frequencies tend to be uncorrelated, provided that the signal z(t) does not
have significant intermediate frequency components that fall in-between two
adjacent sampled frequencies. This fact has an important bearing in PSD
estimation for signals with a strong clutter component, or with a power-law
PSD. We also see later that this gives a singularly irregular appearance to the
periodogram.

To simplify our discussion of the statistical properties of the periodogram,
we assume that z(t) = zx(t) +L zy(t) is a zero-mean, complex Gaussian noise
with variance o2 and a white or flat PSD. The signal power P then equals the
variance o2, and is divided evenly between the real and imaginary parts zx(t)
and zy(t) of z(t). With samples at time spacing T, the PSD S,[m] should equal
o2T. Since the DFT Z[m] is a linear combination of sample values z[k], it
follows that Z[m] is also zero mean and Gaussian. From the definition of
DFT given in eqn [3.1] and using uncorrelatedness of adjacent samples of
white Gaussian noise, it can be verified that var{Z[m]} = Ko2 and it is evenly
divided between the real and imaginary parts Zx[m] and Zy[m] of Z[m]. We
are interested in the statistics of 1Z[m]I2 = {Zx[m]}2 + {Zy[m]}2. We note that
a chi-square random variable yx,2 with n degrees of freedom (d.o.f.) is
obtained by quadratically adding n statistically independent zero-mean
Gaussian random variables from a density N(0,s2). It has a mean ns? and
variance 2ns4. It follows then that IZ[m]i2 has simply a chi-square density
with two d.o.f.. An alternative and simpler way of arriving at the same result
is to note that IZ[m]l has a Rayleigh density, hence IZ[m]I2 has an exponential
density, which is the same as the chi-square density with two d.o.f.. Hence
E{IZ[m]I2}=Ko? and var{lZ[m]|2}=K2c%.These results for the mean and
variance of IZ[m]i2 are only slightly modified when the convolutional effect
of the Dirichlet kernel is properly considered, and are valid at least locally in
the limit of large K.

With the sampling interval T included, and by noting that the area under the
periodogram P,(f) must equal the signal variance P,=c2, we see that P,[m] is
an asymptotically unbiased estimate of PSD S.(f) at the sampled frequencies,
with an average value o2T and a variance o4T2. As its variance remains
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independent of the sample size, P,{m] is an inconsistent estimate of the PSD.
The standard deviation of the periodogram is 62T, same as its mean value.
We recall that the periodogram values at adjacent sampled frequency points
are nearly uncorrelated. However, as the sample size K increases, these
points only come closer in frequency without any reduction in their standard
deviation. Hence the periodogram usually shows large fluctuations, making it
appear more and more jagged as the number K of sample points increases.
Examples of this behavior may be found e.g. in Oppenheim and Schafer
(1975) and Marple (1987). These results are approximately valid for non-
Gaussian noise, as for even modest K the central limit theorem warrants
Gaussian statistics for Z[m]. As our analysis is localized in frequency, these
results also nearly correct for signals with colored PSD. Then the

periodogram P,[m] has its mean value and its standard deviation approach the
local PSD §,[m] for large K.

For reasons discussed above the periodogram is perhaps the most maligned
PSD estimator. Yet, the ease and efficiency with which it can be implemented
through FFT algorithms also make it the most frequently used technique for
spectral analysis. The FFT algorithms can work in place without additional
storage, require only ~K log, K complex multiply-adds instead of ~K?2 for
direct DFT evaluation, and are modular so that repetitive and computation
intensive tasks such as bit reversal and sine-cosine computations can be
detached from the main program (see e.g. Cooley et al., 1977). The
periodogram P,[m] becomes a usable PSD estimate only after time averaging
over many independent sequences of z[m] of length K. We show below that
its standard deviation is substantially reduced through averaging.

When M independent periodograms P,lal[m] for q=1,2.. are averaged, then
each point in the averaged periodogram Q,[m] is obtained by quadratically
adding 2M zero-mean Gaussian random variables with density N(0,0.5Ka?).
The sum is normalized by division with KM, and then multiplying it with T,
to conserve the area under Q,[m] as the signal variance o2. Hence the mean of
the averaged periodogram Q,[m] becomes o2T and its variance, c4T2/M. The
standard deviation of the time averaged periodogram is then just o2T/NM.
These results are approximate, but the approximations improve for larger K.
For an arbitrary PSD S,[m], it follows that the averaged periodogram Q,[m]
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has a mean ~S,[m] and a standard deviation ~Sz[m]NM. The variance of
Q,[m] tends to vanish as the number M of periodograms averaged together
increases. Hence the time-averaged periodogram is a consistent estimator of
the PSD.

We close our discussion with a relevant example. In a typical UHF radar
experiment with a 1 ms pulse repetition interval and coherent integration
over 10 pulses, 64 complex samples may be gathered in 640 ms. About 64 sec
of observations suffice for averaging over 100 periodograms. The time-
averaged periodogram has a standard deviation that is 1/N100 or 10% of the
local PSD value. A Doppler shifted peak which occupies a sixth of the
available frequency window, and is 50% above the background noise level,
can be readily detected in the averaged periodogram. The total signal power
is only about 0.04 of the total noise power for a hypothetical triangular peak.
This corresponds to a detectable signal to noise ratio (SNR) of -14 dB with
one minute of observations. This detectability criterion may often be difficult
to attain in the presence of other dominant components. But the example
does illustrate the basic considerations.

5. Estimation of the Autocorrelation Function

An alternative approach to estimating the PSD is through the ACF, using the
Wiener-Khintchine relations stated in Section 2. These are readily modified
for the discrete case using the DFT. The ACF cannot be usually recovered
from the time-averaged periodogram estimates of PSD if the signal z(t) has a
nonstationary component, and if it does not satisfy certain ergodic conditions
that constrain the ACF to a finite support [Papoulis, 1977 and 1983; Marple,
1987] . These conditions are further examined in Section 6 for the MST radar
signals. Here we outline a direct and an indirect method of estimating the
ACF from data. The use of these estimates in PSD estimation is discussed in
Section 7.

As before, suppose z(t) is a realization of a complex, ergodic, wide-sense
stationary signal. Its samples z[k] are available at times kT for k=1,2..K.
Under the ergodic assumption, the ACF R;(t) can be estimated as a time
average. Its estimates R,[n] are obtained at discrete time lags nT, for indices
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Inl < N < K. The estimate R,[n] is evaluated as averaged lagged-products of
the form z[i] z*[i+n], provided that the indices [i] and [i+n] do not exceed the
bounds on k. We consider two different estimates R[!}{n] and Ri2l[n] that
differ only in the normalization :

K-n
RMn] =§1_ Y z[i] Z’[i+n] , n=0,1,.N <K [5.1]
g
K-n
RPmn] =f(_ Y z[i] 2"[i+n] , n=0,1,.N <K [5.2]
=1

The estimates for negative n may be obtained either by inter-changing the
order of products in the summations, or by using the Hermitian symmetry
(see eqn. 2.2) that R,[n] =R,*[n].

Only [K-n] lagged products can be formed at a lag n. The estimate R[!][n]
normalizes the lagged-product sums by the their actual count [K-n]. The
second estimate R[Z)[n] normalizes these sums by the number K of data points.
We may surmise that R{1][n] should be an unbiased estimate of R,[n]. Though
R[2[n] is biased, it becomes asymptotically unbiased as K becomes infinite.
The variance of the unbiased estimate R!1)[n] increases with index n as there
are fewer products averaged. For both the estimates, the variance decreases
with increasing number K of data points, and eventually vanishes. Hence both
the estimates are consistent. To ensure that a sufficient number of products
has been averaged at each lag, we require N/K<<1, with the ratio K/N of ~10
or more usually desirable [Blackman and Tukey, 1958]. The two estimates
have nearly identical properties under these conditions. The biased estimate
RE][n] puts a triangular weight 1-Inl//K on the estimated values. This warrants
for R2)[n] the very desirable ACF property that IR[2][n]I<R(2][0]. The
unbiased estimate R{1[n] does not always satisfy the condition IR(I[n]I<R[1[0].
This condition may be readily violated for small K as the variance of R[!I[n]
increases with n.

For a given maximum lag index N, the lagged product-sum scheme can be
automated using two buffers of size N. New data is sequentially stored in a
data buffer, at an address which wraps around the buffer. For each new data
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point, all possible N lagged product sums are updated in the second buffer.
Normalization can be done to obtain the ACF estimate, once the data buffer
has been filled several times around. This scheme is readily adapted for real-
time multi-channel signal processing. It was first used by R. M. Harper in
1974 for real-time data acquisition with the Jicamarca radar. The scheme has
also been found quite effective for analysis of irregularly spaced data. Since
an N-point history of the time-series is always available in the data buffer, the
scheme is readily adapted for editing bad data points or outliers using e.g.
mean, variance, median, and order statistics of the data.

An alternative and faster method of estimating the ACF is through the use of
DFTs [see e.g. Cooley et al. 1977; Oppenheim and Schafer, 1975, Press et al.
1986]. We recall that the DFT of a K-point sequence z[k] is another K-point
sequence Z[m], and convolution in time domain is equivalent to a product in
the frequency domain. We also notice the similarity of ACF R[n] with the
discrete self-convolution Re{n] of z[n]

R[n] =<z[i] z*[i+n] >
Re[n] = z[n] ® z[n] =< z[i] z[n-i] >.

These operations yield (2K+1)-point sequences with zero end values. The
only difference between R[n] and Re[n] is that in convolution one of the
terms is folded in the time index i, and in ACF one of the terms is conjugated.
Hence ACF may be obtained as R[n] = z[n] ® z*[-n] using the convolution. In
the frequency domain, the DFT of R[n] is merely the product of Z[m] with
Z*[m]. The only caution that needs be exercized is that R[n], hence its DFT
must be at least 2K-points long. The method then is to augment or extend the
K-point sequence z[n] with K zeros. The 2K-poirit DFT's of the extended
2K-point sequences z.[n] and z.*[-n] are then multiplied point by point.
Finally, the 2K-point inverse DFT gives the 2K-point periodic sequence R[n].
The estimate thus obtained is weighted by a triangle as for R{![n]. The
method can be readily extended to the cross-correlation function (CCF)
Ryy[n] of two complex K-point sequences x[k] and y[k]. We merely note the
following relations
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Ryey[n] = x[n] @ y[n] =<x[i] y[n-i] >.
Ryln] =<x[i] y*[i+n] > = x[n]® y*[-n] =F1 [ X[m] Y*[m] ]

which suggest that the K-point sequences x[n], y[n] must first be augmented
with K zeros to get the 2K-point sequences x.[n] and y.[n], one of which is
conjugated and inverted in time to get y.*[-n], as was also tacitly done for the
ACF. The CCF is obtained as the inverse DFT of the point by point product
X[m] Y*[m] of the DFTs of these sequences. Averaging over several K-point
data sequences is desirable to reduce the variance of ACF and CCF estimates.

This method has several advantages over the direct ACF estimation using
lagged-product sums. The DFT (or FFT) computations can be carried out in-
situ. When 2K is of the form 2X, the number of complex multiplies and adds
in the FFT can be made as small as ~2Kx. This computational advantage
becomes quite significant even for short data sequences. The PSD estimate,
moreover, is available as an intermediate step and it is related to the ACF
estimate RI[2I{n] by the DFT. However, augmenting the data sequence with
zeros also doubles the storage requirements. It is perhaps for this reason that
this method has not been used in real-time MST radar signal processing. The
declining cost of computer memory certainly favors its use.

6. Nonstationarity and Spectral Distortion

In the foregoing discussion we have assumed that the complex signal z(t) is a
wide-sense stationary and ergodic random process. Usually several sets of K
equispaced samples z[k] at sample spacing T are available from a single
realization z(t,{) . The assumption of wide-sense stationarity implies that the
low-order moments viz. the mean p, and the variance o,2 of the process are
constant, and its ACF R,(t) depends only on the time lag t, irrespective of the
time origin. The ergodic hypothesis is invoked to circumvent statistical
averaging, by estimating these quantities as time averages over many
statistically independent sub-sets from a single realization.

A constant mean value y, contributes a platform of fixed height pzp,* to the
ACEF, and a single spike of height (TK)p,u,* exactly at the zero frequency in
the K-point PSD estimate. If the mean y, is indeed a constant, then it can be
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effectively removed from z[k], rendering it a zero-mean process in further
analysis. The assumption of stationarity of mean is merely a convenient
model for the signal time series z[m]. It is readily violated in situations
described below making p,(t) a slowly varying function of time with
discernible trends over the observation interval.

The ground clutter component c(t) in radar experiments arises due to
multiple paths to terrain seen through the antenna sidelobes. Its fading time
varies from fraction of a second to minutes due to atmospheric refraction
along the paths. When the same path is not traced back due to multiple
reflections, c(t) also has a very small Doppler shift. Fading time and Doppler
shift of c(t) critically depend on the radar frequency, radar location and on
severe weather conditions. Nonstationarity of c(t) is most serious for the
~450 MHz UHF radars. The same refractive multipath effects are nearly an
order less severe and nearly insignificant for the ~50 MHz VHF radars.
Coherent reflections at near vertical incidence from planar or slightly curved
turbulent layers also produce a slowly fading component. Non-stationarity is
also evident in the velocity data v(t), especially when these are indicative of a
power-law PSD, as slow trends at time scale of several hours to several days.

Removal of a nonstationary trend u,[k] from a single K-point sequence z[k] is
difficult unless K is very large or many contiguous K-point sequences are
available. Subtracting the mean value <z> from the points z[k] in a sequence
does not remove the trend. Gottman(1985) describes simple methods for
identifying and removing trends. These methods use averaging and
differencing at several time scales to estimate parameters of an ad-hoc linear
or quadratic trend model. Alternatively, the parameters of a low-order
polynomial that models trend can be found by computation-intensive least-
square methods [see e.g. Hamming, 1973, Press et al., 1986].

Nonstationary trends produce a severe distortion of time-averaged
periodogram estimates obtained by DFT methods as convincingly discussed
by Sato and Woodman (1982). Due to this distortion, ACF cannot generally
be recovered from time-averaged periodogram estimates Q;[m] of the PSD.
Suppose the N-point periodogram P,[m] is formed from an N-point sequence
z[k] using its N-point DFT Z[m]. From the same sequence a (2N-1)-point
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ACF estimate R,[n], for n ranging over *(N-1), can be formed as
<z[i]z*[i+n]>. A zero value can be added at either end. Now both P,[m] and its
inverse DFT P, '[n] are periodic N-point sequences. We expect the periodic
N-point sequence P,'[n] and the aperiodic 2N-point sequence R;[n] to be
related. Thus P,-'[n] is derived from R,[n] by wrapping it around a circle
with N points indexed from 0 to (N-1). If R,[n] is constant at all lags, or if it is
zero for Inl > N/2, then P.'[n] unambiguously contains all the information
about R,[n]. However, if the support of R,[n] exceeds +N/2, then P, '[n] is
severely distorted by wrap-around and its DFT, the periodogram P,[m], is
no longer a reasonable PSD estimate. The problem can be alleviated with the
use of a 2N-point DFT with N-point data (extended by zero-padding) to
estimate both the PSD and triangular-weighted ACF estimate R[2)[n] as
outlined in the previous section.

An alternative way to explain the periodogram distortion is to realize that the
true PSD of the trends is a narrow spectral spike near, but not exactly at, the
zero frequency. The use of a uniformly weighted N-point sequence z[n] in
periodogram estimation smooths this spike by convolution with a squared
Dirichlet Kernel which can be approximated with sincZ(fT) for the
continuous case. The contribution of the spike thus leaks or spills over all
frequencies, and is evident at the sample points of the periodogram as an ~f-2
platform. Due to sampling in time at spacing T, tails of the ~f-2 platform are
also aliased into the Nyquist window (-0.5/T,+0.5/T). We discuss some ways
of containing this leakage in the next section.

7. Windowing and Coherent Integration

The PSD S,[m] of an N-point sequence z[n] sampled at time steps T can be
estimated either directly from the N-point DFT Z[m] via the periodogram
P.[m], or as the DFT of an ACF estimate R,[n]. Use of uniform weights or the
default rectangular time window is equivalent to a circular convolution of
Z{m] or R,[n] with the Dirichlet kernel sin(rNfT)/sin(afT). A sinusoid of
frequency f" is seen to leak at other frequencies f in the periodogram P;[m] as

sin2(zN(f '-f)T}/sin2{=(f -)T}.



206

This leakage eventually decays only as ~(f -f)-2. In PSD estimates obtained as
DFT of the ACF, the Dirichlet kernel produces undesirable negative ripples
whose magnitude decreases as ~I(f "-f)l-1. These effects are similar to the
familiar Gibbs phenomena in the Fourier reconstruction of signals near
discontinuities. The PSD estimates can be improved by shaping the data z[n]
or ACF R,[n] with a suitable window. Since the sampling and aliasing effects
in PSD estimation have already been considered in detail, window properties
are discussed below in terms of the continuous variables t, 1, and f. The
subscript z is also dropped for clarity.

In their classical monograph, Blackman and Tukey(1958) advocated the use
of shaping the ACF R(t) by multiplication with a window or weighting
function w(r) that depends on the lag t. The windowed PSD estimate Sw(f) is
obtained by convolving the true PSD S(f) with the window transform W(f) =
3{w(t)}. Sw(f) has better statistical properties due to smoothing in frequency
by W(f). To conserve the signal power R(0), lag windows w(t) used with the
ACF are normalized to have w(0)=1. Other desirable attributes of w(t) are a
smooth decaying shape as a function of time lag t, an even symmetry about
7=0, and negligible negative sidelobes in the transform W(f). Good ACF
windows are further selected to be well-behaved in frequency by requiring
that the transform magnitude IW(f)! has a small width, and a low sidelobe
level that decays sufficiently steeply with f.

A data window d(t) can be directly applied as a weighting function to the
signal z(t) before periodogram analysis. The windowed periodogram
estimate Pp(f) is now obtained by convolving S(f) with the squared window-
transform ID(f)I2. Data windows share nearly all the properties of ACF
windows, now stated in terms of d(t) and ID(f)I2. The only major differences
are that d(0) need not be 1, the PSD estimates with data windowing are
always non-negative, and the signal power is modified because z(t) is scaled
by d(t). Due to peaked shape of a data window d(t), the values of z(t) near the
end points are not fully utilized. For this reason, as much as half of one set of
K points of z[m] can be used with the next set. This method of data
windowing with partially overlapping data segments has been described by
Welch (1967), who also discusses the statistical properties of the windowed
time-averaged periodogram.
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A very complete description of many windows, their transform properties,
and criteria for their selection has been compiled by Harris (1978).
Corrections to some of these are given by Nuttal(1981) who also discusses
sidelobe properties of some preferred windows. Rabiner et al. (1979) give
code for generating a few frequently used windows, including von Hann,
Hamming, Kaiser and Dolph-Chebyshev. The Dolph-Chebyshev window
attains a uniform sidelobe level and is described through its transform W(f).
The Kaiser window is a time-domain approximation to this window in terms
of the modified Bessel function Iy(x) of zeroth order. These windows are
nearly ideal for data-processing applications.

Some of the simpler windows are given below as lag windows w(t) for a
support (-0.5,40.5) of t. The rate at which their sidelobes in IW(H)l eventually
decay with f is also indicated.

Hamming w(t) = 0.54 + 0.46 cos(2xt) ~f1
von Hann (or Hanning) wi(t) = 0.50 + 0.50 cos(2nt) ~f3
Approximate Blackman w(t) = 0.42 + 0.50 cos(2nt) + 0.08 cos(4nt) ~f-3

The Hamming window minimizes the first sidelobe for a simple cosine shape
but its transform decays as ~f-1 due to the rectangular platform of height
0.08. The von Hann and the approximate Blackman windows have a better
sidelobe behavior. In the analysis of power-law PSD's, it may be desirable to
use windows with a steeper side-lobe decay. The Blackman window can be
modified by including higher-order cosine terms. The coefficients can be
selected in such a way that with m cosinusoids, the frequency response decays
at the rate Ifl-2m+1), Two examples of modified Blackman windows are given
below.

Modified Blackman : order 2, highest term cos(4nt)

Coefficients (0.375, 0.500, 0.125) ~f-5
Modified Blackman : order 4, highest term cos(8nt)
Coefficients(0.2734375, 0.4375000, 0.2187500, 0.0620000, 0.0078125) ~f9

The time-domain shape of these windows is shown in Fig. 7.1. The response
of the modified fourth-order Blackman window is shown in Fig. 7.2 with its
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FIGURE 7.1. Time windows of order 1, 2 and 4 with good sidelobe behavior
derived from the Blackman window are shown on a support (-0.5,0.5). The
order 1 window is just the von Hann or Hanning window with a frequency
response decaying at 60 dB/decade. The order 2 and 4 windows have a
response decaying at 100 and 180 dB/decade respectively. The effective
temporal width of these windows is one-half to one-fourth of their support.
For a frequency resolution comparable to the rectangular, data length should
then be two to four times longer.
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FIGURE 7.2. Frequency response of the fourth order window shown in Fig.
7.1 is shown to decay at 180 dB/decade. This and other windows with well-
constrained side-lobe behavior may be useful in spectral analysis of velocity
data with power-law spectra, and in suppressing the smearing of ground
clutter in radar signal spectra by using longer record lengths.



210

~f-9 decay rate. Simulations indicate that windows with well constrained
sidelobes are effective in reducing the influence of trends, but require at least
two to four times longer data segments. It may be surmised that the use of the
modified Blackman windows, or any other suitable window, in the time-
averaged periodogram method can contain the effect of fading ground clutter
to near zero-frequencies.

We now briefly mention the effect of coherent integration of radar signals in
PSD estimation with periodograms [Rastogi, 1983]. In coherent integration, I
successive samples of z[i] at a time spacing Ty are averaged with uniform
weights (1/T) and the averaged sequence y[i] is re-sampled with time spacing
T=IT;. The periodogram Py(f) of y[k]=y(kIT)=y(kT) is formed at K
frequencies in the Nyquist interval £0.5(KT) 1 using the DFT.

The consequence of time averaging is to multiply the original periodogram
P.(f) with a filter weighting function

HOPR=1 sin’(nfTi) [7.1]
2 sin%(xfTy)

This filter function has maxima at multiples of 1/T1. Between any two
maxima, there are (I-2) secondary peaks with nulls at multiples of 1/(ITy).
The principle lobe at zero frequency, with adjacent nulls at +1/(ITy), is twice
as wide as the Nyquist interval. Echoes with Doppler shifts near the end
points of the Nyquist interval are weighted down by nearly -4dB. A
correction for this effect must be applied in spectral-moment estimation. Any
components of P,(f) outside the Nyquist interval are weighted by the filter
function of equation [7.1], and would then appear aliased in Py(f). Hence the
coherent integration scheme is not very successful as an anti-aliasing filter.

Coherent integration does provides a computationally efficient means,
through simple accumulation, of implementing a 'poor’ matched filter for
radar signals. Its principal advantage is in reducing the overall data rate by a
factor I. The received signal z(t) is originally constrained by the receiver
bandwidth B. Sampling at interval Ti>>B-! aliases the entire received signal,
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including noise and interference, into the frequency interval £0.5(T1)-1. This
frequency interval is further reduced to the Nyquist interval +0.5(ITp)-!
through coherent integration. Obviously, the white-noise power outside the
Nyquist interval is rejected by weighting with the filter function and its
contribution is reduced by ~1/I. But within the Nyquist interval, the Doppler
shifted signal peaks and white noise component are both weighted by the
same filter function. Hence the detectability of spectral peaks, as discussed in
Sec. 4, is not improved in any tangible way through coherent integration and
there is definitely some impairment near the ends of the Nyquist interval.

8. ares Estimation and 1 Par.

The general problem of estimating parameters from observations or data can
only be examined within the frame work of a model. For any choice of
parameter values, the model produces an output, which generally differs
from observations. That choice of parameter values for which the model
output matches the observations, in some statistical sense e.g. by minimizing
the mean squared error (m.s.e.), can be said to agree with or derived from
the observations. The behavior of m.s.e. as a function of model parameters
may be visualized as an error surface. The best choice of parameters
corresponds to the true or global minimum on this surface. An exhaustive
search for the true minimum is impractical, so an acceptable local minimum
is sought only within a limited region of parameter values.

With an initial guess of parameter values, it is possible to seek a local
minimum in m.s.e. by using any of the several adaptive search strategies e.g.
by changing parameters in the direction in which the m.s.e. changes most
steeply. Excellent discussion of least mean square (1.m.s.) algorithms may be
found in Alexander(1986), Bard(1974), and Widrow and Stearns(1985).
Sato and Woodman(1982) have adapted Bard's formulation to spectral
parameter estimation in radar experiments at Arecibo. Their approach is
discussed below.

Suppose the observations X = x(k) represent an N-point vector. The model
input is a parameter vector P = p(j) with J points. The model output Y(P) =
y(k,P) is an N-point vector that depends on P. The error vector &(P) =
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e(k,P) varies with observation index k and depends on the choice of P. Since
e(k,P) may be either positive or negative, we seek to minimize its
accumulated square value (which divided by K is the m.s.e.)

N
e®) =Y [y&P)-xk) [8.1]

k=1

with respect to P. Equating the derivative of e(P) with respect to P gives J
conditions for each of its component p(j); j=1,2...J

N
dy(k,P) .
[ yk,P) - x(k) ] — =0 forj=1,2.J [8.2]
=)

Now J linear equations in as many unknowns can be solved by matrix
methods, but eqns [8.2] contain nonlinear terms of the form y dy/dp. The
equations may be linearized locally, about a parameter vector Py, through a
simple perturbation scheme. Then retaining linear terms in a Taylor series
about Py, gives P = Py + 8P. The model output y(k,P) can now be written as

yk,P) = y(k,Po) + Z );:’1;0) dp(i)=0 fork=1,2.N [8.3]
i=1

Substituting for y(k,P) in the condition [8.2] for minimum m.s.e., we obtain
the following J equations for each j=1,2,..J

dy(k,Po) dy(k,Po) . .
C o =0 wh =1.2.J 84
W+ Zi Z G ap PO =0 where (841

where the J constant terms C(j) are given by

C()= Z [ y&k.Po) - x(k)]aY(k(’j)") where j=1.2..J [8.5]

k=1

Eqn [8.4] can be more effectively written in the matrix form
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C+DdP=0 [8.6]

K
or c(j) = Z d(i,j) dp(i) where j=1,2..J
=1

Here C is a [Jx1] matrix defined in eqn [8.5], D is a [JxJ] matrix denoting the
product of derivatives of model output y in eqn [8.4], and 6P is a [Jx1] matrix
which denotes the desired change in P about P to locally minimize the
m.s.e. This equation can be inverted to yield,

8P=-D'C (8.7]

where D1 is the inverse of the [JxJ] matrix D evaluated through any of the
conventional numerical methods [see Press et al, 1986], since D does not have
any special properties.

This gives the perturbation 5P about Py to minimize the m.s.e. We are now at
a new value of Py and the process can be iterated to find a parameter vector
which either stabilizes the m.s.e. near a local bottom of the error surface, or
brings it below an acceptable threshold corresponding to a 'good’ estimate of
parameter vector. It should be emphasized that the above scheme does not
warrant a solution, though it often gives one for a reasonable initial guess Py,
and it is extremely computation intensive.

In the m.s.e. spectral parameter scheme implemented for the 430 MHz
Arecibo radar by Sato and Woodman (1982), the observation vector is the
DFT of the time averaged periodogram sequence. The model output vector is
then in the form of a distorted ACF sequence. In the model, MST radar
signals s(t) have one or two Doppler shifted components, each with three
ACF or PSD parameters for an assumed Gaussian shape in the PSD. Fading
ground clutter c(t) also has three similar parameters. But due to its narrow,
symmetric, and possibly unknown shape in the PSD, it is overspecified by the
coefficients of a third order polynomial in (t)2and a small Doppler shift.
With a noise platform included, the parameter vector has a length of 7(10)
for 1(2) Doppler peaks. The distortion of ACF and PSD has been outlined in
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Sec.6. The m.s.e. search is set about an initial guess of parameters obtained
either by an ad-hoc analysis of spectra, or using the ACF method discussed in
the next section. The m.s.e. implementation can routinely detect signals up to
50 dB below ground clutter, with a typical radial velocity uncertainty of 0.1-
0.2 m/s.

The ad-hoc analysis, instead of estimating the parameters of ground clutter,
merely removes it on the basis of its approximate symmetry in PSD estimates
about zero Doppler shift. Estimates of Doppler shift and other parameters
can be considerably improved by using time and range continuity of
measured velocity, statistical editing of spectra, and by a statistical analysis of
all the available data in several passes (Rastogi, 1984). These steps can be
used to set a narrow range of parameters P for the m.s.e. method. Adaptive
processing of spectral records using the available prior statistical
information, e.g. tracking Doppler peaks in range, searching for parameters
near a median Doppler-shift profile, and even using 'future’ data, may speed
up spectral-moment processing.

9. Spectral Moment Estimation via Correlation Function

Consider a complex wide sense stationary process z(t) with power P, PSD
S(f) and ACF R(r). For simplicity z is omitted as a suffix. In as much as
S(f)/P has all the properties of a probability density function, and S(f) =
3{R(1)}, the non-central moments of S(f) and parameters derived from these
are simply related to the successive derivatives of R(t) at t=0. This method
was originally used at Jicamarca for measuring the vertical motions in the F-
region using the incoherent-scatter radar technique and later applied to the
first middle-atmospheric radar experiments by Woodman and Guillén
(1974). A complete statistical analysis of this approach has been
independently given by Miller and Rochwarger (1972).

Details can be seen by considering R(t) = 3-1{R(1)} as in eqn. [2.4]. Using the
series expansion of exp(12xnft) and evaluating the successive derivatives of
R(x) at =0, we have
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R(0) = [~ S(f) df = s©@ [9.1]

R'(0) = (1 2%) (~ £ S(f) df = (1 210) s [9.2]
J -oo

R"(0) = (1 2n)® ~ 2 S(f) df =(1 27)% s@ [9.3]

We find that these derivatives are related to the successive spectral moments,
(0, s(1) and s(@. s is merely the signal power P. The other two spectral
parameters of interest are the center frequency or the Doppler shift f., and
the spread of of the PSD about it. As outlined in Sec. 2, these are related to the
central moments of the PSD. In terms of the noncentral moments s(1) and s@,

f.=sA/P [(94]

of =s@/P-f? [9.5]

which shows that uncertainties in a lower-order moment effects all higher-
order parameters.

An interesting case arises when the Doppler-shifted component in the PSD is
expressible through a simple shape such as the Gaussian. In terms of a
normalized Gaussian function N(f;, os2) with mean f. and variance o¢2, the
PSD becomes S(f) = PN(f;, o12). The ACF R(z) is generally complex with a
Hermitian symmetry. Its real part and magnitude are even, and the imaginary
part and phase are odd functions of the lag 1. For the Gaussian PSD,

R(z) = P exp(1 2 fo1) exp(- 521:)2 2 of) (9.6]

Comparing it with the polar form IR(t)l exp{t ¢(t)} of the ACF we see that
the phase ¢(t) increases linearly with lag t and the mean frequency f.. The
magnitude |IR(t)l has a Gaussian shape which can be approximated by a
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parabola for small t. From just two ACF values at zero lag and a small lag t,
we find P = R(0), and

Qryfe=o(t)/ [9.7]
(2n)to?=212{1-1R@)I/P} [9.8]

Fig. 9.1 shows how the spectral parameters are related for the ACF and PSD.
The effect of two Gaussian components in signals scattered from two
turbulent layers has been considered by Rastogi and Bowhill (1976).

The ACF approach provides a clever method for finding spectral parameters
if z(t) contains only an atmospheric component s(t) conforming to the simple
models just discussed. Otherwise spectral contributions to z(t) from noise
n(t), ground clutter c(t) and interference i(t), are all included, by definition,
in the ACF R(t). We now use an appropriate suffix to identify these
components. Corrections to remove their effect require ACF measurements
at several lags.

An additive white noise n(t), merely adds a spike of size P, to R,(0) at zero
lag. Then Ps=P,-P;. A correction for P, can be applied by using two or more
small non-zero lags of R(t) to estimate and remove the noise spike R,(0).
Ground clutter c(t) has an effect on the estimation of f. only through the
error it introduces in the power estimate. It contributes a nearly constant
platform R, to R,(t) at small lags due to its long fading time. Its contribution
may be effectively removed by d.c. subtraction from z(t) [See Fig. 9.2].

Statistical errors in parameter estimates obtained by the ACF method are
discussed in detail by Miller and Rochwarger (1972). The following analysis
of the uncertainty in Doppler estimation is, however, quite instructive.
Consider K samples of a complex, zero-mean Gaussian process z(t) = x(t) + j
y(t) with a sampling interval T. If the variance of z(t) is o2, identified also as
its power P, then the signal power Px estimated from K samples as
<z[k]z*[k]> has the statistics E[Px] = o2 and var[Px] = 04/K . Hence Py is
unbiased and its statistical error P/VK decreases with large K. Next we
estimate R(T)=R[1] at the first sampled lag index as <z[k]z'[k+1]> using
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FIGURE 9.1 : A hypothetical PSD and the corresponding ACF for zero
Doppler shift are shown in (a) and (b). The effect of a slight Doppler shift is
shown in (c) and (d). The area under the PSD and the ACF at zero lag are
equal to the signal power. The frequency width of the PSD and the relative
value of ACF magnitude at a small lag are related. When the PSD is Doppler
shifted by a small amount, the ACF becomes complex. Then the shift can be
estimated from the ACF phase at a small lag.
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FIGURE 9.2 : The effect of noise and clutter on the shape of the ACF and
their conritibution to the total power. The effect of noise and clutter can be
effectively removed from the total power using the ACF values measured at a
few key points. The ACF phase still remains linear at small lags, but the
Doppler shift is underestimated unless noise and clutter are removed from
the total signal power. The spectral width is overestimated from the ACF
value at a small lag, unless the noise spike at zero lag is removed.
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either of the two estimates RI[!I or R[2] given in eqns [5.1] and [5.2]. The
biased estimate R[2] is preferable for reasons discussed earlier, but the use of
R[] is more convenient. For small T, the K sample estimate ¢x of ¢ is

, K-1
ox(T) ~ tan og[1] = {[K-11P}' ¥ yk] x[k+1] - x[k] y[k+1]  [9.9]
k=1

This estimate is unbiased due to the use of R[1l, Its variance-involves a
moment of the form E[abcd] of four zero-mean Gaussian variables. Using a
result due to Isserlis and Hotelling (see e.g. Papoulis, 1983) the fourth
moment reduces to E[abcd] = E[ab] E{cd] + E[ac] E[bd] + E[ad] E[bc] . The
final result ,

var{og(T)} = { P?- R(T)?} /2K IR(T)P [9.10]

shows that at small lags the uncertainty in phase estimate is quite sensitive to
the relative magnitude of the ACF. The corresponding statistical error in the
radial velocity for a radar wavelength A in terms of the normalized
autocorrelation magnitude p or [R(T)/R(O) is

AL g VI 9.1
“"V3K 4T P 5-11]

For a 50 MHz radar, with T=0.25 sec, p=0.5, and K=100, we find that the
radial velocity can be measured with a standard deviation of 0.23 m/s. With
p=0.8 the figure improves to 0.1 m/s.

The ACF method provides a relatively fast means of estimating the spectral
moments for clean radar signals. Due to the ease of its implementation, it is
suited to real time estimation of spectral moments. Statistical averages of
these moments may also serve as an initial guess in the m.m.s.e. approach.

imum Entr

Methods discussed so far for estimating the PSD S(f) of a complex random
process z(t), from its uniformly-spaced samples z[k], make some unrealistic
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assumptions about extension of data or its ACF R(t). The DFT assumes a
periodic extension of data. In methods that use the ACF, windowing or
truncation assumes zero correlation beyond a convenient maximum lag. J. P.
Burg has proposed a method which circumvents these objections by seeking
an extension of the ACF at measured lags that maximizes the entropy (in an
Information-theoretic sense) of the observed process [see Childers, 1978].
Alternatively, one seeks to extend the process or its ACF from limited
observations, using suitable time-series models. These are examined first.

Spectral analysis may be regarded as a filter design problem in which we seek
coefficients h{k] of a feedback filter excited by white noise n[k], so that its
output becomes the observed process z[k]. The filter output is taken as a
linear combinations of the current input , q past inputs, and p past outputs.
Such parametric representation of an observed process is called an
autoregressive moving-average or ARMA model

p q
z[k] = -Y afilzlki] + Y blilnkj ARMA(p,q) model [10.1]
i=1 =0

Recalling that shifting a signal s to the left by an interval iT amounts to
multiplying its Fourier transform by exp(-12mifT), the PSD S(f) can be

represented in terms of two polynomials (with b[0]=1),

P q
Af) =1 +Z ali] exp(2nifT)] and B(f) =1 +Z b(j] exp(12mjfT)]

i=1 =1

and using the sampling interval T and noise variance a2, as

_ 2 B@OP

This representation has q zeros and p poles. Hence we expect the AR model to
be more suitable for representing a process with sharp peaks in the PSD, and
the MA process for a PSD with flat peaks. The ground clutter component c(t)
in radar experiments has a near-ideal representation as a pole. We surmise
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that the Doppler shifted components should require an MA part. An
ARMA(p.q) process can be overdefined in terms of an AR(p’) or an MAQQq)
process with p'>>p, q>>q. So a purely AR model, with q=0, may be
adequate for representing PSD of radar signals z(t).

For an AR(p) process z(t), the ACF R[k] is related for lags 0,1,..p through
the Yule-Walker normal equations.

R[O] R[-1] REp] [ 1 o2

R[1]  R[0] R[-p+1] || a[l] 0
R(1] R[-1] a2l |=| o | [103]

R0} R[-1] 0

Rp) Rp-1] RIJ RO L apl| Lol

These linear equations involve the (p+1) ACF values arranged as a Toeplitz
matrix. In this matrix form, the same elements appear along a diagonal. In
addition, the elements along cross diagonals have Hermitian symmetry. The
matrix can be inverted through Levinson's recursion in ~p2 operations.
Programs for solving these equations may be found in Press et al. (1986) and
Marple (1987). Note that the use of Wiener-Khintchine theorem to find the
PSD S(f) would require the ACF values R[m] at all lags. But for an AR(p)
process, the p coefficients suffice through eqn [10.2] for finding the PSD.
The structure of these equations may also be discussed in terms of forward
and backward linear-prediction filters, which given some values of data z[k]
extend these in the both directions. Further discussion may be found in
several excellent papers in Childers(1978), and Marple (1987).

The modified Yule-Walker equations for MA and ARMA models are
‘nonlinear and inherently difficult to solve for filter coefficients.

Entropy H of a random variable X with a probability density function fy is
defined as the expectation E{-In f,(x)}. It is a measure of the randomness in
the underlying chance experiment. Maximizing the entropy may yield a
solution in some statistical situations. An interesting example is that of a
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loaded die with an average face value of 3.5, instead of 4.5 for a fair one.
There are infinitely many solutions to the probabilities p; for the six faces.
Maximizing the entropy H under the constraint of the given average value
can be set up as a nice variational problem. Using the method of Lagrange
multipliers, this gives p;'s as a geometric series with a ratio r. The resulting
equations for p; and r are nonlinear, but can be solved recursively from an
initial guess. The solution is p; = 0.05435, r = 1.44926. This is not a unique
solution, since changing any two p;i's by a small amount £ is also a solution.

For (N+1) uniformly-spaced samples of a complex, zero-mean, Gaussian
random process, the entropy H is obtained using the joint probability density
function of of 2(N+1) real Gaussian variables. This density involves the
Toeplitz ACF matrix form given in eqn. [10.3], albeit of size (N+1) instead
of (p+1). We denote this matrix by Ry as it involves N distinct nonzero lags.
It is also convenient to use the base (2x)!/4 for the logarithm. Then the
entropy H becomes 0.5 log{det Rn} and it increases with N, eventually
becoming infinite. We deal with the entropy rate h defined as h = H/(N+1)
which becomes 0.5 log{(det Ry)V/N+D} . In the limiting case of infinite N, it
can be shown from that for the Toeplitz form of Ry, the entropy rate h
reduces to

0.5/T
h=-05log T+ O.STI log S() df [10.4]
-0.5/T

where the integral is over the Nyquist interval. Complicated details leading to
this result may be found e.g. in Smylie et al.(1973). We may expand S(f) in a
Fourier series using the ACF values R[k]. The entropy rate h may now be
maximized with respect to the unknown ACF values R[k] for [kI>N under the
constraints that the first (N+1) values of ACF, including the zero lag, are
known from the data. This difficult exercise, as in the loaded-die problem,
does not warrant a unique solution. The final result expressed in the form of
a PSD estimate is that
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S(f) = . Tg? 5 [10.5]
1+, a[k] exp(<1 2n fkT)
k=1

This result is exactly the same as the PSD of an AR(p) process given in eqn
[10.2] with the moving-average order q set to zero and the numerator
polynomial IB(f)I2 = 1. The p coefficients a[k] are the same as for the AR(p)
model obtained by solving the Yule-Walker equations [10.3]. Hence the
maximum entropy method (MEM) is equivalent to the AR(p) model for
equispaced samples of a complex Gaussian process.

If the process is not Gaussian, then the final result in eqn [10.5] for entropy
rate would not hold. MEM still will give a result, but it may not be a
representative estimate of the PSD for the process. We also remark that
though we have shown eqn [10.5] in the AR form, actual implementations of
MEM are rather different and take the form of designing a linear-prediction
filter. Computer programs for MEM may be found in Press et al. (1986) and
in Marple (1987).

A fundamental problem in implementing the above methods is that of finding
the order p of the process. Use of an incorrect order give larger statistical
errors. The order must be found empirically for each class of processes. In a
recent experimental and numerical study, Klostermeyer (1986) has
compared the performance of periodogram, MEM and maximum likelihood
method (MLM) for PSD estimation of ST signals observed with the 53.5
MHz SOUSY radar. It was found that for SNR of 0.3 to 10, MEM and MLM
give better estimates of Doppler shift. The optimum order of the MEM filter
is ~3+1 with a sampling time of 0.173 sec, and appears to decrease with the
SNR. Similar studies with other atmospheric radar signals, and of their
statistics, are needed for developing the use of MEM and AR PSD models.
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Abstract

The objective of any radar experiment is to determine as much about the entities
which scatter the radiation as possible. This review discusses many of the various pa-
rameters which can be deduced in a radar experiment, and also critically examines the
procedures used to deduce them. Methods for determining the mean wind velocity, the
RMS fluctuating velocities, turbulence parameters (e.g. C2,¢, Kpr), and the shapes of
the scatterers are considered. Complications with these determinations are discussed. It
is seen throughout that a detailed understanding about the shape and cause of of the
scatterers is important in order to make better determinations of these various quanti-
ties. Finally, some other parameters, which are less easily acquired, are considered. For
example, it is noted that momentum fluxes due to buoyancy waves and turbulence can
be determined, and on occasions radars can be used to determine stratospheric diffusion
coefficients and even temperature profiles in the atmosphere.

1 Introduction

The ultimate aim of any radar experiment is of course to determine information about the
structures which backscatter the radio waves, and the environment in which they exist. For
example, it might be of interest to study the shape of the scatterers, or to differentiate different
types of scatterers or reflectors. It might be of interest to determine the radar cross-section
of the scatterers, or their spatial distribution over the sky. Other desired information might
include the velocity of the scatterers, and information about the spatial and temporal variation
of these velocities. If the radio scatter is due to the turbulence, it might be desirable to measure
the intensity of the turbulence.

The purpose of this article is to discuss ways in which parameters like these can be de-
termined, and how they can be interpreted. Some of the approximations used in determining
these parameters are also critically examined. Some consideration will be given to experimen-
tal design, and then interpretation of the results. Studies of the parameters evaluated over
long periods of time can give a considerable amount of additional information, over and above
that which can be determined from a few discrete observations, but discussion of this aspect
will not be considered in great detail, due to lack of space. )

The paper is organized in such a way that the simplest parameters are discussed first, and
parameters which are more difficult to extract are considered later.

2 Wind vector determination

One of the the simplest and yet most important parameters to determine is the wind speed,
so we shall begin with a brief discussion of its determination, examining in detail some of the

10n leave from Department of Physics and Mathematical Physics,
University of Adelaide, S.A., 5001 Australia
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assumptions made in this evaluation.

There are at least two different approaches to the determination of the mean wind. One uti-
lizes large antenna arrays with correspondingly narrow radiation patterns, and with the beams
pointed in various directions to measure wind speeds; the Doppler shift of the backscattered
signal is utilized for this calculation, and such techniques are called "Doppler Beam Swing-
ing” (DBS) techniques. The second class of method, called spaced antenna methods, utilizes
systems of separated (spaced) arrays; wind speeds are determined by using phase and time
differences between signals received with the arrays. The sets of spaced antenna arrays usually
have smaller physical dimensions than the antenna arrays used in the DBS mode. In some
senses, the techniques which use time delays and the techniques which utilize phase delays can
even be regarded as distinct techniques, and they will be considered somewhat independently
in this paper; however they will both be considered as "spaced antenna” techniques. These
various different approaches will now be discussed.

2.1 Doppler measurements

(a) (b)

Fig. 1 Principle of Doppler method; off-vertical beam used to
record rate of change of phase of scatterers.

The principle of Doppler determination of the wind speed is to utilize the change in the
phase of scattered radio waves as a function of time. It is probably the most common procedure
currently in use, so some time will be devoted to discussion of this technique.

2.1.1 Basic principles of the Doppler method

As the scatterers move, the path length between the transmitter, scatterer and receiver
changes, and this shows as a change in phase (fig. 1a). We can think of this as the rota-
tion of the vector in the argand plane (fig. 1b). For a monostatic radar, the mean rate of
change of phase is a measure of the mean radial component of the velocity of the scatterers
viz.

< >= —< iqﬁ >
Urad »= i di (1)
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Here, <> represents the average value, averaged over the radar volume and the sampling time,
Ureq i8 the radial component of the velocity, A is the radar wavelength, ¢ is the phase, and
d#/dt is the rate of change of phase. Each scatterer causes its appropriate vector to rotate
at a slightly different frequency, and we can represent this on a spectrum, where each line
corresponds to a different scatterer (fig. 2). Of course it should be borne in mind that in a
real spectrum, it may not be physical to think of each separate spectral line as due to such a
scatterer, but for our purposes this is adequate.

PHASOR_AMPLITUD

L

Frequency of Phasor rotation

Fig. 2

We shall assume for simplicity that the spectral density and frequency of each line is
invariant, so just the phase of the signal from each scatterer changes. If a single phasor at
time t can be described by gy = aoe™!, ( ap =| go |) then at time t + 6t it is given by
a}h = aoe’(t+5!) Given the two phasors, the phase difference can be found by calculating g5 .aj,
where (*) means complex conjugate. This calculation gives aZe™® = a2e'2¢. We actually seek
< A¢ > averaged over all the scatterers in the radar volume, but if the phasors all have
equal amplitude, or even more generally the spectrum has a symmetric shape, then we can
say that < A¢ >= arg{< a%¢**? >}, even for large values of A¢. In other words, summing
the phasors and finding the rotation of the resultant gives the same result as averaging the
angles of rotation of each phasor. This is also true even in the presence of a moderate amount
of noise. Hence we will consider averages of a2e*®. This mean value calculated for n phasors
a;e'® (j=1ton)is

< a2t 5= 13" a0yt + 61) )

=1

3

To improve the accuracy, imagine averaging over a reasonable length of time, say at N time
steps t1,t2,...,8k,...,tN , where t, = két. Then

3|

& (te)a;(tk + 6t)
=1

(3)

J

. 1 N
< age'M’ >= N E
k=1

We can write this as

2 ia 1 N 1.3 N
< ale'd? >= I > - a7 (t) D as(te + 6t)| (4)
k=1 = ¥

since the cross terms in the square brackets of (4) all involve terms like e~*te*, where
w; # wj, and such terms sum to zero when summed over a period substantially longer than
their beat period. In fact in the case that the time series is Fourier transformed by a discrete



231

Fourier transform, all frequencies are harmonically related and so these cross terms summed
over the data length are all exactly zero. But the term -7, g;(ti) is simply the value of the
(complex) time series which would be recorded by the radar at time t;, which we will denote
as f(tz), and so (4) can be written as

N
< aleidt 5= % S L) [(tee) (5)

which is simply the autocovariance function at the first lag, p(6t) say. Thus the mean rate
of change of phase can be found from

dag 1, [Im(p(6t))
TR T Tk { Re(p(80)) (6)

where Re means "the real part of” and Im means "the imaginary part of”. This estimator

of the rate of change of phase was introduced by WOODMAN and GUILLEN, (1974). Notice

that the value of the autocovariance p(r) at 7 = 6t can also be found from the power spectrum

P(f) as (Wiener-Kintchine theorem e.g BRACEWELL, 1978)
p(81) = 3 P(f;)errihe ™)
=1

where f; = (j — 1)/T, T being the data length of the time series {f(ts)}.
Then

_A e A tan=} Im{¥7%, P(f;)es5) (8)
Ured = AT S8t T mmet "\ Re{nr, Pf;)ery |
Since P(f) is real (by definition},
- Y IR o1 [ Z5=1 PUS;)sin(27 f,6)
Ured = S H T wma " { n_L P(f;) cos(2xif,81) ©)

In the limit that the term in the right hand brackets {}is is << 1 and the P(f;) values are
small for the larger | f; |, this approximates to

AEIL P o)
2 ¥ P(S)

This last expression is one commonly employed as an estimator of the radial component of
the velocity (eg GAGE and BALSLEY, 1978; ZRNIC, 1979 ). Nevertheless, notice it is only an
approximation of the more exact expressions (6) and (9), and breaks down when the argument
of the tan~!{} expression in (9) becomes comparable to 1. This can happen particularly when
the signal is noisy or when the spectral peak is close to the Nyquist frequency, and in these
cases the approximation (10) can give erroneous estimates. In the case of high noise levels,
the true radial velocity is underestimated. The more exact expressions (6) and (9) will work
well in these cases, however.

Some workers extract the radial velocity from the spectrum not by using expressions like
(6) - (10), but by fitting a particular spectral shape to the data. Usually a Gaussian function
of the type

Vrad =

S(fy =N+

(f_fd)z]‘ (1n

P
Varo eXp {_ 202
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is used, where f is frequency and P, fs and o are echo power, mean Doppler shift and root
mean square spectral width, respectively. N describes the noise contribution, and represents
a constant offset of the spectrum since noise appears with equal spectral density at all fre-
quencies. This method bypasses some of the problems involved in applying equation (10) (e.g.
WOODMAN, 1985); its application is fairly straight-forward and it will not be discussed in
any more detail here.

2.1.2 Practical problems with the DBS method

Having now determined the radial velocity, it is necessary to determine what it means in terms
of atmospheric dynamics. It is generally true that the measured velocity really is the radial
component of the mean velocity of the scatterers, but this is not always true, and cases can
occur in which the measured velocity is an effective phase velocity of a moving patch. Such
cases are rare, but should be born in mind. CROFT (1972) has given an excellent discussion
of the Doppler technique, and some of its potential pitfalls. i

6, vy
Y] -
E Lzl

& =<

Side-view view from above

(a) (b)

Fig. 3 DBS beam configuration (typical).

There are also many complicating features of a practical nature which arise in using the
Doppler method to determine a mean wind (e.g. ROETTGER, 1981). It is sometimes assumed
that the vertical wind component is zero, so that off vertical beams can be used to infer the
horizontal wind. The situation is described in fig. 3, and if the vertical velocity w is zero then
the component of the horizontal wind in the azimuthal direction of the radar v,,, can be found

as
VUrad

sinfr

Vhor =

(12)

By using orthogonal beams, one say pointing Northward and one Eastward, the total mean
horizontal wind can be determined. However, the scatter recorded by each beam is received
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from different regions of the sky (fig. 3b), and it is often desirable to know the wind vector
at a single point in the sky. Provided that the wind does not vary too much spatially it is
possible to assume that both components apply immediately above the radar, but sometimes
the divergence of the wind field can be substantial. If the divergence is small, then it is also
possible to correct for the vertical velocity, because one can determine the vertical speed w
over the radar by using a vertical beam, and then when using an off vertical beam

Vrad = Uhor SInfr + wcosfy (13)

80
Upga — weoshr

sinfr (14)

Nevertheless, the possibility of divergences in the wind field is a very real one, and must
always be borne in mind when using these expressions.

Even without the problems of spatial variation of the wind field, the above simple assump-
tions can be in error. For example, if the scatterers are not isotropic, but are on average ”
stretched out ” into horizontally aligned oval-type shapes, then they will have a nonisotropic
backscatter polar diagram. Radio waves incident vertically will be more efficiently backscat-
tered than those incident obliquely. Thus for an off vertical beam, strongest scatter will be
received from angles nearer to the zenith than from the mean direction of tilt of the beam

(e.g. ROETTGER 1981; HOCKING et al., 1986). We might parameterize the backscatter as

Vhor =

B(8) o & s (15)

and then 0, is a parameter typifying the nature of the scatterers. For example, 8, =
90°corresponds to almost isotropic scatter provided we are only interested in angles of § out to
20°r so, and 8, = 0°is for the case when reflection only occurs from overhead. (Some authors

2
use the form e—%? for B(8) .)

It can be shown that 8, relates to the ratio of the length to the depth of the scatterers
(HOCKING, 1987a), and this relationship will be discussed in a later section. For the present,
we will simply note (e.g see appendix A) that in such cases one should replace the angles ér
in equations (12) to (14) with the parameter 6.;; where

: . A
sinf 55 = stnfr [1 + 0—2] (16)
Here, it has been assumed that the radar two-way polar diagram has a Gaussian shape of
the form ezp{— six:/’ﬁLsin2 85} (when aligned vertically), so that the half-power half-width of
the beam is 0% = v/£n2.6y. Even beyond this, however, there are still potential problems with
Doppler determination of wind speeds. If there are a variety of shapes, for example, the simple
theory of appendix A is not valid. If stratified reflecting steps exist as well as isotropic and
anisotropic scatterers, then complications also arise.

The shapes of the scatterers can also affect determination of the vertical velocity. I, for
example, the atmospheric scatterers are not aligned exactly horizontally, but have a small tilt,
then the direction of preferred scatter will not be immediately overhead, but off to one side.
The result is that the small vertical velocities will be contaminated with a small component
of the horizontal wind. For example, if the effective tilt is only 1°, and the beam half-power
half-width is say greater than about 3°, a horizontal wind of 50 ms™?! results in a contribution
to the ™ vertical ” velocity of ~ 1 ms™! . This is why most analyses of ” vertical velocity



234

" are made only by using long term means; it is hoped that such tilts average out to zero
when averaged over long times, but even then some caution must be exercised. Indeed, a
better radar configuration for estimates of the vertical velocity is a bistatic radar, with the
transmitter and the receiver well separated (e.g WATERMAN, 1983).

Other problems also exist; for example it is possible that erroneous wind speeds and wind
shears will result if the scattering layers are much thinner in depth than the radar pulse-length
(e.g. HOCKING, 1983a; FUKAO et al., 1988a, 1988b; MAY et al., 1988)

Despite all these potential problems, the Doppler method still remains a good way to get
mean winds in the atmosphere, but any user must be aware of these limitations and bear them
in mind during any experimental study.

2.2 Spaced antenna methods:
FCA and Interferometer techniques

There are alternative approaches for determining atmospheric wind speeds, and these are the
class of spaced antenna methods (e.g. see reviews by HOCKING, 1983c; BRIGGS, 1984;
HOCKING et al., 1989). In this, one uses separate groups of antennas, spaced apart on
the ground, to determine the wind speed. There are two main approaches ; the first uses
cross-correlation techniques to determine the time it takes for the diffraction pattern of the
irregularities to cross between groups of antennas, and in its most sophisticated form is called
Full Correlation Analysis, or FCA (BRIGGS, 1984). The second approach, originally intro-
duced by PFISTER(1971) and later by FARLEY et al.,(1981), ROETTGER and IERKIC
(1985) and ADAMS et al.,(1985) involves using the groups of antennas to form an interfer-
ometer. Briefly, such interferometer methods using phase differences between signals received
at the groups of antennas to determine angles of arrival. Cross-spectral techniques are used
for such angle-of-arrival determinations. Doppler methods are then used to determine the
radial velocities associated with each separate scatterer. With such methods, it is possible to
calculate the positions of the main scatterers in the sky, hence enabling more accurate deter-
mination of horizontal and vertical winds. The major disadvantage of this technique is that
it requires that preferred regions of scatter, of narrow angular extent, do indeed exist, so that
a direction can be determined. If scatter is diffuse, from a wide range of angles, the method
breaks down; even though apparent directions of preferred scatter might still seem to result
from the analysis in this case, they are not meaningful (e.g. BRIGGS, 1980).

These two techniques have been discussed extensively in HOCKING et al. (1989), and
extensive discussions will not be entered into here. However, it is noted that they are viable
and effective alternatives to the DBS method, and their use is growing,.

2.3 Brief comments on the various techniques

There are advantages and disadvantages in all these methods. For example, correlation analysis
techniques often use small groups of antennas, with corresponding wide polar diagrams. As a
consequence, they often produce winds which are averaged over a large area of the sky. On
the other hand, there is the advantage that both components of the wind speed are measured

in the same volume, directly above the radar. Furthermore, even if the atmospheric scatterers
have non-isotropic backscatter polar diagrams, correct estimates of the wind speed still result.
The vertical wind speed is not measured, and Doppler methods must be used to determine
this.

If isotropic scatterers are the main type of scatter, the spaced antenna and Doppler methods
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are equivalent (BRIGGS, 1980). If there is a significant contribution from specular reflectors,
it can result in enhanced scatter from the vertical, an advantage for the spaced antenna
technique, since that method uses only vertically aligned beams. However, in the extreme
that these specular reflector regions form a continuous blanket across the sky, with buoyancy
waves causing undulations in this blanket, then the FCA and other simpler versions of the
spaced antenna method can break down and effectively measure the phase speeds of the gravity
waves. This is a problem for E region studies using MF and HF frequencies, but in the middle
atmosphere it is rarely a problem (e.g. HOCKING et al., 1989).

As discussed, the major disadvantage of interferometer techniques is that they require that
there are preferred regions of scatter in the sky, of narrow angular extent, so that a direction
can be determined. If scatter is diffuse, from a wide range of angles, the method breaks down
completely. On the other hand, if such discrete scatterers are present, interferometer methods
enable high resolution studies of the scatterers.

It is clear from the preceding discussions that while the principles of estimation of wind
speeds are simple, in practice there are many complicating features, and determination of
perhaps the simplest target parameters, - their speeds, - is quite complex for the atmospheric
case. To first order, all the methods are sound; but if one is interested in details about wind
fluctuations, it is clear that it is necessary to know other features of the target, such as their
”aspect sensitivity”, their shape, the spatial distribution of the scatterers, and perhaps even
the cause of the scatterers. In due course, we will address methods to determine such target
parameters.

3 Spectral width estimates

So far we have concentrated on determination of mean winds. In the Doppler method, this
relates largely to the mean frequency offset of the spectrum, whilst in the FCA method it
relates to the time delay of the peak of the cross-correlation function. But there is more
information in the signal. In the SA method, the width of the auto and cross-correlation
functions holds extra information about the targets; in the Doppler method, the width of the
spectrum contains the information. In some ways the second case is easy to visualize, so let
us concentrate on this case.

A variety of methods can be used to determine this spectral width. One can utilize either
the width of the autocorrelation function where it falls to one half of its value at zero lag, or
the second lag of the autocorrelation function, or the second moment of the spectrum (e.g. see
the discussion by WOODMAN, 1985). In all cases, one must be careful about the effects of
noise, since noise can cause systematic errors. For example, noise produces a narrow spike at
zero lag of the autocorrelation function, and this spike should be eliminated before proceeding
with analysis. A procedure commonly used to determine the spectral width is least-squares
fitting of a Gaussian-like function as in equation (11). In some cases, it is necessary to remove
excessively large spikes from the spectra, a procedure which is especially necessary when there
are "mirror-like” partial reflectors in the radar volume (e.g. HOCKING, 1983b). The details
of these procedures will not be considered here; we are more concerned with the interpretation
of the spectral width.

What then can cause the broadening of the spectrum? Perhaps the most obvious is random
motion of the scatterers. If each scatterer has a velocity superimposed upon the mean speed,
then each produces a line in the spectrum with a different frequency, as illustrated in the
following diagram.
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If the scatterers have, for example, a Maxwellian distribution, then the vertical component
of velocity (w) must have a Gaussian distribution, which is proportional to
ezp{—w?/(2whps)}- Since for a vertical beam the Doppler shift from any scatterer is f = 2.,
the spectrum will have a shape of the form exp{— f?/(2fhums)}, where fams = }.wrwms.

For some years in the early period of VHF middle atmosphere studies, it was assumed that
this was the major cause of spectral broadening. However, for most VHF radars, this is not
in fact the case. There are other causes of spectral broadening, which while understood by a
few (e.g. ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a,
b), were not generally appreciated in the Middle Atmosphere community. Fortunately, this
attitude has changed recently. These effects will now be discussed.

t Smallest scales ~ Xlz

Largest scales ~
Range Buoyancy scales
R

Tilled beam
m[y All
beams

la) Beom Broodening {b] Shear Broadening lc} Vertical Motions

Fig. 5 Contributors to the spectral broadening at any instant.

For a vertically pointing beam, probably the main cause of the non-zero spectral width is
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the so-called "beam broadening”, which is illustrated in fig. 5a.

Even if all the scatterers are moving horizontally at the same velocity, each scatterer will
produce a different Doppler shift. The nett result is a spectrum of finite width. This spectral
broadening has been modelled by several workers (e.g. HITSCHFIELD and DENNIS, 1956;
ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a, b) , and
for relatively narrow beams ( < about 5 half-power half-width), the spectral half-power half-
width f%b obeys the approximate relation (in units of Hz)

fip = 2(1.0) | Vi 1 6 (a7)

where 6, is the two-way half-power half-width of the polar diagram in radians, and ¥, is
the TOTAL horizontal wind vector. The same approximation is also fairly accurate even for
off-vertical beams, but it is important to note that the TOTAL wind speed should be used, and
NOT just the component parallel to the tilt direction of the beam. This formula is based on
the assumption that the scattering is statistically isotropic, an assumption which we will relax
shortly. When one compares the spectral half-widths due to the non-fluctuating components of
the wind-field to the experimental spectral half-widths measured with the vertical beam, one
frequently finds that the two are very similar. For example,figure 6 from HOCKING (1983)
shows an almost 1:1 relationship between the two parameters when spectra produced from 11s
data sets were used.

This point cannot be emphasized too strongly:- the spectral widths are often
dominated by so called beam broadening.

There are other effects which alter the spectral width, particularly if the beam is tilted
from the vertical. Horizontal fluctuating motions will alter the spectral width (e.g. see fig.
7), and so will changes of the mean wind with height, as occurs for example in a wind shear
(e.g. fig 5b). The former effect always broadens the spectrum, whilst the latter one can either
reduce or increase the spectral width depending on the sign of the wind shear. These points
are discussed in more detail by HOCKING (1983a), for example.

S0USY RADAR
17-18 OCT 198t

TROPOSPHERE
17 SEC DATA SETS

Experimentl fy,

o5
Dwory ks Theory ky

Fig. 6.

Scatter plots of experimental spectral half-power half-widths determined from 11 s data sets vs. the
spectral balf-widih expected purely duc to beam and wind-shear spectral broadening for the troposphere.
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Tllustration of spectral broadening by variation of
horizontal wind with time.

Of course the target parameter which is desired is the RMS fluctuating velocity of the
scatterers, but this often contributes only a small fraction to the total spectral width. To
determine the RMS fluctuating velocity, one should first use the measured mean wind speeds
as a function of height, and the known polar diagram {radiation pattern) of the radar, to
determine the spectral half-power half-width f%n ; contributed by the non-fluctuating effects.
Then the contribution from the fluctuating component fy;, can be found through the relation

f;luc! = f;czpz - f;nf (18)

This arises because the experimental spectrum is approximately a convolution between the
spectrum which would be produced if there were no fluctuating components, and the spectrum
due to the fluctuating components alone (at least for very narrow beams (< about 5°half-power
half-width); the more general case has been modelled by HOCKING, 1983a).

To properly consider all the contributions from the mean wind including wind shear, a
more accurate computer model needs to be used (eg HOCKING 1983a), but in many cases
equation (17) serves as a useful approximation to obtain f%n!.

Of course equation (17) is only a first-order estimate of the spectral half-width due to the
non-fluctuating component, and it also assumes that the scatterers scatter isotropically. If
the scatterers are anisotropic, as may be the case and as has been discussed previously, then
the true contribution from non-fluctuating components will be less than that calculated with
(17). That equation can still be used, but (see appendix A) 0% must be replaced by 9’;2L = R.6,

where
_1

6117*
R=1+25| (19)
3

0§ being the true half-power half-width of the radar beam, and 0_% is the half-power half-

width of the polar diagram of backscatter due to the scatterers (i.e. 8,4 = Vin2.6,, , being
defined by equation (15)). Notice that once again it is important to know the backscatter polar
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diagram due to the scatterers, and it is becoming more and more important as we proceed
through this text to know this parameter.

Having now determined the contribution due to non-fluctuating aspects of the wind field,
and removed it from the experimentally determined spectral half-width, it is now necessary
to decide what this residual contribution means, and how to interpret it. There are at least 3
possible contributions to this remaining contribution to the spectral width, namely the effects
of fluctuations in the velocity due to turbulence, fluctuations due to buoyancy waves, and
the decorrelation time associated with the decay of turbulent eddies. It is not always easy to
separate out these terms.

In the case of a vertical beam, the most important effects are the vertical fluctuating
component of the turbulent velocity, and both the vertical and horizontal components of the
buoyancy-wave field. The horizontal component of the buoyancy field is important because
although the beam is vertical, if the wave amplitudes are substantial the radial components of
velocity fluctuations occurring near the edge of the beam may still contribute to the spectral
broadening. This is especially true when wide beams are used, and is an argument for the use
of narrow beams when studies of turbulence are made.

When off-vertical beams are used, both the vertical and horizontal fluctuating components
of the turbulent velocity field are important. However, the horizontal components of the
buoyancy-wave field become even more important in contributing to the spectral broadening;
variations of velocity due to buoyancy waves occur both as a function of position within the
radar beam and also as a function of time during the period of data collection. This latter
effect can be quite dominant, and swamp the contribution due to the turbulence. For example,
fig. 8, taken from HOCKING (1983b) illustrates this point, and shows the dramatic increase
in spectral width recorded when an off-vertical beam is used as compared to a vertical beam.
In this case the radar was an MF radar observing the mesosphere, and the beam-width was
wider than for many VHF radars (about 4.5 °half-width); data were collected for 12 mins in
order to emphasize the effect. In normal VHF experiments the effect may not be so dramatic,
but nevertheless occurs.

JUNE & 1981 , 1140-1152 LT
VILTED BEAM (11.6°w) , 8Zkm

— Experimental
- = =Gaussian il
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Fig. 8: The solid curve shows a spectrum recorded with the Buckland Park 1.98 MHz radar, using
a 10 min data length and a beam tilted 11.6°0ff-vertical. The dash-dot curve shows the approximate
shape of the spectrum recorded with a vertically pointing beam at the same time.
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Thus measurements of turbulent energy dissipation rates are best made using a vertical
beam. The contribution due to turbulence can be envisaged as follows, and is illustrated in
fig. 9. Backscatter occurs predominantly from scatterers with scales of the order of the radar
half-wavelength, but these scatterers are carried around by the larger scales. The mean square
fluctuating velocity measured by the radar is then the integrated effect from scales of the order
of the radar half-wavelength out to scales comparable with the radar volume (e.g SATO and
WOODMAN, 1982; HOCKING, 1983a).

Etfec? of scole of scatterer on v’
Resolution

{a)
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7
<///}

T Tllustration of the effect of scale of resolution on
measured ¢'2 values. (a) The motion of a single scatterer. In any
time interval 1, only & limited amount of velocity fluctuation
occurs, butin the larger time interval T, the full possible range
of velocity fluctuations occur, as larger scales become more
effective. (b) and (c) show that many scatterers contribute to
thefinal signal received, each with a different velocity, so a full

Fig 9 range of Doppler velocities is experienced in a very short time.

For radars with pulse lengths and beam-widths comparable to the buoyancy scale of tur-
bulence, scales even beyond the buoyancy scale may contribute to the mean square fluctuat-
ing velocity, although fortunately with reduced contributions. Let us say that the measured
mean-square fluctuating velocity is due to a fraction F from scales within the inertial range of
turbulence, and the remaining contribution comes from scales within the buoyancy range. The
exact value of F depends on the radar configuration, sampling time, etc., and for the present
we will not concern ourselves with its evaluation.

Then we may write (following HOCKING 1983a, 1986) that the velocity variance observed

with the radar is _
o = / 011 (k:)dk, (20)

where ©4,(k;) is the longitudinal one-dimensional spectrum function (e.g.BATCHELOR,
1953, p.50) for the direction radial from the radar. The integration is performed over all scales
which can affect the radar measurements, which for VHF radars means scales out to the radar
pulse length or the buoyancy scale of turbuleuce, whichever is larger. For a radar pulse length
of 600 m, say, this means that scales well into the buoyancy range will be effective, since the
thicknesses of these layers is often well below 600 m (e.g. CRANE, 1980; BARAT, 1982) and
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the inertial range-buoyancy range transition scale is usually several times less than the layer
thickness (e.g. BARAT, 1982). If it is assumed that a fraction F of the measured velocity
variance resides in the inertial range and the rest in the buoyancy range, we may write that
the measured velocity variance v? obeys the relation

-kp K 2
[ euk)db + [ Outka)dk = Fuo 1)
—kx kp

where kg is the wave number of the buoyancy scale (transition scale between the inertial
and buoyancy ranges) and k, is the Bragg backscatter wave number. For Kolmogoroff, inertial-
range turbulence, and defining the turbulent energy dissipation rate as ¢, we may take

On(k) = .1244C 23 | k |*/° (22)

and solve for € in terms of kg, kx, and v?. C? is well known from careful atmospheric
experiments (e.g. CAUGHEY et al., 1978) to be close to 2.0.
This may then be used (e.g HOCKING, 1983a) to derive

2 A\ 23 3/2
e=e.Lp/ | Ly —(5) (23)

F 3 3/2
&= (.373203) (+)" /Ls. (24)

If F is taken to be 0.5 and C? = 2.0, then we can write approximately that

where

e=3.45()"" /Ls. (25)

WEINSTOCK (1978b) has suggested that the Buoyancy scale relates to the Brunt-Vaisala
frequency and the energy dissipation rate through the relation

2r 1 -3
Lg = mfﬁsz

and using this relation with equation (24) gives

12.24F | —
‘=[ c? ]"zf"’ (26)

fB being the Brunt-Vaisala frequency in Hz. Again taking F = 0.5 and C? = 2.0, we may
write .
e~ 3.1v3fp (27)
Notice that this also means that A
;52
Lg~11—,
fB
a useful relation for making radar estimates of the Buoyancy scale.
Of course v? can be found from the relation

? = f;luct/(zenQ) (28)

provided of course that fy 7, can be shown to be entirely due to the turbulence.
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If F actually varies up to 1.0 or down to 1/4, then the estimates represented by equations
(25 and 27) will be incorrect by a factor of 2-3.

These formulae assume that the scattering scale A/2 lies in the inertial range. However,
it should be noted that if scatter occurs from the viscous range, as may at times happen
in the mesosphere, the formulae are still largely valid. It will be noted from (21) that the
mean square velocity is an integrated effect due to all scales between A/2 and Lg and this
integration is dominated by the large scales. A change in the spectral form from (22) within
the viscous range will not greatly affect the integral; at worst, the A/2 term in (23) may need
to be replaced with the inertial range inner scale.

When the radar volume has dimensions less than the buoyancy scale of turbulence, the
formula becomes slightly modified. The parameter Lg is replaced by the larger of the pulse
length and the radar beam-width at the height of scatter (which we will denote as L,), and
the constant of proportionality changes slightly. In this case kg in equation (21) is replaced by
a Fourier scale representative of the range of Fourier components in the pulse (or the beam-
width, whichever is larger). For example, if the pulse is Gaussian in shape with a half-power
half-width L,, then its Fourier transform has a half-width at half-power of about 0.44x27n/L,.
This different situation means that for L, < Lp, the following relation applies (e.g. LABITT,
1979; BOHNE, 1982 (appendix C))

e~13 (7)3/2 /L. (29)

The constant (1.3) has changed considerably compared to that in (24) and (25), and
there are two main reasons for this. Firstly, the constant 1.64 assumes that there is no
Buoyancy scale, and assumes that the k=% law applies over all scales; thus Fourier scales of
small wavenumber, although only a small contribution to the pulse, make a large contribution
to the integral in (21). As a result, (29) should not be applied even if L, is less than but
comparable to Lpg; in that case, the constant to be used should be considerably larger. The
second reason relates to the different physical significances of L, and Lg.

It should also be noted that even if L, < Lg, if data lengths of a minute or so are used in
forming the power spectra, equations (24) and (25) are better estimators of ¢; see fig. 9.

The relations (23-29) (whichever is applicable) may be used to determine the turbulent
energy dissipation rate if one knows the contribution to the spectrum from turbulent fluctu-
ations. However, we still must decide whether all the remaining spectral width is indeed due
to turbulent fluctuations. Even when vertical beams are used to measure the spectrum, there
may still be a small contribution due to buoyancy waves, (as has already been discussed),
but it is possible to make at least some attempt to separate the turbulent and buoyancy
wave effects. Use of procedures which involve least-squares fitting to a Gaussian shape like
(11) help, because buoyancy-wave fluctuations of specular reflectors, for example, can produce
fairly non-Gaussian spectra. Thus spectra dominated by buoyancy-wave fluctuations are often
rejected by such procedures. Another possibility is that used by HOCKING (1988),who uti-
lized the fact that the buoyancy-wave field tends to have only a small contribution (if at all)
from oscillations with periods of less than 5 min. This is not to say, however, that using a data
length of less than 5 mins eliminates the wave effects, since even a fraction of a wave cycle
could cause significant contributions to the spectral width. However, one can predict how the
spectral width might change as a function of data length in this case, and by comparing this
prediction to the true variation in spectral width as a function of data length, can make some
estimate of the relative contributions of buoyancy waves and turbulence. Such a process has
some uncertainty associated with it, but is nevertheless of some value. An example was given

in HOCKING (1988).
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We have not yet addressed the contribution due to the decorrelation time associated with
the finite lifetime of the eddies. In fact provided that the radar wavelength is substantially
less than the buoyancy scale, this is not a major contribution, as will now be shown.

If the energy dissipation rate is again denoted ¢, the typical eddy scale as £ and the velocity
associated with such an eddy is denoted as v, then the typical lifetime 7 of an eddy is

£
T~ (30)
where
v?
€~ 7 (31)
Hence , )
v £ 1
i (‘) e 32)
so that . 1
T~ €373 (33)

Thus the growth and decay of eddies prduces an autocorrelation function with a half-width
at a value of 0.5 of about 7 , where 7 is given by the above expression. If the autocorrelation
function is taken to be Gaussian, then its Fourier transform is also Gaussian, with a half- power
half-width of 0.22 / 7, and we will denote this as fi. , where "dc” stands for "decorrelation”
Thus

.22
fdc ~ —T_ ~ .222_565, (34)

where £ can be taken to be of the order A/2.
Contrast this to the contribution due to fluctuating motions, which contribute out to scales
of the order of the Buoyancy scale, Lg. In this case, we have already seen (equation 25) that
if we take F as about 0.5, then

~ Vhms
¢~ 3.5-BMS (35)
Lg

Then the half-power half-width of the spectrum due to the fluctuating motion of the scat-
terers is given by

2
S ftuct(m) = -8 (X) S Lgh (36)
Hence the ratio of spectral half-widths due to the eddy motions and the decorrelation time
of the eddies is N
Frict(m) Lgi®
a4 — 37
e 32 37)

Physically this arises because the spectral width associated with the scatterer movement is
related to the buoyancy scale Lp, (since we have seen that this width is due to the integrated
efect of all scales up to Lg), whilst the decorrelation time depends only on the scale of the
scatterers.

For a typical case with A/2 equal to 3m, and Lp equal to say 200 m, the ratio is about 16.
Since the total spectral width due to these two components combined is equal to the square
root of the sum of the squares, the correction due to the decorrelation time in this case would
be only a fraction of a percent. Thus provided the Buoyancy scale is greater than the Bragg



244

backscatter scale by a few times, the decorrelation time of the eddies is only a minor correction
to the spectral width and can usually be ignored.

It was mentioned earlier that information about the level of turbulence also exists in the
correlation functions, and can be obtained from the Full Correlation Analysis technique using
spaced antennas. Indeed, one of the output parameters of the Full Correlation Analysis is a
parameter which is usually denoted as T, and represents the correlation function half-width
which would be measured with a radar which moved along the ground with the velocity of the
mean wind in the scattering region. Spectral beam-broadening has been removed from this
parameter, although the effects of wind-shear have not. Thus the parameter f; = 0.22/T)
can be used in place of ff,. in all the discussions above; the main potential pro’blem is that
there may be increased contributions from buoyancy waves if the polar diagram of the system
is wide.

Provided the effects of gravity waves can be adequately separated, or even shown to be
relatively unimportant, the procedures described above allows radars to be used to extract
estimates of atmospheric turbulence.

It is also possible to infer the turbulent diffusion coefficient for a turbulent layer through
the relation

Ky = caefwd (38)

e.g. WEINSTOCK, 1978a, b; LILLY et al. 1974). The constant ¢; is quoted to have a variety
of values in the literature, ranging from about 0.25 to 1.25. The most commonly accepted value
seems to be 0.8 (WEINSTOCK, 1978). Ideally it is also necessary to know the Brunt-Vaisala
frequency averaged over the turbulent layer, but unfortunately it is not always possible to find
this. Some authors use climatological values, but it is better to use radio-sonde determinations
where possible.

The method of determining e described above has been used a few times, but is still largely
unexploited; a much greater use of these procedures is to be actively encouraged.

4 Power Measurements

One simple but effective method for deducing information about the scatterers is to record the
backscattered power. In many experiments powers are compared in a relative way; for example,
power variations as a function of time and height are usually studied in most experiments.
Even this simple process can give useful results, but it is even more effective if the radar can
be calibrated in an absolute sense. This requires some careful work by the user, but if this
1s done it is then possible to convert the measured powers to effective reflection coefficients,
backscatter cross-sections, or perhaps estimates of the turbulence intensity. ( The parameter
actually calculated depends largely on the scattering mechanism, and we will consider ways
of determining this shortly.) Such calibration not only allows better comparisons to be made
world-wide, but also allows better comparison with theory.

Before showing how this calibration can be done, however, it is a useful exercise to look
in more detail at the mathematical formulation of the scattering process. We will begin by
considering the simplest case, namely that of reflection from stratified steps.
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4.1 Modelling the reflection and scattering processes
4.1.1 Horizontally stratified structure

Consider first, and for simplicity, a horizontally stratified atmosphere which has fluctuations
in the refractive index in the vertical direction but none horizontally. In fact we will see later
that this is not such an unreasonable model, and has some real applicability in the atmosphere.
A pulse of the form g, (t — z/c)cos[w.(t — z/c)] is transmitted, where f. = w./(27) is the carrier
frequency. At z = 0, this is a pulse which varies in time as g1(t)cos(wct). This can be written
as g(£) = g:(€)cos(kE) where k = 2w/c = 47 /X (X being the radar wavelength) and ¢ = ct/2
is a length coordinate which closely matches the height of the scatterers (e.g. HOCKING and
ROETTGER, 1983). If the refractive index fluctuations are described by n(z), then the radio-
wave reflection coefficient profile is given approximately by r(z) = 1(dn/dz) (eg HOCKING
and VINCENT, 1982a). The reflected complex amplitude as a function of height is then given
by

o= 1"y e 4 (39)

where @ stands for convolution. (e.g HOCKING and ROETTGER, 1983, and references
therein). (This expression is very accurate for VHF scatter, although if absorption is high or
the pulse is significantly dispersive, more careful approaches are necessary, such those given by
HOCKING and VINCENT (1982b), or even full-wave equations are necessary (e.g. BUDDEN,
1965).)

To begin, it is of interest to examine what happens when reflection occurs from a single
step of some finite thickness. The easiest step to deal with is one of the type with

r(z) x e{"ﬁm}. (40)

In this case the refractive index profile is a step of finite thickness, as shown in the following
diagram. Note that although d is a measure of the step depth, it is probably not the best
measure of this depth. A better measure of the step depth might be the distance between the
two points where the reflection coefficient falls to one half of it maximum value, or

w=2Vin2.d

nlh‘i‘uale
y

Fig. 10
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The convolution can be done numerically, but it is instructive to examine the process using
a slightly different approach. From Fourier theory (e.g. BRACEWELL, 1978) the convolution
can be done by Fourier transforming each of g(2) and 7(z), multiplying the Fourier transforms
G(k) and R(k), and then re-Fourier transforming the product. The process is illustrated
diagramatically in the following diagram. G
A

r W4 9(2\4—3» G(k)

<

;Dg(l)

74
})

r(z)

!

r{(z) €

-u—-m— - —-'\k‘—
D

27

: 1
B h k

~

>

“T>A 1

Z alz) (K 5
- g era)) Gk xRk} i
\ I
a(z) J:\ /.\ S
. ke ke k
Fig. 11 .

Note that the Fourier transform G(k) of g(z) exists in a narrow band centred at k. = 47 /).
Notice also that the narrower the step (smaller. d) the wider the function R(k) and so the
product of the Fourier transforms is larger. In fact the peak amplitude of the product is

Ak) o e 55 o 5 (41)

- so clearly once d exeeds A, the backscattered power is very small. In fact even if d = A/4
(w = 0.42}), the reflected amplitude is 0.08 times that for a step of zero width (ie a sharp
discontinuity). The power will therfore be reduced by 22 dB compared to a single step. Many
authors have taken this to infer that only steps much less than about a quarter wavelength in
thickness will ever be seen by radar, and this may well be true for say MF radars. However, with
coherent integration and the greater sensitivity of modern radars, particularly VHF radars, it
i8 not so easy to adopt this argument; VHF radars can often see such steps even if reduced in
efficiency by 20 dB, and they are indeed capable of detecting layers with a depth d of about



247

A/4. However, it is true that beyond this depth, the efficiency falls off remarkably quickly;
for example, if d = A/2, the power is reduced by 80 dB, and even VHF radars would not
normally detect such a step. HOCKING (1987a) has discussed this point and suggests that
some "specular reflectors” seen by VHF radars have typical depths with 2d =3-4m,orw
between 2.5 and 3 metres; in other words, the steps are right on the edge of the region of
detectability.

Another useful model is that of "Fresnel Scatter”, a model known for many years in D region
MF studies, (eg AUSTIN et al., 1969; MANSON et al., 1969; GREGORY and VINCENT,
1970), but given renewed popularity by GAGE et al (1981) in respect to VHF studies. In this
model, horizontal stratification is again assumed, but n(z) is assumed to vary randomly, so
the atmosphere can be thought of as a series of thin slabs sitting atop each other, each with
slightly different refractive indices. Despite some initial controversy, it is relatively easy to
show that in this case the backscattered power is proportional to the pulse length (HOCKING
and ROETTGER 1983), and if one includes the decrease in reflected power as a function of
height z then one finds that the power received by a radar takes the form

alPA? —2
Pr= W‘z; [FOYM] (Az) (42)

where Pg is the received power, « is the array efficiency, P, is the peak transmitted power,
A, is the array effective area, ) is the radar wavelength, z is the height of reflection, M is the
mean generalized refractive index gradient and F(}) is a "calibration constant” which must be
determined empirically for each radar. The term Az represents the radar pulse-length. In the
case that M varies substantially within one pulse-length this formula need some modification,
as described by HOCKING and ROETTGER (1983). Later developments of this model have
been discussed by GAGE et al., (1985) and GREEN and GAGE, (1985).

4.1.2 Three dimensional structures

The next extension to these models is to allow the scattering medium to have non-constant
structure in the horizontal direction as well. An example might be fully developed isotropic tur-
bulence, in which the refractive index has random fluctuations caused by the turbulent velocity
field. In this case, the theory for relating the backscattered signal to the turbulence intensity
has been fairly well developed (OTTERSTEN, 1969; VANZANDT et al, 1978; HOCKING,
1985). The backscattered power depends not only on the intensity of the turbulence, but
also the mean refractive index gradient in which the turbulence exists. In the mesosphere,
the latter term is largely determined by the electron density gradient, in the stratosphere by
the temperature gradient, and in the troposphere by the temperature and humidity gradient.
Expressions for these potential refractive index gradients are given below, but expressions for
evaluation of the turbulence intensity from measurements of the absolute backscattered power
wil be left until after the following section on calibration of a radar.

In the unionized atmosphere, and for centimetre and metre radio waves, the potential
refractive index gradient is given by (TATARSKI, 1961, p 57)

—79 x 107® 15500 daT 7800 dgq
=X pli+ 22 | 4T - —mm o
M T2 F [ + T q] [dz 1+ Q%(Eq dz (43)

where P is the atmospheric pressure in units of millibars (hPa), T the temperature ( °C),
T, is the adiabatic lapse rate, and ¢ = ¢/(1.62P) is the specific humidity, e being the water
vapour pressure.
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In the ionosphere, the relevant potential refractive index gradient is given by ( HOCKING,
1985)

~ON g dz:  pdz (44)

*T 6N
where N is the electron density, n is the refractive index, and p is the neutral density of
the atmosphere. The Brunt-Vaisala angular frequency is represented by w}, and g represents
the acceleration due to gravity. Notice that this can also be written as (e.g. THRANE and

GRANDAL, 1981)

on [veh -, )

On { NdP dN
=w=l—s55 -7 4
T N ['yP dz dz] (45)
where « is the ratio of specific heats at constant pressure and constant volume.
For a VHF radar, 5 .
on _ 1142
3N = 3" reA’, (46)

where r, is the classical electron radius. At HF and MF, the relation between N and n becomes
more complex (e.g. BUDDEN, 1965).

Let us now turn our attention to the subject of calibrating the radar, so we may then see
how to use the above expressions to determine turbulence intensities.

4.2 Calibration of the radar

In order to calculate the parameters like backscatter cross-sections of the scatterers or the
reflection coefficients of the reflectors, it is necessary to calibrate the radar. In this context,
?calibration” refers to calculation of appropriate coefficients which enable conversion between
the power received by the radar and reflection coefficients, back-scatter cross-sections etc
(rather than determination of the polar diagram of the radar, for which the term " calibration™
is also often used). Many radars world wide have still not been absolutely calibrated, which
is a great pity.

One simple way of "calibrating” the measurements is to compare the signal received to the
noise. For a VHF radar, the noise is predominantly sky-noise, due to extra-terrestrial sources.
By measuring the ratio of the signal-to-noise (S/N), it is possible to get an approximate
measure of the received power, provided the noise level is known (e.g. VANZANDT et al.,
1978). Standard charts exist which may be used to give the noise level. However, this is not
the best way to determine the signal power. For example, the true noise level has a diurnal
variation, depending on the passage of noise sources through the beam, and of course radars
at different locations have different dominant noise sources . It is also likely that the noise
level may change as one changes the orientation of the beam. Furthermore, the procedure
is of no use for MF and HF systems, in which noise depends on atmospherics like lightning.
Therefore, other more accurate calibration procedures are to be preferred.

A moderately effective technique is to use a noise generator to calibrate the receiver. A
noise generator is fed into the receivers at the point where the receiving antennas are normally
connected, and the signal is recorded. Usually VHF radars employ coherent integration of the
signal, and of course noise is incoherent, and this factor must be taken into account when the
calibration is performed. For noise, the sum of N coherent integrations increases the total
power by factor of N times, whilst for coherent signal it increases by a factor of N2. These
differences are usually fairly easy to allow for, however, and calibration in this way is relatively
simple (e.g. HOCKING et al., 1983). One simply determines what a particular level of receiver
input power produces in terms of output units, and henceforth any measured receiver output
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can be converted back to an input noise power. Standard radar equations may then be used to
determine parameters like the scatterer cross-sections and reflection coefficients. For example,
knowing the output power of the transmitter, P, the reflection coefficient of a scattered layer
can be found through the relation

G AnTE (47)

Fr= @y

where Pg is the received power, P, is the power produced by the transmitter, G is the gain of
the transmitting array, e; and eg are the efficiences of the transmitting and receiving systems,
(including the efficiencies of the respective arrays), Ag is the receiving area of the receiving
array, and R? is the mean square reflection coefficient. In the case that the same array is used
both for transmission and reception, we may use the relation Ar = G)/(4r) to give

—= _ Pgbar?s?

B = poran (48)

If the scatter is due to turbulence, an effective backscatter cross-section ¢ can be found.
Here, o is the power backscattered per unit solid angle, per unit incident power density, and
per unit volume. o is evaluated through the relation (e.g. HOCKING, 1985)

_ PeneGAr V. - (49)

drzt O n2’

Pr

where V is the radar volume. For a monostatic radar, V = w(zG%)Q.Az, where 0% is the radar
two-way half-power half-width and Az is the pulse length ( = ¢r/2, where 7 is the transmitted
pulse length in seconds and c is the speed of light in ms™").

The efficiency e is often hard to determine, but even if R? or o or C} can be determined to
within a factor of 2 or 3, it is still useful. Various ways exist for calculating radar efliciencies,
but lack of space prevents their discussion here. Examples include methods discussed by
VINCENT et al., (1986) and MATHEWS et al., (1988).

At HF and MF, use can be made of the fact that the radio pulses are totally reflected
from some part of the ionosphere. If a so called "second hop” echo occurs, (which arises when
the pulse is totally reflected, returns to the ground, is re-reflected back to the ionosphere and
returns), then the ratio of the strengths of the main and second hop echoes may be used to
determine a calibration constant for the system. To see this, write that the power received
form a reflecting layer at height z, and of reflection coefficient R is

Pir=x"TR2:7?P,. (50)

where & is a calibration constant. In this case, P need not even be the actual transmitted
power, but any value proportional to it. Then if a second-hop echo exists, the received power
from it is

Por = x"YR2°(22)72P,. (51)

Then squaring (50) and dividing through by (51} allows elimination or R? and so
_ 2VPVPir

=75 _ 2
8 ZP)R (5-’)

In this case, neither Pg nor P; need to be known absolutely, and each can be a quantity
which is simply proportional to the true received and transmitted powers. « can be determined
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as above, and then for any echo, whether it be strong enough to have a second hop or not, R?
can be evaluated through (50).

In VHF studies, there is no totally reflecting surface. It is possible to use artificial satellites,
or even the moon ( e.g. MATHEWS et al., 1988 ) to calibrate the system, provided that the
backscatter cross-section of the target is known. In this case, the efficiency terms can also be
evaluated.

The absolute calibration of radars by any of the means discussed above, or any other
meaans, is to be actively encouraged, and will make comparisons between radars and between
observations and theory much easier in the future.

4.2.1 Determination of turbulence intensities from measurements of received
power

Once it can be ascertained that turbulence is the main cause of the radio wave scatterers,
it is possible to convert the received powers to parameters which describe the turbulence.
One key parameter is the ”(potential) refractive index structure constant™, usually denoted as
C2, If the turbulence obeys the classical Kolmogoroff inertial spectrum, then the spectrum of
refractive index fluctuations is given by (TATARSKI, 1961, 1971)

Bn(ker by k) = 0.033C2 | k7% (53)

where a normalization has been chosen such that [ [ f°0 #(k)dk =< n? >. Thus C?is a
parameter which indicates the level of refractive index fluctuation. C? can be determined
from the cross-section defined above through the relation

o = 0.0065573C2A~5 (54)

(Note that sometimes a cross-section 7 = 470 is used, in which case 5 = 0.38C2A~}). When
combined with the equations seen earlier, we see that for a monostatic radar

P}122/\§
P, Ape?Az

Appropriate relations can also be easily derived for the case in which the transmitter and
receiver are separate systems (also see HOCKING, 1985).

C? is a useful parameter, but an even more useful one is of course the turbulent energy
dissipation rate, €. It is possible to relate CZ to ¢ in the following way.

Starting from TATARSKI, 1961, (p44, equation 3.19), we have

C:= azNe"%, (56)

C? =~ 66. (55)

where N is a parameter defined by
N =K,M*? (57
for a stratified environment. The constant a® has been measured to be about 2.8. Using the
definition of the Prandtl number P, = Ka /K., defining o’ = P71, and using the relation seen
earlier that
Ky = caefwdy (58)
e.g. WEINSTOCK, 1978a, b; LILLY et al., 1974), we may see that

22 1%
N

a*a’coM?

(59)
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These relations have also been derived by BLIX (private communication, 1988) ; a sim-
ilar expression was derived by VANZANDT et al., (1978) and noted by HOCKING (1985),
although a slightly different proof was used in the second case, with the result that

F3
2

2,2
Cn wp

, Ry
a’a’M? [—;gl]
Ri( is the critical Richardson number at which turbulence should develop, and b is yet another
constant relating the energy dissipation rate to the mean windshear. In fact VANZANDT et al.,
(1978) and HOCKING (1985) took b =1.0, so b did not appear explicitly in their expressions,
but with hindsight this was not wise. The first expression (59) is derived in a more fundamental
way, and requires less assumptions, than the second (60), and it is better to use the former.
The constant c; is quoted to have a variety of values in the literature, ranging from about 0.25
to 1.25. The most commonly accepted value seems to be 0.8 (WEINSTOCK, 1978b).

An extra complication arises if the turbulence does not fill the radar volume, and indeed this
often appears to be the case. It appears that in the stratosphere and mesosphere, turbulence
occurs in relatively thin layers with thicknesses ranging from a few tens of metres to perhaps a
kilometre or so, but generally of the order of 100m. At any one instant, only a small fraction of
the radar volume contains turbulence, and this should be taken into account when calculating
¢. In other words, the calculated value of C? is actually too small by a factor F;, where F;
is the fraction of the radar volume which is filled with turbulence at any one time. Thus one
normally calculates

E =

(60)

C%(turb) = CX(radar)/Fi, (61)

where C2(radar) is the value determined from the radar measurements. VANZANDT et

al.(1978, 1981) have developed models for the variation of F as a function of atmospheric

conditions, enabling estimates of € to be made. Furthermore, one is often interested in the

mean value of ¢ averaged over the radar volume, so VANZANDT et al. suggested calculating
the quantity

€= Fieturs (62)

GAGE et al. (1980) used a simplified model based on VanZandt’s model, in which they

showed that the parameter F;’w} could be determined to moderate accuracy from climatolog-
ical data, so that the simplified expression

2= 7[C3(radar)]}[5 | (63)

could be used, where v = 1.08 x 10?? for a dry troposphere and v = 3.25 x 10! for the
stratosphere. Here, P is in millibars, T in Kelvin, C? is in units of m~% and € is in units
of Wkg~'. Variations on these principles have also been presented by CRANE (1980) and
WEINSTOCK (1981).

Further complications arise if the turbulence is not isotropic, but we will not discuss these
problems here, important though they are, due to lack of space.

5 Aspect sensitivity of the scatterers

We have seen several times throughout this text that a better understanding about the shapes
of the scatterers is necessary in order to better interpret measurements of wind speed and
turbulence intensities. It would also naturally help in understanding the cause of the scatterers.
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The shape of the scattering irregularities has been the subject of active debate over many
years. Models have ranged from flat, mirror-like partial reflectors to ”pancake-like” scatterers
to inertial-range isotropic turbulence, and in this review we will not dwell too much on these
arguments. Rather, we will first describe the main models, and then concentrate on the sorts
 of techniques which might be, and have been, used to determine the shapes of the scatterers.
If it is assumed that the polar diagram of backscatter of the scatterers is of the form

B(6) o e i (64)

, as assumed in equation (15), then 8, gives a measure of how rapidly the backscattered
power falls off as a function of zenith angle. If 8, tends towards 90 °, it indicates isotropic
scatter, whilst if 8, tends towards 0°then it indicates highly aspect-sensitive scatter.

There are a variety of models which have been advanced, but they basically fall into 2
categories. (e.g. LINDNER, 1975 a,b; BRIGGS and VINCENT, 1975; ROETTGER and LIU,
1978; GAGE and GREEN, 1978; HOCKING, 1979; FUKAO et al., 1980a, b; ROETTGER,
1980b; GAGE et al., 1981; DOVIAK and ZRNIC, 1984; WATERMAN, 1985, amongst others).

(A) The first class assumes that individual scatterers are (on average) ellipsoidal in shape,
which may vary in their length to depth ratio as a function of scale. The extremes are spherical
shapes (isotropic scatter) and highly elongated structures.

(B) The second class of model assumes a horizontally stratified atmosphere consisting of
variations in refractive index in the vertical direction, so one can think of this as a series of
"sheets” of different refractive index. Such structures, if truly stratified, would have 6, =
0, but if we imagine that these sheets are gently "wrinkled”, then 0, will become non-zero
(e.g. RATCLIFFE, 1956). In this case, the range of #, values relates to the range of Fourier
components necessary to describe the wrinkles.

Proponents of model B do not claim that the whole atmosphere is like this, but that it is
like this in some places at some times, and use the model to describe particular observations.

Sometimes hybrids of the two models are invoked and other, more complicated, models
have also been proposed, but they are generally based on the above models. To illustrate
these later models, as well as give a feel for how they are explained physically, some examples
of such more complicated models are shown below. The first (fig. 12a) is due to BOLGIANO
(1968), and assumes that an intense turbulent layer might mix the layer so that the potential
refractive index across the layer is constant, with sharp edges at the side. These edges might
be able to explain the model B reflectors, for example, although doubts about the possibility
of a turbulent layer maintaining sharp edges exist.

The second model in fig. 12 proposes that scatterers near the edges of a confined layer
of turbulence are more anisotropic than in the centre. The model has been discussed by
HOCKING et al. (1984), noted by HOCKING (1985), and also proposed independently by
WOODMAN and CHU (1989). Such a model is physically likely because turbulent layers are
often more stable near their edges (e.g. PELTIER et al., 1978; KLAASSEN and PELTIER,
1985), but for the purposes of this paper these models are simply noted as the type of extension
to the simple models proposed above which should be borne in mind.
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Fig. 12

Another model which may give a physical basis to model B is the proposal that the specular
reflectors might be damped gravity waves (e.g. VANZANDT and VINCENT, 1983; HOCK-
ING, 1987a and references therein) or even viscosity waves, the latter being capable of existing
at very short wavelengths (HOOKE and JONES, 1986).

Having now established that both models have some physical basis, let us concentrate on
the simpler models, since these form an excellent basis for later discussion of any of the more
complex models.

With regard to model A, it should be noted that 8, gives a direct measure of the length
to depth ratio of the scatterers. The following figure, from HOCKING (1987a), shows this
relationship.
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What techniques, then can be used to determine the nature of these scatterers?

LS Aspect ratio of scatterers, L/h,
as a function of 6,, for h = .15\ (upper
curve), .195\, .25\ and .32).

2L

1
It 1 L 1 —

Fig. 13

5.1 Experimental techniques to determine the nature of the scat-
terers

In the following section a variety of techniques which may be used to determine informa-
" tion about the nature of the scatterers are described and some of the results obtained so far
discussed. The list is not, however, exhaustive.

5.1.1 Methods utilizing different beam configurations

One of the simplest methods to investigate the aspect sensitivity of the scatterers is to simply
point a narrow beam vertically, and then at several off-vertical angles. The variation in power
P as a function of beam tilt angle §, is then related to 8,. In fact it can be shown that

_[(ae[[_,,aT)z_'_iz_;J_)
P(br)x e % o (65)
where .5 is defined by equation (16), 87 is the beam tilt direction from the vertical, and the
polar diagram of the radar beam is assumed to be of the form ezp{—(sin?0)/(sin%8,)} [e.g.

appendix A; HOCKING et al (1986); note that the derivation in appendix A corrects an error
2

made in HOCKING et al 1986, in that the important term —9-‘5{-1 was neglected in the exponent
of e in that paper]. :

A typical experiment which might be performed is to compare the powers received with a
vertical and an off-vertical beam, and use this to deduce §,. Utilizing equations (16) and (65)
{or equivalently (A4) and (A10)),it is possible to derive the following simple relation between
P(6r)/P(0), 87 and 6,. If R is defined to be In{P(0)/P(0r} (or R = 0.23026 R;5, where Ryg
is the ratio of P(0)/P(0r) expressed in dBs), then

1_0%_
o =L -6
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Typical variations of P(§) show an approximately Gaussian fall-off out to about 5°- 10°,
and then an approximately constant value beyond this, indicating possibly isotropic turbulence
with more anisotropic scatterers either embedded or nearby (e.g. DOVIAK and ZRNIC, 1984).
Typical values of §, are often in excess of 8°in the troposphere, whilst in the stratosphere at
VHF values can be as small as 3°- 4°. The following diagrams from HOCKING et al (1986)
summarize some measurements made with the SOUSY radar in Germany (after correction for
the error noted above). Note also the tendency for the scatterers to become more isotropic in
the high stratosphere.

SOUSY RADAR OCT M8!: ASPECT SENSITIVITY OF SCATTERERS.

)
o——ms Woricel
.0 eeees T°N

0 -8 8 <4 20
fa) Power [dBs] [orbitrary unils) ) Relative Power (B3] [3]
7°€ articd

Fig. 4{a) Plots of 25 h mean powersas a function of altitude for the three beams. Noise has been subtracied. The
noise was greatest on the north beam, b of the passage of Cassiopeia A through the beam, andso the
signal disappeared into the noise at a Jower height than for the other beams. The rangeeflect on the powers has
nol been removed in this case. (b) Ratio of powers on the 7°E beam snd the vertical beam. (c) Assumingthat the
scatierers had backscatter polar diagrams of the form exp (—sin? 0/sin® 0,), this plot gives values of 0, as 2
function of height. The vertical broken linesh hemini 0, d.ltisclear thataboveabout 18 km,
0, increased. The widths of each black rectangle gives the error in 0, associated with a | dB increase in
P(T"VP{0"). For 0, values of greater thaa about 5°, a | dB oacertainty in XTVA07) implies a very large
uncertainty in 0, and these squares with arrows isdicate that the possible 0, value may be asfarge 2390 fora
1 dB change in P(TYP(0") (ie the are very i itive for 0, > 5°)

Fig. 14

In the mesosphere, 6, is typically 4°for VHF scatter below 75 km, although on occasions
isotropic scatter is also seen. Above 80 km, VHF measurements give 8, to be about 6°- 8°.
At MF, 6, is typically 2°- 5 °below 80 km, increasing to about 8 - 15°above 80 km (e.g.
LINDNER, 1975a,b; VINCENT and BELROSE, 1978. REID (1989) has summarized the
various mesospheric measurements.

An alternative means which may be used to determine 8, is to utilize equation (16). By
comparing wind speeds deduced using the DBS method for a beam pointed at say 5°off-zenith
to one at say 15°off zenith, it is possible to deduce #, from (16), assuming that the value
deduced with the 15°beam is the true wind speed. An alternative is to use spaced antenna
methods to determine the true wind speed, and then comparisons with the DBS measurements
may allow determination of 6,.

Another interesting determination of 8, was made by VINCENT and BELROSE (1978),
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who compared the powers received on two beams of different polar diagram widths, and used
the resultant ratios of powers to determine #,. The method yielded results consistent with
determinations made by other techniques discussed in this section.

5.1.2 Spatial correlation methods

If one illuminates the sky from a transmitting array which has a very wide polar diagram,
and monitors the electric field received at the ground, then the variation of electric field as
a function of position is simply the diffraction pattern of the scattering irregularities. The
spatial autocorrelation function over the ground can be determined by using an array of
dipoles distributed over the ground, recording the signal on each dipole separately and then
cross-correlating between dipoles. The spatial autocorrelation function so produced is simply
the Fourier transform of the effective polar diagram (ie the combined polar diagrams of the
radar beam and the scatterers). If the ¢! width of the effective polar diagram is 6,;, then
the spatial lag at which the amplitude of the complex autocorrelation function falls to 0.5 is
approximately 12.0/6,, radar wavelengths, where 8, is expressed in degrees (e.g. HOCKING
et al., 1989).

Thus a useful technique for determination of the polar diagram of backscatter is to produce
the spatial autocorrelation function in the manner described, and then Fourier transform it.
Such a technique has been utilized by LINDNER (1975a, b) in order to study the aspect
sensitivity of mesospheric scatterers at an MF frequency of 1.98 MHz. For example, Lindner
found typical values for 8, of about 2°to 5 °below 80 km, and 10°to 15 ®above. These results are
consistent with later observations using beam-swinging techniques (HOCKING, 1979). The
method has not been greatly utilized, however, and deserves further attention.

5.1.3 Spectral methods

It was noted earlier in regard to discussions about extraction of turbulence from spectra that
in many cases the main contribution to the spectral width was spectral-broadening due to the
finite width of the polar diagram of the radar beam. At the time this was a nuisance, but now
it can be turned to good effect. The effective polar diagram is the product between the polar
diagram of the radar and the backscatter polar diagram of the scatterers. As seen in appendix
A, if 8,, is the e half-width of the effective polar diagram (ie the product of the backscatter
polar diagram and the radar beam polar diagram) then

sin"%0, = sin"%0, + sin~?6, (66)
But from equation (17) the beam-broadening of the spectral width is
2
f1o=5(10) | Viur [ 6y, (67)
The total spectral half-power-half-width is given approximately by
fg = f;b + f}luct (68)

if we ignore the contribution due to wind-shear. (This last term can in fact reduce fy, but it

is usually fairly small.) Then we can apply our experimentally measured spectral widths to
place upper limits on §,. That is, if we calculate

X f1
2 _JF
=2 (69)
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then this is a usful upper limit to 0%4,, the half-power half-width of the combined polar
diagram of the scatterers and the radar beam. In the case that it can be shown that fi; >

ffiuct, as often happens, then 0’i is a good estimate of 0%6”. Then 0,, = 0#”/\/1112, and

equation (66) can be used to deduce 6,. In the special case that a relatively wide beam is
used, so that 8y > 0s, 0,5 = 0,.

The above principles have been used by HOCKING et al.,(1986), and HOCKING (1987a, b)
to make estimates of backscatter polar diagram half-widths. The method of using fading times
as a crude indicator of "specularity” , as done by for example RASTOGI and ROETTGER
(1982) may be also considered as a primitive special case of this method, although that proce-
dure does not really pay proper consideration to the role of the mean wind in determining the
fading time through beam-broadening. More recently WOODMAN and CHU (1989) have used
similar techniques, but rather than just using the spectral width and assuming Gaussian polar
diagrams as done here, they have used the whole spectrum and the one-to one correspondence
between the polar diagram of backscatter and the spectrum to determine additional detail
about the actual shape of the polar diagram of backscatter and so the irregularities them-
selves. Woodman and Chu also used a wide beam, but it should be noted that this procedure
assumes azimuthal symmetry.

A procedure like this is very useful if there are several types of scatterers in the beam. For
example, if scatterers and reflectors described by models A and B both exist in the same radar
volume, the spectrum will not be Gaussian, but will comprise two portions; a narrow central
component corresponding to the specular reflectors, and a wider component corresponding to
the "model A” scatterers. As it turned out, WOODMAN and CHU (1989) saw no evidence of
"model B” reflectors, but this is likely to be because their spectra were averaged over 45 min,
whilst specular reflectors, if they exist, are likely to be relatively short-lived.

Indeed, evidence for the coexistence of the two types of scatterers coexisting in the same
region of space has been given by HOCKING (1987a), and is illustrated in the following
diagram. The data are presented because they show yet another useful means of determining
information about the scatterers, as well as making the point that both specular reflectors and
turbulent scatterers do seem to coexist.

These data were obtained using a hybrid of the beam-swinging and spectral approaches.
Two beams were used, one vertical and one off-vertical. A strong signal of very narrow width
was seen with the vertical beam, but nothing else, whereas on the off-vertical beam two
separate contributions to the spectra were seen; first a broader component corresponding to
isotropic bakscatter received through the main lobe of the beam, and secondly the same narrow
spectrum as seen with the vertical beam. Clearly the second component was due to leakage
from overhead, and comparison of the powers in the specular component observed with the
narrow beam and the more isotropic component show that the specular component is some
70 times stronger. The model discussed in Fig. 12 may apply in some cases, but certainly
does not here, as it is unlikely that the anisotropic scatterers at the layer edges would be so
much stronger than their counterparts in the centre of the layer. Thus this figure does indeed
suggest the coexistence of both models, whilst at the same time demonstrating yet another
useful technique to determine the aspect-sensitivity and nature of the scatterers.
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Fig. 15 Spectra recorded with vertical and off-vertical beams of the Buckland
Park 2 MHz radar.

5.1.4 Amplitude distributions

The preceding techniques have been designed to make measurements of 4,, and are particularly
powerful if model A is valid. However, there is a useful method which allows the validity of
model B to be tested, and which has been used with varying degrees of success in recent
years. This is the use of amplitude distributions (e.g. VON BIEL, 1971, 1981; VINCENT and
BELROSE, 1978; ROETTGER, 1980a; RASTOGI and HOLT, 1981; SHEEN et. al., 1985;
HOCKING, 1987b; KUO et al., 1987 amongst others).

There are many variations of this technique, but only the simplest will be discussed here,
in order to illustrate the method. If scatter is due to an ensemble of roughly similar scatterers,
as might occur in a turbulent patch, then the amplitudes of the resultant distribution will
have a so-called "Rayleigh distribution” {(RAYLEIGH, 1894). If, however, there is also a much
stronger single scatterer in addition to these weaker scatterers, the distribution changes to a so-
called "Rice distribution” (RICE, 1944, 1945). The figure below shows how these distributions
change as the specular component is made larger. Each curve is parameterized by a parameter
called the "Rice parameter”, which is a measure of the strength of the specular component
divided by the RMS "random” component. For a Rayleigh distribution, this parameter is zero.
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Fig. 16 k = /2 and varying specular component.

Thus in principle, by making histograms of the amplitudes of the received signal and com-
paring them to the above curves, it is possible to determine if there is a single dominant
scatterer within the radar beam. More complex variations on this process exist, including
looking at the phase distributions (e.g. ROETTGER, 1980a) and using more complex distri-
butions such as the Nakagami-M distribution (e.g. SHEEN et al., 1985; KUO et al., 1987).
The latter generalization is particularly useful if the specular component has undulations on
it and causes focussing and de-focussing of the reflected radiation.

Unfortunately, as with almost all techniques, complications exist. For example, if there
is more than one specular reflector in the radar volume, then the amplitude distribution
changes, and if there are more than about 4, the distribution begins to look almost Rayleigh-
like again. Furthermore, if one uses relatively short data sets (less than about 10 mins of data),
statistical effects can cause a set of scatterers which should produce a Rayleigh distribution to
produce a Rice distribution, which wrongly suggests the existence of a specular component.
To properly utilize the so-called Rice parameter one must look at the distributions of the Rice
parameter itself; the calculation of several non-zero Rice parameters is not in itself evidence
for a non-Rayleigh distribution. The correct interpretation of the Rice parameter 1s discussed
by HOCKING, (1987b).

Nevertheless, the process can be useful, as illustrated by the many authors listed previously.
An interesting example is shown in fig.17 below, which was taken from HOCKING (1987b).
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Fig. 17

This diagram shows the height profile of the mean Rice parameter (< a >) as a function of
height measured with the SOUSY radar, using a vertical beam and two off-vertical beams, one
directed at 7°off-vertical to the North, and one at 7°off-vertical to the East. Note the increase
in < a > just above the tropopause, when observing with the vertical beam, indicating the
presence of a few dominant reflectors within the radar volume in the stratosphere. Notice also
that there is still a non-Rayleigh character to the scattering process on the North beam, but
on the East beam the mean Rice parameter is fairly constant with height and consistent with
a Rayleigh process.

One possible interpretation of these results is that the scatterers are elongated in the
Eastward direction compared to the Northward (ie aligned along the mean wind vector, which
was predominately Eastward at the time). If such an elongation existed, then the polar
diagram of backscatter would be narrower in the East-West direction, and so the half-power
half-width may be substantially less than 7°and not show an effect on the 7°off-vertical beam;
only the effects of the turbulent scatter are seen. In the North-South direction, the polar
diagram would be wider, and some contribution from these scatterers may still show.

Alternatively, one might invoke model B, and speculate that flat specular reflectors exist
with small wrinkles, but that there were a wider range of Fourier components in the North-
South direction, causing a broadened polar diagram in this direction.

It is clear from the above techniques that there are a multitude of techniques available to
enable the nature of the scatterers to be understood. However, there are still many unresolved
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issues about these scatterers, and the application of the above procedures is to be actively en-
couraged, in the hope of eventually fully understanding the scattering and reflecting processes,
and the parameters which describe them. The importance of knowing these characteristics has
already been stressed.

6 Less easily determined target parameters

The discussion so far has concentrated on parameters which can be inferred fairly directly
from the radar measurements. There are, however, other parameters which can be deduced
with a little extra work. For example, VINCENT and REID (1983) showed how, by using
two off-vertical beams, measurements of the gravity-wave and turbulent momentum fluxes
could be calculated. The momentum flux is not actually a target parameter, and so has not
been discussed here greatly, but it nevertheless is a parameter which affects the targets, and
knowledge about is most desirable. Another example is the Brunt-Vaisala frequency. Normally
this is very difficult to measure, but if the mean winds are light, then spectral analysis of the
time series of velocity measurements can be used to measure the Brunt-Vaisala frequency.
That is, the spectrum shows a cutoff at the Brunt-Vaisala frequency, and this in turn allows
determination of the temperature gradient (e.g. ROETTGER, 1980b).

DEWAN (1981) and WOODMAN and RASTOGI (1984) have shown how careful measure-
ments of the temporal and spatial distribution of the occurrence of thin turbulent layers can
be used to infer the mean turbulent diffusion coeflicient in the stratosphere, as distinct from
the diffusion coefficient within a turbulent layer {the latter can be determined from equation
(38)).

High resolution studies can also be used to infer something about the nature of the scat-
terers; for example ROETTGER and SCHMIDT (1979) used a resolution of 30m to observe
cat’s-eye structures in the stratosphere, confirming that at least some of the observed turbulent
layers are due to dynamical instability. REID et al. (1987) have observed similar features in
the mesosphere. Other studies which allow information about the nature of the scatterers to
be obtained include, for example, those by KLOSTERMEYER and RUESTER (1980, 1981),
and YAMAMOTO et al. (1987, 1988); in these studies relations between power bursts and
buoyancy-wave oscillations were investigated.

By using radars in conjunction with other instruments, further information can be deduced.
A good example is the use of acoustic waves to act as reflectors for VHF radar waves, as done
with the RASS system at the MU radar in Japan. With this instrument, it is possible to
measure temperature profiles in the atmosphere. The use of such hybrid systems in the future
is likely to be of great benefit.

Of course, by using long time series of velocities, one can determine other characteristics
of the scattering region, like the buoyancy wave spectra, tidal amplitudes, planetary wave
amplitudes, and a whole host of dynamical quantities. In a broad sense one might like to
think of these as "target parameters” of a sort, but these are beyond the scope of the current
paper.

7 Conclusions

The main parameters which can be deduced directly from radar observations of the atmosphere
have been discussed. It is clear that it is not possible to make best use of the observations
without better understanding the scattering process, and the ways in which the scatterers are
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formed. Methods for deducing more information about the scatterers have been described, as
well as some procedures by which routine information like wind speeds, turbulence intensities,
and scatterer shapes, can be deduced. The need for more observations of this sort is pressing.

Appendix A: Effective pointing angle
and beamwidth for anisotropic scatter

As pointed out by ROETTGER (1981), an anisotropy in the scattering mechanism alters
the effective pointing angles for an off-vertical radar. Such anisotropy also alters the effec-
tive beamwidth and this is important for the work in this paper. Let the polar diagram of
backscatter for the scatterers be

Py(0) o ¢~ wes

and the two way polar diagram for a vertically pointing radar be (Al)
2
Pr(8) x ¢~ ntey (A2)

Then for a radar pointed off-vertical by angle 87 in the azimuth direction ¢ = 0, the polar
diagram at angle (4, ¢) is

Prr(8, 8) o e~ [l ) »»

(Note that the expression ezxp[—sin®*(6 — 87)/sin?6) (which has in the past been used to
represent a tilted beam) is NOT a good approximation, as that describes an annulus around
the zenithal point at a mean angle #r.) When the effects of the polar diagram of the scatterers
are included, the effective polar diagram is the product of (A1) and (A3). This is a maximum
when the derivative of the exponent with respect to sinf is zero, or at
3in200] -1

stnb.ss = sinfr [1 + =

sin?f, (a8)

For 8,8, less than about 10°, this approximates to

217"
sinoe” = sinfr [1 + 52—]

Thus the effective pointing angle is given by (A4), and horizontal wind speeds will be

underestimated by the factor
92
Ry = [1 + 0—‘2’] (AS5)

if one uses say equation (12) without any correction. This is in fact only approximate - to
properly determine the actual measured radial velocity, equation (35) of HOCKING (1983a)
should be integrated (including an aspect sensitivity for the scatterers) to produce the expected
power spectrum; this will not have a maximum at the exact point described by (A4), but it
will be close.

The half-width of the effective beam can be found by finding the angles (8, ) where the
effective polar diagram [i.e. the product of (A1) and (A3)] falls to one half of the value at
(8,¢) = (0css,0). Consider only the line § = 0. Then the product of (Al)and (A3) gives

A [t e |} (46)
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and we seek the two angles (81 );,; where this falls to one half of the value at § = 6.7;. Some
algebraic manipulation soon shows that a quadratic in sinf results, which has two roots at

21-%
(0]2,)1,2 = sinﬂeﬁ + v ln2.sin00 [1 + 0—0]

92 (A7)

(for 8o, 8, less than about 10°), and this shows that the effective half-power half-width is

L
6%]* A8
m=[1+3] “
times the half-width of the radar alone. Notice that this ratio is independent of the radar tilt

direction, at least out to angles of 10-15°.
Equivalently, we can write that the effective half-power half-width 6., 14 obeys the relation

sin"(&eu%) = sin'z(ag) + sin'z((i,%), (A9)

where 0% is the half power half width of the radar beam and 0,% is the half-power half-width
of the backscatter polar diagram of the scatterers.

Now let use address the issue of how the power received by the radar changes as a function
of tilt angle 6. The power received by the vertical beam can be found by integrating over
the beam, and for a Gaussian polar diagram this integral is proportional to (02”%)’ where
Ocspy is the effective half-power half-width of the combined polar diagrams of the radar and
the scatterers. When the radar beam is phased to look at an off-vertical angle 61, the peak
power will be reduced by a factor

(Begr—01)?
fl= e(-—JJ-r——,o I}

because the peak returned power is returned from 6.5 and not 67, and then by a further factor

°
f2= e(-—é’-}
bacause of the reduction in power due to the polar diagram of backscatter of the scatterers.
Thus the total received power will be proportional to the product of f1 and f2, and then
multiplied by the effective beam half-power half-width squared. Thus the received power on
the off-vertical beam divided by that received on the vertical beam is equal to

f1.12.(8.451)°

(Bess1)?
x P(Or) _ [ [y —0r) 6y (A10)
P) ~ 7P 7 52

Note that this final expression corrects an error in the original derivation of HOCKING et
al, (1986), in which the factor f2 was neglected.
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Chapter 8

GRAVITY WAVES AND INSTABILITIES IN THE LOWER AND
MIDDLE ATMOSPHERE

Jiirgen Klostermeyer

Max-Planck-Institut fiir Aeronomie, 3411 Katlenburg-Lindau, FRG

1. INTRODUCTION

The atmosphere moves ceaselessly on scales ranging from the dimension of the
earth down to the mean free path of individual air molecules. An understanding
of atmospheric motions requires the study of very specific problems that have to
be idealized to focus attention on the basic dynamical processes, and thus are not
faithful in detail. MST radar observations comprise large-scale processes like lon-
gitudinally averaged wind fields, planetary and tidal waves, and synoptic weather
disturbances, mesoscale processes like narrow jet streams, frontal zones and atmo-
spheric gravity waves, and small-scale processes like Kelvin-Helmholtz instability and
turbulence preferably at scales equal to half the radar wavelength. All these processes
interact nonlinearly, e.g. winds can enhance gravity waves and gravity waves can ac-
celerate winds (wave-mean flow interaction) or a gravity wave at a given wavelength
and period can enhance gravity waves at other wavelengths and periods (wave-wave
interaction). Idealizing a problem then means that some linear terms in the hy-
drodynamic equations are neglected to suppress unwanted types of motion and that
nonlinear terms are neglected or simplified to study particular types of interaction
with relatively simple mathematical tools.

It is clearly impossible to discuss the whole variety of atmospheric motions in this
lecture, therefore we will confine ourselves to some basic aspects of mesoscale and
small-scale gravity waves and instability mechanisms. These processes can be (and
partly have been) investigated by single ST or MST radars rather than expensive
networks of radars and other techniques that would be necessary to study details of
large-scale processes (the physics of planetary waves, for example, depends strongly
on the zonal flow averaged around a latitude circle and thus cannot be investigated
by measuring only the time-averaged flow over a single radar station).

Internal gravity waves with wavelengths between tent and less than one kilome-
ter and periods between several hours and several minutes appear to play a central
role in atmospheric wavenumber and frequency spectra (VANZANDT, 1982). There-
fore we discuss the propagation of gravity waves in simplified atmospheric models
in Section 2. Their interaction with the wind, their mutual interaction and instabil-
ity mechanisms based upon these processes will be treated in Sections 3 and 4. All
sections stress the theoretical aspects but are completed by MST radar observations
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showing the relevant hydrodynamic processes. Such a short treatment necessarily
must be incomplete and sketchy but hopefully will stimulate further studies of dy-
namic processes by means of MST radars and other methods.

2. ATMOSPHERIC GRAVITY WAVES

To study atmospheric gravity waves it is convenient to consider an unbounded
non-rotating model atmosphere without molecular viscosity and thermal conductiv-
ity. Thereby we eliminate unwanted types of dynamic processes like gyroscopic or
inertial waves, viscosity waves and heat conduction waves resulting, respectively, from
the Coriolis force and the dissipative terms in the equations of momentum and energy
which play no role at the wavelengths and frequencies considered below. For fur-
ther details of these wavetypes see VOLLAND (1969) and LEBLOND and MYSAK
(1978). The remaining waves that can propagate through the model atmosphere
fall into two categories: High-frequency acoustic waves due to the compressibility of
the air and low-frequency internal gravity waves due to the gravitational force. The
periods and wavelengths of acoustic waves are smaller than about 1 s and 300 m,
respectively, whereas the corresponding values for internal gravity waves are larger
than about 300 s and 300 m. The dispersion curves of both wave types thus are
widely separated in the frequency-wavenumber plane and interactions can in general
be neglected. We can therefore eliminate acoustic waves by assuming that the model
atmosphere is incompressible so that the sound speed is infinite and the density
cannot vary along the path of an air parcel:

dp
5 =0 (1)
where d/dt = 3/8t+u-V and p and u denote density and fluid velocity. It should be
mentioned, however, that this approximation also filters out long-period Lamb waves
which propagate horizontally at the speed of sound and sometimes play a dominant
role in the atmospheric response to tropospheric excitations (KLOSTERMEYER,
1977; LIU et al., 1982).

Together with (1), the continuity equation and the Euler equation yield a closed
set of equations for describing the dynamics of the model atmosphere:

V.ou=0 (2)
du
P TVP—rE=0 (3)

where p and g denote pressure and gravitational acceleration.

Often it is useful to compare the actual atmospheric state with a reference state
defined by hydrostatic equilibrium
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p=po(z), p=po(z), u=0 (4)
satisfying (1) and (2) while (3) reduces to

Po: = —paoy. (5)
Here and in the following, the subscripts z,z and ¢ denote partial derivatives with
respect to horizontal and vertical coordinates and time, respectively. Equation (5)
yields po(z) for any given density distribution po(2z). An important quantity of the
equilibrium state is the Viisala-Brunt frequency N given by

2

N'=-g7 (6)
It will be shown below that N is the angular frequency of an air parcel when it is ver-
tically displaced from its equilibrium position to a slightly higher or lower level. The
period 2x/N is about 5 to 10 min in the earth’s atmosphere. N? < 0 (convection)
means that the air parcel would continue to rise or fall rather than oscillate around
its equilibrium position. Such unstable situation in general cannot persist because
this so-called static instability is eliminated by strong vertical mixing as fast as it
forms.

Small departures from the basic state (4) can be described by the perturbation
density p;, pressure p; and velocity u; defined by

p=po+p1, P=Ppotp, W= (7

Substituting into (1)-(3) and neglecting terms containing productes of perturbation
quantities yields

P+ Wi1poz: = 0 (8)

V- uy=0 (9)

uy + ‘1—VP1 - _P_1g =0 (10)
Po Po

where w; is the vertical component of u;. Equation (10) indicates that a reduced
gravitational acceleration (or buoyancy) gp1/p. and a modified pressure p; act upon
a displaced parcel. In a stably stratified atmosphere, buoyancy pulls back any parcel
to its equilibrium position giving rise to internal wave oscillations. Linearization is
primarily an approximation dictated by our inability to treat nonlinear problems with
adequate mathematical tools. It is valid for wave motions of infinitesimal amplitude
implying that the fluid velocity must be much smaller than the phase velocity, and
clearly filters out all nonlinear interactions between waves of different wavelengths
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and periods as well as self-interaction.

It is convenient to eliminate the variables p;, p1 and u; (the horizontal component
of u;) yielding an equation for w; alone:
2

N
Vzwm + N2Viw1 - 7101," =0 (11)

where V, = (8/0z,0/0y,0). For constant Viisdla-Brunt frequency N, (11) has
plane wave solutions of the form

wy = Wlei(l:-l-Mz—ut)' (12)
Then the dispersion relation
N? N?
1-— |+ (i—+M|M=0 (13)
w? g

must hold for a nontrivial solution.

The imaginary term in (13) is a consequence of the fact that for constant N, the
unperturbed density po decreases exponentially with height while the wave energy
density should remain uniform in the absence of energy sources. Equation (6) in fact
yields

polz) = pol0)e™# (14)
where H = g/N? is the density scale height. To derive the perturbation energy
density we note that the vertical displacement ¢ of a fluid parcel from its equilibrium
level is given by

C! = uwy (15)
so that integrating (8) with respect to time yields
= %C- (16)
From the scalar product of u; with (10), and from (15) and (16) we then obtain

(Bt +N2¢)] + 9 () =0 a7)

where pou?/2 and poN?(?/2 are the kinetic and potential wave energy densities and
pu, is the energy flux up to an arbitrary nondivergent contribution. The average
kinetic and potential energy densities are equal, and the average wave energy density
E varies as (ECKART, 1960)

E o po(2)|wn . (18)

Constant E thus requires



wy o eF.
Indeed, with M = ReM + ilmM we obtain from (13)

1
ImM = —ﬁ'

and with m = ReM

2 12

W= —————
12+m2+m

N
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(19)

(20)

(21)

The frequency is zero for vertical phase propagation (I = 0) and equal to N for
horizontal phase propagation (m = 0) if I* >> 1/4H*. For w > N, no waves are
possible. The hyperbolae (dashed curves) in Figure la represent contours of constant

w in the wavenumber domain. The group velocity

_(gga_w
% = (31" 3m)

(22)

is normal to the contours always pointing away from the ordinate. It is typical of
internal gravity waves that the vertical components of the phase and group velocities

have different signs.

m H
{0}
w=onst
X
X //i
Y 's ’ 1 LR
7
p \\
Vi

(b)

k= {l,m]

wove fronts

Fig. 1. (a) Contours of constant frequency in the wavenum-
ber domain for internal gravity waves in an incompressible
fluid (dashed lines) and in a Boussinesq fluid (continuous
lines). The group velocity ¢, is normal to the contours. (b)
Internal gravity waves are transverse with the fluid velocity
parallel to the wave fronts.

For short wavelengths with 1 + m? >> 1/4H?, (21) yields

w? = N?cos? 8
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where without loss of generality, 8 is the angle between the horizontal and the
wavenumber vector k = (I,m) with |6] < 7/2. The short wave dispersion equation
(23) could have been obtained directly from the equations of motion by applying the
Boussinesq approximation which consists of neglecting density variations in the in-
ertia terms but retaining them in the buoyancy term. Then the last term on the left
of (11) vanishes and (23) follows immediately. With the Boussinesq approximation,
the hyperbolic contours w = const in Figure la degenerate to linear asymptots of the
hyperbolae including the angle 8 with the ! axis indicating that this approximation
is the better the larger k.

From (9) and (10) we find that plane internal gravity waves are transverse with
u; in the z — z plane parallel to the wave fronts (Figure 1b). Note that at 6 = 0,
the phase propagation is horizontal and u, vertical, showing that for small vertical
displacements and N? > 0, an air parcel oscillates at the Vaisdla-Brunt frequency.

A concise description of further details of the linearized theory of wave propa-
gation such as wave energy, wave action, slowly varying wave trains in nonuniform

media etc. is given by BRETHERTON (1971).

We will complete this chapter by showing MST radar observations that indicate the
relevance and applicability of the foregoing to dynamic processes in the troposphere,
stratosphere and mesosphere. Figure 2 contains contour lines of the power density
of vertical velocities observed after the passage of a severe thunderstorm. Convective

z/km

300 8 50 35 27 22 20
T/min

Fig. 2. Time-height contours of power spectra of vertical ve-
locity measured with the SOUSY VHF Radar on 2 June 1978
after the passage of a thunderstorm. The peaks of the spec-
trogram correspond to a power of 1.1x1073m?s~2. The dot-
ted curve represents the height profile of the Viisala-Brunt
period obtained from radiosonde data (from ROTTGER,
1980).
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activity in the troposphere at times of thunderstorms should in particular excite inter-
nal wave motions in the stratosphere because rising columns of tropospheric air may
penetrate a short distance through the tropopause and transfer kinetic energy to the
stably stratified stratosphere (STULL, 1976). The spectrogram in Figure 2 demon-
strates that oscillations with periods larger than 2r/N are observed at all heights
with the strongest oscillations occurring above the tropopause at a height near 10
km. No oscillations are found at periods less than 27 /N so that it appears possible
to derive mean potential temperature profiles from the cut-off period of gravity wave
spectra (ROTTGER, 1980).

3

703 =

IS

Fig. 3. Time variation of vertical velocity at four heights
measured with the mobile SOUSY VHF Radar at Andenes
(Norway) on 21 January 1984. Spectral analysis reveals
significant peaks at periods near 5, 16 and 30 min (from
RUSTER, 1984).

Figure 3 shows the time dependence of the vertical velocity component of gravity
waves measured in the arctic mesosphere. The spectra of the time series have three
significant peaks at periods near 5, 16 and 30 min. Spectra with multiple peaks
appear to be the rule rather than the exception at mesospheric heights. Almost all
radar records show the presence of horizontally propagating waves with periods near
27 /N that must be generated by local sources rather than sources at lower atmo-
spheric regions. Two possible source mechanism, Kelvin-Helmholtz and parametric
"instabilities, will be addressed in the next two chapters. There seem to be no detailed
case studies of the horizontal and vertical phase propagation of short-period gravity
waves in the literature.

3. WAVE-MEAN FLOW INTERACTION

In the previous chapter we discussed linear gravity waves that do not interact.
If interaction among waves or between waves and mean flow takes place, we can
distinguish between weak and strong interactions. In weak interactions, the space
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and time scales of energy exchange processes greatly exceed the typical wavelengths
and periods so that the solutions of the equations of motion can be expressed as
power series of small nondimensional parameters and can be found by perturbation
methods (KEVORKIAN and COLE, 1981). An example will be given in the next
chapter. Here we will study two types of strong wave-mean flow interaction charac-
terized by energy exchanges occurring over scales comparable to the wavelength and
period. The first type is the critical layer absorption of internal gravity waves loosing
their momentum to a vertically sheared mean flow, the second one is the stability of
parallel flows to infinitesimal wave perturbations.

3.1. GRAVITY WAVE CRITICAL LEVEL

Besides being partially or totally reflected by a height dependent mean wind uy(2),
an internal gravity wave can meet a critical level z = z. at which ue(z) is equal to
its horizontal phase speed. In a continuously stratified shear flow, the Richardson
number is defined by

. N?
Ri = — (24)
Up,
representing the ratio of the energy required to interchange vertically adjacent fluid
parcels against the gravity acceleration to the available kinetic energy (e.g. CHAN-

DRASEKHAR, 1961). For R: > 1/4, ray theory describing the propagation of waves

ug (2)

wove crests

Fig. 4. Schematic of progression of a gravity wave packet
propagating toward a critical level z, at four different times.
The horizontal component of k remains constant. The fluid
velocity is parallel to the wave fronts.
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in a slightly nonuniform medium can be used to study how an internal gravity wave
packet approaches a critical level (BRETHERTON, 1966). The result is summarized
in Figure 4 showing that the wavenumber increases and the perturbation velocity
u, becomes more and more horizontally oriented as the packet comes closer to z.
Moreover, the time required for the packet to reach z. becomes infinite indicating
that the packet would be effectively absorbed rather than reflected or transmitted.

Since ray theory becomes invalid at the critical level, the Frobenius method was
used to determine the behaviour of an internal gravity wave at z. (BOOKER and
BRETHERTON, 1967). We again describe the perturbed state of the atmosphere
by (7) but assume

u = (up(z) + ug, wn) (25)

considering only two-dimensional motions in the z—z plane. Substitutinginto (1)-(3),
neglecting products of perturbation quantities and eliminating py, ;1 and u; yields
under the Boussinesq approximation

2

d d
aﬁ(wlxx + whz) - a;(uo‘tzwlz) + Nzwl;-: =0 (26)

where d/dt = 3/8t4u,0/8z. Equation (26) reduces to the Boussinesq approximation
of (11) for ue = 0, and with N = const, uo = const and (12) yields the dispersion
relation

Q% = N?cos’ 8 (27

where = w — lug is the intrinsic (or Doppler-shifted) frequency. If uo is height
dependent, there is a new restoring effect due to the vertical derivative of the mean
vorticity up,. Assuming a solution of the form

w = Wr}(z)eﬂ(r—ci) (28)

then gives the Boussinesq form of the Taylor-Goldstein equation

(ug — ¢)*W + [N? = (uo — c)ug — (uo — ¢)*P|W, =0 (29)

with the prime denoting differentiation with respect to z. The original form of the
Taylor-Goldstein equation obtained from (1)-(3) without Boussinesq approximation
is

[pofo — YWI = (pougWn) = | L2 po(ug — )| Wi = 0. (30)
=

Besides containing the important special cases of internal gravity wave propagation
and static instability for ug = 0, (29) is the starting point for analysing the effects of
wind shear on gravity waves. For further studies of the critical level problem we note
that at z = z.,ug — ¢ = 0 so that (29) has a singularity across which solutions have



278

to be joined. We assume that around z = z.,u, and N can be expanded in power
series

ug = c+ug(z)z—z)+---

31
N = N(E)+ N z-2)+--- (31)
with uf(z.) # 0 and try to find a solution of the form
Wi =Y aj(z — z.)"*, ag #0. (32)
J=0
Substituting (31) and (32) into (29) yields
| . 1.1
=3 Fiu, p=(Ri(z)-7)? (33)
requiring Ri(2.) > 1/4 for real p. Then the general solution near z = z, is
Wi & Az — 2)*% 4 B(z — z.)5%. (34)

The foregoing analysis gives no indication how to join the solutions across z = z..
A proper treatment requires some length (BOOKER and BRETHERTON, 1967) and
is therefore beyond the scope of this lecture. One finds that for ug(z.) > 0, the A-
wave Wy, = A(z — 2.)/**¥ is associated with upward propagating energy for z < z,
and z > z, whereas the B-wave W5 = B(z — z.)'/?~* is associated with downward
propagating energy. For ug(z.) < 0, the roles of both waves are reversed, and we
obtain

(Wialz > z)| = [Wialz < z.)|e "™ "nuolz)

Wiglz > 2)| = [Wis(z < zc)le“""““{)(") (35)

indicating that both waves are severely attenuated as they cross z.. The vertical flux
of horizontal momentum is independent of height on each side of z. but discontin-
uous across z. with the attenuation factor e™?™ suggesting that there is significant
horizontal momentum transfer to the mean flow at the critical level.

From (34) we find that near z,

lwi] ~ |z = ze|¥, || ~ |z = 2| (36)

indicating that w, is well behaved whereas u; tends to infinity at z.. The wave-
associated shear tends to become infinite at an even higher rate:

husa| ~ [z — 2|75 (37)

According to BOOKER and BRETHERTON (1967), these infinities are spurious
in the sense that nature always generates wave packets of finite spectral width so
that all Fourier components with infinitesimal amplitude encounter critical levels at
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different heights and the infinities do not in fact occur in the total integrated distur-
bance. Nevertheless, gravity waves generated by sufficiently monochromatic sources
may produce large-amplitude oscillations near critical levels so that one of the hith-
erto neglected mechanisms may become important: (1) Nonlinearities due to large
perturbation amplitudes; (2) molecular dissipation due to strong vertical variations;
(3) instability due to strong vertical shears.

3.2 KELVIN-HELMHOLTZ INSTABILITY

For illustrating some of the mechanisms and concepts of dynamic stability, we will
work through a classic problem that was first addressed in 1868 by Helmholtz and in
1871 by Kelvin, and demands only little mathematics. We consider a basic flow of an
incompressible inviscid two-layer fluid that has unlimited extent, constant densities ps

- Up @pz@

Fig. 5. Kelvin-Helmholtz flow configuration.

and py;, and horizontal velocities Uy and Uy (Figure 5). We assume that the flow is
disturbed by an infinitesimal perturbation displacing the interface between the two
layers from z = 0 to

Z = C)(I,t) (38)

Since the model is discontinuous, the Taylor-Goldstein equation (30) must be solved
separately in each layer, and both solutions must be matched across the interface
z = (, by two matching conditions.

(1) The interfacial displacement has to be continuous. To first order w,(+0) =
Gt + Us (i and wy(=0) = (i + Urr€i, at the upper and lower sides of the interface,
respectively. For a travelling wave solution of the form (28) we then get

e
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U—¢c Uy-c
(2) At z = (y, the total pressure must be continuous. Using Bernoulli’s theorem

(e.g. LAMB, 1945), we obtain

(39)

o1 (U1 = epei(+0) = E—un(+0)] = pus [(Unr = i (=0) - FE—w(-0)].
D[ - C Un -C
(40)
The perturbation is further assumed to decay to zero for |z| — oo yielding the
boundary conditions

w; —+ 0 as z — foo. (41)

For the Kelvin-Helmholtz flow configuration (Figure 5), the Taylor-Goldstein equa-
tion (30) reduces to

W’ — BW, =0 (42)

and must have a solution of the form

W] =

-1z
{ Ae at 2>0 (43)

Bet* at 2 <0

to satisfy the boundary conditions (41). Equations (39) and (40) then yield two
homogeneous linear equations for A and B which are nontrivial only if
i
oniUp + piUy [pu -p1 g pIIPI 2|?

c= = - Un-U 44

pr+ pr pritpr 1 (pur+ 91)2( =01 (44)

The first term on the right of (44) may be considered as the density-weighted mean

velocity of the two fluid layers. The wave perturbation then travels with a velocity d

given by

191 )
& =d? - EPTTTW(U” - Up)? (45)
relative to the mean velocity where
pi—pi g\}
do = BT PL S 46
° (Pu +p1 (46)
is the phase velocity in the absence of any basic flow. For
2 2
N PP g
(U =01 > pupr 1 @)

¢ is complex so that the wave perturbation grows and remains stationary with respect
to the mean flow. For any given Uy — U; # 0, the interface is unstable for sufficiently
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small wavelengths. If p;; = py, it is unstable for all wavelengths indicating the

stabilizing influence of a density change. Finally we note that for small density

changes, p?; — p? ~ 2p;1(p1r — pr). Then we can define a Richardson number by
Ri—Pu—pL_ 9

T U -UR 1 (48)

so that Ri > 1 (< 1) for stability (instability).

The instability of the Kelvin-Helmholtz flow configuration at high wavenumbers
is a consequence of the fact that vorticity is concentrated at a single height. A
physically more realistic model together with the neutral stability curve obtained by
DRAZIN (1958) is shown in Figure 6, where

z _N2, , Nd\?
uo = Au ta.nh(g), po=¢ 9’ Ri= (E) (49)
The flow is stable for Rt > 1/4. We note that the expression “Kelvin-Helmholtz
instability” is also used for shear flow instability in models with continuous density
and wind profiles.

(a} z z
’ d
t Yo ¢
T T
-8u Au 1.0\
/
’
’
T T T
{b)
0.2+ B
Ri
0.1k stable 1
unstable
0.0 i L
0.0 05 10 1.5 2.0
id

Fig. 6. (a) DRAZIN’s (1958) model. (b)
Neutral stability curve.

We conclude the theoretical part of this chapter by summarizing some general
results on the stability of nonrotating stratified shear flows (for details ¢f. LE BLOND
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and MYSAK (1978)).

(1) YIH’s (1955) extension of SQUIRE’s (1933) theorem: For each unstable three-
dimensional disturbance in a stratified fluid, there is a more unstable two-dimensional
one propagating parallel to the flow. For this reason we have considered only two-
dimensional waves of the form (28).

(2) SYNGE’s (1933) theorem: A necessary condition for instability is

(U - &) + c2(polU") = 2U ~ ¢ )poN* = 0 (50)
somewhere in the field of flow. Here, ¢, = Rec and ¢; = Imec. For pg = const, (50)
yields U” = 0 which is Rayleigh’s inflection point theorem.
(3) MILES’ (1961) stability condition: A sufficient condition for stability is Ri >
1/4 everywhere in the flow.
(4) HOWARD’s (1961) semicircle theorem: The complex wave velocity ¢ of an
unstable wave with ¢; > 0 lies in the semicircle

ler — (Uomax + uOmin)/2}2 + C? < [(“omax — uﬂnﬁn)/zlz- (51)

There are characteristic streamline patterns of fluid motions near critical levels
known as cat’s eyes. For N = 0 and u,—c ~ z—z., Kelvin derived from (29) the cat’s
eye pattern shown in Figure 7a as seen by an observer moving with the wave velocity.
The existence of closed streamline patterns is a purely kinematic consequence of a fi-
nite vertical velocity component at the critical level. In a stratified flow (N > 0), the
cat’s eye pattern becomes asymmetric as indicated by Taylor’s cockeyed cat’s eye in a
three-layer model fluid (Figure 7b). According to HOWARD and MASLOWE (1973),

also intermediate forms between Kelvin’s and Taylor’s cat’s eye patterns are possible.

Fig. 7. (a) Kelvin’s cat's eye streamline pattern. (b)
Taylor’s cockeyed cat’s eye streamline pattern.

There is evidence that cat’s eye structures occur in the time-height distributions of
MST radar echo power both in the troposphere (ROTTGER and SCHMIDT, 1979)
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and in the mesosphere (REID et al., 1987) {Figures 8 and 9). The enhanced echo
power is probably due to enhanced turbulence in thin layers surrounding the regions

of closed streamlines (KELLY and MASLOWE, 1970).

height z {m)

4300

Loop L 29 JUNE 1978

T T T
30s 40s 50s 10h44m00s 10s

Fig. 8. Contour plot of constant MST radar echo power in the time-height plane

indicating cat’s eye structures (from ROTTGER and SCHMIDT, 1979).

Vertical Beam

HPTEHU A

76 = T T

e 85

£

3 Zt -

o Mg - o aE

5 79— wifi H;,f . gimidiini?

3 i gy i
76‘1;’*"‘—']'.* - = T T ‘L
85

i R

79 - ’iiin.«.i i
764 —— A

B et t Cor ;
1115 1130 L5 1200 1215 1230 Time/LT

Fig. 9. Time-height intensity plot of MST radar echo power in three antenna beam
directions. A cat’s eye is visible between 11:55 and 12:10 LT (from REID et al,,

1987).

Detailed investigations of cat’s eye patterns observed by MST radars have not
yet been performed, but there are three examples of Kelvin-Helmholtz instabilities
that were analyzed and compared to numerical model computations (VANZANDT et
al., 1979; KLOSTERMEYER and RUSTER, 1980, 1981; RUSTER and KLOSTER-
MEYER, 1983). Figure 10 shows the radial velocity oscillations associated with a
Kelvin-Helmholtz instability at the bottom side of a polar jetstream and measured
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with height and time resolutions of 150 m and 10 s, respectively. The oscillations re-
veal a period of about 4 min and amplitudes of the order of 1 m s~!. The critical level
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Fig. 10. Band pass-filtered time series of radial velocity
oscillations associated with a Kelvin-Helmholtz instability
and measured by the SOUSY VHF Radar on 11 April 1980
(from KLOSTERMEYER and RUSTER, 1981).
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Fig. 11. Measured and computed height profiles of Kelvin-
Helmholtz-associated velocity oscillations (from KLOSTER-
MEYER and RUSTER, 1980).
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is near z = 5.55 km and is indicated by a vanishing amplitude and a sudden phase
jump of about 100°. Figure 11 shows a comparison between measured and computed
height profiles of the amplitude and phase of the radial velocity oscillations. Fur-
ther studies indicate that the growth of the observed Kelvin-Helmholtz instability is
limited by the onset of static instability producing periodic radar echo power bursts
(KLOSTERMEYER and RUSTER, 1981).

4. WAVE-WAVE INTERACTION

Here we will investigate the general nature of weak resonant interaction between
wave triplets and will always keep in mind that this is an oversimplification of nat-
ural processes which consist of resonant and forced energy transfer over continuous
wavenumber and frequency domains. The actual wave spectrum thus is the result of
a balance between the effects of sources, dissipation and redistribution due to non-
linear interaction. Moreover, the application of a weakly nonlinear theory which is
based on perturbation methods, is restricted to small-amplitude waves. It should be
mentioned, however, that the stability of a monochromatic internal gravity wave with
arbitrary amplitude is closely related to weak resonant interactions. This so-called
parametric instability provides a simple example for the instability of time dependent
and spatially varying flows and will therefore be discussed in the second part of this
chapter.

4.1. WEAK WAVE-WAVE INTERACTION

If we take into account the nonlinear terms that have been neglected in the previous
chapters, we obtain a wave equation of the form

L(w)+ Quw,w)=0 (52)

where £ and @ are differential operators which are linear and quadratic in w, re-
spectively, and w represents any of the perturbation variables. We assume that there
is a small nondimensional quantity ¢ characterizing the relative magnitude of the
nonlinear term in (52). In a straight-forward perturbation procedure we expand w
in powers of €,

w=ew + £ wy + ... (53)

and solve the equations
L{w) = 0, (54)
L{w,) = —Q(uwy,w) etc. (55)

Provided the expansion (53) converges we thus obtain a solution for (53) for waves
of finite but small amplitudes (for details of perturbation methods ¢f. KEVORKIAN
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and COLE (1981)). According to Chapter 2, (54) yields plane wave solutions in
uniform atmospheric models so that

1 .
wy = §W,e"‘"“‘" + complex conjugate (56)

where the wavenumber vector k and angular frequency w satisfy a dispersion relation

D(k,w) = 0. (57)

To second order in ¢ we get from (55) a nonhomogeneous linear equation for w, with
a forcing term depending on w;. The process can be continued to any order of ¢.
Now we consider the case that w; consists of two plane waves,

wy = wa + ws (58)
both satisfying (54) and (57). Then (55) becomes

L(w.) = —Q(wa + ws, wa + wp) (59)

where w; = w, is the result of the interaction between w, and wy. Since the quadratic
operator on the right of (59) produces plane waves with wavenumber vectors k, =
0, +2k,, +2k;, +(k, % k;) and corresponding angular frequencies w,, w; has the
form

1 W_e'lkeT-wel) 4 complex conjugate
we=i¥
2 D(kcy"-’c)
provided D(k.,w,.) # 0. The summation is performed over all sign combinations

resulting from the quadratic forcing term in (59). If a = b and both signs are allowed
for all wavenumbers and frequencies, all cases can be described by

(60)

ka+kb+kc=0,wa+wb+wc=0~ (61)

The forced wave e*w, plays only a minor role in (53) as compared to e(w, +w;) unless
D(kc,w.) = 0. Then resonance occurs so that the amplitude of w. grows in space
and time. Such a resonant wave is also called secular. It dominates the non-resonant
waves after the interaction has lasted for some time and can therefore be considered

as the most significant result.

It depends on the specific form of the dispersion relation whether three interacting
waves can satisfy the resonance conditions (61) and (57). Clearly, if the waves are
nondispersive, i.e. propagate at the same speed, all interactions are resonant. For
internal gravity waves in a Boussinesq fluid with N = const, the resonance conditions
may be written

k, + ks = k., cos8, * cos8, = cos b, (62)
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using (23). The loci of resonant triads can be calculated from simple geometrical
considerations and are shown in Figure 12. It should be mentioned, however, that
the Boussinesq approximation consists of neglecting terms of first and higher orders
in the ratio of wavelength to density scale height (Chapter 2) and thus is only appli-
cable if this ratio is much smaller than ¢ (LONG, 1965).

YEH and LIU (1985) pointed out that resonant wave interaction may play an
important role in the evolution of the atmospheric wave spectrum. There are in
particular three classes of resonant triads that can provide efficient energy transfer
between separate parts of the gravity wave spectrum and have first been identified
by MCCOMAS and BRETHERTON (1977) as elastic scattering, induced diffusion
and parametric subharmonic instability (Figure 13). By elastic scattering, an upgoing

Fig. 12. Resonant interaction diagrams for internal gravity waves in a
Boussinesq fluid for #, = 0°,-30° and —60°. Any point on a branch
defines a resonant triad satisfying (62). The wavenumber vector with

the least slope is always the vector sum of the other two. Thick (thin)
branches indicate unstable (stable) triads (after PHILLIPS, 1969).

K
K
hi bu Bb
K
(b {cl

Fig. 13. Characteristic classes of resonant triads:
(a) elastic scattering, (b) induced diffusion, (c) paramet-
ric subharmonic instability.
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wave is scattered into a downgoing one by resonantly interacting with a low frequency,
nearly vertically propagating wave with almost twice the vertical wavenumber of the
other two waves. This process makes the atmospheric spectrum vertically symmetric
if it is not so initially. The process of induced diffusion is responsible for the evolution
of small-scale waves and consists of two almost identical waves which interact reso-
nantly with a large-scale low-frequency wave propagating almost vertically. Finally,
in the process of parametric subharmonic instability, two waves with nearly oppo-
site large wavenumber vectors and almost identical frequencies resonate with a third
wave having a much smaller wavenumber and twice the frequency. This mechanism
provides energy transfer from an energetic large-scale wave to small-scale waves at
subharmonic frequencies.

4.2. PARAMETRIC INSTABILITY

There is a close connection between the interaction of weak internal gravity waves
and the parametric instability of a monochromatic internal gravity wave of arbitrary
amplitude (MIED, 1976; KLOSTERMEYER, 1982, 1983). For studying parametric
instability, it is useful to assume a uniformly stratified Boussinesq model and to
introduce the stream function ¥ which describes the two-dimensional motion of an
incompressible fluid in the r — z plane by

u= (%, - ¥,) (63)

and satisfies (2). We further introduce the buoyancy

p = p.
B=-2"2, 64
— (64)

where p, is some suitable constant reference density used in the Boussinesq approx-
imation to replace p in the inertia terms (e.gz. LEBLOND and MYSAK, 1978).
Buoyancy and Vaisala-Brunt frequency are related by

N*=B,. (65)

Equations (3) and (1) then yield
V¥, + B,=¥, V¥, -¢, VI, (66)
B, — N*¥,.=V¥.B,-9,B, (67)

We note that {66) results from the vorticity equation that is obtained by taking the
curl of (3). The plane wave

¥ = Acosp, B=-NUw"Acosyp (68)
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with ¢ = lz + mz — wt is a solution of (66) and (67) if the dispersion relation (23)
is satisfied. The nonlinear terms are identically zero as a consequence of incompress-
1bility.

We thus have the opportunity to investigate the stability of a finite-amplitude
plane internal gravity wave by expressing the stream function and buoyancy fields as
sums of the basic state (68) and a perturbation:

U=Acosp+¢, B=-Niwldcosp+b. (69)

We define nondimensional variables by

(7,2) = k(z,2), 1= Nt, U= kN"'¥, B=kN7?B, M =k*2N)'4A  (70)

with k = (/* + m?)"/? and introduce a rotated coordinate system (£,7) such that
the 7 axis coincides with the direction of propagation of the basic wave (Figure 14).

(-asnd 1ea cou P

Fig. 14. Wavenumber vector of ba-
sic internal gravity wave, (0,1), and
Floquet vector (—asin§,acos 3) in
£ — 77 coordinates (from KLOSTER-
MEYER, 1982).

Substituting (69) into (66) and (67) and neglecting terms containing products of the
perturbation quantities ¢ and b then yields

V2, + sinfb; + cosBb, = 2M sinp(ve + Vi) .
by — sinfe — cos 8y, = 2M sinp(e + be) (71)

where the tilde of the nondimensional variables has been omitted and V? = §2/9¢% +
8%/0n®, ¢ = n — cos 8t. The terms on the right of (71) couple the perturbations with
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the basic state via a periodic coefficient 2M sin ¢ so that ¥ and b take a parametric
form dictated by Floquet theory (MIED, 1976):

(’lp,b) = Ci(—nlinﬁ€+acmﬁn)+/\t Z (d)j,bj)cijw. (72)

j=-o0

As indicated in Figure 14, |a| can be considered as the magnitude of a Floquet vector
forming an angle § with the basic wavenumber vector. Substitution of (72) into (71)
yields a linear eigenvalue problem for the complex quantities A and (¢, b;),

P+ () = M+ g0 4 9 = 0

_ - 73
P+ s+ P 4 (8 = b+ P + s =0 (73)

with j = 0,+1,£2... and constant coefficients p, g,r, s depending on j, M, 8, a, 3 (cf.
KLOSTERMEYER, 1982). Solutions can be obtained numerically for any given accu-
racy if the interation equations (73) are truncated at j = £J with J sufficiently large.

The numerical search for growing disturbances (ReA > 0) is greatly facilitated by
considering the case M — 0. Then (73} yields for nontrivial solutions {1, b;)

o cos(f + B) + j cos§
[(asinB)? + (acos B + ; 2H/7

From (72) and Figure 14, the nondimensional perturbation frequencies and wavenum-
bers in z — z coordinates are

ReAd =0, jcosf —ImA =

(74)

wj = jcosf —ImA -
k, = (acos(fd+ B)+ jcosd, asin(f + B) + jsiné) (78)

so that with (74)
w; = cos §; (76)

where 6; is the angle between k; and the horizontal. For M — 0, the disturbances
thus are freely propagating waves that satisfy the resonance conditions

kinn —kj =k, wjp1 —wj=w (77)

for all j. Computations for M > 0 show in agreement with HASSELMANN’s (1967)
criterion for nonlinear wave stability that ReX > 0 (i.e. instability) for resonant sum
interactions and ReA = 0 (i.e. stability) for resonant difference interactions. In Fig-
ure 12, the loci of unstable triads are indicated by the thick branches.

In a laboratory experiment, DAVIS and ACRIVOS (1967) demonstrated that an
internal gravity wave propagating along a diffuse stratified interface between fluids of
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different densities may become distorted by the growth of a three-wave resonance giv-
ing rise to local turbulent mixing. Their photographs are shown in Figure 15. MCE-
WAN and ROBINSON (1975) found good agreement between predicted and observed
small-scale parametric instabilities in a cylindrical chamber. Although the potential

Fig. 15. Progressive distortion of an internal gravity
wave by resonant wave-wave interaction {from DAVIS
and ACRIVOS, 1967).

role of parametric instability in forming internal wave spectra in the atmosphere has
been stressed by some authors (MCEWAN and ROBINSON, 1975; DRAZIN, 1977),
there are only few atmospheric observations that have been interpreted in terms of res-
onant triads or parametric instability. Thus the power spectrum of a strong internal
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Fig. 16. Doppler shift of a 8 MHz continuous radio wave
recorded at four Japanese stations after the eruption of
Mount St. Helens on 18 May 1980. In the lower three
records, an internal gravity wave with a period near the
local Visisdla-Brunt period is strongly disturbed by short-
period oscillations after 22:55 UT (from LIU et al., 1982).

gravity wave in the lower thermosphere which was generated by an eruption of Mount
St. Helens, was explained in terms of parametric instability (KLOSTERMEYER,
1984). Figure 16 showing the Doppler shift of an 8 MHz radio wave reflected from
the ionosphere near 200 km height, indicates strong high-frequency disturbances su-
perposed on a gravity wave at Kyoto, Yokaichi and Uji after 2255 UT. Note a certain
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resemblence of these records to Figure 15¢c.

ROTTGER (1987) has noted that time series of spectra intensity plots obtained
from MST radar measurements also show high-frequency oscillations superposed on
low-frequency gravity waves. An example is seen in Figure 17 at 69.6 km after
1300 AST. Rottger further points out that the amplitude the low-frequency waves
does not grow with inreasing height (visible between 1200 and 1300 AST in the height

R IR L Sl SRR

NOV. 21, 1981
I 1

Fig. 17. Time series of spectra intensity plots measured with the mo-
bile SOUSY VHF Radar at the Arecibo Observatory (from ROTTGER,
1987).

interval from 69.6 to 76.8 km). Since wave breaking discernible from strong echo in-
tensities does not occur some other saturation process such as parametric instability
must be considered.

Short-period gravity waves with frequencies close to the local Vaisala-Brunt fre-
quency occur frequently in mesospheric MST radar observations of vertical or near
vertical radial velocities (HARPER and WOODMAN, 1976; MILLER et al., 1978).
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These waves do not show any vertical phase variation over height intervals of sev-
eral kilometers indicating that they propagate horizontally and are generated in situ
rather than in lower or higher atmospheric regions. Occasionally the local source
mechanism is Kelvin-Helmholtz instability of a wind shear due to long-period iner-
tial or tidal waves (KLOSTERMEYER and RUSTER, 1984; YAMAMOTO et al,,

1988). But in general the simultaneously observed wind shear is too weak for Kelvin-
Helmholtz instability to set in. A numerical simulation of the wave motions shown in
Figure 3 indicates that parametric instability could be another source candidate of
the observed short-period waves. Figure 18a shows the same observations as Figure
3 but with very high-frequency noise and high-frequency waves removed by recursive
Butterworth filters (continuous and dashed curves respectively). Figure 18b shows
the numerical simulation where the dashed lines represent the finite-amplitude basic
wave and the continuous lines the sum of the basic wave and the fastest growing para-
metric instability mode. Note that the height interval in Figure 18b is 75% of the basic
vertical wavelength whereas in Figure 18a, it is only about 10%. The observed and
computed short-period oscillations show good qualitative agreement. Both reveal in
particular considerable temporal amplitude modulation, and the dominating period
is not an integer multiple of the basic period. There is in general also no vertical phase
variation. But the computed short-period oscillations show sudden phase reversals,
e.g. at Nt = 20 and kz = 4.8. The loci of sudden phase reversals lie on basic wave

SQUSY VHF RADAR
21 JAN 19BL

: \\ X "[-\‘\\‘_‘.:

. Z ‘ RN ’\-’(\ e \,_\ 70]km
1 TR R

7=70.6 km

n30 1200 1230 1300

Fig. 18a. Same as Figure 3 but with noise and
high-frequency waves removed (continuous and dashed
curves, respectively). The time series at z = 70.6 km
is not continued beyond 12 LT with regard to very
small signal-to-noise ratios.
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Fig. 18b. Numerical simulation of a paramet-
ric instability. The dashed and continuous lines
represent the basic wave and the sum of basic
wave and fastest growing instability mode, re-
spectively. Time, height and vertical velocity
component are normalized according to (70).

fronts. Whereas there is no clear evidence for phase reversals in Figure 18a (perhaps
due to the small height interval ) they become visible if velocity measurements can
be obtained over larger height intervals (e.g. Figure 1 of MILLER et al. (1978)).
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296

REFERENCES

Booker, J.R., and F.P. Bretherton, The critical layer for internal gravity waves in a
shear flow, J. Fluid Mech., 27, 513-539, 1967.

Bretherton, F.P., The propagation of groups of internal gravity waves in a shear
flow, Q.J.R. Meteorol. Soc., 92, 466-480, 1966.

Bretherton, F.P., The general linearized theory of wave propagation, In: Mathemat-
ical Problems in the Geophysical Sciences (W.H. Reid, ed.), 61-102, Am. Math.
Soc., Providence, Rhode Island, 1971.

Chandrasekhar, S., Hydrodynamic and Hydrodmagnetic Stability, Clarendon, Ox-
ford, 1961.

Davis, R.E., and A. Acrivos, The stability of oscillatory internal waves, J. Fluid
Mech., 30, 723-1736, 1967.

Drazin, P.G., The stability of a shear layer in an unbounded heterogeneous inviscid
fluid, J. Fluid Mech., 4, 214-224, 1958.

Drazin, P.G., On the instability of an internal gravity wave, Proc. R. Soc. Lond.,
A356,411-432, 1977.

Eckart, C., Hydrodynamics of Oceans and Atmospheres, Pergamon, Oxford, 1960.

Harper, R.M., and R.F. Woodman, Preliminary multiheight radar observations of
waves and winds in the mesosphere over Jicamarca, J. Atmos. Terr. Phys.,
39, 959-961, 1977.

Hasselmann, K., A criterion for nonlinear wave stability, J. Fluid Mech., 30, 737-
739, 1967.

Howard, L.N., Note on a paper of John W. Miles, J. Fluid Mech., 10, 509-512, 1961.

Howard, L.N., and S.A. Maslowe, Stability of stratified shear flow, Boundary-Layer
Meteorol., 4, 511-523, 1973.

Kelly, R.E., and S.A. Maslowe, The nonlinear critical layer in a slightly stratified
shear flow, Stud. Appl. Math., 49, 301-326, 1970.

Kevorkian, J., and J.D. Cole, Perturbation Methods in Applied Mathematics, Sprin-
ger, Berlin, 1981.

Klostermeyer, J., Lamb waves originating in nongeostrophic disturbances: A case

study, J. Geophys. Res., 82, 1441-1448, 1977.

Klostermeyer, J., On parametric instabilities of finite-amplitude internal gravity
waves, J. Fluid Mech., 119, 367-377, 1982.



297

Klostermeyer, J., Parametric instabilities of internal gravity waves in Boussinesq
fluids with large Reynolds numbers, Geophys. Astrophys. Flusd Dyn., 26, 85-
105, 1983.

Klostermeyer, J., Observations indicating parametric instabilities in internal gravity
waves at thermospheric heights, Geophys. Astrophys. Fluid Dyn., 29, 117-138,
1984.

Klostermeyer, J., and R. Ruster, Radar observation and model computation of a
jet stream-generated Kelvin-Helmholtz instability, J. Geophys. Res., 85, 2841-
2846, 1980.

Klostermeyer, J., and R. Riister, Further study of a jet stream-generated Kelvin-
Helmholtz instability, J. Geophys. Res., 86, 6631-6637, 1981.

Klostermeyer, J., and R. Riister, VHF radar observation of wave instability and
turbulence in the mesosphere, Adv. Space Res., 4, 79-82, 1984.

Lamb, H., Hydrodynamics, 6th ed., Dover, New York, 1945.
LeBlond, P.H., and L.A. Mysak, Wauves in the Ocean, Elsevier, Amsterdam, 1978.

Liu, C.H., J. Klostermeyer, K.C. Yeh, T.B. Jones, T. Robinson, O. Holt, R. Lei-
tinger, T. Ogawa, K. Sinno, S. Kato, T. Ogawa, A.J. Bedard, and L. Kersley,
Global dynamic response of the atmosphere to the eruption of Mount St. Helens
on May 18, 1980, J. Geophys. Res., 87, 6281-6290, 1982.

Long, R.R., On the Boussinesq approximation and its role in the theory of internal
waves, Tellus, 17, 46-52, 1965.

McComas, C.H., and F.P. Bretherton, Resonant interaction of oceanic internal
waves, J. Geophys. Res., 82, 1397-1412, 1977.

McEwan, A.D., and R.M. Robinson, Parametric instability of internal gravity waves,
J. Fluid Mech., 67, 667-687, 1975.

Mied, R.P., The occurrence of parametric instabilities in finite-amplitude internal
gravity waves, J. Fluid Mech., 78, 763-784, 1976.

Miles, J.W., On the stability of heterogeneous shear flows, J. Fluid Mech., 10,
496-508, 1961.

Miller, K.L., S.A. Bowhill, K.P. Gibbs, and I.D. Countryman, First measurements of
mesospheric vertical velocities by VHF radar at temperate latitudes, Geophys.
Res. Lett., 5, 939-942, 1978.

Phillips, O.M., The Dynamics of the Upper Ocean, University Press, Cambridge,
1969.



298

Reid, I. M., R. Riister and G. Schmidt, VHF radar observations of cat’s-eye-like
structures at mesospheric heights, Nature, 327, 43-45, 1987.

Roéttger, J., Structure and dynamics of the stratosphere and mesosphere revealed
by VHF radar investigations, Pure Appl. Geophys., 118, 494-527, 1980.

Rottger, J., The relation of gravity waves and turbulence in the mesosphere, Adv.
Space Res., T, 10345-10348, 1987.

Rottger, J., and G. Schmidt, High-resolution VHF radar sounding of the troposphere
and stratosphere, JEEE Trans. Geosci. Electron., GE-17, 182-189, 1979.

Ruster, R., Winds and waves in the middle atmosphere as observed by ground based
radars, Adv. Space Res., 4, 3-18, 1984.

Rister, R., and J. Klostermeyer, VHF radar observations of a Kelvin-Helmholtz
instability in a subtropical jet stream, Geophys. Astrophys. Fluid Dyn., 26,
107-116, 1983.

Squire, H.B., On the stability of three-dimensional disturbances of viscous flow
between parallel walls, Proc. R. Soc. Lond., A142, 621-628, 1933.

Stull, R.B., Internal gravity waves generated by penetrative convection, J. Atmos.
Sci., 33, 1279-1286, 1976.

Synge, J.L., The stability of heterogeneous liquids, Trans. R. Soc. Can., 27(III),
1-18, 1933.

VanZandt, T.E., A universal spectrum of buoyancy waves in the atmopshere, Geo-
phys. Res. Lett., 9, 575-578, 1982.

VanZandt, T.E., J.L. Green, W.L. Clark, and J.R. Grant, Buoyancy waves in the
troposphere: Doppler radar observations and a theoretical model, Geophys.
Res. Lett., 6, 429-432, 1979.

Volland, H., The upper atmosphere as a multiply refractive medium for neutral air
motions, J. Atmoes. Terr. Phys., 31, 491-514, 1969.

Yamamoto, M., T. Tsuda, S. Kato, T. Sato, and S. Fukao, Interpretation of the
structure of mesospheric turbulence layers in terms of inertia gravity waves,

Physica Scripta, 37, 645-650, 1988.

Yeh, K.C., and C.H. Liu, Evolution of atmospheric spectrum by processes of wave-
wave interaction, Radio Sci., 20, 1279-1294, 1985.

Yih, C.S., Stability of two-dimensional parallel flows for three-dimensional distur-
bances, Q. Appl. Math., 12, 434-435, 1955.



Vgl;ééééz 299
Chapter 9

Applications of MST Radars: Meteorological Applications

M. F. Larsen
Department of Physics and Astronomy
Clemson University
Clemson, SC, USA 29631

1. Introduction

MST radars provide information about a broad range of scales. For example, wind
measurements provide information about circulations ranging in size from the microscale to the
synoptic or planetary scale; spectral width measurements contain information about microscale
turbulence within the beam; and reflectivity measurements show the presence of small scale turbulence,
as well as larger scale temperature gradients associated with the tropopause or frontal boundaries. In
spite of the broad range of scales that can be investigated and the wide range of potential applications
of MST radars, I will limit the discussion to those applications that are directly relevant to mesoscale
meteorology since the radar technology seems to have found a natural niche in that area. The
applications to mesoscale meteorology include using the radars either as research tools to improve our
understanding of certain dynamical systems or as part of a metwork used to provide input data for
weather forecasting. The goal of operational meteorology is twofold. The first is to forecast the
weather over a variety of time scales, and the second is to monitor conditions so that we can assess the
state of the atmosphere at a given time. Weather forecasting is probably one of the most commonly
recognized tasks of operational meteorology since virtually all members of the public become users of
such a service at one time or another. However, forecasting often includes more than a prediction of
the chance of showers and the high and low temperature for the next day. User specific forecasts can
include the air stagnation in a metropolitan area, winds aloft for routing aircraft, the strength of
onshore winds and the associated beach errosion, or the strength and location of small-scale eddies and

the effect of such eddies on chemical spraying in agriculture. The list goes on and on.

The workhorse of the operational observing network has been and still is the radiosonde
balloon which provides measurements of pressure, temperature, humidity, and winds up to heights of
16-20 km, i. e., into the lower stratosphere. The average separation between radiosonde stations in the
Unitéd States and Europe is ~150-500 km depending on the area. In addition to the radiosonde
network, a much denser network of surface reporting stations cover the industrialized countries. The
latter report the same quantities as the radiosonde provides, but only at the surface, and they also
provide information about cloud cover, local precipitation, and tendencies, i. e., temporal changes, of

the various quantities.
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The station separation and measurement techniques used in the observing network lead to a
natural emphasis on synoptic meteorology which is characterized by spatial scales of ~500-5000 km
and time scales of 1/2 to 5 days. Increasingly the interest of the national weather services is focusing
on problems in mesoscale forecasting (see, e.g., Ray, 1986), first because we do not know very much
about most mesoscale dynamical processes and second because most of the severe weather is associated
with mesoscale phenomena. The mesoscale is characterized by spatial scales of ~1-500 km and time
scales of 1/2 to 12 hr. Satellites have provided important mesoscale data, particularly satellite
photographs, but the thermodynamic and wind measurements that the satellites yield generally have

poor vertical resolution which is unacceptable.

The seeds of MST radar technology have been sown on a fertile field. The radar wind profiler
appears to solve many of the problems related to obtaining mesoscale observations needed for
forecasting. The radars easily produce the time resolution, height resolution, and height coverage that
are needed. A single radar still does not provide any extended spatial coverage, but the cost of the
instruments is relatively low so that the possibility of deploying many of them still exists. The radars
only provide direct measurements of the winds, which could be a drawback, but two factors operate in
the radars’ favor in this regard. The first is a result of geostrophic adjustment theory which predicts
that at large scales, the wind field tends to adjust to the imposed pressure field, but at small scales the
reverse happens. Therefore, if only one mesoscale quantity can be measured, the wind field is probably
the best choice. The second factor again derives from the dynamic relationships and exploits the fact
that the wind field is interrelated with the pressure and temperature fields through the balance
equation and the vorticity equation. Thus, if the wind field is known over an extended horizontal
region, information about the temperature and pressure fields can be derived. The accuracy and
usefulness of these techniques still need to be carefully assessed but show great promise for the

application of the radar technique to operational mesoscale forecasting,.

My intent here is not to provide a complete review of the applications of MST radars to
meteorological operations or research or to provide a complete literature review. Therefore, some
important work will probably be slighted in my treatment. Rather, I hope to make the reader aware of
some of the important issues presently being considered, and some of the potential of the technique for
future applications. With this background, I will proceed to describe more specific aspects of the
application of MST radar technology to meteorology. The next section deals with the characteristics of
the horizontal wind measurements, Section 3 describes how the reflectivity measurements obtained
from the radars can be used, Section 4 deals with the vertical velocity measurements from the radars,

Section 5 describes quantities that are derived from the radar measurements, Section 6 deals with
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special characteristics of an operational system, and Section 7 outlines some of the important open

questions that remain about the usefulness of the technique.

2. Horizontal Velocity Measurement Capabilities

Interest in using MST radars for studies of mesoscale dynamics derives primarily from the
possibility of measuring the horizontal winds over a large height range, with good height resolution and
excellent time resolution. The time resolution, in particular, is the main advantage in using radars

instead of balloons for horizontal wind measurements.
(a) Precision, Accuracy, and Errors

The wind profiler’s capabilities for measuring the horizontal winds are the ones that have been
explored most extensively to date. The first experiments that were carried out involved comparisons of
the horizontal winds obtained from the radar measurements with the wind data from nearby
radiosonde stations. An example of the type of agreement that can be expected is shown in Figure 1
which represents measurements made with the SOUSY-VHF-Radar located in the Harz Mountains in
West Germany with wind data from the nearby Hannover radiosonde station (RBttger, 1983). The
comparisons have shown good agreement from the outset and have led to a general acceptance of the
radars’ wind measurement capabilities. Two early studies attempted to quantify the comparisons by
using longer time series and by making a better assessment of the magnitude of the errors that could be
expected. The first was carried out by Fukao et al. (1982) and was based on 26 days of radar data
obtained with the 430-MHz Arecibo radar and the corresponding radiosonde data from the San Juan
station. Figure 2 shows the relative locations of the two sites and the trajectories of the balloons
launched during the period. The figure also shows that the balloon measurements actually cover a
large area during the ascent which can be a problem if small-scale flow features are of interest. The
agreement was generally good, although errors varied between ~5 m/s in the troposphere and ~3 m/s
in the lower stratosphere. The steady character of the flow in the subtropical region led to a nearly
constant pattern in which the ascending balloons first traveled slightly to the east of San Juan, away
from Arecibo, and then turned toward the west at higher altitudes. The authors argued that the
differences in the lower stratosphere could be explained by errors in the radiosonde observations that
occurred when the balloons were far from the launch site and therefore at low elevation angles. At
least part of the difference between the two data sets in the troposphere, however, had to be due to

variability in the flow.

Jasperson (1982a,b) has carried out numerous twin balloon experiments. Combinations of
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spatially and temnporally separated launches were carried out, and some launches from the same
location at the same time were also made. The results provided an estimate of the errors attributable
to the balloons and also the natural variability that occurs within the atmosphere as a function of
temporal or spatial lag. Jasperson’s data covered scales slightly different than the separation between
San Juan and Arecibo but, when extrapolated to the appropriate scale, the natural variability could
easily account for the differences between the radar winds and the radiosonde winds, without requiring

large balloon errors, as pointed out by Larsen (1983).

Larsen (1983) compared data from the Poker Flat, Alaska, VHF radar to radiosonde data from
nearby stations. Direct comparisons between the Poker Flat data and winds obtained with the
Fairbanks radiosonde, only 30 km away, were made. Also, the radar and radiosonde winds were
compared to the geostrophic winds calculated from the grid of radiosonde stations located closest to the
radar. The 1-hr average radar and radiosonde winds were found to deviate from the geostrophic wind
by about 5-6 m/s and they were found to deviate from each other by a smaller amount of ~2-3 m/s.
Thus, the accuracy of the two wind measurement techniques appears to be comparable. The
differences between the two wind measurements were again explainable on the basis of the natural
variability in the flow which is a function of the spatial separation. RBttger (1983) came to a similar
conclusion based on the calculated auto- and cross-correlations between SOUSY radar data and winds

measured by nearby radiosonde stations.

The Wave Propagation Lab in Boulder, Colorado, has carried out a series of experiments with
a 5-beam 405-MHz wind profiler to assess the precision and accuracy of the measurements first during
clear air conditions over a one-month period (Strauch et al., 1987) and then during periods when
precipitation was in the beam (Wuertz et al., 1988). One beam was pointed toward the vertical, and
the other four beams were pointed toward north, east, west, and south at a zenith angle of 15°. The
differences in the east/west and north/south line-of-sight pairs could be combined to yield independent
measures of the vertical velocity. The results in the form of scatter diagrams are shown in Figure 3.
Figure Ja represents (Vy-Vg) on the vertical axis and (Ue-Uy) on the horizontal axis where the
subscripts refer to the direction. Strauch et al. (1987) showed that deviations along an axis running at
45" from lower left to upper right includes both the measurement error and the vertical velocity
contamination of the horizontal wind measurements. The axis running from lower right to upper left
includes only the measurement error. Figure 3b shows a corresponding diagram in which the vertical
beam measurements have been used to correct the horizontal wind measurements. In the latter case,
the scatter in the plot is more nearly circular. The measurement error was found to be 1.7 m/s

without the vertical beam correction and 1.3 m/s with the vertical beam correction. The study of the
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precipitation cases carried out by Wuertz et al. (1988) showed that comparable measurement errors
occurred when the precipitation was stratiform, i.e., spatially uniform, so that vertical velocity
corrections could be made. The errors increased substantially when the precipitation was not uniform,

however.

The radars not only provide better time resolution than the balloons but also overcome some
other inherent limitations in the balloon technique, such as the problems that occur when balloons are
launched during adverse conditions. Augustine and Zipser (1987) found that a series of balloons
launched during a squall-line passage in Kansas during the Pre-STORM experiment did not reach
heights much above the melting level. Wind profilers operating during the same period did not suffer
from such problems. In fact, the conditions led to enhanced reflectivities that increased the signal-to-

noise ratio during the period.
(b) Geostrophic Adjustment and Model Initialization

A good deal of the interest in using MST radars or wind profilers for mesoscale studies stems
from the high time resolution and good temporal coverage afforded by the radars that will make it
possible to study dynamical systems that have previously fallen between the “cracks” of the
observational network. However, there is equally great interest in using a network of profilers as an
observing system to provide the input for numerical forecast models, especially because geostrophic
adjustment theory predicts that wind measurements are more useful when the scales of interest are
small. The basic theory was worked out by Rossby (1937) and has been extended by numerous authors
in various contexts. An excellent review is given by Blumen (1972). The theory predicts that the
adjustment of the wind field and the mass field will be quite different depending on the ratio of the
scale of the disturbance to the so-called Rossby radius of deformation. The Rossby radius Lp is
defined as

C
Lg =-fN 2

where f is the Coriolis parameter and Cy is a characteristic velocity in the medium. In a shallow-

water model that velocity becomes

Cy={gh (2)

where g is the acceleration of gravity and h is the fluid depth. Eq. 2 defines the gravity wave phase

velocity in such a model. In s stratified atmosphere, the expression for Cy in a linearized treatment
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becornes
CszNz(Nzcs'z + 17 4 m?)? (3)

where N is the Brunt-Vaisala frequency, c5 is the speed of sound, I' is Eckart’s coefficient which would
vanish in the Bousinesq approximation, and m is the vertical wave number (Blumen, 1972). The
Rossby radius varies substantially but typically has values in the range of 500-1000 km. The theory
predicts that for scale sizes that are large compared to the Rossby radius, the wind field will tend to
adjust to the pressure field. Therefore, if a synoptic scale perturbation pressure is induced in the flow,
a wind that balances the pressure gradient will evolve over a time scale comparable to ! where fis the
Coriolis parameter. If a large-scale perturbation in the wind field is induced, however, the energy input
will be dissipated by gravity waves that propagate out of the region and carry the energy away. For
small scales, the reverse situation holds, and a perturbation in the wind field will produce a pressure
gradient that balances the wind geostrophically. A small-scale pressure perturbation, on the other

hand, is dissipated by gravity waves that redistribute the energy.

A numerical model encompasses the same physics as the real atmosphere (or so we hope).
Therefore, when observations of the pressure field at small scales are used to update the model, the
effects of updated pressures are felt less. The situation is further worsened by the fact that gravity
waves which are not handled well by the model are generated as part of the process of dissipating the
pressure perturbation. Wind perturbations, on the other hand, tend to be maintained by the flow at
small scales, and the pressure gradients needed to balance the flow develop with time. These
considerations lead to an inherent preference for wind observations when small scales of motion are
involved. Hoke and Anthes (1976), among others, have discussed these points in more detail, and

Anthes (1983) has reviewed a number issues and strategies related to mesoscale models.

The wind profiler built and operated by NOAA’s Aeronomy Lab at Christmas Island in the
Pacific is the fitst facility to provide winds routinely by satellite transmission. After January 1987, the
wind data was incorporated in the operational analysis of the National Meteorological Center and after
April of that year the data was used in the European Centre for Medium-range Weather Forecasting’s
(ECMWF) operational analysis procedure. Gage et al. (1988) have described the results of a study
designed to assess the improvement in the analysis procedure attributable to the profiler data. Before
the data were incorporated in the analysis procedure, the standard deviations between the analysis and
the observations was in the range of 3-5 m/s up to 250 mb. After the centers started using the profiler

observations, the standard deviations decreased to 1-3 m/s. Figure 4 shows the deviations as a
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function of height. The solid line indicates the variability in the profiler data alone and gives a
reference by which the deviations between analysis and observations can be judged. In general, the
NMC routine does a poorer job above 200-300 mb, apparently because less weight is assigned to this
kind of data in carrying out the analysis. The study has shown the potential impact of wind profilers
on initialization in remote areas. The minimal maintenance and unattended operation make the
technique ideal for operation in isolated and remote locations. In the tropics, where the geostrophic
relation is not applicable, direct observations of the winds are expected to be extremely important if

significant improvements in forecasts are expected.

3. Reflectivity Data

Aside from the horizontal velocity components, the other parameter provided by all the radars
is the reflectivity. The magnitude of the reflectivity is usually associated with the strength of the
turbulence within the sampling volume, but strong gradients in the refractive index can also lead to
enhanced reflectivities at longer wavelengths associated with what has become known as specular
echoes or Fresnel reflection (see, e.g., RBttger and Larsen, 1988, or Gage, 1988). Whether the signal is
due to Bragg or turbulent scatter or specular reflection, structure with a scale size comparable to the
wavelength of the transmitted signal has to be present. In the former case, the structure is expected to
be more microscopic in nature and characterized by shorter coherence times. In the latter case, the
structure is expected to be more macroscopic in nature with longer coherence times. There is still
considerable debate at meetings and in the literature about the dynamics associated with these two
different kinds of scatter. Also, although we like to characterize the scatter as being of one type or the
other, the actual scatter received in any real situation is likely to be the result of a combination of both

effects.

These important questions need to be resolved in the future, but, in spite of the uncertainties
about the details of the dynamics, we already know that in practice the result is an enhancement in the
reflectivities observed at VHF at heights just below the radiosonde tropopause. Figure 5 shows an
example of the reflectivities measured with the SOUSY-VHF-Radar, and the tropopause heights
derived from the Hannover radiosonde data are shown by the arrows (Rastogi and RBttger, 1982).
Gage and Green (1982a) have established objective criteria for locating the tropopause based on radar
reflectivity data. They found that the errors were typically 270 m, although the authors expected the
errors to increase slightly if the technique is used operationally. Gage et al. (1986) have extended the
earlier work, and Sweezy and Westwater (1986) have compared different techniques for deriving the

tropopause height from VHF radar data. Knowing the height of the tropopause can be valuable in
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fine-tuning the temperatures obtained from either satellite or ground-based microwave remote sensing
data. Tropopause height information will not be available if UHF profilers are used since the shorter
wavelengths are not sensitive to the aspect sensitivity effects that lead to the enhanced scatter from the
tropopause region. Gage and Green (1982b) also pointed out that the measured radar reflectivity
profiles could be used, in conjunction with information about the surface temperature, to provide an
estimate of the temperature profile. Above the tropopause, the variations in reflectivitity provided
information about the temperature gradients. Below the tropopause, a constant lapse rate was
assumed. Radiosonde profiles will be much more detailed and accurate than the profiles derived in this
way, but temperature information derived from the radar data can be used as a supplement where no
other information is available. Also, the potential improvements in microwave radiometer-derived
temperature profiles when the two types of data are combined have not been fully explored (Hogg et
al., 1983).

An effect related to the enhanced backscatter from the tropopause seen at VHF is the enhanced
scatter from frontal boundaries. R3ttger (1979) was the first to describe this effect based on analysis of
data obtained with the SOUSY-VHF-Radar located in the Harz Mountains in West Germany. Larsen
and RBttger (1982, 1983, 1985) have analyzed a series of frontal passage events using the same
instrument. In essence, the enhanced reflectivities occur very close to the location of the frontal
boundary as determined from radiosonde data. The boundaries usually slope either upward with time
{cold frontal passage) or downward with time (warm frontal passage). An example is shown in Figure
6 which corresponds to the passage of a cold front indicated by the cross-hatched area followed by a
warm front shown by the stippled areas during the period February 7-9, 1982. The tropopause heights
measured by the Hannover radiosonde are shown by the crosses. On February 8 at 12 GMT, the
passage of the front caused a very low tropopause height to be reported, in agreement with the radar
reflectivity contours. The lower half of the figure represents the potential refractivity M? calculated

from the radiosonde data for the same period. M given by

M= —77.6x10'6($)(@%)[1+15500 k) [l—%(a—g“zﬂ)(é},ﬂzﬁ)"ﬂ (1)

Here P is the pressure in millibars, T is temperature in Kelvin, 8 is the potential temperature, q is the
specific humidity in grams per kilogram, and z is height in meters. The agreement in the gross features
of both cross sections is evident. Recently, similar reflectivity structures have been observed with the
Flatland radar in connection with frontal passages in Illinois (Nastrom, private communication, 1988).

Larsen and RBttger (1982, 1983, 1985) made comparisons between calculated refractivities and
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observed reflectivities in a series of frontal passages. The agreement between the gross features of the
two quantities was striking and indicated that the structure responsible for the scattering was being
organized on a large scale. At least it persisted over the scale separating the radar and radiosonde
which was approximately 90 km. An alternative hypothesis would have been that the enhanced
reflectivities were generated by small-scale turbulence produced locally near the front. Some of the fine

structure probably had this kind of source, but the larger organizing features were of mesoscale origin.

Some of the reflectivity data obtained with SOUSY has shown that the frontal boundary
consists of smaller-scale filamented structure. Detailed reflectivity structure is shown in the gray-scale
plot in Figure 7 for the March 6-7, 1981, warm-frontal passage. Presumably better height resolution
would show even finer-scale structure. The dynamics of the upper level frontal zones are extremely
important both in generating and enhancing tropospheric systems and in mixing constituents between
the stratosphere and troposphere. The mixing that occurs during tropopause folding events was
already documented by Danielsen (1968) in connection with experiments designed to study the
transport of radioactivity and trace constituents through the tropopause region. It has become clear
that the mixing between the troposphere and stratosphere is not steady and continuous but occurs
discretely during certain special events, usually associated with frontal passages. We still know very
little about the small-scale dynamics actually responsible for the mixing (see, e.g., Ray, 1986), but the
radar reflectivities and radar measurements of velocities may provide us with more information about

this aspect of the circulation.

4. Vertical Velocity Measurement Capabilities

The vertical velocity measurement capability of the MST radars has been one of the most
intriguing as far as meteorological applications are concerned. Deployment of either an operational or
a research network can be justified on the basis of the horizontal wind measurement capabilities alone,
but vertical velocities have always had a special place in meteorology for a number of reasons. First,
much of the effort in the field is devoted to predicting or understanding the vertical circulations that
develop in the atmosphere. Clouds and precipitation are produced by upward vertical velocities; the
large vertical gradients in density in the atmosphere lead to heating or cooling during adiabatic ascents
or descents that produce significant temperature changes in competition with horizontal advection; and
the vertical gradients in chemical constituent concentrations imply that vertical circulations will have a
large effect on trace concentrations. In spite of the importance of the vertical velocity fields, the
vertical circulation is almost always an inferred quantity. A few specialized techniques, such as aircraft

measurements, exist for measuring vertical velocities, but for large-scale measurements, the vertical
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velocity is usually calculated from the divergence of the horizontal winds. Short-wavelength
precipitation radars have been used to “measure” the vertical velocities in connection with special
experiments, but the measurements usually amount to integrating the divergence over height to yield
the vertical velocity. Since the radars are sensitive to precipitation, only the motion of the
precipitation can be measured, and while the horizontal velocities of the precipitation and the air are

expected to be the same, the vertical velocities are generally quite different.

Thus, with some reservations that I will explain later, we can say that the MST radars are the
first instruments capable of providing vertical velocity measurements routinely over extended periods
and over a large height range. Immediately the possibilities for verifying model forecasts of vertical
velocities come to mind. Also, if the vertical velocity measurements can be trusted, the measurement
of the vertical velocity can be inverted to provide us with information about the variation of divergence
with height (Clark et al., 1986). The latter quantity would be extremely useful in initializing forecast
models which generally use the horizontal wind field as part of the input parameters. Vertical velocity
information would help the numerical models to develop realistic vertical circulations in a shorter time.
Typically, the horizontal wind information is the only velocity input to the model, and it takes some
time before realistic vertical circulations develop. The latter is not a problem if the ultimate goal is a
12-day forecast, but the problem is a serious one if a 2-3 hr forecast is sought. Finally, the vertical
velocities may be characteristic of small-scale processes too small for the model to reéo]ve, but even
subgrid-scale momentum and heat fluxes are important in forcing the larger-scale dynamics. These
fluxes are generally parameterized, but measurements of the vertical fluxes could be used to update the

parameterization at the time of model initialization.

In spite of the clear need for and many potential uses of the radar vertical velocity
measurements, there are still many uncertainties that need to be resolved before the potential can be
realized. The first problem is related to the accuracy of the vertical velocity measurements: Although
several different techniques have been used to measure horizontal velocities, including the Doppler
method, the spaced antenna method, and the interferometer method, all the various techniques
measure vertical velocities by the Doppler method. There seems to be general agreement that the
signal received from the vertical direction is scattered by irregularities or sharp gradients in the
refractive index, and that the Doppler shift of the received signal gives the line-of-sight, in this case
vertical, velocity of the refractive index irregularities. The uncertainty relates to whether the

irregularity velocity is the same as the air motion so that the Taylor hypothesis is valid.

A logical way to proceed in determining the accuracy of the vertical velocity measurements is

to compare the measurements with vertical velocities obtained by some other technique, but in this
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case no real basis for comparison exists. The next best approach is to compare the measured velocities
with vertical velocities calculated from other data. The number of studies of this type is very limited
so far. Nastrom et al. (1985) utilized data from the Platteviile, Colorado, VHF radar obtained over a
period of several weeks. A number of different methods for calculating the vertical velocity were
applied to the gridded values produced by the NMC analysis for the surrounding region. The
kinematic method was used to integrate the divergence to produce a vertical velocity profile, the
thermodynamic method was used to calculate the vertical velocity based on temperature changes
associated with adiabatic warming or cooling during ascent or descent, and the quasi-geostrophic
omega equation was also used. Three examples of the profiles of calculated and observed vertical
velocities from the study by Nastrom et al. (1985) are shown in Figure 8. The various methods for
calculating the vertical velocities, indicated by letters, were found to yield comparable results, but large
differences between the measured and calculated values were found throughout the period. Specifically,
the radar measurements were generally 2-3 times larger than the calculated values, but there was better

agreement between the signs of the velocities.

Larsen et al. (1988) compared vertical velocities obtained with the SOUSY-VHF-Radar located
in the Harz Mountains in West Germany to the vertical velocities produced by the operational analysis
" procedure of the European Centre for Medium-range Weather Forecasting (ECMWF). The analysis
uses a normal mode initialization procedure which is known to preserve more of the divergence in the
horizontal velocity field than some of the other techniques. Therefore, larger and perhaps more
realistic vertical velocities are expected from this type of calculation. The result of the study was that
the magnitudes of the calculated and measured values were nearly the same. However, the agreement
between specific features observed in connection with the passage of fronts, for example, was not as
good. An example is shown in Figure 9 which represents contours of the upward vertical velocities
measured with the radar over a two-week period in November 1981 in the upper panel and the
operational analysis vertical velocities for the corresponding period in the lower panel. The same gross
features are present in both the observed and calculated data sets. For example, 4-5 bands of upward
velocity were seen in both data sets in connection with the passage of a cold front on November 6, but
the timing of the passage of the bands varied by as much as 12 hr and one band that was present in
the radar data after noon on November 6 was missing in the apalysis. In some sense, discrepancies of
this type are not surprising, but we need to be able to account for the discrepancies in the future before

we can make use of the measurements for verification and initialization of models.

Gage and Nastrom (1986) compared vertical velocities obtained with the Platteville radar

located in Colorado to precipitation data from the surrounding area. They concluded that there was a



—~ 118

£ 105 T T ) T T

=< 941 -

w gl —

S 70} -

E sa ]

S 461 81/3/21/12 GMT SD=12 cm/s
3.4 | | | | | 1 _
-0 -15 -10 -5 0 & 10 15 20

VERTICAL VELOCITY (cm/s)

—11.8 —tr 1

E 08l | T T | )

s iF ]

g 7:0 - % 'y -

E ssl- { -

2 461 81/3/22/0 GMT \ SD=8cmis  —
34kl 1% [ [ ]
-2 -15 =10 -5 0 5 10 15 20

VERTICAL VELOCITY (cm/s)

—11.8

Ewsf ! ]

— 9.4 - —

S BF i ]

= sal- -

2 46|~  81/3/22/12 GMT SD=18cmis
3.4 ] L1 o 1 L1 ]
-0 -15 -0 -5 0 5 10 15 20

VERTICAL VELOCITY (cm/s)

Figure 8. Profiles of the vertical velocity over Platteville, Colorado,
from the ST radar (solid line) and the adiabatic (A), kinematic (K),
and omega equation (O) methods. )

317



318

HOURS

eg 32 338 360 373
T x.Lg

A

P

192 206 240 264 2
P

168
P S

SHILINOMA SY3LINOUIN —

measured by the
MWT operational

analysis in the lower frame for a two-week period in November

gure 9. Contours of upward vertical velocities
radar in the upper frame and produced by the EC

Fi
1981.



319

general relationship of the type that would be expected between the times when precipitation occurred
downwind from the radar and the times when the radar showed a pattern of upward motion. Results
of this type are encouraging, but more quantitative comparisons are difficult due to the large horizontal

gradients and local variability in precipitation.

Wakasugi et al. (1985) measured the vertical velocities with the MU VHF radar during the
passage of a cold front. A meteorological radar also provided data on the location of the precipitation
during the period. Figure 10 is an example of the VHF data which shows the reflectivities at off-
vertical incidence in the upper panel, the reflectivity at vertical incidence in the middle panel, and the
circulation in the cross-frontal plane in the lower panel. The reflectivities clearly show the aspect
sensitivity effects. The upward vertical velocities are strongest close to the time of the frontal passage,
but a number of cells of alternating upward and downward velocities are evident before and after the
passage. The times when precipitation occurred correlated well with the times when the updrafts were
present, although not all updrafts produced precipitation. This type of data shows the potential for the

observation of mesoscale systems and gives an indication of the insights that can be expected.

As mentioned above, an important question for the near future will be to determine the source
of discrepancies between radar vertical velocity measurements and calculated values such as those
produced by operational analysis. In comparing horizontal winds, a balloon can be launched
immediately adjacent to the radar and a diréct comparison can be made. Thus, the effecis of small-
scale gradients in the flow can be minimized. When the vertical velocities are calculated, usually from
the divergence equation, at least three spatially separated wind profiles are needed. The result is that
the derived vertical velocities represent a different quantity than the measured values since the derived
values are effectively an average over the area defined by the area between the observing sites. The
radar vertical velocities are representative of a single point within the domain. An attempt to reconcile
the two values can be made by averaging the radar velocities in time. If the Taylor hypothesis is valid
and the fluctuations are "frozen” within the flow, averaging in time should be equivalent to averaging
in the spatial domain. There is some evidence that such an approach is valid (Brown and Robinson,
1979), but the two quantities will always be somewhat different. Some of these issues will likely be
resolved when networks of wind profilers are deployed, such as the network proposed for the central

United States as part of the STORM program (Augustine and Zipser, 1987).

Another potential problem is due to the effects of aspect senmsitivity on the effective look angle
of the radar beamn. These effects will only be significant when longer wavelengths such as 6 m are used
since the aspect sensitivity at 70 cm, for example, is negligible in virtually all but the most exceptional

circumstances. Aspect sensitivity causes the largest signal to be received when the look direction is
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perpendicular to strong gradients in the refractive index associated with layers in the atmosphere. The
layers are generally tilted by a few degrees, but except for the largest arrays, the tilt angle will be
within the beamwidth. Thus, a beam that is nominally pointed in the vertical direction may receive
the strongest signal from a look direction that is a degree or a few degrees off vertical. The
measurement will then consist of the projection of the true vertical velocity on the effective look
direction, which is usually a minimal error, plus the component of the horizontal velocity along the
look direction. The latter can create errors of over 100%, i. e., even the sign of the apparent vertical
velocity can be wrong in some instances. RBttger and lerkic (1985) have described these problems and
have shown that data from a spaced antenna array can be used to calculate the tilt angle of the layers
in order to make the necessary corrections to the measured velocities. Very little analysis of this type
of error has been carried out so far, but the effects need to be taken into account when VHF profilers
are used. Such effects may be responsible for some of the discrepancies found in the studies by

Nastrom et al. (1985) and Larsen et al. (1988) since both studies used data obtained with VHF radars.

Recently a VHF radar has been constructed near Champaign, Illinois, in one of the flattest
portions of the central United States. The site has tremendous advantages for studies of the vertical
velocities since almost no orographic effects are expected. Figure 11 from the article by Green et al.
(1988) shows samples of the time series of vertical velocities obtained at the Flatland radar, at
Platteville, Colorado, just east of the Rocky Mountains, and at Sunset, Colorado, in the mountains.
The variability and amplitudes of the vertical velocities increase with proximity to the mountains. The
active periods that occur with some regularity in the data sets taken near the mountains are due to

generation of waves by the flow over the topography.

UHF radars are unlikely to suffer from the errors introduced by aspect sensitivity effects, but
the shorter wavelengths are extremely sensitive to precipitation. Thus, if there is precipitation in the
beam, the measured vertical velocity will be the fall velocity of the precipitation (see, e. g., Larsen and
RBttger, 1987, and Wuertz et al., 1988). Periods of strong precipitation are easily distinguished in the
data since the reflectivities increase significantly beyond the levels that can be accounted for by
turbulent scatter. Periods of moderate precipitation may be more difficult to handle in practice.
Eliminating all questionable data is not difficult but leads to a rather unsatisfactory solution since we
will be deprived of data whenever the meteorological situation becomnes interesting. More work is
needed to determine the optimum approach that gives %s the maximum usable information but

eliminates the erroneous data.
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5. Derivable Quantities or Parameters
(a) Pressure and Temperature Fields

The reflectivity data can be used to provide an estimate of the temperature profiles as
described above, but the estimates are likely to be extremely coarse. However, there is a balance
between the pressure and temperature fields and the winds imposed by the dynamical constraints. A
simple example is the geostrophic relationship which relates the horizontal wind components and the
horizontal pressure gradients. The balance equation is based on less limiting approximations than the
geostrophic approximation and has been used in studies by Gal-Chen (1988) and by Kuo et al.
(1987a,b) to determine how the wind information from a profiler network can be used to derive the
temperature field. The input to the calculation is the observed wind field, and the output is a
temperature field consistent with the wind field through the constraints imposed by the balance
equation. The results to date have been very encouraging and show the potential for deriving

parameters other than just the horizontal winds from the profiler observations.
(b) Divergence and Vorticity

Since the divergence is related to the vertical gradient of the vertical wind, the divergence can
always be calculated once the vertical velocity profile is obtained (Clark et al., 1986). Alternatively,
four off-vertical beams pointed along different azimuths can be combined to yield the divergence

directly.

Ordinarily, a single radar cannot yield the vorticity in the flow since the radar measures the
line-of-sight velocity and the vorticity is the circulation perpendicular to the look direction if the radar
beam is cycled around in different azimuth directions. However, Smythe and Doviak (1987) have
suggested that correlations of the signals obtained with the beams pointed in different directions can
provide the cross-beam component of the flow. The procedure is similar, although not identical, to the
spaced antenna method for obtaining the winds (e.g., RBttger and Vincent, 1978; Larsen and Rattger,
1988). The latter technique uses at least three vertically pointing but spatially separated beams. The
cross-correlation between the signals in the various beams gives the time lag for the scatterers to move
from one beam to the next. Thus, the cross-beam velocity component is derived. The spaced antenna
set-up may be the most natural to use for obtaining the vorticity in the flow since the lags between the
signals in the three beams are calculated anyway as part of the process of deriving the horizontal
winds. The line integral of the inverse lags around the triangle defined by the receiving antennas

divided by the area of the triangle will then be proportional to the vorticity.

The vorticity is an extremely important quantity in defining the properties of any
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meteorological flow. The vorticity associated with frontogenetic flows would be a valuable parameter
to measure. Observations of this quantity could be used to study the mixing that takes place near
upper-level fronts in connection with tropopause folding and in the boundary layer in connection with
convection, for example. Even if this type of measurement is shown to be feasible, we still have to
determine how the microscale vorticity that is measured by the radar is related to the mesoscale
vorticity. The problem is similar to the one that we face in determining how representative and useful

the vertical velocity measurements will be for studies of mesoscale and synoptic scale dynamics.
(c) RASS

The RASS (Radar and Acoustic Sounding System) technique was introduced already in the
1960's. The system uses an acoustic generator to produce waves with half the wavelength used by the
radar. The acoustic disturbances thus produce refractive index variations that cause strong Bragg
scatter of the radar wave field. Measuring the velocity of the acoustic waves yields the temperature
directly since the speed of sound is a function of the temperature. The early experiments used
meteorological radars with relatively short wavelengths in the centimeter range, and the high
frequencies made it difficult to obtain signals much above the boundary layer. Matuura et al. (1986)
were the first to implement the technique at VHF with the MU radar in Japan. The longer wavelength
of 3 m for the acoustic signal decreased the attenuation and made it possible to obtain temperature

profiles well into the stratosphere.

The first experiments took over a day to carry out because of the problems associated with
moving the acoustic source so that the sound waves would pass thrcugh the radar beam. Since the
acoustic waves are blown around by the winds, the alignment problems can be severe. Obtaining the
Doppler velocity which is then converted to temperature is a relatively quick process once the acoustic
beam is within the radar beam. Placing an array of acoustic sources near the radar in more recent
experiments has reduced the measurement time significantly to less than one hour. The radar beam
still has to be steered, but the necessary calculations and movement of the beam can be carried out

quickly.

The MU radar is rather special in the sense that it is extremely flexible and powerful compared
to the wind profiler systems that are being deployed operationally. Therefore, it is not immediately
obvious that the RASS technique can be applied with some of the simpler systems. However, the
potential uses for the temperature data that could be obtained in this way are tremendous and will, no
doubt, be explored in depth in the next 5-10 years. Work has already been carried out to test the
application of the RASS technique with some of the systems developed at NOAA in the Aeronomy Lab
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(Ecklund, private communication, 1988) and in the Wave Propagation Lab (Strauch, private

communication, 1988). The work has produced at least some modest success.
(d) Momentum fluxes

Vincent and Reid (1983) have shown that two symmetrical off-vertical beams can be used to
measure the vertical flux of horizontal momentum. Other beam configurations are possible, but the
Vincent-Reid set-up appears to have some distinct advantages. Only a few studies of the momentum
fluxes in the troposphere and lower stratosphere have been carried out so far. Cornish and Larsen
(1984) used VAD data obtained with the 430 MHz Arecibo Observatory radar, Nastromn and Green
(1986) obtained momentum flux data with the Sunset radar, and Fukao et al. (1988) calculated the
momentum flux from MU radar data. The latter study also compared the three beam (one vertical,

two off vertical) and four beam (four off vertical) methods for obtaining the momentum flux.

The momentum fluxes are extremely important in the dynamics of the atmosphere. Gravity
waves serve as the agents for redistributing energy rapidly in the vertical direction. Wave dissipation

results in a convergence of the momentum flux that causes an acceleration of the flow. In particular,

Fy=—5(pvw) (10)
and
Fu=—5L(puw) (10)

where p is the atmospheric density, z is height, and u’, v’, and w’ are the fluctuating zonal, meridional,
and vertical velocities, respectively. Fy and Fy are the accelerations induced in the flow in the zonal
and meridional directions and are usually expressed in units of ms 'day”!. Nastrom and Green (1986)
found values of ~10"2ms 2. There was considerable variability in the data, and the direction of the
momentum flux changed over intervals of 1-6 hr. Fukao et al. (1988) found accelerations of 5-25
ms 'day™! for data averaged over a 4-day period. In the latter study, there was no evidence of large
accelerations of the flow. Therefore, other processes must be balancing the induced accelerations. The
study by Fukao et al. (1988) also found that the largest contribution to the momentum flux was from

long period waves with periods of ~300 min.

Studies of the momentum fluxes have only begun to scratch the surface of the important

dynamics associated with the vertical redistribution of energy effected by the higher frequency gravity
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wave motions. It is likely that more studies of this type will help to clarify the important
interconnections between orography and atmospheric dynamics and the mechanisms whereby energy

generated in connection with dynamical processes is redistributed by the smaller-scale waves.

6. Special Operational Requirements

In certain instances, systems or networks of systems have been set up for meteorological
experiments on a short-term campaign basis. However, the systems used for operational monitoring of
the meteorological environment will have some special requirements in terms of strength of the system

construction, reliability of the system, and accuracy.
(a) Construction and Reliability -

When research systems such as the MU radar in Japan or the Flatland radar in the United
States are deployed, the site is usually chosen carefully, and arrangements are made to have the site
visited and maintained often. Large-scale networks generally do not afford such luxuries. Since
extensive areas have to be covered by the instruments, relatively advantageous sites can be chosen, but
often less than ideal choices will have to be made. Finally, the systems have to be capable of operating
in a variety of weather conditions, and sometimes even in extreme weather. All of these requirements

add up to the need for an exceptionally sturdy construction with a fong mean time between failures.
(b) Accuracy and Precision

The required accuracy and precision are related quantities since the precision has to be at least
as good as the accuracy, but the measurement error that can be tolerated is still unknown. Studies
such as those of Kuo et al. (1987a, b) will help to establish the appropriate criteria. Meanwhile the
systems deployed as part of the Colorado network (Strauch et al.,, 1987) appear to have measurement

errors of about 1.5 m/s.
(c) Height Coverage

It is difficult to come up with a quantitative criteria for the height coverage required for a
wind profiling system or network. In terms of the upper height limit, the more height coverage the
better is probably a reasonable rule-of-thumb subject to various practical considerations. The Wave
Propagation Lab in Boulder, Colorado, has compiled statistics on the height range coverage provided
by systems with three different frequencies (Frisch et al., 1986). The prototype network has used a
better height resolution at lower altitudes and poorer height resolution aloft, the rationale being that

the larger-scale structure above still has a considerable effect on the flow closer to the surface, but the
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small-scale structure aloft is less likely to influence the flow at lower levels. The increased pulse length
at higher altitudes increases the signal-to-noise ratio in that part of the atmosphere where the signal
usually becomes weaker. At least in some cases, we know that the small-scale structure aloft is crucial
in the evolution of the larger scale flow, especially near frontal zones. Then the strategy may have

disadvantages.

A major concern in the meteorological community has been the lack of coverage of the lower
altitudes in the planetary boundary layer rather than poorer coverage of the upper troposphere or lower
stratosphere. The boundary layer is the source of important fluxes of heat and moisture that fuel the
systems in the free flow above the friction layer. Therefore, measurements of winds and momentum
fluxes close to the surface but above the height covered by meteorological towers al:e extremely
important. The Aeronomy Lab and Wave Propagation Labs of NOAA in Boulder, Colorado, have
built special boundary layer radars (BLR’s). Ecklund et al. (1988) have described one of the systems.
These instruments use high frequencies that allow fast transmit/receive switches to be utilized. Since
the signals in the boundary layer are relatively strong, small antenna sizes can be used. Already, these
small specialized systems have shown good resuits, and the systems appear to provide good overlap
with the larger profilers.

(d) Choice of Frequency

So far, only a few frequencies have been used in profiler applications. The popular choices to
date have been near 50 MHz and 400 MHz. The ideal frequency, even for a particular application, is
not known because the range of the frequency spectrum that has been explored is so limited. In
practice, it may be almost impossible to choose any frequency but the 405 MHz frequency that is
already allocated for meteorological use. The advantages of the 405 MHz band are that large
bandwidths are easier to obtain, making it possible to operate with better height resolution, and faster
T-R switches are generally available at the higher frequencies so that better coverage of the lower
heights can be realized. The disadvantages include lack of aspect sensitivity, which eliminates the
enhanced scatter from the tropopause or frontal boundaries, and the sensitivity to precipitation. Even
low rainfall rates will result in the signal being dominated by the precipitation so that direct

measurements of the vertical air motion become unreliable or impossible.

7. Remaining Questions
(a) Best Configuration for Networks

The prototype profiler network being deployed as part of the STORM program in the United
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States is being established with an average spacing comparable to that of the radiosonde network,
although a subgrid array with a smaller spacing will be embedded in the larger array. The plan seems
reasonable, but it is still unclear whether this is an optimum spacing. We will need experience with the
network to determine what characteristics of the various dynamical systems can be observed and

whether important features are slipping between the cracks,
(b) Initialization of Models

There are still many important unanswered questions about how the profiler data can best be
used to initialize numerical forecast models. Clearly, the straightforward input of profiler winds at the
initial time step is a likely possibility, but various four-dimensional data assimilation schemes may also
be useful, especially since the wind profilers have tremendous time resolution but provide limited

spatial coverage.
(c) Usefulness of Vertical Velocity Measurements

We have already described some of the potential problems with the vertical velocity
measurements with regard to the effect of small-scale variability on the representativeness of the
measurements. In addition, we need to determine if the measurements can be used in model
initializations in some way. Verifying model output with the vertical velocities is possible, but it may
be that the implied divergence information can be used to generate more realistic vertica! velocities at
an earlier stage in the model run. The profile of vertical velocity can also be indicative of the latent
heating associated with convection. Such information would be useful in parameterizing the heating
and momentum fluxes generated by clouds. The errors introduced by the different types of scatter and
by the effects of precipitation need to be determined more accurately in the future so that we can make

the best use of the vertical velocity information.
(d) Usefulness of Small-Scale Turbulence Parameter Measurements

There is still disagreement about the dependence of the reflectivity and spectral width on the
turbulent dissipation rate, although the work of Hocking (1983) has served to clarify a number of these
issues. These small-scale fluxes can be extremely important in certain dynamical situations and can be
potentially important in improving parameterizations of subgrid scale motions in numerical models.
However, more comparisons between radar-derived values and observed quantities are needed to gain
confidence in the turbulence data that can be obtained from the radar measurements. Also, Hocking et
al. (1986) have shown that the spectral width measurements will be strongly contaminated by beam
broadening and shears for any typical flows within the troposphere. We need to determine if other

radar techniques can alleviate this problem and provide comparable information in a different way.
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(e) Usefulness of Momentum Flux

The momentum fluxes measured by the Vincent-Reid (1983) technique appear to have a great
potential for improving the parameterizations of small-scale dynamics used in virtually all of the
forecast models. Again, the representativeness of fluxes measured at a single location will have to be
determined. The possibility of updating the parameterizations based on flux-measurement input at

initialization time should be explored.
(f) Advantages of Various Radar Techniques

So far, all the operational profiler applications have used the Doppler technique which involves
two or more beams pointed in off-vertical directions. The combination of the line-of-sight velocities
measured in the various beams produces the wind components. Alternative methods for measuring the
winds include the spaced antenna method and the interferometer technique. The spaced antenna
method has already been tested sufficiently so that we know that it can be used routinely. There are
even various advantages of the technique for certain applications. The interferometer technique has not
been tested extensively and its operational potential is unknown, but it provides some possibilities for
measuring small scale structure in the flow that is impossible with other techniques, at least in the

simplified implementations typical of the operational profilers.
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1. Introduction

Incoherent scatter radar (ISR) has become the most powerful means of studying the iono-
sphere from the ground. Many of the ideas and methods underlying the troposphere and
stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive
index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly
understood, the theory of the refractivity fluctuations in the ionosphere, which depend on
thermal fluctuations, is known in great detail. The underlying theory is one of the most
successful theories in plasma physics, and allows for many detailed investigations of a num-
ber of parameters such as electron density n,, electron temperature T, ion temperature
T., electron mean velocity v., ion mean velocity V; as well as parameters pertaining to
composition, neutral density and others.

Here we shall review the fundamental processes involved in the scattering from a plasma
undergoing thermal or near thermal fluctuations in density. We shall relate the fundamental
scattering properties of the plasma to the physical parameters characterizing it from first
principles. We shall not discuss the observation process itself, as the observational principles
are quite similar whether they are applied to a neutral gas or a fluctuating plasma. These
observational principles are dealt with in other ISAR presentations.

™M

-

y AelT)

Figure 1. Volume element d(f) in volume V illuminated by plane wave.

2. Vo e Scatter m dom Irregularities, Conti

In the neutral atmosphere the scattering is derived from the following consideration:

-

With an incoming wave: Eoc"i‘""'- [note that exp (iw,t) is understood] and a dielectric
constant in medium:
£ = £, + A:(A),
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the polarization of the medium becomes:
P(7) = Ae(7) - E, - e7Fin 7 . (2)
This oscillating polarization acts as an equivalent current:
7(7) = iwoP(7) = iw, A, - ™7, (3)

and the vector potential at a point far from volume V is:

/I(F) _o lon /A (-r —ikin 7 _e—ik[?—i"|d(771) (4)

QObserver

(‘

—=® Observer

Figure 2. Scattering geometry to calculate vector potential at the observer.

with |7 — 7| & |r| = /iy - 7', where i, ~ %z

We obtain:

.Z(F') — Ho "-‘-’o_o_ —ik:|r] / Ae(') - e~V (k.n'krce)d(,:‘l) (5)

A‘(knu —k'lﬁ)

which means that the received field depends on the spatial Fourier component with wave
vector k = kip — krec.
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Figure 3. Relation between the wave vectors of the transmitted and revised
waves and the spatial Fourier component of the dielectric fluctuation.

It is easy to show from this that for a plane incoming wave of flux (Poynting vector mag-
nitude) Sy, the flux at the receiver is:

Sre = —w;—li sin2x |AE(En - ’-C.rec)lz sin (6)
7~ (4m)°R} '

po = 47 - 1077 Henry/m
siny = polarization factor, see next section.

R, = distance between scattering volume and observer

In a plasma

. An(f).é -
As(r ) - m- wz ( i )
Where:
An(F) = electron density fluctuation
e = 1.602 - 10~'° Coulomb = elementary charge

m = 9.110 - 10™%!kg = electronic mass

and one obtains by substitution:
wo\? = -
Sre =(32) 180(Fin = Eucl? - sinx - Sin @®)

where r, is the classical radius of the electron defined by
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e?

To = =——————
° 7 4rme ¢,

€, = 8.854- 10712 F/m

c=2.998-10°m/s

catterin, ndjvidual Electrons, Discrete Particles

Let us recapitulate the derivation of the scattering by a free electron of electromagnetic
waves impinging on it. It was originally thought that the scattering from a plasma could be
considered a super-position of scattering from individual free electrons and that the strength
and spectral broadening can be used to determine density and electron temperature. For
the ionospheric plasma and for the frequency used in such scatter experiments, it turned
out that the scattering could not usually be considered that simply and that the actual
situation was more favorable from an experimental point of view. Nevertheless, even with
the more complex theory of interacting electrons the scattering from an individual free
electron forms an important and essential ingredient.

Assume as in Section 2 that the electric field set up at the position occupied by the electron
is:

E(t) = E,  etiwet (9)

where E, is a complex electric field amplitude which allows for an arbitrary polarization.
When we assume that w, >> (2., where Q. is the angular gyrofrequency of an electron.
the equation of motion of the electron becomes:

—E,,e""“"" =m-3/e (10)

Solving for #(t) with the substitution #(t) = ¥, e****! one obtains:

E, (11)

U, =+t
Mw,

Note that we have neglected the spatial variation of the external electric field and the fact
that the electron moves in this field. We have also ignored the force caused by the motion
of the electron in the magnetic field of the incoming wave. Both of these effects could
contribute to a ponderomotive force which we ignore. We also note that the motion of
the electron is considered undamped. This cannot be strictly true since the electron, even
without collisions, is re-radiating because of the oscillation and hence, must experience
damping.

The current density associated with the motion of this electron becomes:
3(Ft) = —ei (1) 8[F ~ 7u(2)] (12)
where 7(t) is the position of the electron and where §(F) is a spatial deltafunction. With

such an oscillating current at the origin we obtain as in the previous section:

2
Ala R "‘_°e_ s +I(Ua‘_zrc¢'ﬂ L 13
A(F, 1) o Ege R (13)
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The position of the observer ¥ may vary with time due to motion of the electron and we
must substitute when necessary:

r=r'(t)= F(t - L;cﬂ)

where 7(¢) is the radius vector describing the position of the electron relative to the position
of the observer at time ¢.

The Poynting flux vector at the receiver due to the radiation from this electron becomes:

1 iz, 1 €2 \7 |kree X Eof?
Srec = N HI" =21 (meo) 7 (14)
where n = \/pio/€, = 376.7 ohms. Introducing the polarization angle x through
siny = I—I.c.—rﬁ—x——E.—o—l (15)
‘krcc‘ ’ IEOl
and the power density incident on the electron, S;, by:
2 1
Sin =B/ 5 (1)
we obtain:
Srec = (7'0/}21)2 ' 8iﬂ2x -Sin = 107% 8iﬂ2x - Sin (17
The usual radar cross section o, is defined by:
o, =4r7R?. Srec _ 4nr? sin?y >~ 1072 sin?y(m?) (18)

m
In calculating the single electron scattering we have implicitly assumed that the driving
electric field is linearly polarized and that the angle between the field and the direction of
the receiver is x. In actual fact the electron is often oscillating in two linearly polarized
fields of arbitrary relative phase and amplitude. When this is the case the interpretation of
sin?y is more complex and the amount of scattered energy available may only be received
provided the receiver is properly “matched” to the scattered wave.

Consider a plane wave propagating along a positive z-axis. The complex amplitude E, may
then be represented as;

E, =¢(cosf- & + ¥ sind- &) = Eo{ cosy } =& (19)

sinfl - et

A linear polarization along the z-axis corresponds to:

- {)
- {)

and along the y-axis:
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Circular polarization is represented by:

1 { 1,} right circular
21—t

5o

Y.

It follows that the scattered field at the receiver can be expressed as follows:

{ 1.} left circular
+1

ﬁmn=%mxmmém4w4mn (20)

where fi; is a unit vector along the direction of the scattered wave. In order to specify
the polarization both of the transmitted and scattered wave we introduce the following two
coordinate systems:

A. For the transmitted wave:
.‘x T_ia = in/lkinl

-

€y, = unit vector normal to plane defined by Fini Erec

L]

€ = normal to both &, and €, in a right handed coordinate system.

B. For the scattered wave:

é'x = ﬁl = krec/l’-c.rcc‘

!

) _ =
Cy—Cy

€', = normal to €}, and &, in right handed coordinate system.

Figure 4. Relationship between polarization of incom-
ing and scattered waves.
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In terms of these two coordinate systems we may write:

E, _ —r—ofo cosé 0 cosf gilwet=Free?)
EL, R, 0 1 sinf . e

or:

cosf’ ro [cosd O cosf3
£ro {Sinﬂleié’ } "R, {0 1 } {3in6e'5 } €o (21a)

This determines the relationship of the two fields. In particular we note that

sin?y = sin’f8 + cos’fB - cos*d (22)
where 4 is the angle between 7, and ;.

It is now clear that one may express the relationship between scattered and incident electric
field amplitudes as:

b’ = -;—"Eo\lfﬁ (21b)
1
where:

cosé 0
v = { 0 1 } (geometry)

sinfeté

!
P = { cosf }(receiver)

p= { cosf }(transmitter)

sinf'ed?

catteri om a Collection of Electrons

When many scattering electrons are present inside a volume V rather than a single one the
observed field is given by the sum

N
Bo=-26,05Y FR0 (23)

where N is the total number of electrons within the volume V', where the polarization and
geometry of all the electrons are the same so that we do not have to sum over different ¥p"s.
The previous distance between a scattering electron and the observer, R, now represents
the distance from an origin within the scattering volume and 7,(t) represents the position

-

of electron number p within this volume. The vector k = krec — kin comes about as follows:
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Figure 5. Scattering from electron at 7.
In the scattering volume, apart from a phase factor, the incoming wave has the form:

E‘,'n(f-“,t) =& F ei(w,!—Fi.-,.)
so that the field at electron number p is:
E‘in(FPst) = foi' ei(u.t—i;,-?,) (24)
From the previous section the field at the receiver due to electron p becomes
- ra

E = _R_ 3 ‘I,ie;(u.t-)?.-,.-r,) . g~ VkR1y (25)
1

If the distance from the receiver to the origin in the scattering volume is R; we have:
R],, ~ Rl et ’C"c . 7-",

Substituting this into (25), ignoring an irrelevant phase factor (e'*®') and summing over
all electrons gives eqn. (23) provided

E = Erec - Eun (26)

We next imagine the particle density to be expanded in a spatial Fourier series through:

n(F,t) = %Zn(i,t)e-*"" (27)
7

where

n(f,t) = /Vd(rjn(r', fetET (28)

Since the scattering electrons must be considered point particles at 7p(t), p = 1,..N the
density is:
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N
n(F,t) = 36l = 7 (0)

p=1

with a spatial spectrum
- N . N -
n(k t) =Y e EA0 =3 0 (F 1) (29)
p=1

p=1

A comparison with (23) shows that the observed scattered field from the electrons may be
expressed as:

B.= - 1o g W e 0Bl (1) (30)
1
The complex amplitude of the received signal is
T -
A(t) = |=— &, U pl - n(k, t)
®) IR[ . (31)
= A, - n(k,t)

<AL(DA(t+7)>= A2 <n* (K, t)n(Et+7)> (3)
= Aln,-V <nj(ktiny(k,t +7) >

where < ... > denotes ensemble average, where individual particles are assumed to be
independent, where n, is the mean electron density and where:

< n; (E, t)n,(l:,t + T) >=L eiz'(?’(“‘")_?l(‘)] >= p’(E’ T) (33)
is the autocorrelation of density fluctuations associated with a single electron.

Similarly, the power spectrum received is determined from the Wiener-Khinchine’s theorem,
and

Prec(w) =1y V- Pood,(k,w) (34)

where P,, is the power scattered by an individual electron under the same geometrical and
external conditions and where:

- +00 - - .
b,(k,w) = / <np(k,t)ny(k,t +7)> e 'rdr =

_,; i

= f < kP (t+r) =7 (1) > =T dr (35)
o

= pp(k,T)e " dr

We often need the integral:
G(F,w) = / pp(K, T)e™ " dr (36)
[

With this function the spectrum of a particle becomes

Ixd
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&,(k,w) = 2 Re[G(k,w)]. (37)

It will become apparent in the next two sections that both the plasma response to an electric
field as well as the thermal driving force can be described on the basis of the motion of
non- interacting particles. It is, therefore, useful to study their motion in some detail.

We assume that the static magnetic field B, is directed along the z-axis. It will be conve-
nient to introduce “polarized” coordinates to describe the position of a particle:

Cartesian: Polarized:
7= {z,y,2} 7= {ry1,r-1,70} (38)
The relationship between the two descriptions is
r=J5(z+iy) z=J5(r +r-2)
=1 : i _
Iy ZETTT

The advantage of these polarized coordinates becomes evident when we state the equation
of free motion of a particle:

dv,

= = —iaQvg (a==%1,0)
4B, (40)
b=

where ¢ and m are the charge and the mass of the particle {electron or ion) respectively.
From this we determine the relationship between the (past) velocity at time t' =¢ — 7 in
terms of the present velocity (at t)

3t - 7) = () 5(t) (41)
where I'(7) is a diagonal matrix with elements.
[D(7)aa = €7 = a(r) (42)
The past particle position can be determined similarly in terms of present position and
present velocity through
it — ) =t) - T(r)%(t) (43)

where I'(7) is a diagonal matrix which determines the particle helical motion. The elements
are given by

eiaﬂf -1

[T(M))aa = T = gao(7) (a=+1,0) (44)

The single particle autocorrelation, eqn. {33) now becomes:
p,(l?, r)=<eT7 > (45)
where

o = ko' g-a (46)
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The actual form of p,(k, 7) depends on the statistical distribution of velocities, the magnetic
field strength and the angle v between k and the magnetic field direction.

For a Maxwellian velocity distribution:

fol@) = (2m) 7T o) €720 (47)
where
U?h = T/m
T = kinetic temperature (in energy units)
we obtain:

pp(k,7) = e~ tvhial

2
—(kR)? { (%) cos’y + sin? (%) sin2‘7} (48)

The gyration radius R is defined as:

=€

\/ivth

R=Q

(49)

It equals the ratio of the r.m.s. orbital velocity and the angular gyration frequency.
We note that for weak magnetic fields and arbitrary 7, or for k| B, (i.e. v =0)and

arbitary magnetic field strength the autocorrelation becomes

p,(E, T)— e ¥kvar)? (50)

When & is exactly perpendicular to the magnetic field, the autocorrelation for the plasma-
density becomes periodic with period T = 27/§2. The depth of modulation increases with
R and decreases with the scale of the density fluctuation A = 2x/k, see Figure 6.

increasing R

increasingA

Figure 6. Autocorrelation of density fluctuation when kL B,.
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For intermediate angles between k and B, the autocorrelation of the density fluctuation
can be regarded a product of two factors, see (48).

ar\?
A) e—-(lcR)2 (?) cosy

8) —(kR)*sin? (Q—;-) - sinly
e

which are sketched in Figure 7.

1 increasing y
Factor A
) -
{
H
g Factor B
i
T T

Figure 7. The two factors which in the autocorrelation of in the
density fluctuation of non-interacting particles.

The spectral function ¢(F,w) becomes (see 37):

$p(F,w) = 2Re { Gy(F, u)} (51)

where

G E,w = e'%":»‘aﬂz-ih"dr (52)
P

[

The next section introduces particle interaction through a self-consistent electric field.

5. Response to a Field Particle. Electrostatic Interactions,

We now introduce particle correlations in the plasma components (electrons, various types
of ions) by considering the particles smeared out into a continuum and by assessing the
response of this continuum to each discrete particle separately.

The plasma response to an electric field E(F’. t)can be obtained by solving the Vlasov equa-
tion to first order in én(F, ¥, t) and E(F, t). The perturbation solution for any of the species
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is given by (see Appendix A)

¢
én(F,0,t) = —nr;’lq / E(7,t") g'_f,‘: dt’ (53)

Here E(r‘, t) is a small electric field which we shall later assume set up by the fluctuating
charges, often referred to as the self-consistent field. The integration is carried out along
the unperturbed particle orbits which were studied previously. This is indicated by the
primed quantities in the integrand.

We make the following substitutions:

=t—-r
B¢y = _I'ZE(E t— r)em R HET(T -
A )af,(v')
Integrating over all possible ¥ we obtain the induced density fluctuation:
n(k,t) = 24 f dr E(F,t - r /d(é’)l‘( y el af°(” ) iET(n7 (55)

We now take the Fourier transform with respect to time, and relate the electric field to the
tota] electric charge fluctuation Q{k,w) b

E(E, w) =

) (56)

We, therefore, only include longitudinal electrostatic interactions. This is exact when there
is no external magnetic field. When such a field is present the longitudinal and transverse
modes are coupled and the electrostatic approximation breaks down particularly at very
long wavelengths. In diagnostic experiments on the ionosphere only short wavelengths are
used and the electrostatic approximation is adequate.

Substitution of (56) into (55) gives

n(k,w) = - "‘"‘1 = Q(F,w) / dr-e™™T /d(z?)é'(r)%% e'd? (37)
For each of the species we now introduce
2
Noqy =w:
EsMg
and,
2
o=+ [ [amnngpen (38)

Hence, we obtain for the fluctuation induced in species o:
n,(ic.,w) = —lx,(l:,u) . Q(E,-u) (39
9s

We now have all the ingredients necessary to compute the density fluctuations in the plasma.
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6. Calculation of the Fluctuation Spectrum

Let us now assume that we have a plasma of electrons and one type of singly charged ions.

For the electrons we substitute: For the ions we substitute:

UJ?, - "“'3 w?, — w?
ge — —€ go — +e¢
my, = m me — M
d, — a, s — G

foa - fa foa - F,
Xe = Xe Xo = Xi
Ng —n nge = N

Consider first the fluctuation associated with a particular electron.

A. Intrinsic fluctuation n,(lz,w), See Section 4.

B. Induced electron fluctuation n!(k,w) = +“‘:Q,(E, w)
(electron dressing on electron)

C. Induced ion fluctuation  N!(k,w) = —xeiQ,(l-c', w)
{(ion-dressing on electron)

The total charge fluctuation associated with this single electron is

QulF,w) = —el(np + 22Qc) +¢(~71Qx) (60)
from which:
o —e nE(l-c.,w)
)= T (o1

Since we are interested in the total electron-density fluctuation induced by electrons, not
the charge fluctuation, we have:

ne(’:v w) = n?(i;, w) + n:(~, w)
- - (62)
—Xenp(k, W), _ ny(k,w)(1+ xi)
T+ xe+xi 14+ xe+xi
The mean power spectrum associated with the thermal excitation by electrons is, therefore,

found by averaging over the electron velocity distribution. If the velocity distribution is
Maxwellian (47), then the independent electron spectrum is given by (51) and the result is

= nP(’:vw) +

P <in E,W2>1+ 42 @ E,w 1+ y,l?
< ‘ne(k’w)|2 >= l P( )l l - Xil = tg_' ) lel
1+ xe + il T+ xe + xil

(63)

where &,(k,w) is the independent single electron mean power spectrum discussed in Section
S.
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Next consider the more important fluctuation arising from the thermal motion of an ion:
A. Intrinsic fluctuation N,(l-c.,w), see Section 4.

B. Induced electron fluctuation n}(k,w) = +X Qi( E,w)
(electron dressing on ion)

C. Induced ion fluctuation N}(k,w) = - Q:(k,w)
Solving for the charge fluctuation Q;(¥,w) we obtain:

- N, r:,w
Qu(Ew) = e (64)

and the fluctuation induced in the electron density is given by:

YL _ XeNp(E’w) o
n;(k,w) = TER— ot ni(k,w) (65)

The total electron density fluctuation in the plasma, therefore, can be expressed in terms
of the independent particle spectra for electrons and ions and the response functions of the
plasma as follows:

< |n(k,w)? > = [< [ne(F,w)? > + < Ini(k,w)[? >]n.V
o . (66)
[1 4+ xi|2®e(k,w) + |x.[*®i(k,w)
= n
‘1 + Xe + XiP

This is the form of the spectrum which has been widely used in the analysis of the incoherent
scatter data, and which has remained valid for nearly 30 years!

oV

Fluctuations in ion density, charge density, electric field, currents, etc. can all be obtained
by an analogous procedure. An extension to a multi-ion plasma is relatively trivial. Differ-
ent temperatures for electrons and ions are allowed.

Collisions have not been considered but can, in some cases, be taken into account by
regarding the particle motion as a stochastic rather than a deterministic process, see Section
8.

7. Discussion of Results

. The spectrum function contains the x. and x, together with ®, and ®,. All of these
functions are related to the autocorrelation of independent particle fluctuations as follows:

Introduce for electrons (see 48):

Po(Ey )= PC(E, )= 5_*"3A|‘7',

T,
vy = m
G_oa=k_g ga (ga computed with @ = Q, = —ef:)
D? = SoTe {Debye length)

n, - e?
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And for the ions:

polE,7) = pi(E,7) = e~ Hvnnldl’

T;
Vi =37
M = ionic mass
A_g=k_o ga (9o computed withQ =, = +e$°)
2 _ soTi
b; = n,-e?

With these definitions we obtain:

Xe(Fw) = (k—15)2[1 +w-Im {G,(F,w)} —iw- Re {G,(E,u)}]

(67)
- 1 \? - , ~
xi(k,w) =(k—b_,) l+w-Im {G.»(k,w)} ~tw - Re {G.-(k,w)}]
and: .
®,(F,w)=2-Re {G,(k,w)}
&,(F,w) =2 Re {Gi(E,w)}
Here, from Section 4:
Re {Ge(/;,w)} =/ e=3vinlal e wr dr
]
Im {Ge(/z,w)} = —/ e~ 1oil® gin wr dr
with similar definitions for the iomns.
When there is no magnetic field or when k||B, one obtains:
- _ I _12? .
wRe {G(k,w)} = \/;Ze } (68)
. 1-22+124 - §2°...2 <<
1+wlm { G(k,w)} = (69)
-H -k Z>>1
where we have put
w v
7 = m——=
kvin  vea
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i wIm(G(w))

wRe(G(w))

Figure 8. Plasma dispersion functions.

The only difference in the electronic and the ionic functions comes from the difference in
thermal velocities.

For values of w such that w < kVj, x; and x. are of the same order of magnitude.
However, ®./®; ~ Re G./Re G; ~ Vin/ven ~ /m/M

It follows that as long as kD, and kD; << 1 the dominant excitation of density waves

at low frequencies must stem from the ion excitation, see the numerator of (66). In the
denominator y,. 2~ (,‘LD.)2 whenever w < kVy,.

It follows that the low frequency part of the spectrum simplifies to:

Re {G,-(w, ic’)}
1+ (1 - iwGi(w, D)2

< In(k,w)|? >~ 2n,V (70)

For T, = T; the factor multiplying Re {G,'(w, I.c')} starts at -} at w = 0. As T, /T, increases
above unity the depression near w = 0 increases and a near line spectrum develops, see
Figure 9.

When kD, and kD; become much larger than unity, then the electronic part of the spectrum
will dominate and we obtain a Gaussian spectrum with a width corresponding to the thermal
motion of electrons.

A resonance occurs near the electron plasma frequency w,. This can be established by
looking for a zero in the denominator of (66) near the plasma frequency. Since x; has
vanished near w, we have:

2
1+<%De) {1+ wIm(G,) — iwRe(G,.)} =0 (71)
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Figure 9. The ionic part of the fluctuation spectrum for various values of T./T..

" As w is close to w, the expansion of the plasma dispersion functions for large arguments
can be used and we obtain
1\ [ (kvw)? | (kvw)t
1+<Fb:) {— " 3 A =0 (72)

Where we have neglected the imaginary part. The solution is the familiar expression:

W? = w1 +3(kD. )% (73)

the spectral peak associated with this oscillation is apparent in Figure 10. The peak can
be strongly enhanced by the presence of photoelectrons or other suprathermal charged
particles. The actual enhancement level involves the short-range Coulomb collisions as well
as the angular distribution of the suprathermal electrons.

Let us now briefly turn to the effect of the magnetic field. As far as the ions are concerned
the gyrofrequency §; satifies the relation:

kVu, >> ()
This means that the correlation function
e—(RR(BE)? cos
becomes modulated with a periodicity T; = 27/Q;.

In practice, however, these modulations are blurred out because of the diffusion of the ions
away from their deterministic orbits. Very close to perpendicularity with the magnetic
field (i.e. ¥ = 90°) the spectrum may become very narrow if the radius of gyration of the
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Figure 10. The fluctuation spectrum for T, /T; = 1 for
varying Debye length D., X, = —= - 5,5

’ kugp
electrons is so small that the electrons are prevented from participating in the fluctuations
of the ions.

With a magnetic field the resonance associated with the plasma frequency becomes modi-
fied. When w, >> §1., when kR < 1 and when 7 is not too close to 90° one obtains:

w? = w1 +3(kD,.)*] + Q2. sin’y (74)

An additional resonance, which can also be observed, arises because of the presence of the
magnetic field. As v — 90°:

wi = Qwp, + )/ (wE +Q7) (75)

Whenw? > Q? one obtains:

w? = 0.0, (76)

which is sometimes referred to as the lower hybrid frequency. The strength of these lines
depend on the relative magnitudes of plasma frequency and gyrofrequency, on the presence
of suprathermal electrons (or ions) etc.

The total power residing in the electron plasma oscillation at thermal equilibrium is deter-
mined by integrating the spectrum through the electron lines with the result that

(kD.)?

ddw = —— 77
llectron line 1+ (kDe )2 (
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whereas the power in the ion line becomes:

1
[.2%= o T (kD] (78)

Hence, whenever kD, is small the ion contribution dominates.

Note that (78) — 1 when (kD)?* — 0 or more generally — ;377 when T. # T.. Hence,
the “jon-scattering” is half of the free electron scattering, which is obtained from (77).
When (kD)? = o0 (77) — 1.

8. The Effects of Collisions

Let us return to the solution of the inhomogeneous Vlasov first order equation:

im0, = -T2 [T B - )2l ar (79)

Remember that the past R,V at time t — 7 approach 7,7 at time t, and that the posi-
tion/velocity travel back in time exactly as in deterministic orbit in accordance with the
equations of motion of free particles.

Suppose that the particles suffer collisions. In this case, it is no longer possible to say for
certain where they came from, because the previous history of the particle arriving at 7, ¥
at time ¢ is a random process. If the collisions occur with like particles the process becomes
difficult because pairs of particles have unrelated motions in this theory. However it is
often the case that the collisions occur with particles of another kind with little dynamical
mutual coupling. Important examples are:

jons in low ionosphere collide with neutral gas molecules which
are much more numerous than the ions.

electrons deviating from their deterministic orbits because they
have to move in the random field of near-stationary ions.

In cases such as the two quoted we introduce:

W, (F, 7,7 — RV, t- r) =conditional probability density
of finding a particle at 7, ¥
at time ¢ given that at time t — 7 it was
at ¥ — R,

The joint probability density of the two events (7, 7,¢) and (¥ — RV,t- T)is
WL (7, 5,tFF - R, V,t = 1) fo(V)
The individual probability of 7 — R, ¥,t — r given that the present coordinates are 7,7, ¢t is:
W_(F - R,V,t - 1|f, 5,t)

and the joint probability density of 7,7,t and 7 — R, V,t — 7 is:
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W_(F- R, V,t - 1|, 0,8) fo(¥) =

=W, (F,7,t|F - R, V,t — 1) f.(V) (80)
but,
W_(-R,V,—rlo,7,0)

clearly must equal ..
Wi(R,V,1|o,¥,0)

from the symmetry of the equations of motion.
Taking the spatial Fourier transform of the perturbation solution one obtains:

n(k,5,t) = - Lo / Bkt —1)< 22t af"(” ) HER S gy (81)

where the average is taken over all the different particle orbits which lead to (7, ¥, ).

Explicitly with 34 = 2600 = _%p . £, .

n(k,o,t) = +

4552 /.,m Ekt-n) /f Wi(R,V,7l0,5,0)7 - e+ FRAR)A(V) - £,(7) (82)

Hence, if we introduce:
149 [[ dBody Wo()7 -8 = AR, 5,7) (83)
we obtain:

n(F, 7,t) = :I‘J’, (84)

Let us formulate the modified scatter theory in terms of transition probability averaging.

Introducing as before:
o o ik
E(k,w) = ey Q(k,w) (85)
and taking Fourier transforms, one obtains:
mkw) —wr B K &
( ,Tw) = q(kD)’ dre k-A(k,7,7) (86)

Integrating over all arrival velocities one ﬁnally obtains:

n(E,w) = -% x(F.w) - Q(F,w) (87)

where now
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xEw)=-igps [ dre [ a0

[ 4R W R 10,5 0 EP Y

(88)

Similarly - studying independent particles - diffusing along as a result of collisions with

another gas - but not exposed to an external field - one obtains the expression:

mp(F ol =2 [ R R OYACH

/ d(R)d(7) Wo(R,V,lo,7,0) R
So that what we previously referred to as G now takes the form:

G(F,w) = / Taretr [ o) | [ awaw)

-W+(§, v, rlo, ¥, 0) e~ ER

By properly manipulating the expression for x(l?, w) we obtain

x(Fow) = (k—;));(l+wImG' ~iwReG)

which is of the same form as before. Consider a model for W(ﬁ, v,7lo, ¥, 0) :

Suppose the particle is moving as if in Brownian motion with an equation

% = -7 + A(t) (Langevin's equation)

(do not confuse with 3 in Section 2!)

Then, from Chandrasekhar’s work:

G-A2-1BR,S+F 53

- 1 -l T o
W+(R |4 Tlt_).) = 87r3(FG — H2)3/2 e AFG-H?)

-

R,=R- g(1 —ef")

§=V-

F= ;t, 20T —3+4- A — ]
G = _35(1 —251’]
H=L(1-e*)

The correspondence for § — 0

W(R,V,r|5) = §(R-7-7)8(V - %)

(89)

(90)

(91)

(94)
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This is a formulation which preserves particles, momentum and energy (with the back-
ground). We shall now use it for a study of plasma line enhancement due to photoelectrons,
or other energetic “tail” electrons, neglecting the magnetic field.

By substitution one obtains:

o <] (324 —Ar .
G(F,w) = / I Iy (95)
If we assume 3 to be small we obtain:
G(E,w) ~ / e—ar’-iurdr+%/ .3 c—ar’—iwrdr (96)
] [
Go(kw)
with a = E—;—’}‘
Hence: / friction term collision frequency
& P
G(F,w) = GolF) =i %2 =0 Go(R, ) (07)

The asymptotic expansion for Im G for large i~ =2 is

~2 {14277 43274)

=_{w RCARI }__{%u:_s...} (08)

Hence, we obtain approximately:

G(F,w) = G(, w)+ﬂ 2.3.
= G,(k, w)+/3 "'+ (99)

2

~ Go(k,w) + 8- (kD)

Turning to the fluctuation spectrum for electron plasma oscillations one obtains

®.

T+l (100)

< |n(k,w)]? >=
Denominator:
1+ xe —1+(k1D) 1+wImG-wImG —iwReG]

w? (kv )? i
PR et th) - .
1 o3 3 e (kD)’w ReG
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-~

W

~1- —l 3(kD)?. —= (101)
Expand to first order in w about w = w,
2
14 xe = + (w wy) — (kD)szcG
_ 2 1 rd -*Z’
-w,.(w_wr)-‘-(kD)’ -\/;dz(c J+ ... (102)
The power spectral shape in this approximation becomes:
2n, Re G

< In(k,w)|? >~

¥ T+ eI (109

This is a Lorentzian which can be integrated. If this is done one obtains for the intensity:

L fulve)  floe) 5
T SEDY Fu(ve) - Toh fy(o) + B (104

When electron-ion collisions dominate, 3 can be expressed approximation by as w, !','\—A

(A ~ number of electrons in Debye sphere.)

v¢~ﬂ’;

fm ~ nm(z—';-'r)‘/za,e"’“’zlzT background plasma

fp ~ same for hot plasma.

Collisions between ions and the neutrals cause the mobility of the ions to decrease. The
collisions, therefore, effectively damps the ion-acoustic waves, which causes the frequency
spectrum to narrow. Studies of the narrowing of the frequency spectrum with decreasing
height can be used for studies of the neutral density at D and the E-region heights.

9. Summary and some final remarks

A summary of the application of the ion line of the incoherent scatter radar technique to
ionospheric measurements can best be given in terms of the sketches shown in Figure 11.

The plasma line, in addition to providing information on suprathermal flux, see equation
(104), also provides the possibility to determine the electron temerature and the electron
density. Iguormg}he geomagnetic field for simplicity we have, for the effective k-vectors &,
and ky(= kin — krec) the following plasma line frequency offsets apply, see equation (73):

fir= {1+ 3(k D))

fir = fo(1 + 3(k: D))
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Figure 11. Sketches showing various observations leading to several plasma parameters.

If the two different k-vectors are generated by shifting the radar center frequency, the
plasma line spectra at the two radar frequencies fy; and fo2 will appear as shown in Figure
12. Different k-values can also be obtained by changing the geometry in a bistatic setup.
In the case shown in Figure 12 we have:
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(f2r — fir)(far + f2r) = 3D? - fi(ky —~ k1 )(kz2 + k1) (107)
=2 f,

§f = fan— fir =3D*- % Arlfn = Jolrlfor + o) _

62
(108)
2 2 2 2 2
— 2 Ven | foz‘fm_f_ﬂfoz—fm
= 247w w% fr ") = Fam 2
R | fiR
i
; for | 1< foz
i for | fam |
: H :
fo2

Figure 12. Plasma line spectra at radar frequencies fo; and foz.

All of the quantities involved are well determined except for T, which can be found this
way.

Numerical example (EISCAT parameters)

T, ~ 2000°K
foa = 933MH 2z
for =224MH:  éf ~335kHz
fe=5MH:

Hence, from a two-frequency plasma line experiment one can deduce the electron temper-
ature accurately and independently.

In Section 2 of these lecture notes we started out considering the scattering from random
irregularities in the dielectric function. Throughout the dielectric considered in this pa-
per was a nearly lossless plasma. However, a neutral gas also exhibits random density
fluctuations, and the curious readar might wonder whether they are detectable at radio
wavelengths. In order to answer this question, consider a gas dense enough to support
sound waves. The density fluctuation may, therefore, be considered as a superposition of
thermally excited sound-works of varying wavelength and direction. As in Section 4 we ex-
pand the parameters (velocity, density, temperature) associated with the acoustic wave-field
‘1 a spatial Fourier series:
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n(f,t) = %Zn(ﬁ',t) i
P

where n can be density, pressure, velocity etc. The wave-field amplitudes n(F, ) all must
satisfy the wave-equation

A(E 1)+ k*c3n(k, ) =0 (109)
where T
= 77 (110)

where T is the mean gas temperature in energy units, M the molecular mass and v (1.4 for
air) the ratio of specific heat at constant pressure and constant volume. From equipartition
arguments (assuming minute losses to insure equipartition) as used in deriving specific heat
of solids we find that

< |n(kw)|? >= %K [6(w — keu) + 6(w + kea)] (111)

From Toru Sato’s lecture, his equation 2, we see that for dry, nonionized air:

1.55- 10~% v(k)(mb) _
' T(°K) -

Ae(k) = &g

15510 T u(R)(V/m?) _ (112)
=¢£q- T(°K) =

=€0-1.55-10776 - k- n(k)

where
x = Boltzmann's constant = 1.38 - 10~ J/°K

combining 111 and 112, one obtains:
< |Ae(k)? >=€lv-k?-ng-V-24-10"1 (113)

The radar cross section per unit volume of the gas is formed by combining equations (6)

and (18) to give:
kd -
o= 4—: 3.73.107% ng (m?/m?)

As a specific numerical example, take the Arecibo S-band wavelength and the atmospheric
number density at sea level:

Ao =0.125m

ne = 2.688-10%m™3
This gives for the troposphere:

Tirop N 5 10°% m?/m?
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As a comparison the cross section per unit volume in the F-region is typically:

or = 10718 m?¥/m?

If the Arecibo beam could be focused at lower altitude, if full advantage could be taken of
the reduced distance and the reduced bandwidth of scattering one might be able to make
up for the nearly seven orders of magnitude discrepancy in specific radar cross section. It

is probably a much more practical approach to excite low frequency sound waves as done
with the Shigaraki MV radar system, and scatter from them.
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APPENDIX A
N v's ation.
tons
(7, 5,1) - d(7)d(5) ~ # paticles | */°crons
molecules
in “volume” d(r)d(v)
Equation of motion for n(f, 7, t):
n(7, 9, ¢) - d(F)d(?)
=n(r",0',t + At)- d(F")d(T") particles preserved!

., On

S - on L On
n(7, 7', t + At) = n(r,v,t)+(5—r_qlf,=',~ AF+ ﬁlw:a'Av + E'At) + ...

AF =7 At
AF=d-At=L. At
Hence
n(F', 7', + At) =n(r‘,ﬁ',t)+(%"+z7- %+ % . g—;) -At+

But from Liovilles theorem: incompressible flow in phase space:
d(F)d(7) = d(")d(7")

Which means that:

(A1)

(A2)

(43)

(A4)

This is only true provided the particles are conserved and are allowed to travel along their
dynamical orbits. There are several reasons why this might not be the case. For instance:

A) Collisions with particles not in the same phase-space volume will remove particles from

this volume or:

B) Collisions between particles outside this volume d(7)d(¥) causing particles to appear

inside volume. ,
C) Reaction or loss due to chemical or physical processes.

With =2 +i2+L2
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One obtains:

D dn on

bt-n = Bt—icollilionl + E'chemﬁcd reaction

(Boltzmann's equation) (A5)
When collisions are ignored, and reactions are ignored, one obtains:

%n =0 (Vlasov's equation) (A6)

For gas of charged particles we have:

-—l - - - —-
F-m(E+va) (A7)
so that:
Dn 6 ., 0n q 3 . =0n
First order perturbation:
n=n,+n
E=E (small)
=B, +5
on, . Om, q,. =. Ong
2t Tm (B 7

om0 g (g O o By e kB, O =
+3t+v aF+m(E; 317+(UXB1) 66+UXB° 3% =0 (A9)

For n, independent of ¢ and ¥ and with a velocity distribution which is isotropic about B,
the zero order terms vanish and one obtains:

e A L (410)
A solution of the inhomogeneous equation may be obtained by Green’s function:
G(t, v t', 7', 7')
which has the property
D e ot T
EG(r,u,t;r,v (&) = 8(t = t)6(F—7)8(7 - ") (Al1)

It i= then clear that a solution of the inhomogenous equation is:
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(7 5,t) = =3 / / dF YTV GF, 5,7, 5", ) - By(7, 1) - angé',’ ) (A1)
The Green function required clearly is given by:
G(r, 7, t;7, 7', t') = §[(F - R(t,7, 5" ¢")) 8[7 - V(t,7",5',t')] D(t — t') (A13)

where

hed J

R(t,7',%',t') = position of particle at time ¢t which at time ¢’ had coordinates 7, 7
V(t,7,5",t') = velocity of particle at time ¢ which at time ¢’ had coordinates 7", 7'

D(t - t') = unit step function

(D(t—t’) =1 whent>t')

=0 whent<t

From Section 4 we have:

V(7,5 t) =T - )5'(t")
(Al4)
R(t, 79", t')y =F'(t") = T(¢' — t)5'(t")

The use of these orbits to construct the Green function explains our preoccupation with
the orbits of non-interacting particles.

Finally, we must prove that & G = §(t — t')é( — 7' )é(7 — ")

: i i ony - OF 96 _ 9V 0G
5;G=6(t—t)6(r—r)6(v—v)—at % " ot 3%
(A15)
=6t —t"Yo(F-7")(v—F") -7 3 ~% 3%
The two last terms cancel and:
-,% G = §(t - t')§(v - VY6(F -~ R) (A16)

Hence, when integrating 7', 5’,¢' contribution can only be obtained for such 7',7"”, at time
t' which can cause R and V to equal 7 and ¢ at time ¢t. Hence, by substxtutxon we obtain

. .
nx(r‘,t‘:‘,t)=6n(r‘,6.t)=—q;° / E(R,t) ——a{;g,)-dt’ (A17)
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