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FOREWORD

In the past 15 years, since Woodman and Ouillen Ftrst obtained echoes from the
clear air in the stratosphere and mesosphere with the Jicamarca radar in Peru in 1974, the
mesosphere-stratosphere-troposphere (MST) radars (or clear air radars) have developed into
the most powerful ground-based technique for probing the atmosphere in this height range.
This technique has contributed significantly to the research of atmospheric dynamics,
especially small- and medium-scale time-varying dynamical phenomena, such as gravity
waves, turbulence, and convections. Recently, the technique has started to provide input to
numerical weather prediction experiments.

There are now more than 30 radars of this kind operating in the world and the field
is likely to grow in developing countries also. Currently, even commercialized radars are
available and have been installed in many countries. Actual and latent demands to learning
this new technique are very large, especially among young atmospheric scientists,
engineers, and others who want to join this field of research.

Thus, the Radio Atmospheric Science Center of Kyoto University decided to hold an
International School of Atmospheric Radar (ISAR) in order to provide a unique learning
opportunity for these people. The ISAR was held in Kyoto, Japan, during November 24-
28, 1988, prior to the Fourth Workshop on Technical and Scientific Aspects of MST radar
held in the same place. The ISAR was organized by S. Kato as Chairman and cosponsored
by SCOSTEP, URSI, the Society of Geomagnetism and Earth, Planetary and Space
Sciences, and the Meteorological Society of Japan. More than 90 participants attended the
ISAR from 17 countries.

This volume of the MAP Handbook includes ten lecture notes presented at ISAR.
The notes offer a rather broad, tutorial coverage of the technical and scientific aspects of
MST radars, i.e., radar system, control and signal processing, atmospheric waves, practice
and applications. We hope that this volume will be a good guide to those who are interested
in MST radar techniques which are interdisciplinary in nature.

We would like to thank the ten lecturers for writing the excellent notes. Special
thanks are also due to C. H. Liu, J. R6ttger, and P. K. Rastogi for giving very helpful
suggestions. The expert effort in handling the manuscripts and correspondence by Belva
Edwards is greatly acknowledged.

Shoichiro Fukao
Editor





PRECEDING PAGE BLANK NOT FILMEB

Table of Contents

Foreword, S. Fukao ..................................................................................... iii

Table of Contents ......................................................................................... v

I. OVERVIEW

Chapter 1. Historical Aspects of Radar Atmospheric Dynamics, S. Kato ........................ 1

17. RADAR SYSTEM, CONTROL AND SIGNAL PROCESSING

Chapter 2. Radar Principles, T. Sato ................................................................. 19

Chapter 3. Radar Hardware and Control, J. Rgittger ............................................... 54

Chapter 4. Statistical Characteristics of MST Radar Echoes and its Interpretation,
R. F. Woodman ...................................................................... 114

Chapter 5. Data Acquisition and Processing, T. Tsuda .......................................... 151

Chapter 6. Spectral and Correlation Analysis with Applications to Middle-
Atmosphere Radars, P. K. Rastogi ................................................ 184

Chapter 7. Target Parameter Estimation, W. K. Hocking ....................................... 228

III. THEORY, PRACTICE AND APPLICATIONS

Chapter 8. Gravity Waves and Instabilities in the Lower and Middle Atmosphere,
J. Klostermeyer ...................................................................... 269

Chapter 9. Applications of MST Radars: Meteorological Applications, M. F. Larsen ....... 299

Chapter 10. Incoherent Scatter Radar Observations of the Ionospl_ere, T. Hagfors .......... 333





F
v

N91-26614
Chapter 1

Historical Aspects of Radar Atmospheric Dynamics

Susumu Kato

Radio Atmospheric Science Center,

Kyoto University, Uji, Kyoto 611, JAPAN

1 Introduction

"Radar" stands for radio detection and ranging. It is well-known that radars were de-

veloped during World War II to detect aircraft for military purposes. However, the basic

technique- for radars was used for the first time by Sir Edward Victor Appleton in his

ionosphere research in the 1920s. According to Robert Watson-Watt, "But for Appleton's

scientific work, radar would have come too late to have been of decisive use in the Battle

of Britain." (Nobel Lectures; Physics, 1964).

The scientific use began mainly after the war under the leadership of scientists working

on radars during the war.

There are very many applications of radar techniques now in use. However, we shall

below review the history of radar techniques which have been applied only for atmospheric

observation. We start with the ionosphere observation by ionosonde symbolizing the

earliest history of radar observation and proceed to later developments in the observation

by other types of radars as partial reflection, meteor, incoherent scatter radars. As to

lower atmosphere observation the historical development will be given mainly about MST

radars.

2 Radar Technique Used for the Ionosphere Explo-

ration in Early Days

The basic idea for radars was for the first time in 1924 put forward by Appleton who

located the ionized upper atmosphere now known as the ionospheric E region. He worked

on an experiment with Barnett who was the first graduate student under Appleton's
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Fig. 1. Appleton and Barnett's experiment in 1924.

guidance at Cambridge (Appleton and Barnett, 1926). It was December 11 in 1924

that they attempted to receive at Oxford radio waves which were transmitted from BBC

Station at Bournemouth, a coastal town south west of London. They found, as expected,

that the fading pattern maximized repeatedly with the varying radar-wave frequency due

to interference between those direct waves which arrived along the ground and those sky

waves which were assumed to be reflected from the suspected ionosphere. It is straight

forward to obtain the reflection height from the propagation path difference between the

direct and sky waves, D, given as

D D

m- Al ,_2 (1)

where )u.2 are two wavelengths; between these two waves in variation we have rn maxi-

mum. The arrival direction was identified by a loop and a vertical antenna. This simple

system (Fig.l) by Appleton's idea succeeded to determine the E region height as about

100 km, the success which remains as one of his great contributions to the study of upper

atmosphere physics leading to his Nobel prize winning in 1947. We see in this Appleton's

work the basic idea of radar techniques, especially of FM (Frequency Modulation) type.

In 1925 in the U.S.A. Breit and Tuve invented the vertical sounding method which adopts

pulse-modulated radio waves to be transmitted vertically, thereby simplifying the system

and, since then, being widely used in the world. Thus, the pulsed radar system now in use

was established. Appleton worked on theory of the ionized gas (1932). It was found that

fo the frequency at which radio waves is totally reflected at each height of the ionosphere



is related to the electron density of the ionosphere N at that height as

41r2eom fq2
g = ------fi---- 0 (2)

where e0 is the vacuum dielectric constant and m is the electronic charge and mass;

.to was found to be 0.75 MHz before down in winter. We see that (2) is based on the

refractive index n changing relatively to vacuum with the sounding radio frequency f as

n 2 -- f_ - fo2
f2 (3)

which is also applicable for understanding turbulent echoes from the mesosphere in MST

radar observations.

Initially, the constant frequency sounding was used, giving the reflection height to vary

with time. Note that the virtual height used in this sounding h's is obtained as h' =yc_r

where At is the time of the round trip for a radar pulse between the transmitting and the

receiving stations, both at the same location and c the light velocity; the pulse traversing

the ionosphere on the way is retarded depending on nc, the group velocity, which depends

on N on the way given by (2) and (3). In 1930, Appleton initiated to sweep f in order

to obtain h's versus f, namely, the electron density distribution with height h's, the

standard ionosphere observation which has routinely in use over the world even now.

The ionosphere, however, is probed by this method only in its bottom side lower than

the F region peak. The top side remained unkno_ before the rocket in situ sampling

was introduced in the 1950's. The top side sounder on board satellite, based on usual

ionosonde techniques, began to supply data of the ionosphere topside on global scale in

the 1960's e.g. by the Alouette 1 Satellite as in Fig. 2/Warren, 1962).

As shown below, in the 1960's novel radar systems were developed for ionosphere ob-

servation i.e. incoherent scatter radars which enable us to observe the top side ionosphere

as well as the bottom side from the ground.

Application of ionosonde observation to ionosphere dynamics is very limited. Quanti-

ties available by the observation is tile electron density which corresponds to tile proving

radio wave totally reflected at particular height by (9). We cannot choose certain height

for observation unlike in the case of incoherent scatter and MST radars which choose tile

observing heights by gating the receiver so as to match the time at which echoes from

the chosen height arrive. However, some indirect approaches to the dynamical study were

attempted as in Fourier-analysing daily variation of ionospheric heights and electron den-

sity to find solar and lunar tides (e.g. Appleton and Weeks 1939, Martyn 1947, Rush et al,

1970). Note that the indirect approach depends often on ambiguous mechanisms which

connect the dynamics and the observed electron density variation. Ionosphere networks
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local and global are, still now, useful as a source of information regarding the propagation

of ionospheric disturbances.

3 Partial Reflection Radar Observation

In the late 1940's, weak echoes were found to be returned from the D region in the

height range 75-90 km. Different from usual ionospheric echoes obtained by ionosonde,

as mentioned above, the height appeared independent of the frequency range over 1.6--

-4.0 MHz. In early times the sounding using the weak echoes, understood as partial

reflection sounding, was used mainly to measure the D region electron density as based

on different absorption between the magnets-ionic ordinary and extraordinary waves of

the echoes. We know now that these radar echoes from the mesosphere are utilized for

studying mesospheric dynamics. The echoes are now interpreted to be due to, beside

partial reflection, the scattering by irregularities of the refractive index for radio waves

(See (2)) irregularities which result from atmospheric turbulent mixing of the D region

electron density with a height distribution.

Vincent and Belrose (1978) discussed the echoes with 2.66 MHz to vary around 80 km

height above which the echoes are less aspect sensitive than those below this height; the

echo power spreads in wider angle from zenith in the former than in the latter case. A

similar feature was found later for much higher probing frequencies as 50 MHz by Fukao

et al.. in 1979 in their Jicamarca radar experiment. It is still open to question as to how

the turbulent mixing of the D region electron density distribution (Fig. 3) can explain

this difference around the mesopause. In the field of mesospheric dynamics RRD which

stands for partial reflection drift techniques is now regarded as to be important especially

for their stable operation for long periods and simple low-cost maintenance of the facility.

The principle of PRD technique is to receive the echo pulse around 2 MHz with its

width as 20 #s by several antennas. Correlations among echoes received at different

antennas make it possible to decide the translation velocity of irregularities which cause

the diffraction pattern ; the height resolution depending on the pulse width amounts to

a few km.

The most sophisticated method, the Full Correlation Analysis, allows the diffraction

pattern to be anisotropic changing with time and gives a so-called true velocity. There

are many interesting observations of gravity wave and tides by PRD technique by Vincent

(1984) and Manson and Meek (1986).

Vincent and Reid (1983) have developed a Doppler radar using MF frequency of

this PRD technique, the antenna area having 1 km diameter to produce a 9 °beam-
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width. They were successful to derive the vertical momentum flux of gravity waves on an

interesting idea that two co-planar radar beams steered by an equal angle from zenith are

used to measure continuously and simultaneously perturbed winds along the line of sight

and the observed velocities squared after being averaged give the vertical momentum flux

of horizontal velocity of gravity waves. The deduced flux variation with height seems to

suggest a forcing which is consistent with gravity wave theory. This observation technique

is now applied to MST radars to other regions of the atmosphere. Details will be discussed

in other sessions of the present ISAR course and not be given.

4 Meteor Radar Observation

Meteors impinging on the earth's upper atmosphere produce ionization trails along their

path in the height range between 80-100 km depending on their velocity as 10 70 km/s.

Appleton in his early observation of the ionosphere has suspected the sudden appearance

of the ionization around the E region to be due to meteors. Whilst meteors had been

studied by radio methods for astronomical interests before 1960 (McKinley and Millman,

1949) meteor trail movement became a subject of study for observing winds at meteor

heights in the 1950s (Manning et al., 1953).

The meteor trail is a column ionization with electron density as 1012/m; the effective

diameter is much shorter than the probing radio-wave frequency, thereby producing co-

herently scattered echoes over the Fresnel zone along the meteor trail. Meteor trails, with

a short life time (_< 0.1s), were expected to move with the local wind. The meteor radar

technique is based on this principle and first was used at Stanford, California by Manning

who successfully measured winds at meteorheights in the early morning hours in the sum-

mer of 1949 to be on the average "125 km per hour with motion's from south-southwest

and north the most common" (Manning et al., 1953). It seems interesting to know that

he used a rotating radar beam along azimuth to increase the meteor detection frequency

with an array' of 4 antennas, each changing the phase of the transmitted wave. Later,

many (more than 40) meteor radars have been constructed, contributing significantly to

the study of winds, called meteor winds, over 80---110 km in heights centered at 95 km

where the meteor trail occurs most frequently. The system has been much improved es-

pecially in the height resolution which is essential for the study of winds changing rapidly

with heights. There are two important improvements; one is the establishment of radio

interferometry system to increase the accuracy of the arrival direction of meteor echoes

and the other is the use of computers to discriminate echoes on-line. The Kyoto Meteor

Radar is one of the standard type of the facility adopting these improvements (Aso ctal.,



1980). The resolution of elevation angle of the system is 1° averaged over 25°--70 ° of

elevation angle of the echo arrival direction; this corresponds approximately to 3 km in

height resolution.

An advantage of meteor radars over other radars, especially of the standard type, is to

be handy in the operation i.e. in unattended fashion suitable for long period observation.

The Kyoto Meteor Radar was in operation almost continuously for several years. As

done by Meek and Manson (1987) by PRD, the accumulated data made it possible to

deduce lunar tides at meteor heights (Tsuda et al., 1981). In general, the facility suits

the climatological study of dynamics at meteor heights for atmospheric waves i.e. tides,

planetary waves (Tsuda et aI., 1988). For obtaining much more data with less height

resolution as is required in these dynamical phenomena, the decay height method is used

where the principle depends on the measurement of echo decay time i.e. meteor trail

life time at each heights which as the molecular diffusion time is calculated using certain

model atmosphere as CIRA.

A sophisticated observation of gravity wave was attempted by the Kyoto Meteor

Radar. The area at meteor heights illuminated by the radar with an elliptical shape

of 100 km in length and 50 km in width, is divided in five strips orthogonal to its major

axis. Phase variation of winds from one strip to the next is measured by interferometry,

thereby deducing the phase velocity of gravity waves passing in the area(Yamamoto et

al., 1986).

The most powerful meteor radar used power as large as 1 MW, receiving tremendous

number of echoes (Bowhill et al., 1978). But usual meteor radars receive fairly small

number of echoes around dusk, resulting in the overall time resolution of a few hours.

Meteor echoes are also received by both main and side lobes of MST radars and a

care must be taken to avoid the echoes which are erroneously detected by the side lobes

in wind determination.

5 High Power Radar Observation

In 1958 Gordon pointed out the possibility that a powerful radar can be constructed to be

able to detect incoherent scatter echoes by ionospheric free electrons in thermal motion,

whereby measuring electron density and electron temperature. His idea was to realize

the construction of a radar with "a megawatt transmitter, a 300 meter diameter dish

(60 per cent efficiency), a bandwidth of 100 kilocycles matched to the expected Doppler

spread, a noise figure of two, 20 decibel signal to noise improvement by averaging pulse,

and cable losses of two decibels (Gordon, p.1827, 1958). He further went on saying "The



radarispowerful,butmegawatttransmittersareavailable.Theantennaisverylarge;
but sincethesignal-to-noisedoesnotdependonwavelength,thelargeareamaybe
obtainedwithcoarsemeshandmoderatetolerancesbyselectingthelongestwavelength
(about1.5meters)consistentwithcosmicnoiselimitations.Theantennamaybefixed
andpointedvertically".Gordon'sideahasintroducedin the1960'sthenovelpowerful
ground-basedtoolscalledIS (IncoherentScatter)radarsfor thestudyof ionospheric
plasmastructureanddynamics.TheISradartechniqueledusin the1970'sto afurther
developmenttowardsMSTradartechniquesforthestudyofMesosphereStratosphereand
Troposphericdynamics.Beforereferringtoobservationsoftheseradars,wehavetolearn
somewhatabouthowradiowavesarescatteredin thesefrequencieswherethescatterers
arerefractiveindexirregularities,veryweak,andfillingtheentireatmosphericvolume
illuminatedbytheradarbeams.

WeshallfollowVillarsandWeisskopfintheirworkonthescatteringofelectromagnetic
wavesbyturbulentatmosphericfluctuations(1958).Thescatteredelectricfieldamplitude
Es at a distance R from the scattering volume V (R 3 >> V) is

7f

Es = h--_E0 I Z drAn(r)ei2k'r I (4)

for back-scattering; A and k the radar wavelength and wavenumber respectively; Eo is

the incident wave amplitude. Now n includes neutral atmospheric effects in addition to

that of plasma by (3) as

ID t D

(5)

where P and P' are the atmospheric andwater vapour pressure in the mb and T the

temperature. The scattering cross section a per unit volume per solid angle is

__71-2

adft = An2_-_C(2k)df_ (6)

where i2 is the solid angle and

(_.._r)13_1 12_ (_._)1aC(_k) = [ Z Z_n(r)ei2kr"dr /_ C(r)e'2k'r•dr (7)

where C(r) is the auto-correlation function of An(r). Thus, by (4) a is proportional to

the spectrum intensity of An for 2k; the spectrum is the Fourier transform of the auto

correlation function. This implies intuitively that radars pick up as their targets only

those irregularities whose size along the radar line of sight is _ as called Bragg's law in

crystal physics.
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Toionosphericplasma(4)isgivenby(3)and(5)

AN 12(1_2 1 AN 12(__), (S)<S-_>=I--_- ,_, _l-:_-

for f >> fo thus, by (6)

a = (const)C(2k) (9)

i.e. independent of f.

(7) is also applicable to mesosphere observation where free electrons are mainly re-

sponsible to the echo scattering.

To the stratosphere and troposphere, the third and second terms in (5) are mainly

responsible, respectively. Then, we have by (6)

a = (const)/4C(2k) (10)

In (9) and (10) "const" is proportional to the mean square fluctuation of each tern in

(5). Physics to produce refractive index irregularities is different between the regions we

observe, i.e. the ionosphere and the lower neutral atmosphere.

In the case of the ionosphere, the scatterers are free electrons in random thermal

motion which should produce incoherent scattering. It is expected then that a is 4rr_

where r, is the classical electron radius; a _ 10-2sin _ as proved strictly by Fejer in 1960.

Bowels (1958) has made for the first time the incoherent scatter experiment using a 41

MHz radio wave, 4 6 MW, 1024 antennas in a (116 × 140m) area etc. He received echoes

as expected by the Gordon's idea in their intensity but not in the Doppler width which

was to be due to electron thermal motion equivalent to the F region electron temperature

as 10z Kelvin in daytime i.e. as large as several ten KHz. What he really obtained was

much less than that. Later it was found that if, as in the present case, the probing radar

wavelength is much longer than the Debye shielding length which is less than 1 cm in

the F region, the Doppler width is mainly due to ions which is in thermal motion of

much lower temperature than that of free electrons; the observed Doppler width must

be narrower by, at least, 10 -_, the mass ratio between electrons and ions. This finding

which had not been expected before the experiment opened much more possibilities for

this technique so as to be able to observe physical states of ions as well as electrons in the

ionosphere. Further, based on close physical coupling between ions and neutral particles

due to their similar masses, the thermospheric gas dynamics has also been developed by

IS radar observation.

IS radars are regarded in ability as to be rivals and also complements to in situ sampling

by rockets and satellites (Evans, 1974). This type of radars was constructed at Arecibo

in Puerto Rico and Jicamarca Peru and later at St. Santin in France and Milstone Hill in
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Fig. 4. Observation of a high power radar by Bowles 1958. Note that a strong

echo is found around 75 kin.

U.S.A.and recentlyinScandinaviancountries.Detailsoftheircontributionswilllearned

inothersessions.

Historyshows that sciencesenjoy oftenremarkable progressesthrough unexpected

findings.This istrue,as above-mentioned,forIS radars,detectingthe observed wide

Doppler broadeningdue to ions.Another findingcame unexpectedlyaround 1970 when

the Jicamarcaradar,which usuallyobtainedonlyISechoesfrom the ionosphere,detected

unknown echoespresumably from the mesosphere. Few seemed to believeWoodman's

reporton thisfindingat InternationalEquatorialAeronomy Conference in Nigeriain

1972.The echoesshowed Dopplershiftscorrespondingtoseveralten meter per secondin

velocity.Soon,Woodman and Gull_n(1974)identifiedtheechoeswith thoseofscattering

due to refractiveindex irregularitieswhich are caused by turbulencemoving with local

winds inthe mesosphere.

It seems impressive that as in Fig. 4 Bowles in his first IS experiment in 1958 found

without noticing any significance intense echoes around a 80 km height. This is an example

that scientific significance may vary with time! The finding by Woodman implies the

beginning of a novel radar technique to be able to observe mesospheric winds, the MST
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techniquewhichenablesusto observe the mesosphere, stratosphere and troposphere on

the same principle i.e. due to "Clear Air Turbulence (CAT)" echoes in meteorological

terms.

We call the mesosphere and stratosphere combined the middle atmosphere which had

remained as ignorosphere before 1970, but were required immediate scientific elucidation

in the 1970s. This was mainly because of the environmental assessment demanded by

threateningpollutionby artificialpollutantsas Freon,NOx etc.Under the circumstance,

Middle Atmosphere Program (MAP), an internationallycooperativescientificprogram

forthe purpose,was planned inthe 1970sand realizedbetween 1982-1985. MST radar

techniquesdeveloped very rapidlyjust parallelyalong the MAP courseand played a

centralroleinthe program. This isthe caseeven beyond MAP todate.

Let us go back to (9) and (10),the base forMST radartechniques,where C(2k) is

now the spectrum ofatmosphericturbulencewhich isknown as

C(2k) o¢ k -_a or a = (const)k-_

and

a=(const)k]

(11)

(12)

provided that the radar wavelength is within the turbulence inertia subrange; (11) and

(12) are applicable, respectively, to the mesosphere, and the stratosphere; (12) is also for

the stratosphere. Note that (11) and (12) show the basic principle for designing MST

radars; in terms of the radar frequency, the lower the better for the mesosphere, whilst

the reverse is true for the stratosphere and troposphere. However, the wave length must

always be in the intertia subrange; otherwise, in the viscous range, the spectrum intensity

is so weak. The minimum size giving the inertia subrange is approximately several meters

in the mesosphere, decreasing monotonously down to 1 cm in the troposphere: Now, the

radar wavelength of 5 m is of a fairly standard i.e. 50 MHz. The maximum output is

usually 1 MW and the antenna area is 104 m 2 or more. By (11) we know that PRD

techniques as in Section 4 can use a very weak power as a few kW; the frequency used

there (,-, 2MHz) is (1/20) which gives 6 x 104 times in the turbulent spectrum intensity

to that for 50 MHz of MSP radars by (11). In (11) and (12) a contains a constant which

depends on the height distribution of n implying that as in (5) e depends on the height

distribution of water vapour, air density and electron density. Their distributions are

disturbed by turbulence; the turbulent: diffusion is the basic process. Villars and Wisskap

(1958) failed to notice this process assumingounrealistic air compression by turbulence.

The pioneering Booker-Gordon theory (1950) was also unrealistic, resulting in such a a

as virtually independent of k, unlike either (11) or (12).
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Atmosphericgravitywaves (GW's hereafter) had drawn little interests among mete-

orologists, say, before 1970. Ionospheric people showed some interests in those events

in which GW cause remarkable disturbances named TID ('Praveling Ionosphere Distur-

bance). GW's, which are produced mainly in the troposphere, are so weak that they play

no significant role in tropospheric dynamics. However, GW's travel upwards, growing

exponentially with the decreasing ambient air density and reaching tens of meters per

second in velocity. In the 1970's people began to suspect that GW's may play an impor-

tant role in the mesosphere. Around the end of the 1970's a theory by Matuno (1982),

Holton (1981) and Lindzen (1981) predicted that GW's, after growing to certain degree,

tend to break near the mesopause, whereby releasing their momentum against the local

wind, working as a dynamic brake. This dynamical brake can explain why winds tend to

weaken around a 80 km height as observed; Without this effect, winds should have been

indefinitely increased with height. Thus, GW's are regarded as to play an important role

in the middle atmosphere general circulation and became one of the most interesting sub-

jects in MAP. Temperature observed by remote sensing techniques from satellite cannot

be relevant because of inferior vertical resolution due to the technique and also inferior

time resolution due to satellite motion. We need on many occasions 1 km in rolution

along the vertical direction and a few minutes in time resolution which can be attained

only by MST radars. Among various MST radars now in operation over the globe, that in

Japan, named the MU radar to observe both middle and upper atmospheres, is outstand-

ing because it can steer the beam so rapidly by electronic phase-shifting, a characteristics,

which makes it possible to measure the GW structure instantaneously within the cone

suspended by 30 °from zenith. There are many studies on peculiar GW behaviors by MST

radars. The pioneering works around 1980 owes mainly to Balsley's group in Boulder and

RSttger and Max Planck's group in Lindau(e.g. Balsley and Gage, 1980). These works

will be discussed elsewhere through the present course.

We have now networks for global observation of the mesosphere dynamics consisting

of both MST radars, PRD radars and meteor radars. One of the unique cooperative ob-

servations has been done between Kyoto and Adelaide which are located at geographically

conjugate points at 35 °in lat. with respect to the equator. So far, tidal waves have been

successfully studied by this cooperation.

There are radars smaller in size mainly for stratosphere and troposphere observation

as at Sun-Set near Boulder constructed in the 1970's (e.g. Green et al., 1979); they are

ST radars which may replace the conventional routine meteorological balloon observations

after distributed at many locations over the globe in future. They are fairly low in cost

of construction and can operate continuously and almost unattended.



Rapid progressseeninradaratmosphericdynamics has been successfulonly by agood

cooperationamong people of differentdisciplinesespeciallybetween ionosphereradio--

physicistsand meteorologicaldynamists. This cooperationwillbe essentialfor future

advancement inthisfield.

6 Future Radar Observation

Now the atmosphere is found to be one large and complicated system, each part coupling

with each others, both horizontally globally and vertically from the ground to the middle

and, further, upper atmosphere. Anthropological pollution has become serious problems

on atmospheric environments. Under the circumstance we need to understand the atmo-

spheric dynamics increasingly accurately with time. For this purpose, radars will present

useful and powerful techniques. These radars must be distributed globally making up an

effective and comprehensive network relevant for the purpose.

At present we have none of powerful radars in the equatorial region which is receiving

the maximum solar energy input driving almost the whole atmosphere in motion. Inter-

action of the atmosphere with the ocean there is also important but not well understood.

For completing a global radar network the powerful radar construction there is essential.

This is the Equatorial Radar Project which has been in planning mainly between Japan

and Indonesia. The Indonesian district is the most intensively convecting region together

with the equatorial Africa and the Amazon in South America. The MU radar, Adelaide

radars (PRD radar), Chung-Li radar (ST radar) and some other radars to come in the

Asian Sector will make up a very desirable network with this equatorial radar along the

Asian longitude.

The planned system is very ambitious one (Fig. 5), able to measure the entire atmo-

sphere from near the ground to the ionosphere with an excellent resolution with a 300

m diameter of the antenna area and one MW power, beam-steerable by 20 °from zenith.

Beside the central radar, there will be meteorological radars together with other support-

ing facilities. This is the essence of the International Center for Equatorial Atmosphere

Research which we desire to be realized in the future. Good Luck for our future!
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Fig. 5. Artisticview of the equatorialradar.
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RADAR PRINCIPLES

Toru Sato

Radio Atmospheric Science Center

Kyoto University, Uji, Kyoto 611, Japan

1 Introduction

Radar is a general technique, which has a wide range of variability depending on the type

of targets to be measured. A radar can be designed to measure a bullet, while another

may observe a planet. The radio frequency spectrum employed also spreads out over

many decades.

The target of radars described here is the earth's atmosphere. More precisely, it

is so called clear air echoes from the earth's atmosphere produced by fluctuations of

atmospheric index of refraction. We will refer this kind of radar as the atmospheric radar

here. There is also a category of radar called weather radar, which observes precipitation

as its principal target. Although much is common, in principle, to the weather radar and

the atmospheric radar, we do not discuss the former here. Those who are interested in

weather radars are referred to standard text books such as Battan (1973) or Doviak and

Zrnid (1984).

It is possible for powerful weather radars to observe the clear-air echoes. Actually,

the name clear-air echo is given in the history of development of the weather radar to

classify echoes from unknown targets. Above mentioned text books also discuss about

the clear-air echoes in some details, but the major difference between their approach and

ours is simply that we discuss radars specially designed to observe the clear-air echoes.

As we will see later, this difference affects the choice of frequency, requirement on the

sensitivity, and the way data are processed. As a consequence, these two types of radars

often look surprisingly different.

Weather radar usually use frequencies of SHF band (3-30 GHz), while atmospheric

radars make use of much lower HF (3-30 MHz), VHF (30-300 MHz), or UHF (300 MHz-

3 GHz) bands. Antenna size of weather radars is a few to about ten meters in diameter, but

an atmospheric radar may require a diameter of more than a hundred meters, depending
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on its target region. Operational atmospheric radars have antennas with diameter of 10--

300 m. Weather radars cover a wide horizontal area of up to several hundred kilometers in

radius by scanning their antenna with low elevation angle. Most of atmospheric radars,

in contrast, observe narrow angular range around the zenith, but with larger vertical

coverage than the weather radars. The hardware of atmospheric radars is examined in

detail in a separate chapter.

It should be noted that the atmospheric radars can, at least in principle, and often

in reality, also observe precipitation echoes, which is one of important applications of the

atmospheric radars.

Atmospheres of other planets can be, in principle, observed by a similar way as those

discussed here. However, the extremely large distance between the radar and the target

will cause many problems peculiar to such an application. It is also possible to design a

radar to observe clear-air echo on board the vehicles such as ships, airplanes, and satellites.

Additional Doppler shifts due to motion of the vehicles will be one of major problems, as

well as the problem of size limitations, in such cases.

In the following sections, basic characteristics of echoes are examined, and important

concepts concerning techniques of the atmospheric radar are introduced.
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2 The Target

One of important features which make the atmospheric radar unique and different from

other kinds of radars is that it observes basically transparent earth's atmosphere. We

examine here the nature of the atmosphere as a target of radar.

2.1 Vertical Structure of the Atmosphere

The target of the atmospheric radars is the entire earth's atmosphere which extends from

the ground (or ocean surface) to the upper boundary of the atmosphere which is usually

defined as the highest region rotating together with the earth, whose height ranges from

20,000 km to 40,000 km. Of course, this upper boundary has not yet been observed

by means of radar, and only a few of existing radars can observe the atmospheric region

above 1,000 km height, most of others with much poorer sensitivity. The lowest observable

height, which is usually limited by the switching speed from transmission to reception,

ranges from a few hundred meters to several kilometers.

The atmosphere shows a significant variation in its nature even within this limited

height range of 0-1,000 km. The largest distinction is between neutral and ionized atmo-

spheres, which are roughly separated by a height of around 100 km. Below this height,

the atmosphere is treated as a neutral fluid, while ionized plasma plays an important

role above it. These two regions had long been studied independently, and it was widely

understood only recently that both can be studied with the same principle.

The other common way of dividing regions is the one based on the vertical structure of

atmospheric temperature. Figure 1 shows a typical temperature profile, which is a model

profile of mid-latitude equinox taken from the U. S. standard atmosphere (1976). The

right ordinate shows the atmospheric pressure in millibars. The atmosphere is classified

into 4 regions of troposphere, stratosphere, mesosphere, and thermosphere in ascending

order of height.

The troposphere is characterized by a constant decrease in temperature with height.

The lapse rate of the model is 6.5 K km -_. The main heat source for this region is the

solar radiation absorbed by the surface of the earth. Temperature ceases to decrease

at 10-15 km, at the tropopause. The height of the tropopause has a clear latitudinal

variation, being highest in the equatorial region and decreasing with increasing latitude.

The stratosphere is the region in which temperature increases with height. The stable

stratification of the air due to positive temperature gradient accounts for the origin of the

name of this region. Temperature reaches its maximum of about 270 K around 50 km

at the stratopause height. The heat source for this maximum is the absorption of solar
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ultraviolet radiation by ozone.

Temperature decreases again in the mesosphere until it reaches the minimum of 180-

190 K at the mesopause height of 80-90 kin. The heat balance in this region is determined

by the radiative heating of molecular oxygen and infrared radiative cooling of carbon

dioxide.

Above 80-90 km, the temperature increases monotonically with height to the limit of

1,000-2,000 K due to radiative heating of atomic oxygen etc. This region is called the

thermosphere in this nomenclature, but it also corresponds to the ionosphere in the above

distinction.

2.2 Radio Refractive Index

Characteristics of the atmosphere seen by radio waves in the absence of liquid water is

expressed in terms of the refractive index n. As is the case of optics, n is defined as

c
n = -, (I)

where eisthespeed oflightinfreespaceand v isthevelocityoftheradiowaveinthe air.

Macroscopicchangesofn inspacecauserefractionorreflection,and microscopicchanges

causescattering,the latterbeing ofmajor concernto the atmosphericradar.

Although we areinterestedinthefluctuationsofn from itsbackground,itksimportant

to examine what determinesthe background n. Major contributionsto n atfrequencies

ofHF throughUHF bands areexpressedapproximatelyas (Balsleyand Gage, 1980)

3.75x ID-le 7.76x I0-5p Ne

n- 1 = T2 + T 2No' (2)

where e (rob) is the partial pressure of water vapor, P (mb) is the total atmospheric

pressure, T (K) is the absolute temperature, N, is the number density of electrons, and

Nc is the critical plasma density.

The first term represents the contribution from water vapor. As is well known, the

water molecule has a dipole moment, which varies with frequency. At extremely high

frequency of visible light, only the polarized electric field of the water molecules counts

for the refractivity. At lower frequencies of radiowave, the water molecules are not only

polarized but they also reorient themselves rapidly enough to follow the changes of electric

field. As a result, the contribution of the water vapor to n is greater for radio than for

optical frequencies (Battan, 1973).

Above the tropopause height of 10-15kin, the partial pressure of water vapor becomes

negligibly small. The second term due to dry" air becomes dominant at this region. Since
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themajorconstituentsof the earth's atmosphere, N2 and 02, do not change their mixing

ratio largely throughout the middle atmosphere of up to around 100 km, the coefficient

stays unchanged. Unl_e the first term due to the water vapor, this term is frequency

independent, being the same for light and radio waves.

While these two terms concern the neutral atmosphere, the third term gives the con-

tribution from free electrons. This term is negligible below about 50 km, but is dominant

at ionospheric heights of above around 80 km. It should be noted here that Eq. 2 gives

an approximation valid only when N¢ >> N_, and the effect of the third term is expressed

more precisely as

n = (a)

The critical electron density N¢ thus determines the condition with which total (or perfect)

reflection occurs in the ionosphere. It is given in MKS units by

4_'2_ome -2
:re= i

--- 1.24 x 10-2] "2, (4)

where eo is the dielectric constant in free space, rn_ and e are the mass and the charge of an

electron, respectively, and / is the radar frequency (e.g., Stix, 1962). The electron density

N_ in the ionosphere usually takes its maximum value of 1011-1012 m -3 at 200-400 km

height. If h_ is smaller than this maximum, the radiowave is reflected at some height

where the condition N_ = Nc is met. Otherwise, the entire energy associated with the

radiowave is radiated out of the earth's atmosphere except for a tiny fraction absorbed or

scattered by the atmosphere. Under most of ionospheric conditions, N¢ is larger than N_

at all heights for frequencies of VHF or higher.

Figure 2 shows a typical variation of these three terms with height. The pressure

and temperature are taken from the U.S. standard atmosphere (1976). The saturation

pressure is used for the water vapor. The electron density is adopted from Mechtly et al.

(1972).

2.3 Fluctuations of the Refractive Index

In the absence of total reflection, scattering from fluctuations in the refractive index

n dominates the received echo of the atmospheric radar. Statistical fluctuations of the

electron density due to random thermal motion of electrons and ions can be strong enough

in the ionosphere to cause detectable scattering. This component is called incoherent

scattering because scattered wave from individual electrons are random in phase, so that
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they add up incoherently. Received echo power is then proportional to the number of

electrons illuminated by the radar.

Fluctuations due to atmospheric turbulence is known to be the major source of scat-

tering in the lower and the middle atmosphere. This component is often called coherent

s_ttering in contrast to the incoherent scattering in the ionosphere. The main difference

of the coherent scattering from the incoherent scattering is that the fluctuation of n is

caused by macroscopic motion of air parcels, each of which contains a large number of

molecules and/or electrons which contribute to the scattered electric field coherently in

phase. As a result, the scattered echo power is roughly proportional to the square of the

number density of scatterers instead of the linear proportionality of the incoherent scatter-

ing. This substantial enhancement in the echo power is the basis for the MST (Mesosphere

Stratosphere Troposphere) radars being able to observe the neutral atmosphere with a

relatively small system compared to powerful incoherent-scatter radars.

A large difference of the atmosphere from other targets of radars is its distributed

nature. While usual targets as airplanes, ships, cars, or missiles, which are referred

to as hard targets based on their physical nature, have clear boundary, which enables

identification of the target, it is usually absent in spatial distribution of the echo from

the atmosphere. It is thus necessary to distinguish parts of the atmosphere by means of

spatial coordinates of direction and range. This type of target is often called as the soft

target.

A direct consequence of this limitation, for example, is the fact that decreasing the

size of identified volume in order to improve spatial resolution results in a decrease in the

echo power, and thus a decrease in sensitivity. On the other hand, the rate of decrease

of the echo power with increasing range to the target is much slower with the soft target

than with the hard target, because the volume, and thus the size of the scatterer, usually

increases with increasing range in case of the soft target.

Mathematical relations which determine the strength of the echo are derived in the

following section.
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3 The Radar Equation

In designing a radar system, we first need to know how strong the echo of interest is. We

will derive a relation between transmitted and received power, called the radar equation,

for various situations which concern observations with the atmospheric radar.

3.1 The Radar Equation for a Hard Target

Before discussing the scattering from fluctuations in the radio refractive index, let us

first examine a simpler case of the scattering from an isolated hard target located in free

space. Suppose we transmit radiowave of power Pt out of an omni-directional antenna

which radiates the power into all directions with uniform strength. The density of the

power Pi passing through a unit area located at a point sumciently far from the antenna

and perpendicular to the direction of propagation is given by

P' (5)
Pi = 47rr _,

where r is the distance of the point from the transmitting antenna. The antenna used for

a radar usually has a strong directivity with which a narrow region can be illuminated

selectively. The above equation is thus modified as

PtGt
Pi = 4--_r2 , (6)

where Gt is the directional gain, or simply, the gain, of the antenna, which is a function

of the azimuth and the zenith angles.

We now consider a target located at this point which intercepts the power and scatters

it into various directions. The density of the scattered power P, per unit area at a distance

r _ from the target is expressed in terms of the scattering cross section a of the target as

P,
p, = 4---_r_a, (7)

where a is defined as an effective area of the scatterer, the power illuminating which area is

scattered isotropically. It should be noted that an alternate parameter of the differential

scattering cross section erd - a/47r which expresses the scattered power per unit area

and per unit solid angle is also used often, and occasionally the difference is not clearly

mentioned.

It is known, for example, that a perfectly conducting sphere with a radius much larger

than the wave length of the radar has a scattering cross section equal to its physical cross

section (e.g., Skolnik, 1980).
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If wereceive the scattered power with an antenna which has a capability of collecting

all power passing through an effective area A,, the received power P, is expressed as

Pr = PoA, L, (8)

where L is the loss factor which represents various attenuation of the received signal due

to antenna, transmission line, connectors etc. By combining Eqs. 6-8, we obtain

PtGtA, L

Pr = (4rr2)(4rrr2)a. (9)

This equation gives the received echo power from a given target by a radar, and hence

is called the radar equation. We have so fax considered a general case in which the

transmitting and the receiving antennas are not the same. Although this type of radar,

which is called the bistatic radar, or the multi-static radar in case there are more than

one receiving antennas, is used in reality for some applications, it is much more common

to use the same antenna both for transmission and reception for simplicity. This type of

radar which uses a single antenna is called the monostatic radar, and we will limit our

discussion below to this type of radars.

The two parameters Gt and Ae used in the above equations seem to indicate, at a

first look, distinct properties of an antenna. There is, however, a useful universal relation

known between the two (Silver, 1951), which is

4_'A_
a,= _-"-r-, (lO)

where )_ = c//is the radar wavelength. Although .4, is a function of direction since Gt is

so, it is implicitly assumed that the antenna beam of the radar is pointed to the direction

of the target, so that both Gt and .4, take their maximum value.

For a monostatic radar, the radar equation thereby reduces to

PtA_L
Pr = 4-_-_r4 a. (11)

This equation gives the basis for radar system design of choosing appropriate transmitter

power Pt and effective antenna area A_ for a given target with a scattering cross section

a at a range r.

The minimum detectable power P, is limited by the noise power Pn which contaminates

the received signal from the target. In most cases, the dominant component of the noise is

the white noise which is defined as a random time series of signal with a uniform frequency

power spectrum within the receiver bandwidth B. The power of white noise produced by

a resistor at a temperature T and for a given bandwidth B is given by (Dieke et al., 1946)

P. = kTB (12)
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where k is the Boltzmann constant (= 1.38x 10 -_ Ws K-Z).

Since this formula can be applied to any type of white noise, it is common to express

the noise power of the radar in terms of this equation where T is called the equivalent

noise temperature. This noise temperature represents all kind of noise sources, and is

decomposed as

T = T.L + T, (13)

where T, is the sky noise temperature due to cosmic, solar, and atmospheric radiation, L

is the loss factor, and Tr is the noise power generated by the receiver itself. The sky noise

temperature varies largely depending on the radar frequency and also on the direction of

the antenna beam. Figure 3 illustrates it versus frequency (after Skolnik, 1970). Solid

curves axe for various elevation angle # of the antenna beam direction for geometric-mean

galactic temperature, sun noise ten times quiet level, sun in unity-gain side lobe, cool

temperate-zone troposphere, and 2.7 K cosmic black body radiation. The upper dashed

curve is for maximum galactic noise at the center of galaxy, sun noise 100 times quiet

level, zero elevation angle, and other factors the same as for the solid curves. The lower

dashed curve is for minimum galactic noise, zero sun noise, and elevation angle of 90°.

The maxima at 22 and 60 GHz axe due to water-vapor and oxygen absorption resonances.
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3.2 The Radar Equation for Distributed Targets

The radar equation derived above applies to a single target. If there are more than one

target in the same volume V of the air observed by a radar, the received electric field is

expressed as the sum of the electric field components caused by individual scatterers. For

a situation where they are random and have no correlation between each other, the total

received echo power becomes the sum of the echo power from individual scatterers. In

this case, the scattering cross section a in Eqs. 7, 9, and 11 are simply replaced by _:a. If

the number of scatterers is very large and if scatterers are distributed uniformly in space,

a increases linearly as V increases. It is thereby suitable to define the volume reflectivity

_7,or the scattering cross section per unit volume as

da

= dr" (14)

It should be noted that r/has a dimension of [m -l] unlike the ordinary reflectivity, which

is dimensionless.

This situation applies, for example, to the incoherent scattering due to free electrons

in the ionosphere observed with a sufficiently high frequency of above about 1 GHz, for

which the volume reflectivity is given by

= N,_,, (15)

where a, is the scattering cross section of an electron, which is given by

e 4

a, = 4re_m_c4 (16)

= 9.98 x 10 -_ (m2).

The condition 'Sfit_lclentIy high frequency' is necessary because otherwise interactions

between electrons _d _ions through the CoulOmb forces modify significantly the motion

of the electrons reacting to the radar wave field. For a sufficiently low frequency of VHF

and lower UHF bands, an extra coefficient of 1/2 should be multiplied to the right-hand

side of Eq. 15 (Fejer, 1961).

This type of approach based on a microscopic viewpoint is practical only for idealized

situations as discussed above. We need to treat the problem from a more macroscopic

viewpoint of regarding scattering as due to fuctuations in the refractive index n in order

to discuss the cross section of the neutral atmosphere. Here n is a continuous function of

space, and represents all of the effects caused by scatterers.

The scattered power P, produced by small fluctuations of the refractive index An is

expressed formally as (e.g., Doviak and Zmid, 1984)

k'Pi I/v Anexp(i2k" r)dVI 2P, = 4_¢2r'-"-"_ , (17)
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where k (= 27r/_) is the radar wavenumber, k is the propagation vector, and r is the

radius vector to a point in the scattering volume. By comparing Eq. 17 with Eq. 7, and

applying Eq. 14, we obtain

_r

C = _(IfvAnexp(i2k'r)dVl ')

where 0 denotes an ensemble average. Although this equation gives a universal expression

for the scattering cross section and the volume reflectivity, it is not easy, in general, to

perform the integration to determine C. Specific results will be presented in a separate

chapter.

For a uniformly distributed target, V is determined by the spatial resolution of the

radar. Namely, for a radar with a circular antenna, it is expressed in terms of the half-

power beam width of the antenna 8h in radians, and the size of the range cell _r, which

is examined in the next section, as

v = _r(-_-)2ar. (19)

The beam width of the antenna has a direct relation with the gain of the antenna Gt

because both of these parameters express the degree of concentration of the transmitted

power of the radar in space. Probert-Jones (1962) expressed the relation as

._a.2 (20)c, =

where a is a non-dimensional factor which concerns the non-uniformity of illumination of

the antenna. Combining this equation with Eq. 10 we obtain

aA

8h = _ (rad), (21)

where De is the effective diameter of the antenna given by 4_/r. For a circular array

antenna with uniform excitation for which De is roughly equal to the physical diameter

of the antenna, a = 1 gives a good approximation.

With the aid of Eqs. 10, 19, and 20, the radar equation Eq. 11 can be rewritten for

distributed targets as

PtAcTra2 _rL (22)
p, = 64r2 r/.

Comparison of this equation with Eq. 11 for a hard target immediately reveals a

few of interesting features of the scattering from distributed targets. First of all, the

proportionality of the received echo power on the range r is to the square, not to the
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forthpowerasis thecasefora hard target. This means that the echo power decreases

relatively slowly with increasing r, as mentioned in the preceding section.

Secondly, P, depends only linearly on the effective antenna aperture A_. While the A_

factor in Eq. 11 counts for the antenna gain both for transmission and reception, the linear

dependence in Eq. 22 can be interpreted that all of the radiated power is intercepted by the

distributed scatterers, and thus the antenna gain does not count during transmission. It

should also be noted that Eq. 22 does not contain any factor which contains a dependency

on the radar frequency. These properties makes the power aperture product PtA_ a good

indication of the sensitivity of an atmospheric radar.

Finally, the Ar term in Eq. 22, which does not appear in Eq. 11 means that any

attempt to improve the range resolution of an atmospheric radar should be made at an

expense of reduced sensitivity.

3.3 The Radar Equation for Specular Echoes

We have so far considered two extreme cases of a single target and uniformly distributed

target. Although it is not the purpose of this chapter to get into details of various

scattering mechanisms, let us examine a few more cases for which the radar equation

takes alternate forms.

The first example is the F_esnel (or partial) reflection induced by a horizontal layer

which has a slightly different refractive index from that of surrounding air and extends

over a sufficiently wide area. This layer can be treated like a planar mirror, but with

a small reflectivity p for incident electric field (Friend, 1949). Note that p here is the

reflectivity in an ordinary sense which has no dimension, and has a complex value of

ip[< 1.
The derivation of the radar equation for this case is rather simple, because we can

consider the case to be a one-way transmission from an antenna to its mirror image

located at a distance 2r, with an extra power loss factor of IplL Figure 4 shows the

situation schematically. The received power is thus given by

PtGt
Pr - 47r(2r)ffA_LlP12

PtA_L P 2= I I (23)

Although the echo power depends on the range by r2 like the case of distributed targets, it

is proportional to A_/A 2 like that of a hard target. One of important aspects of the Fresnel

reflection is its aspect sensitivity. The above equation assumes that the antenna beam is

directed perpendicular to the layer, for which the received echo takes its maximum value.
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Fig. 4. Equivalent ray path for the Fresnel reflection. The dashed lines denotes

the mirror image of the radar due to the layer.

The echo power falls off rapidly as the angle of the antenna beam is changed from this

position. The rate of decrease is a function of the beam width of the antenna, and can be

readily computed by considering the relation between the transmitting antenna and its

mirror image due to the layer. It is not so easy, however, to calculate this function when

the layer has some roughness of the order comparable to or larger than the waveJe1_gth.

Such situation needs a more rigorous treatment based on Eq. 17.

We next examine a case where the scatterer has a linear shape in space. The most

important application of such case is the reflection from meteor trails which appear at

around 100 km height. Meteor trail is a strong localized ionization produced along a path

of a meteor caused by the frictional heating when it penetrates into the earth's atmosphere.

Since the echo is strong enough to be detected with relatively low sensitivity radars, it

has been extensively studied (e.g., McKinley, 1961). There is a category of atmospheric

radar cailed the meteor radar which makes use of the meteor echoes to investigate the

dynamics of the lower part of the ionosphere.

The scattering element in this case is an electron as is the case for the incoherent

scattering for which element the radar equation is given in the form of Eq. 11 by

PrAWn

P_o = 4_.A2r4ae. (24)
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Fig. 5. Coordinates for deriving the effective length le for scattering from a meteor trail.

Unlike the case of incoherent scattering where contributions from individual electrons

add up randomly, scattered electric fields from electrons aligned in space have a strong

coherence. Since the effective diameter of the meteor trail which affects the scattering is

shorter than the wavelength of meteor radars, we can safely assume that all electrons are

aligned on one line with a line density of q_ (m -1). We also assume a straight line without

any curvature for simplicity, and that the line is located sufficiently far from the radar.

Electric-field contributions from electrons at distinct points on the line have similar

amplitude, but have various phase. We introduce an idea of the effective length defined

by

l, - If_ exp{-i2k(r'- r)}ds I , (25)

where r is the distance of the line from the radar, and r' is the range of a line element

ds on the line. Figure 5 shows the coordinates. The idea is to represent contributions

from all parts of the line which have distinct phases by an effective length in which

contributions are assumed to have the same phase at the receiving antenna. By making

an approximation r' - r "" s2/(2r) where distance s is measured along the meteor trail

from the perpendicular point, we obtain

l, = _/J_. (26)

Since the number of electrons within le is leq,, and since the electric fields of scattered

waves from these electrons have the same phase, the total echo power is given by

P, = (leq,)_P_o

PtA_L 2
= 8--_r3a, q;. (27)
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This equation has a range dependence of r -s which lies between the cases of a hard target

and distributed targets.

3.4 Near Field Correction

In deriving these radar equations, we have assumed that the target is located at a point

'sufficiently far' from the radar without giving any explicit reason or quantitative limit

for it. Here we examine how large should be the range r in order that equations we have

derived are valid, and what happens within this limit.

The antenna of an atmospheric radar is, whether it is an dish antenna as a paraboloid

or an array of Yagi's or half-wave dipoles, designed to form a beam of the transmitted

wave as sharp as possible, because it is the condition to maximize the gain Gt and effective

area A_ as shown in Eqs. 20 and 21. In order to make the beam sharp, it is essential to

produce a planar wavefront over the antenna aperture to the extent as wide as possible.

The transmitted wave thereby propagates as a plane wave at a distance near the antenna

without changing its outer boundary which keeps the shape of the antenna aperture. As

it propagates further, it gradually spreads out into a conical region and finally forms a

spherical wave with its center located at the center of the antenna aperture.

The region where the wave can be regarded as a planar wave is called the near field

of the antenna, while the region where it is a spherical wave is called the far field. In

another word, the far field is a region from which the antenna can be seen as a point.

This condition is stated mathematically that the distance of a target point measured from

any point on the antenna aperture falls within a difference sui_ciently smaller than the

wavelength.

Conventionally, the boundary between the near field and the far field is defined as a

range where the cylinder with a diameter equal to the diameter D of the antenna intercepts

the cone with an angle 0h and with its apex located at the center of the antenna as shown

in Figure 6. This range ro is given by

D 2
ro = -i-, (28)

atwhich the differenceofthedistancemeasured from the centerand from an outeredge

ofthe antenna aperturebecomes A/8. As isshown in Eq. 28, ro isa functionof the

diameterofthe antenna and the radarfrequency.The largestvalueofroassociatedwith

the existingatmosphericradarsis129 krn forthe AreciboUHF radar,which operatesat

430 MHz and has an antenna with a diameter of300 m. Allregionsofthe atmosphere

exceptthe upper ionospherefallswithinthe near fieldforsuch case.On the other hand,

ro ismuch smallerforVHF radars.The MU radar ofJapan, forexample, operatesat
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Fig. 6. A conventional definition of the boundary between the near field and the far field.

46.5 MHz and has a 103 m antenna, for which ro is only 1.6 km. Since the minimum

height (or range) that the MU radar can observe is about 1.5 km, the far field condition

almost always holds.

In the near field of an antenna, Eq. 6 should be thereby rewritten as

Pt
a = (29)

Also, Eq. 8 should be modified because the phase differences of the received waves on

different parts of the antenna aperture, which differences cause interference and thus

reduction of the echo power, is important for the case of the near field. The effective

area Ae should then be replaced by an area which represents the effect of adding waves

with different phases. This area is obtained by a consideration similar to that of Eq. 26

for the effective length of the reflection from a meteor trail, and is given by rat/4. This

area also agrees with that of the first Fresnel zone which is defined as a zone on a plane

in which a wave radiated from a point source arrives with a phase difference of less than

_r/2. Figure 7 shows the situation schematically. Thus Eq. 8 becomes

P,_ )_rL
P, = _ (30)

With Eqs. 29 and 30, the radar equation for a hard target Eq. 11 is rewritten as

Pt£L
P' = (31)

The most striking feature of this equation is that the received power is inversely propor-

tional to the effective area of the antenna, meaning that a smaller antenna gives a stronger
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Fig. T. Scattering due to a hard target within the antenna near field.

echo than a larger one. This is due to the fact that the power density of the transmitted

wave is higher for smaller antenna as far as the target is within the near field. It should be

noted, of course, that the upper boundary ro of the near field also decreases as the size of

the antenna is reduced. The other important difference is that the echo power decreases

only by r -1 with increasing range r in contrast to the very steep r -4 decay shown by

_.n.
Similarly, the radar equation for distributed targets Eq. 22 can be modified for the case

of the near field. Besides the corrections we have made, the scattering volume expressed

by Eq. 19 should also be changed as

Y = A, Ar. (32)

Applying Eqs. 14 and 32 to Eq. 31, we obtain the radar equation for distributed targets

within the antenna near field:
PtAr_L

P, = _r/. (33)
16r

Note that this equation contains no dependence on the antenna size parameter. What

Eqs. 31 and 33 tells us is that increasing the size of the antenna in order to improve the

sensitivity of the radar works only for targets outside the near field of the antenna.

In section 3.3, we also made an implicit assumption that the effective size of the target

for specular reflections, which is determined by phase coherence of the scattered electric

field, is smaller than the lateral dimension of the beam at that range. It can be shown

that the range at which le for the meteor trail becomes the same as the beam size is

coincidentally given by to. The v/7 dependence of le thereby verifies the use of Eq. 27 for
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r > ro. A similar condition r > to/2 can be derived for the validity of Eq. 23 for Fresnel

reflection by considering the condition that the size of the first Fresnel zone of the mirror

image becomes larger than the size of the antenna.
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4 Basic Techniques

The radar equation derived in the previous section tells us the intensity of echo, which

is essential to estimate the necessary transmitter power and the antenna aperture, but

nothing more. In this section, we briefly survey basic techniques used in the atmospheric

radar in determining the range of desired target and also in deriving other information

concerning the target. Details of individual technique will be discussed in following chap-

ters.

4.1 Pulsed Waveforms

Ranging, or measurement of the range to a target, is one of important functions of radar.

We, again, start with the case of observing a hard target. The ranging is made by mea-

suring the time delay of the received echo from the target with respect to the transmitted

signal.

As far as the refractive index n satisfies In-ll _ 1, speed of the radio wave can be well

approximated by that in free space as shown by Eq. 1, the error of which approximation

is given by Eq. 2. In the lower and the middle atmosphere of below about 100 km,

In-ll < 10 -3 as shown in Fig. 2, thence the error is negligible for all practical applications.

The error becomes larger, however, in the ionosphere of above 100 km depending on the

frequency f and the electron density N, as shown by Eqs. 3 and 4. At a relatively low

frequency of 50 MHz, for example, the maximum value of n - 1 during daytime reaches

-0.02 at around the peak height of F2 region of 200-300 km. A care must be taken

of this error for an accurate ranging of a hard target above the ionospheric height using

lower VHF band. For oblique beam waves, refraction of the ray path is not negligible

either under such condition.

Assuming n = 1, the range r of a stationary point target is given by

CT

r = -- (34)2'

where r is the time delay of an echo. In order to measure this time delay, we need to add

some 'feature' to the transmitted wave so that a part of the wave can be identified from

others. Although there are a variety of ways to do this, many of which are of practical

use, the simplest and most widely used way is to transmit a short pulse of a waveform

Eosin(27rft) (0 < t < At)E(t)= 0 (t<O, t>At) '
(35)

where Eo is the amplitude of the electric field of the wave. It should be noted that it is not

common to use such an idealized wavcform in a real radar because of various restrictions,
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sothattheamplitudeEo is usually a smoother function of time than this one. When

we transmit a pulse of length At sec, we receive the echo from this pulse for a duration

of At sec right after a T sec of delay. Since we measure the delay in terms of the range

according to Eq. 34, this duration is interpreted as if the target has a finite length

cAt
Ar = -- (36)

2

in the radial direction, which length is called the range resolution.

It is thereby necessary to reduce At in order to improve the range resolution. Un-

fortunately, however, there is a conflicting relation between the length of the pulse and

its frequency bandwidth. For a rectangular pulse waveform of Eq. 35, the half-power

frequency bandwidth B is given by

0.886
B = -- (37)

At

Since the receiver should cover this bandwidth, the noise power contaminating the echo

increases linearly as increasing B as shown by Eq. 12, thus resulting in a linear decrease

of the signal-to-noise ratio, which is, as a consequence, proportional to At.

This dilemma can be solved by means of pulse compression which allows a radar to

utilize a long pulse without sacrificing the range resolution. The basic idea of the pulse

compression is to put extra features within the long pulse so that each part of the pulse

can be identified, which idea is just the same as the one used above in introducing the

pulsed waveform. This is realized, in this case, by applying further modulation to the

already pulse-modulated waveform. Among various ways of modulation, binary phase

modulation (or coding) is most widely used for the atmospheric radar application. This

form of pulse compression is performed by sending N consecutive pulses with the phase of

carrier wave 0 or r different from that of the first pulse. The advantage of utilizing only 0

and r of the phase is that they can be interpreted as plus and minus signs of the envelope

Eo, so that no special hardware for phase modulation and demodulation is required. Each

component pulse of length At is referred to as a sub-pulse of an N-element coded pulse of

length NAt. The choice of the time series of phases (0 or r) is a subject of mathematical

considerations, and will be discussed in details in a separate chapter (see, for example,

Nathanson, 1969, or Skolnik, 1980 for reference).

Here we choose a random phase coding as an example, with which sub-pulses have

random and independent phases with each other. The received signal time series from

a stationary point target is a weakened and delayed copy of the transmitted time series,

which is a series of pulses with a random sequence of signs. We can 'compress' the received

aigaal by displacing sub-pulses to the position of the first sub-pulse with corrected phase,
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Fig. 8. Time-height section showing the relation of the size of a range cell and the

length of a pulse for distributed targets.

and by adding them together. Mathematically, this procedure is expressed as taking the

cross-correlation of the transmitted and received time series. This procedure enhances the

signal power, which has equal phase for all sub-pulses, by N 2 times, while the statistically

independent noise power only by N times, thence the signal-to-noise ratio by N times.

Since the phases of sub-pulses are random, the entire pulse has the same bandwidth

as that of each sub-pulse. The range resolution also stays unchanged because the cross-

correlation disappears outside an interval of At due to random phases between adjacent

sub-pulses. As a summary, N-element binary phase compression improves the signal-to-

noise ratio by N times compared to a single pulse of length l/N, without changing the

range resolution.

We now consider the case of distributed targets. If the distribution is uniform with

range, the received echo power decreases with the time t after transmission of a pulse

as t -2, which simply reflects the r -_ dependence of the radar equation through Eq. 34.

The object then becomes to determine the nature of the target at a given range, instead

of determining the range of the target. The meaning of the range resolution also should

be changed from the ambiguity in determination of the range of a target to the radial

size of scattering volume which contributes to the echo at a given time. Actually, the

range resolution Ar given by Eq. 36 corresponds to the difference of the range of echoes

returned from the leading and trailing edges of a pulse of length At at the same time of

receiving as shown in the time-height section of Figure 8. It is thereby appropriate to call

Ar as the size of a range cell as already quoted in Eq. 19. Echoes from distinct ranges

can be obtained by sampling the received signal at an interval of ,-, At. A sampling
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intervalofless than At produces overlapping regions between the samples, while a spars

sampling results in missing regions. It is therefore common to sample at an interval just

equal to At. The sampled time series provides a range (or usually, height) profile of the

atmosphere. We should note that the impulsive sampling intended by Fig. 8 does not

represent a realistic situation where the receiver has a bandwidth equal to that of the

transmitted pulse. In this case, an instantaneous sample of receiver output contains the

echo spreads over a duration of At. Although this effect broadens the range cell from a

rectangular shape of width Ar into a triangular one of width 2Ar, the 'half-power' size

of the cell is still given by At.

As we have seen, the signal-to-noise ratio is proportional to the length of pulse At

for the case of a hard target. For the case of distributed targets, we need to take into

the account the linear proportionality of echo power on Ar as shown in Eq. 22, which

represents the number of scatterers in a range cell. The signal-to-noise ratio thus becomes

proportional to At 2, setting a severe restriction in improving the range resolution. For

example, dividing a single pulse into N sub-pulses with binary phase coding improves the

range resolution by N times without sacrificing the signal-to-noise ratio of a hard target,

while the same alteration offers the same improvement only at an expense of a reduction

of the signal-to-noise ratio to 1IN for the case of distributed targets.

4.2 The Doppler Principle

We have so far concentrated our attention only to the echo power. Physical meaning

of the echo power is, however, clear only for the case of incoherent scattering from the

ionosphere, for which case it can be interpreted in terms of the electron density. It is

difficult to make use of the echo power from the lower and the middle atmosphere in a

quantitative manner in terms of physical parameters of geophysical interests.

The Doppler shift of the echoes, on the other hand, has a great importance for these

regions as well as for the ionosphere, because it is directly related to the motion of the

target, which is wind. The Doppler frequency shift of echoes from a moving target relative

to the radar is given by

fd = 2--fvd, (3S)
e

where Vd is the line-of-sight component of velocity vector v of the target relative to the

radar.

Since the maximum velocity encountered in the atmosphere is on the order of 100 m s-l,

Ifd] < 1 kHz for any frequency f of less than 1 GHz. A typical value of fd for 50 MHz band

is, for example, around 3 Hz, which corresponds to a line-of-sight velocity of 10 m s -_.
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Bandwidth of transmitted pulses is, on the other hand, 100 kHz-1 MHz corresponding to

the minimum length of sub-pulses of 1-10 ps. It is thereby very difficult, if not impossible,

to detect such small Doppler shift of a pulse relative to its bandwidth from each received

pulse.

Instead, the method of time-series analysis is applied to the series of received signal

from consecutive pulses at the same range. If a stationary target is observed, all received

pulses should have the same phase relative to the transmitted pulse. It is then interpreted

that the received time series has the DC component only, which means that the Doppler

shift is zero. Next we suppose that the target is moving at a sufficiently slow speed of

Vd in the radial direction so that it does not move out of a range cell into the next one

within the period of interest. We examine samples of echoes obtained at the same range

cell from adjacent pulses separated by an inter-pulse-period (IPP) of T. Then the phase

difference A_b between the two samples is given by

A¢ = 2rfdT = 4rfT_Vd. (39)
V

This equation can be applied not only to a hard target but also to distributed targets as

far as they move with a mean speed of Yd. The phase difference can be determined from

a pair of pulses, while the Doppler frequency shift fd can be directly derived by a spectral

analysis of the time series of samples taken from many pulses.

A limitation of this method arises from the requirement IA¢I < _r so that fd can be

determined without ambiguity, together with the one T > 2rm_/c which comes from the

restriction that we cannot transmit a new pulse before receiving the echo of the previous

pulse from the longest range rmax of interest. By combining these two requirements, we

obtain c2

Ivdlr,. < 0' (40)

which gives the condition that both the range and the velocity of a target can be de-

termined unambiguously. Since the quantities on the left-hand side of this equation are

limited roughly by 100 m s-t x 100 km = 107 m2s -_, this condition is usually satisfied for

a frequency of below about 1 GHz, which is the frequency used for atmospheric radars.

Considerations made above assumes that the echo is perfectly correlated in time, which

assumption is not valid for the case of the atmospheric radar, where echoes have finite

correlation time Tc due principally to random motion of scatterers within a scattering

volume. This correlation time is inversely proportional to the spectral broadening due to

the random motion and other observational effects, and given by

b bc

rc = af 2fay' (41)
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where of and av denote the standard deviation of the random motion in terms of Doppler

frequency and radial velocity, respectively, and b is a numerical coefficient of order unity

which is determined by the velocity distribution of the random motion. For a Gaussian

distribution, b = 1.18.

The value of av differs largely depending on the height, since it is the order of mean

thermal motion of ions of more than 1 kms -1 in the ionosphere, while it is the mean

velocity of turbulent eddies of the order of 1 m s -1 in the lower and the middle atmosphere.

For ionospheric observation, for which a_ _ vd, the Vd term in Eq. 40 should be replaced

by a_, which determines spectral width and thus the minimum sampling interval. It is

easily understood that the condition for unambiguous sampling is then no more satisfied,

meaning that spectral information of the scatterers must be derived within an interval of

order of re. A special technique called multi.pulse method was developed for ionospheric

observations, and has been widely used (e.g., Farley, 1969).

4.3 Velocity Field Measurements

As shown in Eq. 38, velocity of targets measured by a radar with the Doppler technique

is a line-of-sight velocity, which is the projection of velocity vector to the radial direction.

We will briefly examine here two distinct techniques of determining the three components

of the velocity vector: the Doppler-Beam-Swing (DBS) method and the Spaced-Antenna-

Drifts (SAD) method.

The DBS method makes use of multiple antenna beams each of which is oriented to

observes the radial velocity at a different direction. The velocity vector is computed from

the line-of-sight velocities from these directions. Here we need to make an assumption

that the velocity field is uniform in space over the volume which contains the range cells

used to compute a velocity vector. In the atmospheric radar application, it is common

to determine a velocity vector from line-of-sight velocities of range cells with the same

height assuming the uniformity only in the horizontal plane, so that a height profile

of the velocity vector can be obtained. This is because the horizontal velocity is usually

much larger than the vertical velocity in the stratified earth's atmosphere, thus making the

horizontal uniformity of the velocity field much better than in the vertical direction. Also,

the fact that the zenith angle of antenna beams is usually kept within about 30°supports

this assumption, in contrast to the case of weather radars, which use almost horizontal

beam directions,

The line-of-sight component of the wind velocity vector v = (vz, vy, v_) at a given
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height is expressed as

Vd = v.i

= V, COSSz+ V_COSO_+ V, COSO,, (42)

where i is a unit vector along the antenna beam direction, and Oz, Oy, and 0_ are the angle

between i and the x, y, and z axis, respectively. If we measure vd at three beam directions

i], i2, and i3 which do not constitute a plane, we can obtain an estimate of v as

cosO_t, cosO_t, cosO,] vdt

v= cos0_2, cos0v2, co60,2 vd_ • (43)

COSOz3, COSOy3, COSOz3 Vd3

If we observe more than three directions, then the estimate of v can be determined in

a least-squares manner, with which the residual given by the following is minimized:

2 _-'_(vz cos 0z_ + v_ cos 8v_ + v_ cos 0_i vdi) 2, (44)C v _-

i=l

where m is the number of beam directions. The necessary condition for v to give the

minimum is that partial derivatives of _ with respect to all three components of v axe

zero: 0E--_2_= 0 (j = x, y, z). (45)
Ovi

This set of equations can be solved in terms of v as

)( )T]_Cos2Ozi, _;_COSOziCOSO_i, _ COS0zi COS 0.i _']_VdiCOSOri

v= _ cos 0v_ cos 0,_ , T. cos2 0,_, _ cos 0v_cos0,_ ]_ vd_ cos 0_ , (46)

_E cos0,_ cos0,,, Z: cos 0,_ cos 0v_, ]E cos2 0,_ ]E vd_cos 0,,

where the summations are taken for i = 1 to m.

A special case of this type of multi-beam measurements called the Velocity-Azimuth

Display (VAD) method, which uses beam directions with a fixed zenith angle 0 and

uniformly distributed azimuth angles ¢_. The line-of-sight velocity vd of Eq. 42 is then

rewritten as

vai = vh sin 0 sin(C,- +/_) + v_ cos0, (47)

where vh and/3 are the amplitude and the direction of the horizontal component of r,

respectively, and given by

/_ = tan -]
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Fig. 9. Coordinates of the Velocity-Azimuth Display method (left panel), and an

expected variation of the line-of-sight velocity vd as a function of azimuth ¢ (right

panel).

Figure 9 illustrates coordinates of the VAD method and an expected variation of vd as

a continuous function of azimuth ¢. The thin curve on the right panel represents a case

where the horizontal component of the velocity is toward the x axis, and the thick line

shows a general case.

As understood from this illustration, the vertical component of the velocity is indi-

cated by the DC component, and the horizontal component by the amplitude and the

phase of the sinusoid. The fitting procedure given by Eq. 46 thereby reduces to fitting

a sinusoid with a DC offset to line-of-sight velocities plotted versus azimuth angle. Any

inhomogenuity of the velocity field is indicated by deviations of the curve from a sinusoid.

Although there is nothing superior, in a mathematical sense, of the VAD method

compared to other choices of beam directions, there are practical advantages which made

the method popular: First, this method is suited for radars with a mechanically steered

aperture antenna, of which azimuth and zenith angles are often driven separately. This

is the case for most of weather radars, although it is not for phased-array antennas with

electricalorelectronicalsteeringoftenused foratmosphericradars.

Secondly,qualityofdata isreadilyvisualizedon a displaywithout numericalcompu-

tations.Systematicerrordue toan undesiredhard targetatsome direction,forexample,

can be pickedup easilyby human intelligence,but itmay requirean elaboratedsoftware

fora computer tofinditout.
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Thirdly, a systematic error due to specular echoes from the vertical direction can be

avoided with the VAD method by choosing the zenith angle 0 properly. The specular

echoes from horizontally stratified layers often dominate over isotropic scattering from

turbulence (Gage and Green, 1978, lt6ttger and Liu, 1978), which make the apparent

zenith angle of the antenna beam direction smaller than the physical one for beam di-

rections near the vertical direction. This effect is most prominent for lower stratospheric

region, where data from beam directions with small zenith angles must be treated with

care (Tsuda et aL, 1986).

This caution applies, of course, to all DBS observations. On the other hand, use of

too large zenith angle makes the assumption of a uniform velocity field unreliable.

The alternate technique of the Spaced-Antenna-Drifts method makes efficient use of

this specular echoes in determining horizontal velocities. It was originally developed to

study characteristics of irregularities in the lower ionosphere (e.g., Ratcliffe, 1956), and

applied to observations of velocities in the middle atmosphere (e.g., Vincent et al., 1977)

and lower atmosphere (e.g., ltSttger and Vincent, 1978). Its principle is to measure a

spatial correlation of received signal patterns from a reflecting layer with spaced antennas

on the ground.

For a given angular pattern of the echo power from the reflecting layer, the spatial

correlation function on the ground is given by a two-dimensional Fourier transform of the

angular pattern as (Ratcliife, 1956)

(4S)

SI = sin 01

:;2 = sin02

where W(Sx, $2) is the power pattern of the echo with respect to the zenith angle 0: and

02 measured in x-z and y-z plane, respectively. Note that the integrand takes a real value

within a range (-1,1) for St and $2. If W is symmetrical with the azimuth angle, which

is valid for most of practical cases, Eq. 48 can be rewritten in a polar coordinates (0, ¢)

8S

p(a) = fo _ /;, W(S)exp(2_iaScosC)SdCdS, (49)

where S = sin 0, and a = _/(x 2 + y_)/A is a distance measured in units of the wavelength.

The integral with respect to _ is the Bessel function of zero order Jo(2_raS) so that

= w(S)Jo(2  s)sds. (5o)
For randomly distributed irregularities in a thin horizontal layer at a height z = h,

the power flux in the angular range 0 to 6 + d0 depends only on the antenna pattern of
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Fig. 10. normalized correlation function p(a) between fluctuations recorded by

two receivers separated by a distance a. It is assumed that the irregularities axe

isotropic and randomly distributed, and that both the transmitting and receiving

antennas have a pattern of exp(- Bin20/sin 2 00) (after Briggs and Vincent, 1973).

the transmitting and receiving antennas, and _ven by (Briggs and Vincent, 1973)

W(O)dO oc h-2T(O)R(O) sin 0 cos OdO, (51)

where T(O) and R(O) are the transmitting and receiving antenna patterns, respectively.

Figure 10 draws examples of the correlation function for Gaussian antenna patterns with

different width, but assuming the same pattern both for transmission and reception (after

Briggs and Vincent, 1973).

We have so far considered the spatial correlation only. As implied by Eq. 41, the

received signal is also characterized by its temporal correlation function, which is a Fourier

transform of the frequency power spectrum. The spatial and temporal correlations can

be treated separately for the case of a stationary pattern, while they are mutually related

when the layer, and hence the pattern, has a mean motion. A generalized method called

the full-correlation analysis was developed by Briggs (1984) in order to retrieve the velocity

and other information from such correlation functions. We now introduce the space-time

correlation function of the received signal pattern f(x, y, t) on the ground plane:

p(_,o, r) = if(x, y, t)/(x + _,y + ,7,t + r))if(x,y,t)l 2 , (52)
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where (I means to take an ensemble average, which is often replaced by a temporal average

in practical applications. This correlation function represents the statistical relations of

the signal pattern at two points with a separation (_, rl) on the ground and with a time

difference of r. We assume that for a stationary pattern, the correlation function has a

form

p(_, 77,I") = p(A_ 2 + B_ 2 + gr 2 + 2H_). (53)

This assumption implies that the spatial and temporal correlations have the same func-

tional shape, but the shape is arbitrary. Although this is not real in a rigorous sense,

it is an acceptable approximation for most of correlation functions at least around their

origin.

We next suppose that the pattern is moving at a velocity V = (Vz, V_). If we move the

coordinates also at this velocity, then Eq. 53 remain unchanged for the moving coordinates.

the expression for the stationary coordinates is therefore obtained after a linear transform

of coordinates that

p(_, 7?,v) = p{A(_ - Vzr) _ + B(_? - V_r) 2 + gr 2 + 2H(_ - V_v)(_? - V_T)}, (54)

which is rewritten as

p(_, _, r) = p(A_ 2 + B_ 2 + Kr 2 + 2F_r + 2G_r + 2H_). (55)

If we have two spaced receivers, we can determine the shape of the cross-correlation

as a function of r for a given set of (_, _?). Since Eq. 55 is a function of a second-order

polynomial of r, it is possible to determine three unknowns by fitting it to the measured

cross-correlation function. It is thus clear that three spaced receivers, which provides us

two sets of independent cross-correlation functions, is sufficient to determine all coefficients

in Eq. 55. If we have more than three receivers, we can determine the coefficients in a

least-squares manner as is the case of the DBS method.

Once the coefficients are determined, we can retrieve the velocity vector V from these

coefficients. By comparing Eqs. 54 and 55, we obtain

AV_ + HV_ = -F
BV v + HV_ = -G (56)

These equation can be readily solved to give (V_, V_). The vertical component of the

velocity vector needs to be determined separately from the Doppler shift of the echo.

An important point which needs to be mentioned is that an apparent velocity V'

calculated from the distance between the receivers and the time delay which gives the

maximum value of the cross-correlation function does not agree with the true velocity
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Fig. 11. Contours of equal correlation versus distance _ and time delay r. The

left panel shows a case with no mean wind, and the right panel is with a uniform

wind. The true velocity V estimated with the full-correlation analysis is denoted

by the solid line. The dashed line indicates the apparent velocity V r determined

from the time delay of maximum correlation.

V of the pattern, which is correctly estimated with the full-correlation analysis. These

two time delays coincide when the temporal correlation of the pattern is perfect, which

means that the pattern is drifting without evolving with time, while a finite correlation

time significantly affects the shape of the cross-correlation function.

Figure 11 illustrates this difference schematically. The left panel shows concentric cir-

cles which represent contour lines of equal correlation versus distance _ along the baseline

and the time delay _- for a case of no mean motion. The abscissa and the ordinate are

normalized by the correlation distance and the correlation time of the pattern, so that the

contours become circles instead of ellipses. If a mean motion of V is added, the contours

deform into ellipses as shown in the right panel. Note that the solid line which indicates

the true velocity V is drawn by connecting tangential points of the ellipses with horizontal

lines as implied by Eq. 54.

Since the cross-correlation function with respect to r at a distance _ is given by the

values of contours along a line of constant _ (i.e., a vertical line), V' obtained from

its maximum has a slope indicated by the dashed line in the figure, which is drawn by

connecting tangential points of ellipses with vertical lines. The difference between the true

velocity V and the apparent velocity V' therefore becomes larger as V becomes smaller.

One of reasons that the full-correlation analysis is widely used is that it is free from this
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Vh

Fig. 12. Motion of a reflecting layer and its echo pattern on the ground.

:ind of error.

We should also note that the velocity V we have discussed is the velocity of the pattern

_n the ground, which is exactly tu_/ce that of the layer as schematically shown in Figure 12.

this is intuitively understood by considering the motion of a shadow of a screen projected

on a wall where the light source, the screen and the wall are arranged with equal intervals.

It is, of course, possible to derive this relation mathematically by examining the motion

of an interference pattern on the ground due to echoes from two or more targets moving

horizontally at the same velocity.

From a practical point of view, the DBS and SAD methods have their own advantages

and disadvantages which are difficult to compare on the same ground. The advantages of

the SAD method are that the complete velocity vector can be determined from a single

volume of the target, and that the enhanced specular echoes from the vertical direction

can be used efficiently. However, it requires at least three sets of receiving antennas and

receivers with equal capability. The DBS method requires, on the other hand, a steerable

antenna, which is not necessary with the SAD method. The accuracy of the velocity

estimates is known fairly well for the DBS method, while it has not yet been studied in

details for the SAD method, which is anticipated to have a variable accuracy depending

on the velocity itself.
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Chapter 3

THE INSTRUMENTAL PRINCIPLES

OF MST RADARS AND INCOHERENT SCATTER RADARS
AND THE CONFIGURATION OF RADAR SYSTEM HARDWARE

JQrgen R_ttger

EISCAT Scientific Association

P.O. Box 812, S-981 28 Kiruna, Sweden

(on leave from Max-Planck-lnstitut for Aeronomie, W.Germany)

ABSTRACT

The prlnciple of pulse modulation used in case of coherent scatter radars
(MST radars) and incoherent scatter radars (IS radars) is first discussed. Cohe-
rent detection and the corresponding system configuration is delineated. Antenna

requirements and design are outlined and the phase-coherent transmitter/recelver

system is described. Transmit/receive duplexers, transmitters, receivers, Qua-
drature detectors are explained. The radar controller, integrator, decoder and

correlator design as well as the data transfer and the control and monitoring by

the host computer Is dellneated. Typlcal operation parameters of some well-known

radars are fina11y summarised.

1. INTRODUCTION TO PRINCIPLES OF THE ATMOSPHERIC RADAR TECHNIQUE

This tutorial lecture note aims to give a general summary and overview on

the MST radar and the incoherent scatter radar technlaue. Wlth the MST radars

the mesosphere, stratosphere and the troposphere are investigated, whereas with

incoherent scatter (IS) radars the ionosphere is Investlgated. It is not in-
tended to present here a review for experts working in thls field_ but rather to

give an overview to newcomers to allow a basic introduction for those who are

joining this research field. For more specific technical descriptions of the
radar technique in general and the atmospheric radar technique in partlcular,
the reader is referred to other books and articles, such as those by SKOLNIK

(1970), HARDY (1972), WILSON and MILLER (1972), BATTAN (1973), GOSSARD and
STRAUCH (1983), DOVIAK and ZRNIC (1984). Very specified descriptions of MST

radar techniques can be found in Handbooks for MAP (BOWHILL and EDWARDS, 1983,
1984, 1986), an explicit and useful explanation of the MST and incoherent scat-

ter MU radar was published by FUKAO et al. (1985a,b), and a review of UHF and
VHF radar technldues for atmospheric research and wind profller applications was

recently prepared by ROTTGER and LARSEN (1989). Good overviews on the incoherent
scatter radar technique are given by EVANS (1969), BARON (1977) and HAGFORS

(1977). Since important features of the MST and IS radar hardware result from

certain principles of the basic radar technlaue, the scattering mechanisms and
the data acquisition procedures, these will be briefly outlined in the course of

this lecture note, whlch, however, mainly alms towards the description of radar
instrumentation. Further tutorial Introductions to the applications of MST and

IS radars in atmospherlc and ionospherlc research can be found In the other ar-

ticles published in this volume of the Handbook for MAP.

We will describe here the very baslc technical principles, whlch are pro-
found in all radar applications but are usually adjusted according to sPectflc
requirements Ofl certaln scientific experiments and operational realizations.
Some of those are outlined In the following chapters and for more detalis than
glven In this tutorial or the tn mentioned reviews the reader Is referred to the
relevant literature summarized in the reference list at the end of thll paper.
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1.1. Baslcs of Pulsed Doppler Radars

Usually the MST radars as well as the incoherent scatter radars apply the
conventional pulse modulation techniaue, i.e. a short radar pulse is transmitted
as shown In the sketch of Fig. 1, and the backscattered radar echo from a range
r (or altitude z) is received after the time t. Sampling the received echoes as
function of time then allows to evatuate the echoes from different ranges
r =ct/2, where c is the propagation velocity of the radar signal, namely the
speed of light for the radars operating In the VHF and UHF bands.

rz

i ;
r= of/2 1, time f

fD

Figure I. Principle of a pulsed Doppler radar:
A transmitted radar pulse is scattered by some refractive

index irregularity at the ranges r. The backscattered radar
signal is received after the time of flight t from the

ranges r = ct/2, where c is the speed of light. Usually the
power or Doppler spectrum (as shown in the lower insert) Is

computed for signals received in certain range gates and the
basic parameters total power P, Doppler shift fo and the

spectrum width o are deduced. In addition further useful
parameters can be determined from the particular shades of

Doppler spectra.

The procedure of pulse radar is described in some more detail in Flg. 2.
Let a pulsed electromagnetic wave be transmitted at the time T1. The pulse
duration of this radar signal shall be 6to. For simplification the pulse ShaDe
ls assumed to be rectangular, but in real applications it may be a smoothed
trapezoid or trlangle or Gausslan ShaDed. In a nondisperslve propagation medium
(at the high freauencles used in the MST and IS radar application the refractive

index is very close to one such that dispersion does not have to De considered)

the pulse travels with the speed of light c and reaches the range ra after the
time tl = r=/c. A target at ra can scatter or reflect the radar slgnal In some
directions. A small fraction returns to the location of the transmitter, where

this radar echo will be received after the time t1' = 2ti = 2r=/c. This yields

the basic relation r = ct/2, which allows determination of the range of any

radar target by measuring the round-trip time t. This relation holds for mono-
static radars (transmitter and receiver are at almost the same location). For

bistatic radars (with the recelver separated horizontally from the transmitter

by a distance comparable to or larger than the ranges to the target) a modified
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Figure 2. Range-tlme diagram explaining the main features
of pulse transmlssion and scattering from a volume target

at the range r and the receptlon after a time t (see text
for the explanation of the other parameters),

expression has to be applied. Bistatic or multistatic operation wlll not be
discussed in detail here, but is just mentioned for completeness (see Evans,
1969, for more details).

Since the transmitted pulse has a finite duratlon 5tt, lts trailing edge
will reach the range rl at a tlme tl+6tt, and reach the receiver at 2tl+6tt =
tl'+6tt. If the radar target is a thin reflecting surface (called discrete,
single or hard target scattering), the shape of the received pulse ls the re-
plica of the transmitted pulse. Now assume that many scatterers fill all ranges
along the radar beam (called soft target or volume scattering). It ls then
obvious from Fig. 2 that echoes from the range between rm-6r/2 and rm reach the
receiver simultaneously at tl', and those from ra to rm+_r/2 are recelved at
t_'+Stt. The pulse of duration 5tt, thus, at one time illuminates a volume at rm
extended along a range 5r = c._tt/2. This is the range gate or range cell from
which the radar echoes are received. Flg. 2 shows that most of the echo Dower
results from the range re, and minimum power ts received from ra±6r/2. Thus, the
resulting range weighting functlon of the single range gate centered around rm
Is a triangle.

Because of the finite receiver bandwidth (usually matched to the bandwidth
of the transmitted pulse) the recetver gate has a finite width in time. The
receiver pulse response (given by about the inverse of the receiver bandwidth)
distorts the received pulse by smoothing its leading and trailing edges and thus
delaying it by about the receiver response time. The transmitter pulse length
Btt, to which the receiver response tlme Is matched, determines the range reso-
lution _r. The Instrumental distortions of the radar pulse are not deplcted in
Fig. 2 to matntaln the clearness of survey, but they eventually have to be
considered in the final analysis of the radar data.

In radar applications short pulses are normally transmitted periodically,
i.e. the n-th pulse follows the (n-1)-th pulse after a specified time. For
convenience this time perlod is set here to be a multiple (K>I) of 8tt. This
time (Tn-Tn-1) is called the !nterpulse gerlod T_pp, IPP, T_ or Just T. Its
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inverse ls called the pulse repetition freouency fpr! : 1/TiDD. The off-on-ratio
of the transmitter T,D=/Stt-1 determines approximate|y the range from which
radar echoes can be unambiguously received (in units of range resolution). It ls
more customary, however, to use the ratio d = 6ttlTi=o, which Is called duty

cycle or duty factor. The average transmitter power P=, to be averaged over
(more than) one interpulse period, is the product of the duty cycle and the
transmltter pulse peak power PD, i.e. P= = d-P,. In Table I the basic technical

terms used in radar applications are summarised.

TABLE 1

DEFINITION OF TECHNICAL TERMS

USED IN ATMOSPHERIC RADAR EXPERIMENTS:

transmitter

pulse radar
r_ signal r_ pr

.',C: T )'
.,_ }

_tt ' _ t
=

0

T = interpulse period (IPP), also TIDp
I/T = pulse repetition frequency (PRF)

5it = transmitter pulse length (duration)

PD = transmltter peak power
5tt/T = d = duty cycle

dP© = average transmitter Dower

r = cto/2 --one-way distance to the radar target

Assume that the radar echo power is due to volume scatter and that isotro-

pic scatterers totally fill the radar beam. Then the received radar echo power
P= Is given by the radar equation:

APD 5r q
P= - , (1)

81_r2

where A is the effective antenna area and q ls the radar reflectivity.

If the radar echo ls due to reflection from a large surface of a refractive
index discontinuity, which is stratified perpendicular to the radar wave propa-
gation, the received radar echo power Pr iS glven by:

po A2 19t2
Pr - (2)

4no z r 2

where 9 ls the amplitude reflection coefficient of the surface. For MST radar
applications the reflection coefficient can be very small, resulting ]n partial
reflection. In many cases of radar observations scattering takes place, and
particularly in Ionosphere observations with IS radars the only mechanism is
(incoherent) scattering. The partial reflection mechanism is difficult to be
distinguished from anisotropic scatter, which both have a pronounced aspect
sensitivity (dependence of echo power on beam direction) observed with the long
wavelength MST radars. We refer to detailed explanations of these effects, which
are for instance outlined in other articles of this book (e.g., HOCKING, 1989).
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As compared to radar echoes from single hard targets (e.g. airplanes),
where the echo power is proportional to r-4, P= and Pr are proportional to r-z.

Th_s is simply explained by the fact that the volume or the partially reflecting
surface or layer of the atmosphere, which is illuminated by the radar beam, Is

not constant but increases with the square of the range. We particularly have to

note the direct dependency of the recelved signal power on the transmitted peak
power Pp and the antenna area A, which means that both these Quantities should

be opt_mlsed. For the reason that the sensitivity of the radars Is directly

determlned by these two parameters, transmitter power and antenna aperture, the
ouantlty "Dower-aperture product P.A" is used often as the maln indicator of the

radar capability or sensitivity and it allows a better comparlson of measure-

ments done at different radars. Also the term slgnal-to-noise ratio (SNR), which
is the ratio of signal power Ps.r and noise power Pn. Is used frequently to

determine the echo signal strength although this can be mlsleading because the

nolse level varies particularly with frequency and antenna look angle, with
receiver front-end sensitivity and with loss rates of the antenna and feed

systems.

Because in normal radar operations the pulse repetition frequency is kept
constant, i.e. the transmitted pulse traln is per10dic, range-alias_ng may

occur. This ambiguity is depicted in Fig. 2. At time t2' an echo of the pulse
at T2 is received from range r=, and an echo of the pulse at TI is received from

range rb. Of course higher order range-allaslng can occur from ranges rn =

c(t+(n-1)TiDp)/2. Because these echoes return from separate scatter volumes, the
echo signals are uncorrelated but still their power accumulates in the same

receiver range gate. If no special arrangements (e.g. pulse-codlng, frequency

changes or non-periodic Tipp) are being made, the maxlmum unambiguous range Is
rmmx : C'Tipp/2. The minimum range rmin ObViOUSly lS glven by the pulse duration
8tt plus some instrumentally entailed transition tlme between transmission and

reception.

Assume that a bulk motion carrles the scatterers or reflectors In the

volume at range r. Because of the Doppler effect, the rate of change of phase ¢

of the returned signal is then d_/dt = 4_/No-dr/dt, where ho Is the radar wave-
length. When V' is the (radial) velocity in direction of the radar slgnal path,

V' = dr/dt. The phase change d¢/dt is the angular Doppler frequency go = 2_fo,

which yields fo = -2V'/No. Since the radar signal is pulsed at a frequency fpre,
i.e. the radar echo Is sampled at a rate T_po, this yields the maxlmum Doppler

frequency to be resolved by pulse-to-pulse analysis (Nyquist frequency): fDmax =
farf/2 = I/2T_Dp. This corresponds to a maximum radial velocity V'tax =

nofDm=x/2 and V'm=x = noc/Brm=x. V'm=x. as defined here, ls much larger than any
realistic velocity observed in the lower and middle atmosphere.

In cases of large Doppler shift and/or large spectrum widths, i.e. the

inverse of the signal correlation time, which are observed for incoherent scat-
ter echoes from the ionospherlc E- and F-region, the maximum frequency cannot be

resolved by the pulse-to-pulse technique and other means have to be applied. The
difference of "coherent slgnals" observed in MST radar applications and "incohe-

rent signals" observed in IS radar applications is sketched in Fig. 3. For short

signal correlation times (shorter than the Interpulse period) all samples for
the autocorrelation function and the spectrum analysis have to be taken during a

single interpulse period (incoherent signal). For long correlatlon times (longer

than the interpulse period) these samples need to be taken during several Inter-
pulse periods (coherent signals), which is called "pulse-to-pulse" technique.

Details of the corresponding instrumental configurations are discussed in the
following Chapter 1.2 and of the data acquisition in Chapter 5.
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Figure 3. Range-time-amplitude diagrams for coherent (underspread) and
incoherent (overspread) signals. The dots mark the sample points, which
are used to compute autocorrelation functions ACF. The tables symbolize
that for coherent signals coherent integrations (_1,I2 .... ) are performed
for fixed range gates over several interpulse periods, then the ACFS are
computed which are finally accumulated (ZACF). This is called "pulse-to-
pulse technique". For incoherent signals the ACFs are computed within
every interpulse perlod (ACF1, ACF2 .... ) and are accumulated (IACF).

1,2. An Overview of Particular Radar Systems

Radars operating in the extended frequency range from MF (medium frequency)
to UHF (ultra-high frequency) are used to Investigate the structure and dynamics
of the troposphere, stratosphere, mesosphere and thermosphere/ionosphere. In
Table 2 different kinds of radars and their basic technical parameters are
summarized. The MF radars, making use of partial reflection from electron den-
sity Irregularities, are particularly applied to measure electron density pro-
files of the ionospheric D-reglon and lower E-reglon as well as the horizontal
wlnd velocity in this altitude range, comprising the mesosphere and lower ther-
mosphere. The HF radars (conventional]Y known as lonosondes) and the ionospheric
irregularity scatter radars (somewhat ambiguously also called "coherent radars")
are used to study total reflections from the Ionosphere and scattering from E-
and F-reglon plasma irregularities. The meteor radars make use of echoes retur-
ned from meteor trails to measure wlnd velocities In the upper mesosphere and
lower thermosphere. The mesosphere-stratosphere-troposphere (MST/ST) radars.
detecting echoes from turbulence-Induced inhomogeneitles of the radlo refractive
lndex, are applied to Investigate winds, waves, turbulence and stability In the
indicated altitude regions. Incoherent scatter (also called Thomson scatter)
radars, maklng use of scatter from free electrons, are applied to study the
ionosphere and thermosphere. IS radar echoes from the D-reglon also have long
coherence times like MST radar echoes. We concentrate here on the basic prin-
ciples and applications of the incoherent scatter (IS) end the MST radars, but
we note that many principles apply also to the other kinds of radars.
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TABLE 2

RADAR METHODS FOR INVESTIGATIONSOF THE LOWER AND MIDDLE ATMOSPHERE

AND THE THERHOSPHEREII_OSPHERE

lyNca] operation paraleters lapproxilate)

Radar Frequency

Method Range

HF Radar MF-HF

HF Radar' HF

Coherent Radar" HF-VHF

L.

Meteor Radar HF-VXF

MSTRadar VHF

Incoherent

Scatter Radar VHF-UHF

ST Radar VHF-SHF

Wavelength Average

fl in • Power

sn kW

150-50 O.OI-I

300-10 0,01-5

30-1 O.l-I

I

10-6 O,l-IO

6-1 I-I00

1.4-0.25 100-300

6-0.1 1-500

Antenna Height

Dimension Region
in fl

I-tO ff,l

0.5-1 Th/Io

5-50 lh/Io

2-10 N,LT

5-50 M,S,T

100-300 ff,LT

10-500 S,T

MF = 0.3-3.0 HHz

HF : 3.0-30 RHz

VHF = 30-300 MHz

UHF : 300-3000 MHz

SNF : 3-30 GHz

: ]onosonde

M : Mesosphere

S : Stratosphere

T : Troposphere

LT = Lower Therlosphere

Th/Io : Thersospherellonosphere

÷ : Irregularity Scatter

The MST radars operate in the lower VHF band around 50 MHZ, corresponalng

to wavelengths around 6 m. Since quasl-vertical antenna beam directlons are

used, ranges are roughly equal to altitudes. For MST radar observatlons of the

lower and middle atmosphere the range limits rmmx are between 10-20 km and I00

kJ_. This yields typical pulse repetition frequencies between 10 kHz and I KHz.

A1tltude resolutions from about I km down to at least 100 m are reaulred to

resolve typlcal vertical scales in the troposphere, stratosphere and the meso-

sphere. This corresponds to pulse lengths of about 1-10 Us. Thus, typical duty

cycles are between about 10 -I and I0 -a. Longer coded pulses are frequently used,

which is discussed in Chapter 4.5.

MST radars make use of scattering and ref]ectlon from variations of humi-

dity, temperature and electron density, lnduced by turbulence In the lower and

middle atmosphere. Essentially, MST radars can observe: the 3-dimensional wind

vector, atmospheric reflectlvlty and stability, and morphology of turbulence ana

waves. The continuous measurements with MST radars offer very good quality and

quantity middle atmosphere observations of wind velocities. MST radars operate

at frequencies around 50 MHz, and therefore are also called VHF radars (VHF =

very high frequency band between 30 MHz and 300 MHz). Higher frequency radar=

mostly cover only the troposphere and stratosphere. Tyblcal peak powers of VHF

radars are between 1 kW and 1 MW. Range resolutions down to about 100 m and ttme

resolutions down to some ten second are possible. The antenna arrays with typl-
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resolutions down to some ten second are possible. The antenna arrays with typi-
cal dimensions of 1000 mz to some 10000 mz point close to the zentth direction.
Coherent detection, dlgltal control and data acquisition are mandatory as is
described in Chapter 4.

There are basically two methods which are applied by NST radars, In parti-
cular to measure velocities, as Is sketched In Fig. 4. One method uses a narrow
radar beam pointed into various directions and measures the Doppler shift ot
echoes scattered from irregularities. This method is usually called the "Doppler
method" and for this reason these radars are also called "Doppler radars". The
other method uses three or more spaced antennas and the recelved echoes are
cross-correlated to determine the drift speed of irregularities and is called
"spaced antenna or SA method". Since the Irregularities are usually moving with
the wind velocity, both methods are capable to measure the wind velocity. Al-
though both methods are basing on the same physical mechanism, In praxls the
technical implementation may favour one or the other of these methods. The
spaced antenna method can also be applied in the spatial domain radar interfero-
meter mode, which is advantageous for studying the structure of the scattering/-
reflecting Irregularities. In all these applicatlons a phase-coherent radar

system is applied, it is even required for the Doppler and the interferometer
method.

3-DIM VELOCITY MEASUREMENTS WITH VHF-RADAR

_ME_ W _ DOPPLER __HETH..OD
__ -- V V'A ----_-

7
RX TX RX

T + t
) RX-onlennos. col_rent d_tec|iQn

CROSSCORRELATION ANALYSIS

+
I horizontot drift vetocity Ve )

verticol velocity W' I

--[SPECTRAL ANALYSIS] [

IX- RX

,. I

) beam ,_rect_$. {ot_c=nl dete(lie_

AUTOCORRELATION. SPEC'[RAL NC4,LYSI$ ]
l

rodiol velocities V" I

horizonto[ velocity |U.V|. vertitol velocity W 1

Figure 4. The two orinciple methods of three-dimenslonal veloclty measurements

wlth monostatlc Besosphere-_tratosphere-troposphere (MST) radars. These
methods are the Doppler method using ob]iaue beams to deduce the horizontal

and vertical velocity from the measured radial velocity, and the spaced

antenna method apply-ing drifting pattern measurements to deduce the horizon-
tal wind velocity.
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The smaller versions of this Doppler radar category, the stratosphere-
troposphere (ST) radars operate according to the same principle like the MST
radars, but frequently operate on higher frequencies _n the UHF band wtth smal-

ler powers and antenna apertures of several ten square meters only. They ere not
capable to detect echoes from the mesosphere since either thetr bower-aperture
product ts too small, yielding too low a sensitivity, or their frequency ls so
high that their wavelength ls In the lnertlal subrange of refractive index
variations such that the scatter echoes are not detectable. These radars apply
the Doppler method to measure velocities and are mostly very capable to investi-
gate the lower atmosphere (particularly the troposphere and the boundary layer)
with a very good height resolution of some 10 meters or better.

The state of the art of the ST radars and their suitable appllcabillty to
measure continuously the wind profiles in the troposphere and the lower strato-

sphere has attracted wide attentlon In the meteorologlcal communlty. As a conse-

quence such ST radars are included into meteorological research networks and
particular Instrumentatlon Is belng designed to allow long-term routine opera-

tions of these so-called wind profilers. Since this is a development by In-
dustrial companies, we will not discuss these particular designs In the context

of this tutorial. A short summary of system specifications of wlnd profilers,
however, can be found in Tables 6 and 7 In Chapter 6.

Figure 5. The principle of trl-statlc !ncoherent _catter

(IS) radar measurements of the auroral ionosphere by the EISCAT
UHF system with transmitter and receiver in Troms_, Norway,

and remote recelvers In Kiruna, Sweden, and Sodankyl_, Finland.

The incoherent scatter radars operate at VHF and UHF frequencles with a
much larger power-aperture product than the MST or ST radars. Mostly these

radars have large dish antennas or phased arrays occaslonally with diameters of
several ten to hundred meters. Their peak powers are usually larger than 1MW,

their duty cycle can be up to 12 percent and their fastest interpulse period is

mostly not smaller than I ms. Pulses as long as I ms are used, but frequently

amplitude- or phase-coded. Typical altitude resolutlons are 0.3 -50 km and tlme
resolutions of some minute to several 10 minutes are achieved. These differences

result from the fact that because of the very small volume reflectivity of in-
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coherent scatter, the signal-to-noise ratios are mostly well below unity, where-
as the SNR ts usually much larger than 11n the HST radar case, lhe Incoherent
scatter radars particularly measure electron density, electron temperature, ion
temperature and ion velocity in the ionosphere. Fig. 5 shows the trl-static
incoherent scatter UHF-radar system of the EISCAT Scientific Association which
is operated In northern Scandinavia to study the auroral ionosphere. The tri-
static radar configuration is most useful to measure the three-dimensional
veloctty with the best achievable accuracy. All the IS radars were also used for
studies of the stratosphere and the troposphere, although some instrumental
constraints had to be considered such as ground clutter, recelver recovery and
dynamic range limitations.

A list of these radars is found in Table 9 at the end of this a_ticle.

1.3. The Principle of Phase-Coherent Radar Systems

Incoherent or Thomson scatter is caused by fluctuations in the radio re-

fractive index at the radar Bragg wavelength resulting from thermal motions of
free electrons in the presence of ions in the ionosphere. Due to these random

motions the incoherent scatter slgnal is wldened in frequency and it needs to be

sampled fast enough to resolve the complete Doppler spectrum. In the lower
ionosphere collisions between Ions and neutrals impose the fluctuations of the

neutral atmosphere on the plasma and consequently on the electrons. Since these

fluctuations, although they can be strong in amplitude, do not contain such high
frequency components as the thermal motions, the incoherent scatter signal

displays a narrower spectrum, I.e. a longer coherence time in the lower lono-
sphere. Eventually, the structure of the plasma in the mesosphere (D-region)

will be completely governed by the fluctuations due to neutral alr turbulence.
Instead of incoherent scatter this latter process is called coherent or turbu-

lence scatter. Usually the signal spectrum due to turbulence scatter is much

narrower than that of incoherent scatter. In addition to the widening of these
signal spectra, they are shifted in frequency if there is a bulk radial velocity

of the scattering medium. We would like to explain here that both these scatter-

Ing processes are being studied with phase-coherent radar systems.

Knowing that fluctuating velocities and radlal velocities with Quasi-verti-
cal MST radar beams do not exceed several 10 ms -I , the Doppler frequency wlll

barely exceed I0 Hz for MST radars operating at VHF and will be just an order of
magnitude larger for UHF. Applying fDrf > I kHz, the MST/ST radar echo will be

oversampled, i.e. its phase and amplitude does vary litt]e from pu]se to pulse

as It was sketched in Fig. 3. This is called a coherent radar echo, in contrast
to an incoherent radar echo, which, because of the much shorter correlation or

coherence time of the ionospherlc scatter medlum, randomly changes phase and
amplitude from one pulse to the next. Also the velocities In the ionosphere

measured with Incoherent scatter radars is usually much larger than the veloci-
ties in the middle and lower atmosphere, which additionally causes a more rapid

change of the phase of the incoherent scatter slgnals. One does make efficient

use of the characteristic coherency of MST radar echoes to improve the data
acquisition procedures, which will be discussed in Chapter 4. These differences

of the signal coherence times also determine the principle way of the data
acquisition structure and instrumentation.

The differences between "coherent siqnals" detected by the MST/ST radars,

used to study the lower and middle atmosphere, and "'Incoherent slgnals" detected

by the incoherent scatter radars, used to study the ionosphere, is elucidated by
the schematics of Figs. 6a and 6b. Since the coherence time, i.e. the inverse of

the width of the Doppler spectrum, generally increases from the lower to the

middle and to the upper atmosphere (ionosphere) due the increasing varlations of
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Figure 6a. Block diagram showlng the baslc configuration of an
MST radar system (data acaulsition for coherent signals).
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Figure 6b. Block diagram showing the baslc configuration of an
incoherent scatter radar system (data acauisition for Incohe-

rent slgnals).
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the scattering medium. Whereas in the lower atmosphere the coherence tlme (de-
termlned principally by turbulent fluctuations) is generally much longer than a

typical interpulse period of an MST/VHF radar of say I ms, it is generally much

shorter (given by thermal fluctuations) than an interpulse period of incoherent
scatter radars. This means that coherent integration and the autogorrelation

functions (ACFs) or Doppler spectra are computed on the pulse-to-pulse basis for
coherent signals ("pulse-to-pulse technique"). On the other hand, the ACFs have

to be immediately computed without coherent integration for each single inter-

pulse period using single long or coded pulses in the case of incoherent slg-
nals. The ACFs (from which the spectra are computed) are then postintegrated.

The definition of a coherent signal, which we use here, is consequently that the

coherence time is much longer than the interpulse period. The incoherent signal
Is defined by a coherence time which Is much shorter than the interpulse period.

At some places in the early ionosphere literature the terms under-spread and

over-spread signals are used instead of coherent and incoherent signals, respec-
tively. Both kinds of signals anyhow result from the scattering process being
coherent in the former and incoherent in the latter case, and both are studied

wlth phase-coherent radar instrumentation.

We notice that the instrumental technique as well as the data acquisition

and analysis of the MST radars as well as the IS radars are basically similar,

they are well developed, elaborated and fairly mature, although further refine-

ment is always going on. We now will briefly outline the two only striking
differences of the instrumental design of these two main radar categories, which
result from the coherent and incoherent signal properties and later will discuss

particular parts of the instrumental hardware and their principles.

In order to allow the measurement of all signal parameters, particularly

the Doppler spectrum, all MST radars and IS radars are phase-coherent. Thls
means that the receiver (RX) and the transmitter (TX) are controlled by or

phase-locked to the same main oscillator (see Figs. 6a and 6b). The transmitter

radiates through the antenna the electromagnetic slgnal S, which propagates to
the radar volume in the atmosphere or the Ionosphere. From there a small frac-

tion of the electromagnetic energy is backscattered to the antenna (which can be
a separate or the same antenna, provided that a transmit/recelve duplexer can be

used). External noise, received by the same antenna and internal receiver noise
adds to the atmospheric/ionospheric echo and the total signal plus noise C' is
amplified in the receiver and mixed to base band by the same oscillator signal
So , which is used to control the transmitter. The resulting base band signal C
ls converted to a digital Series in the analog-to-digital converter (ADC), which
is controlled by a series of sample pulses from the radar controller. The radar
controller also generates the transmitter modulation and other control pulses.

Following the ADC, the data acquisition procedures are different for MST-
and IS-radars as delineated in the Figs. 6a and 6b. This difference results from

the different coherence times as described earlier. Because of the long cohe-
rence times of echoes from the mesosphere, stratosphere and troposphere, the

digital data are usually coherentiy added in the integrator of an MST radar

(Fig. 6a), followed by a decoding procedure If the transmitter pulses are coded
(see Chapter 4 for details). These raw, but pre-integrated and/or decoded, data

are either dlrectly dumped Into the host computer or analyzed in terms of auto-
correlation functions or Doppler (Fourier) spectra. The host computer Is used to

store the raw data together with other operating system parameters and the time,

on file or tape, perform an on-llne quicklook anaIvsls or some further prepro-

cesslng such as computation or post-integration of ACFs or spectra. The host
computer also supervises the entire system by loading and starting the radar
controller etc. as well as checking the system performance and issuing inter-
rupts In case of system malfunctions. In the case of an incoherent scatter radar
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(Fig. 6bJ first a decoding has to be performed, then usually ACFs are computed
on-line which are post-integrated and then dumped into the host computer. In
particular pulse coding schemes also an additional decoding procedure has to be
applied after the ACF computation. Otherwise the instrumenta] design of an IS
radar is principally similar to an MST radar.

2. RADAR ANTENNAS

The radiation pattern of MST- and IS-radar antennas has to be carefully
designed in order to optimize the wanted atmospheric/ionospherlc scatter signal
as compared to interfering external influences. These are summarized in the

sketch of Fig. 7. It is evident that all the unwanted components, - ground
clutter, sea clutter, airplane or satellite echoes, radio interference and

scatter received through antenna sldelobes - . have to be properly eliminated or
minimized. To achieve a high sensitivity and a reasonable angular resolution the

antenna gain should be large and thus the antenna beam width small. The cosmic

noise level picked up by the antenna is unavoidable in the low VHF band. In the
high VHF and in the UHF band the noise level Is not glven by the sky noise but

by the system noise. This can be minimlzed by optimum design of the receiver
front-end amplifier and adapted data processing.

The antennas of MST- and IS-radars usually consist of an ensemble of single
elements which are phase-coherently combined to a large antenna array or are

large dish antennas. Usually the dimensions of MST radar antennas ere more than
several ten radar wavelengths, thelr galn is mostly exceedlng 20 dB, correspond-

ing to a beam width of less than 10 degree. The IS radar antennas usually have
antenna gains larger than 40 dB in order to detect the weak incoherent scatter

signals. The beam directions can be mechanically or electrically positioned

_ CosmicNoise

IonosphereScatter

ter

Figure 7. Schematic view of an atmospheric radar In an Interference and clutter
environment. The radar antenna is depicted here to consist of a phased array
of Yagts, but could principally be any other klnd of antenna system.
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Figure 8. Near-zenith pointing
antenna beams of e 403 MHz
phased array antenna of an
ST radar (after FRISCH
et al., 1986).

(e.g., Fig. 8) in order to observe spatial varlations of the scatter process and
to measure three-dimensional velocity components. The principle of measurements

of the velocity components is explained by the schematics of Fig. 9. At a zenith

angle 6 in the direction of the wave vector k the radial velocity v = u'+ w' is
measured, which consists of the pro3ectlons w' of the vertical velocity w and

the pro3ection u' of the horizontal velocity u. The combination of the veloci-
ties measured in the directions 6 and -6 ylelds the horizontal and the vertical

velocity component. Depending on the requirements to measure all velocity compo-

nents and thelr divergence as well as vortlclty, more beam directions are ne-

cessary. Multi-statlc radars (e.g., Fig. 5) can also be used to measure the
velocity components. The discussion of these possibilities and reaulrements is
out of the scope of this lecture note but can be found elsewhere (see ROTTGER

and LARSEN, 1989, who discuss the applicatlons of MST radars and give further

references).

Z
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Figure 9. Principle geometry of two antenna beam directions kol and ko2 at

zenith angles 6 and -6 for the deduction of the horizontal velocity compo-
nent u and the vertical velocity component w. The measured radial velocity

components vl and vz consist of the pro_ectlons u' and w' of the u and w wind

velocity components, respectively.
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We now will briefly describe the basic antenna theory in order to allow an
understanding of the antenna functions and the design optimization and then will
describe some typical antenna systems used in HST radar applications.

2.1. Some Bastc Antenna Parameters

The main parameter determining the antenna gain and the corresponding beam
width ls the stze or the area of the antenna, which is also called the antenna

aperture. The antenna aperture can be either regarded as a continuous radiator
if it is illuminated by an Independent feed system, or it can consist of several
sub-elements which are electrically fed from a common transmitter source. Both
approaches can be basically treated by a similar formalism, which we will ex-
plain for the simple case of a line of antenna dipole elements. Assume that N
individual antenna elements with eaual spaclng d are horizontally llned up to
form a multi-element array (see Fig. 10). In the array far-field (r > (Nd)Z/no)
the antenna polar diagram is

N
2n(n-1)d

E(5) = Z En(6)exp(t( No stn5 + an)), (3)
n=l

where En(6) is the pattern of an individual element and On Is a relative phase

placed on this element. Thus, the polar diagram Is Just the Fourier transform of
the spatial aperture distribution. If all the elements have similar En(6) and

On, the polar diagram Is a functlon sin Nx/sin x with x = n-d-sinB/No. If d <

no, there is only one main lobe at 6 = 0° (for ¢ = 0). If d > No, grating lobes
at Be = arcsin(No/d) occur, for En(5) = const with amplltudes similar to the
main lobe, The width of the main lobe is 6a = arcsln (No/Nd). In radar applica-

tions also the two-way beam width 5B/_2 is used. If 5s is small, it is directly

proportional to the ratio of the wavelength ho to the aperture dimension Nd. The
radiation pattern has minlma {nulls in theory) at 5n = ± ribs, where n = 1,2 .....

N/2, and sidelobes occur at 6= = 6n ±6e/2. If equal weighting Wn is applied to

each of the single elements (e.g., En'(6) = Wn'En(5)' with Wn = const for all
n), the first sidelobe closest to the maln lobe Is suppressed by 13.2 dB plus
the fall-off of the individual element pattern En(5) at 5=i.

dsinS\

n=

\\

,-'*

--_" __'" \\ \

Figure 10. Schematlc drawlng of wave vectors of a plain wave
radiated under a zenith angle 5 from N isotropic antenna

elements with spaclng d.
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TheantennaDattern, partlcu]ar|y the desired varlation of the direction 8o

of the maln lobe. can be changed by applylng a linearly progressing phase @n

from element to element, which has to be ¢n : 2_d(n-1)sin6o/no. This beam

steering should be within reasonable llmits of the individual element pattern
En(8) to avoid undesirable degrading of the antenna radiation. Furthermore the

effective area of an antenna, which is flxed on the ground, is reduced with

larger zenith angles because the illumination changes by sin B.

To obtain improved sidelobe suppressions, a tapering of the antenna array

can be applied by either changing the weighting function Wn (electrical welght-

ing, I.e. feeding the outer elements of an array with less power than the inner
elements), or by using unequal element spacings dn (spatial weighting, i.e.

applying larger spaclngs for the outer elements of an antenna array). The price
one has to Day for the improvement of sidelobe suppression by taperlng is always

a broadening of the main lobe and lowering of the antenna galn G. Using a tri-

angular weighting, for instance, improves the one-way suppression of the first
sidelobe to -26 dB, but widens the main lobe by a factor of 1.44 and reduces the

gain by 25%, as compared to uniform weighting. The respective values for a cos 2-

weighting, which is a good approximation to a Gausslan weighting, are -32 dB,
1.64 and 33%.

These one-dimensional considerations can be extended easily to a realistic

two-dimensional radar antenna array by using, instead of d, the projections d'

of all element positions onto n axis elongated in the azimuth direction a. The
total antenna pattern then can be calculated by (3) for any Q and 6. For a real
radar antenna we also have to consider that the radiation can be into only one

half-sphere. For an array system this means that reflections from the ground, a
screen or reflector elements have to be included in the calculations. The an-

tenna gain G is defined as the ratlo of the maximum radiatlon intensity (in the
main beam) to the average radiation intensity (averaged over all 8 and a). For

an antenna array with reasonable sidelobe suppresslon it is proportional to the
antenna area and is given approximately by the inverse of the two orthogonal

beam widths _B' and 6B'' (in radians):

4_ A 4_

G = ~ -- (4)

flo 2 _s'@s''

The effective area A or aperture of the antenna Is the product of the physical

area of the antenna and the efficiency of its il]umlnation, which for instance

may be reduced by tapering. It is noted that A does not inc|ude the losses of
the antenna elements and its feed system.

The Considerations of antenna arrays, consisting of several discrete ele-

ments, can generally be extended also to antennas with continuous aperture

illuminat10n, such as dish antennas. The aperture A of a phased array or a dish
antenna is used to calculate the power-aperture product P-A, which defines the

sensitivity of an MST radar. Note that P is the effective average power, which

is radiated by the antenna, l.e. it is smaller than the output bower of the
transmitter due to losses in the antenna and feed lines.

This very brief outline is useful for estimating some basic values needed

to plan and design a radar antenna system. The mlnimum reQulrement for investi-
gatlons of the troposphere and stratosphere Is a power aperture product P-A =
106 Wm 2, where P = PJ Is the average transmitter power. We assume that the radar

sensitlvlty is a function of Ak, where I < k < 2 depending on the reflected con-
tribution (see equation (2)). It means that in bractice one should favour an

extenslon of the antenna area agalnst an increase of the transmitter power. For

a co¢_nonly achievable transmitter power P = 10aW, P.A = 106 Wm 2 yields the
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dimension of a circular antenna arrav to be about Nd = 36 m, and A _ 1000 mz.

For no = 6 m we can obtaln a half-power beamwldth 6a = go, and a galn G = 27 dB.
This estimate assumes that the array is optimally filled wlth elements. A single

dipole element over a proper reflector screen has an effective area of about 15
m2 (at No = 6 m). Thus, about 64 dipoles are needed to fill the array. For a

square array with 8x8 elements the resulting spacing is d = 0.75 No, and a

grating lobe will not occur. The first nulls are at 5, = -+9o, and the first
sidelobes at 8. : ±13.5 ° . To use such an array to measure rellable velocities,

the antenna beam has at least to be steered to a zenith angle 6o = 9o to place a

null into zenith direction (minimizes influences of aspect sensitivity). Even

then a sidelobe at -4.5 ° is a problem.

When designing a radar antenna for atmospheric research one has to trade
between the choices to optimize the effective aperture or to optlmlze the side-
lobe suppressions. An optimization of the aperture increases the sensitivity,
but does not minimize the side lobes. Suppression of sidelobes by tapering
attenuates undesirable signals which spoil the estimates of reflectivlty and
velocity, but it reduces the antenna gain. Princlpelly, any sidelobe effects or
their minimization, however, are equivalent to a broadening of the antenna beam.
This is generally a minor shortcoming as compared to the tedious procedures to
remove sidelobe effects from the signal during the data analysis procedure. As
an example of a well optimised MST radar antenna pattern we show In Flg. 11 the
antenna diagram in two vertical planes of the mobile SOUSY VHF Radar (from
CZECHOWSKY et al., 1984). Note the suppression of near-zenith sidelobes by 25 dB
as compared to the main lobe and the grating lobe at 40 o.

The radar echo signal Is glven by the product of the antenna pattern with
the spatially varying reflectivity structure of the atmosphere. Thus, knowing

the antenna pattern, it should be In prlnciple possible to find the wanted

signal parameters which however is genera11y an ambiguous and time-consuming
inversion procedure. For vertically pointing maln beams the sidelobe effects are

efficiently suppressed if there is anisotropic scattering with maximum aspect
sensitivity in zenith direction (e.g., for the 50 MHz MST radars). It follows
that sidelobes in such cases are a mlnor problem for investigations wlth verti-

cal beams. However, they can be crucial for methods applylng off-zenith beams
with 50 MHz MST radars. If a sidelobe is pointing towards the zenith a larger

power may be received from the vertical than from off-vertical dlrectlons when
there is an aspect sensitivity due to horizontally stratified scatterers or

partially reflecting layers.
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Figure 11. Computed radla-
tion pattern of the mobile

SOUSY VHF radar (53.5 MHz)

Dhased array, consisting of
576 Yagi antennas. This
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Alsosidelobes at low elevatlonangles haveto be consldered since these

can cause strong echoes from the non-atmospheric targets In the surroundings of
the radar antenna (partlcularly the ground clutter seen in Flg. 7). The suber-
aosltlon of ground reflected (hatched 11ne In Fig. 7) and direct radiation does
very effectlvely reduce the radlation at grazlng angles (6 > 85-90 ° ) since the
antenna elements of a phased array are horlzontally Dolarlzed and the ground-re-
flected wave then suffers a phase reversal durlng reflectlon. Thls even can
suppress low sidelobes of the array aattern which may be regarded as cruclal If
one would not take into account ground reflections. The locatlon of an HST radar
antenna array at a flat ground (extendlng out to several 100 m) may be sufflcl-
ant, but a shallow valley generally should be preferred to further suppressing
the low angle radlatlon effects. However, high extendlng targets, such as radio
towers or mountalns In the close viclnlty, wlll stlll cause conslderable clutter
echoes, even when optimising the antenna array for low angle radlatlon suppres-
slon. For IS radar antennas the crlteria of low angle radlation suppression are
not so strlngent, because ground clutter barely comprlses a problem slnce the
1onospherlc target reglons are usually at much larger ranges. However, for IS
radars In auroral reglons care has to be taken to suppress coherent echoes from
Ionospheric Irregularltles.

2.2. Antenna Types and Feed Systems

HST radars generally operate wtth auasl-vertical beams, I.e. the zenith
angles are smaller than about 20o-30 o. As shown in FIg. 8 usually zenlth angles
of 15° are chosen. 1S radars mostly apply a variety f beam directions, also
those very close to the hortzon. For MST radar operation linear polarization is
sufficient, but circular polarization ls needed for Incoherent scatter radars
slnce the polarization can change due dispersion In the ionosphere. Essentially
four different types of antenna systems are In use: dish antennas, dipole
arrays, coaxial-collinear arrays (COCO) and Yagl arrays. In Fig. 12 we show as
an example the 32-m dish antenna of the EISCAT incoherent scatter radar 933-HHz
receiving station In Sweden, which can be pointed in all directions by mechani-
cal steering. In Fig. 13 the 200m x 200m HST radar antenna of the Poker Flat
Radar in Alaska is shown which has only a few fixed pointlng directions to the
vertical and at 15 o off-vertical.

Flgure 12. The 32-m receiving
antenna dish of the incohe-
rent scatter radar of the
EISCAT UHF (933 MHz) radar
system in Klruna, Sweden.
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Figure 13. lhe 200m x 200m coaxial-collinear antenna array of
the Poker Flat MST radar in Alaska, operating on 50 MHz with
two off-vertical beam dlrections (from BALSLEY et al., 1980).

Dish or cylinder antennas are rarely used for MST radar applicatlons be-
cause of thelr large dimensions, but they are Quite freauently applied in IS

radar facilities. Only one or a few elements are aDP]ied as Primary feed anten-

nas of the dish antennas. The beam steerlng Is done either by moving the posl-
tion of the feed antenna (e.g., at the Arecibo Observatory (WOODMAN, 1980)) or

the entire dish (e.g., at the other UHF IS radars, see Table 9 at the end of

this article). This has the advantage that no complicated power distributlons
and phasing network has to be used to feed the antenna. The EISCAT VHF radar

uses a long line feed to illuminate a 120m x 40m dish and allows mechanlcal

steering In one plane and side-steering by phasing in the other plane (HAGFORS
et al., 1982). Because of the ]imited size of the primary feed antennas of dish
antennas, the low-angle Sldelobe suppression is usually not sufflcient, which

results in strong clutter echoes, particularly when such antennas are also used

for MST radar applicatlons.

Usually the antenna systems of MST radars are phased array antennas con-
slsting of many slngle elements as can be seen for instance in the lay-out of

the antenna system of the MU radar in Japan which consists of 475 crossed Yagi
antennas (Fig. 14), In the case of the MU radar modules Of four antenna elements

are fed by single phase-coherent transmitters, which allows very fast electronic
beam steering. In many other cases the individual elements or modules are fed

from a single transmitter through a cascading network of cables, hybrids and
phase shifters. A relatively slmDle antenna array is the COCO antenna (coaxial-

collinear), which is built in form of an array (see Fig.15) by using coaxia]
cable as radiating elements (e.g., BALSLEY et al., 1980). It has the advantage
that the feeding of elements In one line is lUSt done by interchanglng the inner

and outer conductor of a coaxlal cable every half wavelength. The earllest

application of the COCO antenna can be found at the Jicamarca VHF radar in Peru
(see Fig. 16). The outer conductors of the allgned coaxial tube or coaxia) cable
act as colllnear dipoles. The feeding is done from the center of a line, which

may typlcalIv consist of 16-48 dipoles. Positioning several of these strlngs or
rows in parallel at spacing d < ho . and feeding these by a suitable matching
network results in a COCO array (see Fig. 15). The radiatlon and the loss in a

coaxial string comprlse some natural tapering, having the intrinsic advantage of



Figure 14. The lay-out of the 475
crossed Yagi-antenna e}ements of
the 46.5-MHZ MU radar in Japan
(after FUKAO et at., 1985a,b).
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Figure 15. The coaxla1-co111near

antenna lay-out of the 50-MHZ
Sunset ST radar in Colorado, USA

(from Green et at., 1975).
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Figure 16. Part of the phased-array
antenna of the 50-MHz Jlcamarca
radar In Peru and a close wew of

the interchange of inner and outer
connector of the coaxial-co11_near

d_pole tubes (from OCHS, 1965).

Figure IT. Yagi antennas and power
dividers of the SOUSY-VHF-Radar

in West Germany.
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suppressing sldelobes in the plane of the string but the disadvantage of degra-
ding the antennna efficiency. Because of the phase relation along a strlng Is
fixed, a beam steerlng parallel to the COCO strlng ls not possible. Beam steer-
lng perpendicular to the strtng rows ls achieved by Inserting appropriate phase
delays in the cables feeding the parallel rows. The COCO dlpoles have to be
lined up a auarter wavelength over reflector wires or screens. This antenna type
is relatively Inexpensive, because coaxtal cable ls used for antenna elements
and the matching network ts slmple. The successive phasing from one col]lnear
element to the next, however, degrades the bandwidth of this antenna type.
Instead of coaxial cable as radiator, halve-wave dtpoles can also be used which
are fed in a properly ad3usted phase to form a co111near antenna. The aPplica-
tion of col]lnear dipole lines limits the steerabillty of an array, and for this
reason freauently three antenna arrays are used with three dlfferent fixed beam
directions (e.g., GREEN et a1., 1975; BALSLEY et 81., 1980).

Single dipole or Yagi antenna elements (see Fig. 17) are often set up to
form a phased array (see Fig. 14 and Fig. 18). They are fed by a cascading
network of open wire or coaxial cable systems, when a single transmitter ls ap-
plied. The cascading ls most appropriately done in 2 n branchings (n = 1.2 .... ),
as for lnstance shown In Fig. 19. By these means one can also feed parts of the

antenna array with 1/2, 1/4 .... power to provide taperlng without dissipating
power (see for instance Fig. 20). The branching is best done In couplers, power
dividers or 3dB-hybrids, which prevent RF-power, reflected from a mismatch to
return to the transmitter or other antenna elements rather than belng dissipated
In the reststor port of the hybrid. These hybrid installations also minlmlze
effects due to mutual coupling between the single antenna elements. The coupling
can be crltical if phase control is applied to steer the antenna beam. The phase
shifting, as shown in Flg. 21, is usually inserted close to the final elements,
which may also be connected to form modules of 4 or more elaments. For continu-
ous beam steering phase shifting has to be done continuously, which mostly is a
senstble and difficult procedure particularly when narrow antenna beams are
used. The Dhaslng ls more easily done by inserting discrete phase delays in
steps of 2_/1G wlth a binary phase shifter, which is shown in Flg. 22. The
switching can be achieved by only four relays, allowing phase de|ays of 22.5 ° ,
45 ° , 90 o and 180 ° to be inserted in all possible combinations, which are suffi-
cient for commonly applied beam width of several degrees. Another way of phase
shtftlng can be done with hybrids as is shown in the schematics of the later
Fig. 32.

/1 /2 /_ /_ /'s /6 /'_ /'8

/9 /lo/11 /lZ/13/lZ,/15/16 1-_ / / /

/17 /18 /19 /20/21 //22 //23/2_

/28/26/27/28/29/30/_/32 _-d-_
/33/3&/35/36/37/38/39/_0 N

C)
/Z+l /z+2 //+3 A¢ A5 A6 /_7 AS I1_?o

WO_ E
/L,9 /50 /51 /52/53/5_/.55/$6

/5?/58/%/60/61 /'62/63/6z, s

6_ (8_8} ELEMENT YAGI ARRAY BEAMPOSITION

Figure 18. Lay-out of one 64-Yagi-antenna module of the 52-MHz
Chung-Li VHF radar in Talwan (after BROSNAHAN eta]., 1984).
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Flgure 19. Power dlvider and beam-steering phase delay (0 °, 90 °,
180 ° and 270 ° ) of the Chung-Li VHF radar, al]ow_ng five beam
positions: vertical (6 = 0o_ and north, east, south and west
at 6 = 16.7 ° zenlth angle (from BROSNAHAN et al., 1984).
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Figure 20. One quarter of the Dower divider system of the mobile

SOUSY VHF radar antenna, allowing for taDerlng OT the antenna
elements by staggered Dower dlvldlng hybrids (from CZECHOWSKY
et al., 1984).
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Antenna FeedDistribution System

ANTENNA ELEMENTS

dEi ?SHIFTERIS ? 3dB _ I

TRANSHITTERI
RECEIVER

Figure 21. Schematics of a typical antenna feed distributlon system
uslng hybrids for power division. The two output ports of a hybrid
are phase shifted by 90 ° wlth respect to each other. This has to

be compensated by the phase shifters, which are also used to insert
certain phase shifts for beam steering. The power, which Is reflec-

ted from the antennas due to an Impedance mlsmatch, is attenuated

in the resistor port of the hybrids and does not return through the
transmitter-recelver port.

BinaryPhase Shiffer

Figure 22. Principle of a binary phase shifter, allowing all the combi-
binatlons of phases:

Phase shift: n/8 2n/8 3n/8 4_/8 5n/8 6n/8 7_/8
Phase delay A: 1 0 1 0 1 0 1 0

(1=on) B: 0 1 1 0 0 1 1 0
(O=off) C: 0 0 0 1 1 1 1 0

D: 0 0 0 0 0 0 0 1

The phases between _ and 15/8n are achieved by keeping the phase
delay D in the on-position.
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The advantage of Yagl agatnst dipole antenna elements Is that no ground
screen ls needed because of the Yagi reflector. The multi-element structure of a

slngle Yogi allows for a higher gain (improving the ftlling factor of an array)
and a negligible coupling (<-25 dB) between adjacent Yagi antennas in an array.
Most]y Yogi antennas can be constructed in such a way that the bandwidth is
several Megahertz. The bandwidth limiting factors in a Yagl system essentially
are the phase shifters. The losses of a Yagi system are a]so considerably lower
than those of a COCO antenna. However, such a Yagi system ls obviously more
exnensive than a COCO system. The feeding of an array system can be from one
transmitter, but also sub-modules can be fed separately by several phase-con-
trolled transmitters (FUKAO et al., 1980). The transmitter phase control can
even be used to steer the antenna beam. This, however, needs a similar phase
control of the receiver channels.

3. TRANSMIT-RECEIVE SYSTEM

Separate antenna arrays can be used for the transmission and for the recep-
tion mode as shown in the graph of Fig. 23. Such an antenna combination was
first used with the SOUSY-VHF-Radar for MST measurements with the beam-swinging
as well as the spaced-antenna mode, which was added at a later time. For a newly

deslgned radar a combination of the two measurement modes using one antenna for
transmission and reception is useful as shown In Flg. 24. While separate antenna
arrays a]low for sufficient decoup]lng of the receiver from the transmitter, a
fast and highly insulating transmit-receive duplexer (ATR = _ntenna-transmit-
[eceive switch or dup]exer in Fig. 24) has to quick|y swltch the antenna from
the transmitter to the receiver and vice versa, if only one antenna is used. The
prlncip]e of a duplexer is outllned In Flg. 25. During the transmission phase
the pin-diodes are short-circuited and the power at the hybrid output ports ts
reflected back lnto the hybrid from where it exlts through the antenna port to
the antenna. The small leakage through the diodes is combined in phase In the

_ _ _ _ _/zz_____y"x/.

_ .

i_ SOUSY-VHF-RADAR
Z Antenna Systems

E

z27 z2_ _

L27 _P" _

Antenna I 196 Yogis
steerob[e beom

(Doppler velocity)
gmn=_dB ureo= 3155m z

Antonno H 3 N 32 Yogis
fixed vertical brains

(drift velocity)
_ln=3,22dB area = 3- 395 m

Figure 23. Antenna systems of the SOUSY-VHF-Radar in W.Gemany consisting of
phased arrays of Yogi-antenna elements. The complete system is designed for
beam steerlng in the Doppler mode with antenna I and in the spaced antenna
mode with antenna I and antenna II. For the latter purpose the antenna I ls
pointed vertical and the separated three subunlts of 32 Yagts of antenna II,
whlch are formlng a vertical beam also, are used for reception.
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'E,,-qI METEOROLOGICAL SAD- VHF -RADAR SYSTEM
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inversions_air mass boundaries

Figure 24. Radar system using three separate receiver-transmitter-antenna
modules, which can be operated phase-synchronized to allow beam steering as
well as spaced antenna measurements with the same full antenna array. The

system is laid out for range multiplexing (RMUX), on-line integration (INT),
correlation computatlon (CORR) and on-line analysis (AN), as well as data

te}emetry (TEL) and remote control (CAMA). The latter additions of remote
control and data transfer are usually needed when such a radar system would

be used in operational applications as a wind profiler.

3 dB
HYBRID

3dB
HYBRID

CONTROLpuLSE I RECEIVER

(TRX)

Figure 25. Transmit-receive duplexer (also called T/R switch)
using 3-dB hybrids and pin-diode switching.
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receiver hybrid and exits through the resistor port. In the reception case the
diodes are open and the split power from the antenna is combined in-phase in the
receiver hybrld to pass through the receiver port to the receiver lnput. Any
noise, which is still generated in the transmitter during the reception phase is
combined into the resistor port of the receiver hybrid. The response and re-
covery time of the duplexer should be in the order of the range sampling time,
I.e. typically less than 10 Ws. To lnsulatea peak transmitter pulse amplitude
of 105W to a fraction of Watt, which will not affect the receiver, the decoup-

ling attenuation has to be better than 60 dB. These specified values can be
obtained with the described pin-diode hybrid switch. Other kinds of transmit-
receive duplexers, using Quarter-wave coax lines or parallel and serial reso-
nance circuits are also used. These are not so suitable because of the resonance
circuits, which cause ringing effects and affect the data in the first sample
range gates. If circular polarization is applied tin IS radar operations) the
duplexer can be replaced by a hybrid, which provides some 30 db decoupling
between the transmitter and receiver port. the remaining RF signal leaking
through the receiver port is usually attenuated by a so-called receiver protec-
tor, which ls a fast pin-diode switch disconnecting the receiver input from the
hybrid receiver port during the transmission phase. In order to further protect
the receiver during eventual malfunctions of the duplexer or the receiver pro-
tector the status of these devices is monitored by proper hand-shake and inter-
lock systems, which prevent the transmitter to be turned on in case of a fai-
lure.

kltPJ_Y 1 ARRAY2 AI_IL4¥ ]

Figure 26. Block diagram of the Chung-Li VHF radar, which bases
on the principal lay-out of Fig. 24 (from Brosnahan et el.,
1983).
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In Fig. 26 a block diagram of the Chung-Li VHF radar ls shown, which is a
dual-mode radar. Dual-mode means that the radar can be used In the Doppler as
well as in the spaced antenna mode (for velocity and lnterferometer measure-

ments). For the spaced antenna mode it has three separate antenna arrays for
reception which are combined in phase for transmission. In the Doppler mode the
antenna arrays can be either combined to polnt into the same direction during
transmission and reception, or they can point at the same tlme into three dif-
ferent directions. The beam steering is done by phase shifters and the power
distribution by power dividers, which are made from coaxial cables. The trans-
mit-receive duplexer is called T/R switch (%ransmit-receive switch) in this
diagram. Three transmitters are feeding the three antenna arrays. For providing
the essential phase eauality at the three antenna arrays, the transmitter drive
RF signals are phase-controlled. In order to provide the phase-coherent radar
system, the same oscillator controls the transmitters as well as the three
receiver channels. Following the sample-and-hold (S/H} circuit and analog-gigi-
tal converters (A/D) the data are preprocessed, i.e. coherently integrated, and
transferred to the min_-computer. From there the data are dumped on tape. By the
computer also the radar operation is controlled, particularly by loading the
system synchronizer (radar controller) and starting the operation. The system
synchronizer also steers the antenna beam directions. We now will briefly de-
scribe in more detail some typical sub-units of such a radar system.

3.1. Transmitters, Receivers and Oscillators

In Fig. 27 the principle block dlagram of a transmitter is shown. The os-
cillator generates a continuous wave signal, which is pulse modulated (in ampli-
tude and/or phase) by a fast switch controlled by pulse trains from the radar
controller. The switching needs to be done with transition times, which are
reasonably faster than the duration of the shortest pulse in single pulse appli-
cations or the pulse element in phase coding. Thus the switching of 1-Us pulse
elements needs to be done within 100 ns or so. The pulsed RF signal, usually at
a level of several mW, is amplified in driver stages up to peak power levels of
several kW. The final amplifier of MST radars usually yields several ten kW peak
RF output power. Most frequently vacuum tube amplifiers are applied in the high
power stages, which need Dower supplies with at least 5-10 kV high voltage.
Semi-conductor devices needing much lower voltages are now getting in more use,

TRANSMITTER

I-I I-I II I'1°°'<--I
f t f I I _D[IECTIONAL

/ / t / / _ COUPt.E_i i I I i L___,,o,,,o,

Figure 27. Principle block dlagram of a typlcal MST
or incoherent scatter radar transmitter.
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particularly when distributed antenna modules are employed instead of one large

antenna array. Because of the high output power requirements of more than I NW,
the incoherent scatter radars apply klystron tubes in the final transmitter

stage, which need pulsed power supplies with 50-100 kV high voltage. The high

power - high voltage power supplies usually are equipped with a very fast pro-
tection switch (a so-called "crow bar"), which discharges the power supply
within small fractions of a second in case of a transmitter malfunction to

protect the final power amplifier tubes from damage.

Following the final amplifier the transmit-receive duplexer switches the
antenna either to the transmitter or to the receiver as described in the last

chapter. To allow a measurement of the output power a directional coupler is
used after the duplexer output. By measuring the forward as well as the re-

flected power with two directional couplers the matching (i.e., the yoltage-

_tanding-wave-£atlo: VSWR) of the antenna is usually monltored. If a phase
controller is needed to provide exact phasing of separate antenna arrays, it

usually is Inserted In the low power stages of the transmitter. Such a devlce ls

principally described by the block diagram of Fig. 28. The signal from the
transmitter output, measured with the directional coupler, is compared wlth the

local oscillator (LO) reference signal with specifled phase (for multliple

transmitter beam steering). The phase offset between both these slgnals is

sampled and used to control the phase shifter, whlch changes the phase of the

input signal (RF4n). The RFout signal, available with the corrected phase at
the output of the phase controller, is then fed to the next amplifier stage in

the transmitter.

Usually the local oscillators are more complex because of necessary fea-
tures, which are outlined in Figs. 2g and 30. For a suPer-heterodyne receiver,

i.e. a multiple mlxing of the receiver input signal to one or two intermedlate

frequencles with subsequent mixlng to baseband, a maln oscillator In any in-
stance allows for the phase synchronizatlon between these alfferent frequencles

(Fig. 29). In case of multi-frequencv channel operation, also a set of phase-

locked frequencies has to be generated. In practlce the transmitter as well as
the receiver oscillator signals have to be further processed as shown In Fig.

30. The main local oscillator slgnal is divided into two slgnals In the trans-
mitter and the receiver path, respectively. In the transmitter path frequently a

phase flip between 0o and 180° is implemented to allow phase codlng (phase
modulation), followed by the switch to turn on and off the transmitter signal

(pulse amplitude modulation). In the receiver path a swltch turns off the local
oscillator signal durlng transmisslon to reduce any feed-through of leakage of

the transmltter signal into the receiver. After power dlvidlng of the local
oscillator signal one path is phase shifted by 90° to allow baseband mixlng to

the quadrature components, i.e. real (Re) and i_mmaginary (Im) part of the base-

band slgnal. The control slgnals (FLP = fJiQ, TXP : transmitter pu|se, and LOP =

!ocal oscillator protect) are generated by the radar controller (see Chapter 5).

COUPLER ! _

LO
Ireferencet

R_ In

I
i

SAMPLEPULSE RFOUI

Figure 28. Block dlagram of
an automatlc transmltter

phase-controller, WhlCb IS

needed to phase-synchronlze

multlple transmltters feed-

ing parts of an antenna.
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OSC ILL_k]OR5 FOR

SUPERHETERODYNE RECEIVER

SYNCHR,
RECEIVER

EOl

TRANSHITTER

RECEIVER

L02

Figure 29. Block dlagrarn of an oscillator circuit for super-heterodyne

recelvers with two local oscillators L01 and L02 and the phase-

coherent transmitter oscillator control.

MASTER OSCILLAIOR

FLP TXP

TRANSMITTER

I

RECEIVER

LO2

g

LOP

Figure 30. Block diagram of the master oscillator to control the

transmitter and the receiver, showing the particular phase

shifting and switching circuits for the transmitter and recelver

oscillator slgnals.
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Figure 31. Block diagram of the principle
receiver circuitry of MST and IS radars.

The receiver is principally described by the block diagram of Ftg. 31. The
low-level signal from the antenna (either directly in case of separated trans-

mitter and receiver antennas or via the transmit-receive duplexer in case of a
common receiving-transmitting antenna) is fed to the low-noise preamplifier
through a band-pass. Freauently also a calibrated noise ln3ection, which is
turned on and off by the radar controller, is directly fed into the receiver
front end. This is necessary to allow a well calibrated estimate of the receiver
amplification factor and thus a deduction of the system temperature and the
absolute power of the received signals. In the first mixer the receiver signal
Is mixed with the signal from the first !ocal oscillator tLO1) to the _nter-
mediate frequency (IF). Again a pass-band filter separates the wanted IF from
the unwanted mlxlng products. Before further amplification usually a variable
attenuator is implemented to ad3ust the total amplification of the receiver and

thus the output levels for the final baseband mlxer and the analog-dlgltal con-
verters. Following the mixing to baseband with the L02 signal, i.e. the dua-
drature detection (Re and Im), a lowpass filter Is applied which usually should

match the slgnal bandwidth (given by the bandwidth of the trensmltted pulse for

MST radars and by the bandwidth of the scatterlng process for IS radars). An

example of a low-noise recelver front-end of a UHF incoherent scatter radar,
which allows the calibrated noise In3ection, the receptlon of clrcular and

elliptical polarization as well as sideband conversion, is shown In Flg. 32. The
polarization adaptlon is achieved bY phase changes Of the horizontal (H) and the
vertical (V) slgnal components in the polarizer and the sideband conversion by
mixing from the upper side (1053.5 MHz) or the lower side (.813.5 MHz). Depending
on the output from the lest hybrid of the polarizer also the sense of rotation
of the polarization (!eft- or right-hand rotation) can be selected.



84

RC

PREAMPLIFIER
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Figure 3z. Block dlagram of the 933-MHz receiver front-end of the
EISCAT incoherent scatter radar receiving stations. The hori-

zontal (H) and vertical (V) components of the signal from the

feed horn of the dish antenna are combined by a polarizer (phase
shift and hybrids) and mixed to the intermediate frequency 120 MHz.

A noise generator, which is switched on and off by the radar con-
troller, in3ects a calibration signal into the receiver front-ends.

3.2. Examples of Radar Systems

There are some technical system specifications, which prlncipally apply for
all atmospheric/ionospheric radar systems. A block diagram of a typical trans-

mitter/receiver system of an MST radar Is shown in Fig. 33. It depicts the
design of the portable SOUSY Mini-VHF-Radar (46.8 MHz), which was operated at

the Arecibo Observatory In 1980. According to indlvidual requirements, many
variations and modifications of such a system can be done, but Fig. 33 describes

a generally basic design. The 120-MHz slgna! of the main or _aster oscillator

(140) is divided by four to obtain a 30-MHZ intermediate freauency (IF) whlch can

be modulated (MD) in amplitude (RFC = RF control) anq phase (FLP = flig). This
is to provide phase coding and De-elimination (see Chapter 4 for more details).

A similar divider generates the 0o and 90° signals, which are necessary for Qua-
drature detection. The operational frequency 46.8 MHz IS generated by mi_ing (X)

with the Jocal _scillator (LO) signal at 76.8 MHz. It is amplified In the _ran$-
mitter (TX) and fed through the transmit-recelve duplexer (TRX) to the antenna.

The signal received at 46.8 MHz is gated (RGT = tecelver gate), amplified In the
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Figure 33. Block diagram of the transmitter-receiver system of
the portable Mini SOUSY-VHF-Radar, which was used with the

Arecibo Observatory dish antenna for MST studies.

Eecelver (RX), mixed with the LO-slgnal to an ]ntermedlate frequency (IF] of 30

MHz, and mIEed down (X) to the baseband in the Quadrature detector. The two
Quadrature outputs, the r_?al part (Re) and the imaginary part (lm), are low pass
filtered (LP) to match the receiver bandwldth to the bandwldth of the trans-

mitted pulse.

The transmitter peak power typ_calIy Is between I kW and I MW for MST

radars with duty cycles up to several percent, while incoherent scatter radars

use duty cycles of some 10% and peak powers above I MW. The transmitter band-
width must cover the shortest pulse length of I Us (=2 MHz RF bandwidth). The
transmitter is normally operated in class-C mode to achleve an optimum effi-

clency. Incoherent scatter radar transmitters use mostly hlgh power klystrons.

The receiver Ilnear]ty range usually exceeds 60 - 80 dB in order to avoid
saturation with strong clutter signals or _n the case of large dynamic range
variations of the atmospherlc slgnal. The phase flip and the quadrature detec-

tlon must be within less than a few degrees accuracy, and the amplitude ratio of

the quadrature components must not devlate from unity by a few percent In order
not to distort the Doppler spectrum analysls. The stabilltv and the phase noise

of the oscillators Is usually better than 10.4 Hz/ms to allow a good accuracy of
coherent detection. The recelver base-bandwidth (postdetection) has to be about

I MHz to provide the resolution of the shortest pulses of I _s. The intermediate

frequency bandwidth needs to be at least twice as large as the base-bandwidth.
Bessel filters are usua]ly abPlled after the quadrature detector as low-pass or

post-detection filter in MST radars, but Butterworth filters in I5 radars.

The receiver noise flgure of an MST VHF radar need not be better than a few

dB (some 100 K), slnce the sky noise level (> 1000 K) determlnes the senslti-

vity. A no_se calibration signal of 1000 K, say, should be ]n3ected into the re-
celver frontend in order to provide an absolute power calibration (whlch also
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needs a continuous monitoring of the transmitter power). However at higher
frequencies In the UHF band the sky noise is no more the determining factor as

can be seen from Fig. 34. Therefore above several 100 MHz (e.g. in case of the

incoherent scatter radars or for the UHF ST radars where the signal-to-noise
ratio is usually very low) the receiver frontend has to be carefully designed
for lowest equivalent noise temperatures. Usually system temperatures of several

ten Kelvin can be achieved at some incoherent scatter UHF radars. The sky nolse

(from galactic radio sources) changes as function of time of the day and antenna
pointing angle as depicted by Figs. 35 and 36 for frequencles of 64 MHz and

53.5 MHz, respectively. Thls changes the signal-to-noise ratio even if the

reflectivity of the radar volumes would be constant. The known variation of sky

noise and in particular the well known ephemeris and flux density of point-like
radio sources (e.g. Cassiopeia or Cygnus) yield on the other hand a well suited

means to calibrate antenna diagrams and antenna gains.

12
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0_- 0B 12 16 20 24- MET 0_-

Figure 36. The dlurnal varlatlon of sky nolse level on

30,/31. August 1978 measured at the antenna of the
53.5-MHz SOUSY-VHF-Radar (52ON) in West Germany.

The equivalent nolse flgure of 0 dB corresponds to

a system temperature of 290 Kelvin.

In Figs. 37, 38 and 39 we show more block dlagrams of three other radars,

the Poker Flat MST Radar operating on 50 MHz, the MU radar operating on 46.5
MHz, which is used for MST as well as incoherent scatter observatlons, and the

EISCAT radar systems, which operate as incoherent scatter radars in the 933 MHz

and the 224 MHz bands. In Fig. 40 a block dlagram of a 915 MHz w_nd profller
radar and in Fig. 41 the block dlagram of the Areclbo blstatlc S-band (2380 MHz)

CW-radar is shown. The latter radar operates on 2380 MHZ in phase-coded 9ontlnu-

ous _ave (CW) mode. The exDerlenced reader will notice several of the baslc
features in these schematic diagrams whlch we nave mostly outl_ned _n the tore-

going chapter. More technical details of these radars should be found in tne
relevant literature.
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Figure 37. Block dlagram of the PoKer Flat
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Figure 38. Block diagram of the MU radar

in Japan (from FUKAO et al., 1985a,b).
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Figure 39. Schematic view and block diagram of the

EISCAT UHF and VHF radar system in TromsO, Norway.
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Figure 40. Block dlagram of a 915-NHz Doppler radar
wind profiler (from FRISCH et al., 1986).
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Figure 41. Block diagram of the bi-static S-band (2380 MHz),

phase-coded CW (continuous Wave) radar system used at the
Arecibo Observatory in Puerto Rico for high resolution

stratospheric turbulence studies (from WOODMAN. 1980).

4. RADAR SIGNAL ACQUISITION AND PREPROCESSING

The simplified schematics of radar systems, shown in Figs. 6a and 6b, are

used for a basic explanation of the radar operation and data-acquisition proce-
dure. After we have briefly explained the lay-out of antennas, transmltters and

receivers, in the last chapters we will now explain the formalism of a baslc
coherent system, the quadrature detection, the digital sampling as wel] as

subsequent data acquisition and phase decoding procedures. For more details see

WOODMAN and GUILLEN (1974), ROTTGER and SCHMIDT (1979), SCHMIDT et al., (1979),
CARTER et al., (1980), CLARK and CARTER (1980), SATO and WOODMAN (1982), RASTOGI

(1983), for instance. Since these signal processing steps are mostly done in

specially designed hardware processors, we now brlefly summarize the underlying
concepts.

4.1. Coherent Detection

The oscillator generates a signal s° at the angular frequency go = 2_fo
where fo = c/No is the center radar operation frequencY. A pulse train, gener-
ated by the radar controller, imposes a modulation to this signal. After am-
plification in the transmitter (TX In Figs. 6a and 6b) the radar slgnal

s(t) : a(t) exp(i(got + #(t))) (5)

is transmitted, where a(t) determines an amplitude modulation (by the pulse

train) and ¢(t) corresponds to a phase modulation (for coding), and i = v-l.
a(t) and ¢(t) are slowly varying as compared to Dot. The radar signal is scat-
tered/reflected from the radar volume and reaches the receiver (RX) vla the same

or a separate antenna. Additlonally, nolse (sky noise and interference) is
received and adds to the radar echo.
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For simplifying the explanation we will assume for a while that the trans-
mitted signal s(t) is not modulated, I.e. a(t)=const and =(t)=const, and the
echo results only from a small radar volume at a given range. The echo stgnal
s'(t) plus noise r(t), which are both band-limited because of the scattering
process and/or the receiver bandwidth, can be represented by

c'(t) = s'(t) + r(t) = ai(t)cos Dot + ia2(t)sin Dot,

where al(t) and a2(t) are independent Gaussian variables in a pure scattering
process. The uncorrelated noise r(t) contributes only uncertainties to these
estimates. After linear amplification in the receiver, c'(t) is coherently
detected by multiplicative mixing with s ° . After low-pass or post-detection
filtering (to eliminate high frequency components 2_o, which are generated
during the mixing procedure), this yields

c(t) = a+[t)cos B*(t) + ia*(t)sin B+(t),

where a+(t) = (alZ(t) + a22(t))I/2/2, (Ba)

8*(t) = arctan (az(t)/ai(t)).

The phase e+(t) = got - 8'(t) is given by the Doppler frequency Qo = -4_V'/no,
which is due to the bulk motion V' of the scatterers. The time variable phase

e'(t) =B[t) + =(t), where B(t) is caused by the fluctuations of the scatterers-

/reflectors in the radar volume. The amplitude a*(t) is a measure of the reflec-
tivity of the scattering/reflection process. These latter statements are only
valid if the noise contributions are separated from the slgnal. The coherently

detected complex signal (+ noise) can be expressed in the form

c(t) = x(t) + ly(t), [Bb)

where the real part x(t) = a*(t) cos B+(t) is called the in-phase component, and

the imaginary Dart y[t) = a+(t) sln e+(t) is called the quadrature component.
Both components, x and y, are called the quadrature component@. The Fourler

transform of c(t) is

{c[t)exp(-igt)dt : R(Q) + i_(Q),A(Q) =

!

which yields the perlodogram P(Q) = X2 + 92; it is often also called power or

Doppler spectrum. The measured P(Q) is the convolution of the spectrum of the
refractive index or the reflectivity fluctuations in the radar volume wlth the

spectrum PT(Q] of the transmitted wave form (for the common case of pulsed
transmissions), multiplied by the bandpass characteristics PR[Q) of the recei-

ver. Since P(Q) is much narrower than the envelope of PT(Q) and P_(Q) in MST

radar investlgations, these instrumental effects can mostly be disregarded.

However, in incoherent scatter appllcations the spectrum of the scatter process
PR(Q) is mostly wider than the enve10pe of PT(Q), which leads to the fact that
the instrumental effects of receiver and transmitter pulse bandwidth have to be

accounted for during the signal analysls.

4.2. Digital Sampling

We now take into account that the signal c(t) results from scattering and

reflection in certain altitude ranges. Frequently these slgnals whlch originate
from scatter or reflection of a transmitted radar slgnal are called "radar

echoes". We now have to note that the transmitted slgnal is modulated in order

to resolve the range from where the radar echoes arrive from. As sketched in

Figs. I and 2, the echoes from different ranges then occur at different times at
the analog receiver output. In order to allow adapted slgnal processing of
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Figure 42. Range-time-amplitude dlagram of slngle-pulse
transmitter modulation and coherent MS_ radar slgnals.

digitized data, the slgnal c(t) is sampled at discrete time intervals tk = k6ti
In the analog-digital converter (ADC). This is illustrated in Fig. 42, which

shows the amplitude variations of one of the Quadrature components of a coherent
MST radar signal as they could be monitored with an oscilloscope connected to

the output of the postdetection filters, which follow the Quadrature detectors.
The sequences n = 1,2 .... can be assumed to represent successive oscilloscope

beam deflections {along the vertical axis}, trlggered by the leadlng edge of the
transmitter pulse. This pulse is strongly attenuated by receiver gating, as was

explained in the last chapter. It is flipped in phase by 180 ° from one pulse to
the next (change from positive to negative amplltude), for the reason of DC-

elimination (see details in the following Chapter 4.3). Corresponding to the

transmltter-pulse phase ¢, the slgn of the radar echo also changes from one to
the next interpulse period. For convenlence the phase of the radar echo is shown

here to be similar to the transmitter-pulse phase. The echo phase can take any

values, however, depending on the length of the phase path from the transmitter
to the radar volume and depending on the relative changes of the scatterers
within the radar volume.

On the vertical axis of Fig. 42 the time tk Is given, whlch directly can be

converted to range by means of the definitions of Chapter 1.1. The sampling time
interval St. should be equal to the radar transmitter pulse length 6tt, slnce

thls usually (in case of volume filling scatter_ yields an optimum matching to

the range gate width or resolution 5r. However, in certain cases when narrow

reflecting layers shall be resolved, shorter sampling Intervals 5t s < 5t z can be

useful; this Is called "range oversampling".

The signal and the nolse had passed the receiver and postdetection f11ters
and are therefore bandlimited. The response time of the receiver, which Is

approximately Inversely proportional to the filter bandwidth, should also be

equal to 6ts, respectively 6tt. The subscript k of tk iS the serlal number of
the range gate wlth K = 0,1 ..... K-I, where k = 0 corresponds to the beglnnlng
or a certain level of the transmltter pulse. $1nce the quadrature components are

digitally sampled, we can write equation (6b) in the form ck = xk + lyk. We also
call ck the complex raw data samples.
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The number of sampling time steps between successive radar transmitter
Pulses ls K, which lS also the number of sampled range gates. The interpulse
Period ls T_=e = K St=. The cycle k = 0 ..... K-1 is repeated once wlth
K' = 0 ..... K'-I with a reversed phase of the transmitter pulse. Both cycles,
denoted by k and k' [with k' _ k and K' S K), determine one radar cycle 2.T,,p
(note that here the radar cycle is two times the interpulse peric<l, because of
the Introduced phase flip). The serla] number of radar cycles is given by
n = 1 ..... N. One radar burst is determined by N radar cycles, which last for t_
= 2N T_pp. The generation of all pulse tralns, needed to control these cycles of
the transmitter and receiver-ADC-integrator system, ls done in the radar con-
troller, as described in Chapter 5.

4.3. Coherent Integratlon and Preprocesslng

We will discuss here a standard preprocesslng procedure of the pulse-to-

pulse technique applied with MST radars. The spectrum which one would obtain for

a coherent echo (MST radar) with the sampling rate T,pp Is very wide and mostly
contains high frequency nolse power. The signal power is confined to relatively

low frequencies only (f = I/_E << I/2T4pp), where zE is the slgnal coherence
tlme. It Is evldent therefore that low pass filterlng of a coherent signal, done

before the spectrum analysls, will not change the signal characterlstlcs but

eliminates high frequency noise contributions. The simplest form of low pass
filtering is just the complex addition of the signal + noise samples over an

interval t_ << zc. A readily noticed effect of such an averaging over N inter-
pulse periods is the reduction of the number of total samples by a factor I/N.

We have to note that thls processlng step of coherent integration cannot be

applied for incoherent signal processing, because the signal coherence tlme is
shorter than the interpulse perlod. This also means that the described DC- and

clutter-elimination is not applicable for incoherent slgnals. The standard

procedure of autocorrelation function and spectrum computation, however, Is
compatible in both applications.

Since the noise (r) and the signal is) are Independent of each other, their
Quadrature components add to ckn : Ckn r + ck, =, where Ckn r ( : Xkn r + lyw_ r )

are the Quadrature components of the noise and Cvn" those of the slgna1. A PC-
bias can result from a constant, instrumentally _ntroduced voltage at the recel-

ver output ckn _ , or due to radar clutter Ck, c [clutter = echo from a tlXed
target). All these contributlons are additive:

Ckn = Ckn r + Ckn s + Ckn _ + Ckn c .

We have to take Into account that each radar cycle yields two samples per range
gate, namely k and k'. The samples of slgnal and clutter are shifted by 180°

from k to k', because the phase e{t) of the transmitter was fl_pped by IBOo

(change e(t) by 180 o in equations (5) and (6)). This can be accounted for by
changing the slgn of Ck'n when averaging

N
1

Ck,k' : _ Z (Ckn - Ck'n)
11

n= I

N
I

z - _- [Ckn r - Ck'n r + Ckn = - Ck'n = + Ckn 1 -- Ck'ni + Cknc -- Ck'nc).
N

n=l

Since for

Thls Is called Instrumental-Dr elimination (PC = g_rect _urrent, better
constant voltage contribution).

the instrumental Dr-bias Ckn I : Ck'n i , it IS ellmlnated by averaglng.

to say:
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Because of the transmitter phase flip, we flnd that: ck, = = - cw.n= and

Ckn ¢ : -- Ck'n c . Since the noise is independent from one to the next lnterpulse
period, a change in sign of Cknr does not change its statlStlcal properties. We
thus obtain, since k' = k:

N
2

Ck = _ _ (Ckn r + Ckn I + Ckn ¢ ) (7)

n=1

This averaglng, commonly called "prelntegration" or better "coherent integra-
tion", has become a standard process In MST radar operations. It ylelds cohe-

rently integrated data samples ck_ (I=I ..... L) at the time

tl = 2-I-N-K-6t=

for the coherent integration period ti = 2-N.K-Ots = 2-N-T4pD.

If the summation in equation (7) extends over a tlme period t4 = 2"N-Tipp,
which is much longer than 6ti, the high-frequency noise contributlon vanlshes.

For a coherent integration period tL = 2"L'N'T4Dp, with (L >>N), which is much

longer than zE, the signal contribution approaches zero since it is fading in
amplitude and phase. Only the clutter contribution

L
I

Ck c : [ Z Ckl

1=1

remalns, since it is constant in amplitude and phase. This can be used to elimi-
nate the clutter component by means of a digital high pass filter operation: ckl
= Ckl - CW=. This operation ls called clutter-DC elimination, and is done after
the coherent integration.

For the coherent integration given by equatlon (7), the number N of added

samples has to be selected carefully. It is evident that the integration period

has to be much shorter than the typical time scale of signal variations due to

the fluctuating scatter process as well as due to the frequency changes resul-
ting from the bulk motions of the scattering or reflecting medium. The advantage

is, however, that the processing can be made very efficlent slnce only addltions

(subtractions) but no multiplication of the raw data series with a welghting
function are necessary. It Is also redulred that the real part x and the imagi-

nary part y of the detected signal are correctly in quadrature (orthogonal).
Ideally they must be phase-shifted by exactly 90° and must have equal amplitudes
on the average, otherwise a distortion of the Doppler spectrum results. Accu-

racies of less than a few degrees phase difference and less than a few percent

amplitude difference are tolerable, however, and can be obtained by proper hard-

ware adjustment.

The coherent integration of the quadrature components, formulated by equa-

tion (7), is normally done in a digital preprocessor, called adder or Integra-
tor. Since this coherent integration is a low pass filter process it can be done
also in an analogue filter, such as the clutter elimination which is a notch or

high pass filter operation. Obviously the digital processing Is much more versa-
tile and flexible. Both analogue and digital prelntegration reduce the number of

data samples by some orders of magnltude, and compress the huge data flow from

the ADCs to make it manageable for the host computer. This ls the evldent advan-
tage of this preintegration process. We have to note, however, that this cohe-

rent integration process looses its advantages for hlgher frequency (>500-I000

MHz) radar applications. The reason Is that the slgnal coherence time is In-

versely proportional to the radar operating freauency and consequently the
coherent integration time has to be reduced. It is often thought that this
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process of coherent integration also increases the signal-to-noise ratio slnce
the voltages of the coherent signal but the power of the incoherent noise add.
This leads to an improvement of the signal-to-noise (power) ratio by the factor

N, since the noise bandwidth Is reduced by the factor l/N, whereas the slgnal
bandwidth remains unchanged. If one reasonably defines the noise in such a way
that its bandwidth is equal to the signal bandwidth (e.g., ROTTGER and LARSEN,

1989), the coherent integration process only reduces the wide nolse bandwidth to
the acceptable limit close to the signal bandwidth, and the signal-to-noise
ratio does not change by this coherent integration. The advantage of the coher-
ent integration process is still the essential reduction of the number of raw
data samples, without glving away information on the signal.

k=K

k=O

_S I

Figure 43. Range-time-amplitude diagram of a long-pulse
IS radar modulation and incoherent signals.

This kind of coherent integration used In the pulse-to-pulse technique
cannot be applied for incoherent scatter slgnals, because the slgnal coherence
time is shorter than the lnterpulse period, and thus the preprocesslng needs to
be done differently as was principally explained already in Ftg. 3. For clear-
ness the same example of an Incoherent signal (Fig. 43) Is drawn in the same
manner as for the coherent MST radar slgnal (Fig. 42). We notice In Fig. 43 the
"incoherence" from one to the next lnterpulse perlod, which leads to the fact
that the correlation-function and spectrum analysts has to be done within one

lnterpulse perlod and the ACFs and spectra then are Integrated subsequently. The
Fig. 43 shows that a fairly long pulse is still needed to obtain samples for the
longest lag of the autocorrelation function (ACF) In order to achieve the neces-
sary frequency resolution. This obviously deteriorates the range/altitude re-
solution. To overcome this problem, so-called multi-pulse modulation ts applied,
and is explained in Fig. 44. This modulation Is most efficiently applied by
modulating different frequency channels F1-F6 (within the passband of the trans-
mitter and receiver) in order to fill the gaps between the sub-pu|ses of this
pulse pattern. This increases the average power to the maximum allowable level,
but needs a particular multi-frequency channel design of transmitter and recei-
ver. To improve the range resolution further the subpulses can be Barker-coded.
Such a multi-pulse multi-frequency Barker-code scheme is successfully used in
the EISCAT Incoherent scatter radar systems (e.g.. TURUNEN, 1986).
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Figure 44. Multi-pulse multi-freauencv-channel pulse pattern used

in incoherent scatter applications to improve the range reso-
lution and allow measurements of the lag products of the signal

autocorrelation function for the temporal lag indices j = I to 6
(after TURUNEN, 19B6).

The application of this modulation scheme as well as the successlng "alter-

nating code scheme" has become standard praxis in incoherent scatter work as has
the "complementary code scheme" in the MST radar work. We will explain the

latter coding scheme after we have briefly outlined some basic formulations of
the correlation analysis, which is applied In prlnciple also in the decoding

procedures. Again we have to consider that most of the described preprocessing

can be done by specially designed digital hardware.

4.4. Correlation and Spectrum Analysis

After the preprocessing by appropriate coherent integration (for coherent

signals) or immediate correlation function processing (for Incoherent signals)
one usually deducts specific signal parameters, such as signal power, Dopp]er

shift and spectrum width. Usually these are the standard parameters in MST

applications, whereas in incoherent scatter applications more information is
extracted from the spectral shape (see BARON, 1977) by special fitting routines.

Before doing this, one has to eliminate the noise which is remaining within the
Bandwidth_given by the s_gna1. The elimination of the noise and _urther signal
processing can be done in the time domain by correlation (covariance) function

analysis or in the frequency domain by spectrum analysis. These data processing
steps, which follow the hardware preprocesslng, can be suitably done by speci-

ally designed software in real tlme in the host computer or off llne In separate
computers by reading the data from tape. In incoherent scatter applications

usually the correlation function computatlons are done In a special purpose

hardware correlator, whereas in MST radar applications the essential preprocess-

ing procedures, which need special hardware, are the coherent integratlon and
decoding. In the latter case further processing to obtain the ACFs or spectra

need to be done after the preprocessing.

Since the covariance function and the power spectrum are Fourler transforms
of each other, both contain the same relevant information. Dependln9 on the

purpose and the feasibility of the analysis, either of both approaches, Is used

In practice (RASTOGI and WOODMAN, 1974; WOODMAN and GUILLEN, 1974; Hagfors,
1977; ROTTGER and SCHMIDT, 1979; SCHMIDT et al., 1979; CARTER et al., 1980;
CLARK and CARTER, 1980; SATO and WOODMAN, 1980; RASTOGI, 1983).
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The complex autovarlance function of the quadrature components c(t) is

_(1) : { c(t)'c*(t + I)dt,

where z is the temporal displacement, and the * denotes the complex conjugate.

In digital form

L-j
I

Rk(l_j) -- [-3 _F Ckl "Cekl+) -- Ckl'C*kl+_, wlth J=O ..... J-I and J <_ L,
I=I

where j is the lag index defining the lag _. For a fixed range k, we find ci =

xl + iyl, and the covariance function becomes

R(I.i) = (xlx1÷:i+ylY1+:i) + i(x1,.lyl-xly1+.i)

= Rr(_j) + i Ri(_j),

or R(T_) = IR(z_)l exp(i(z_)),

with IRI = (Rr2+R_i)I and ¢ = arctan (R_/Rr).

In radar applications the term correlation function Is often used for R(_)

instead of covarlance function. The correct definition of the correlation func-

tion 9(Tj) is given by the normalized covariance function:

g(_J) = R(;j)/ R(O).

As well as the autocorrelation function of the series c(t) we also compute

cross-correlation functions for two different series, c1(t) and c2(t), in the

spaced antenna applications and use their modulus in the drift analysis and

their phase and amplitude in the interferometer analysis. In a prlncipally

similar way also cross spectra are computed from two time series.

The power spectrum is the Fourier transform of 9(T). weighted by W(T):

P(Q) = [ W(T)-9(1) exp(-i_I)dl

or in digital form:

J-1
I

Pw(C}m) = _ I W_-Rkj exp(-i£},jti),
j:O

where Wj is an arbitrary weighting function (e.g., Wj = J-1 for all J, etc.) and
om = m _/J t_: m = 0 ..... J. The length of the integration time interval is
t_ = 2-N-T_pp in the case of a coherent signal. For an incoherent signal, t_

corresponds to the time interval over which lag samples of the ACF are collec-

ted.

4.5. Phase Coding

Another preprocessing step which is generally similar to preintegration is
the decoding procedure• The principal reason for applying coding/decoding (pulse

compression) is to achieve a maximum average power at optimum resolution and
maximum unambiguous range. A fairly low duty cvcle of 0.1% and hence a low

sensitivity would for instance result from using a single pulse of I Us duration
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(Sr = 150 m) and an interpulse period of 1000 Us (rm=x = 150 km). Increasing the
pulse length to 32 gs would increase the duty cycle to 3.2_, but deteriorate the
range resolution to 4.8 km. The range resolution of 150 m can still be achieved
by phase-coding the transmitter pulse in time (lag) increments of, say 1 Us. The
decoding has to be done by cross correlating the received complex tlme serles cw
(separately for real and imaginary part) with the transmitted code s=:

N-1

Ck*' = _ Ck*+m " S= (8)

m=O

where H is the length of the code and k* corresponds to the range gate k at lag
zero where the correlation function Ck*' has a maxlmum. Thus, the decodlng ls
nothing else but an integration of the stgnal amplitudes over several range gate
samples, which are multiplied by the weighting factor s=.

The simplest and most versatile phase coding scheme is the binary code,
where the phase is flipped between the two states -1(=0 ° ) and +1(=180o). Since
here the weights s, are +1 or -1, the multiplication needed in the decoding
process reduces to an addition/subtraction operation. For this reason the decod-
ing can be done in a preprocessor similar to a hardware preintegrator, or the
integrator�decoder can even be one unit, as we wtll outline in Chapter 5. Note
that the decoding has to be done for the amplitudes, since these contain the
phase information An advantage in MST radar applications is also that the deco-
ding/integration processes are Interchangeable, which reduces the number of
operations by about two orders of magnitude (e.g.. WOODMANet al., 1980).

The best codes for radar applications obviously are those where the range

sidelobes of the correlation function (8) at k* _ k are a minimum. Reasonable
sidelobe suppression ts achieved with Barker codes, where the phases are flipped
in a sequence (e.g., +++++--++-+-+ for the 13-baud Barker code). The correlation
function is 13,0,1,0,1,0,1,0,1,0,1,0,1. The best range sidelobe suppression,
achievable with a Barker code, is M-1 . The reason Is that these sidelobes con-

tain power from other range gates k* _ k, which cause ambiguities. The sidelobes
of the code extend out to ranges M.St, on both sides of the center peak. Since
the codes cannot be infinitely long, because the minimum range is extended with
the length of the code (which obviously Increases the minimum range from where
echoes can be received), the sidelobe suppression of Barker codes is limited. A
good sidelobe suppression ls for instance needed if strong echoes occur only in
a limited number of range gates.

A better stdelobe suppression can be gatned by application of quasi-random
codes, which however need decoding before the preintegration as well as to
transmit a long series of different code sequences. Also alternating codes
appear useful in incoherent scatter applications (e.g., LEHTINEN and H_GGSTROM,
1987). The most suitable codes for MST radar work are the complementary codes
(e.g., SCHMIDT et al., 1979), which theoretically have no sidelobes. A comple-
mentary code consists of a pair of two code sequences sl and sz. These have the
property that their correlation function sidelobes are exactly equal, but oppo-
site in sign. Normally both code sequences are transmitted at one and the next
interpulse period, and the range samples of these two periods are prelntegrated
and decoded separately. The coherent addition of the decoded sequences then
yields the total elimination of the sidelobes (k* _ k) if the signal Is coherent
from one to the next lnterpulse period. The zero lag value k* = k contains the
total signal amplitude. As an example the 8-baud complementary code pair A,B:

Sl = A = +++-++-+ and s2 = B = +++---+-
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yield the correlation functions:

cl = 8,-1,0,3,0,1,0,1 and c2 = 8,1,0,-3,0,-1,0,-1

and the addition yields:

Cl + C2 = 16,0,0,0,0,0,0,0.

The peak value of this decoded function at k* = k Is 2M. There is still the
shortcoming of a long code, that it extends the shortest observable range. This

can be overcome by transmitting a sequence of a complementary code and a short

single pulse in one radar cycle. In Fig. 45 the range-time-amplitude diagram for

the simplest 2-baud complementary code wlth additional phase-flip for instrumen-
tal De-elimination is shown. All these decoding preprocesslng steps are most

suitably done in a special purpose hardware integrator-decoder. For coding

purposes, the hardware radar controller needs to generate the necessary ampll-
tude and phase control pulse trains for the transmltter.

-" tw "_ _ ._

Ti 3 . $1_u,,_ I"A_I_IH_ITTER

2 B /

_ A+_ n=l

Figure 45. Range-time-amplitude diagram of a two-baud
complementary code modulation with DC-phase flip

used In MST radar applications.

5. RADAR CONTROL AND DATA ACQUISITION

We will here briefly describe the basic system units which are needed to

process the digitized data in terms of coherent integration, correlation func-
tion computation and decoding as well as the principle lay-out of a radar
controller.

We first describe in Fig. 46 the basic lay-out of an integrator or adder.

The data from the ADC are range-gate by range-gate stored into memorv. According

to equation (7), the data from one interpulse periods are added onto the corre-

sponding data from the successive interoulse period in the arithmetlc-logic-unit
(ALU). This is recurrently done as long as the integration period is chosen,
i.e. the number of interpulse periods preselected for the coherent integratlon

(controlled through the host computer). After the completion of the integration

cycle, the coherently integrated data are dumped via the direct-memory-access
(DMA) to the host computer.
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Figure 46. Block diagram of an
integrator/adder preprocessor

for coherent signal acquisition.

The coherent integration can also De done in the same unit as is used for

decodlng and the correlatlon functlon computation is done. Both the correIatlon

and the decoding operation consist of a multipllcatlon and an additlon cycle,
where the former needs complex processing and the latter needs to be done for

the Quadrature components separately. In Table 3 we have outllned the prlnciples

of the computation of correlation function, decoding and coherent integration in
a graphic form, which should allow better understandlng of the hardware configu-
ration sketched in the diagram of Fig. 47.

TABLE 3

COMPUTATIONOF CORRELATIONFUNCTION,DECODING,COHERENTINTEGRATION

j =

J

J-i

J-2

J-3

i

m

l

2

I
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÷ ÷ ÷

+ ÷ t

÷ ÷

+ -- - i ,i

÷

- ÷

# ÷

• i.

I ÷ ÷ 4'

O;ta Series CI

(range tkl or time (i)}

(A) Correlation Function:

R. : Z CI.CI+ j (lag j)
J 1

(B) Decoding:
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The square blocks in Table 3 indicate data samples at range or time gates.
The samp]es in the first row are supposed to be the original data. The hatched
part of the diagram indicates data samples which are accessible at a register
through which the orlginal data are shifted. The correlation function is com-
puted according to the formula A in Table 3. To compute the zero lag. the range
(time) samples of the first (unhatched) row with indices j=J and its replica in
the last row j=0 are multiplied for each range or time label l, and then all

products are summed up over I. To obtain the first lag, the last but one series,
which is delayed by one sample with respect to the last row, is multiplied and
added In the same way. According to this algorithm all the following lags are

computed. In praxis, the last lag is computed first, since the data sample at

j:J-1 is available first after the original data series had been shifted by one
in a shift register (see explanation of Fig. 47 on the next page).

In a very similar way the decoding is performed (formula B in Table 3),

since it comprises a cross-correlation function computation which can be per-

formed by the same hardware setup. The only difference to the correlation func-
tion computation is, that instead of the data time series the code is used in

the delayed data series. In the example of Table 3 a 5-baud Barker code is
shown. It is to be noted, that the first completely decoded data point is avail-

able only after 5 steps of j at J-5, when the 5 bauds of the code are completely

existent in the shift register (for longer codes of course the corresponding

longer delays have to be considered). The combination (i.e., multiplication and
addition according to the formula B) of series j=J-5 with j=J yields the decoded

value at l=0. As another example for instance j:O with j=J yields the decoded

sample at I=3. Note that a further shift than given by l:O does not allow the

OUAORAT._
DETECTOR

RADAR

CONTROLLER

CORAELATOR - DECODER - INTEGRATOR

__ CODE
1

L_

SHIFTRE6ISTERS

NUI DI

RESULTHERORY

Figure 47, Block diagram of a hybrid version
of a correlator-decoder-lntegrator.
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complete decoding unless the data time series j=J is further extended beyond 8
samples in this example. In praxis this means that always a data set has to be
available which ts longer than a single data series by number Lc, where Lc is
the number of bauds in a code minus one. Decoding of complementary codes is done
in principally the same way, but as a final step the two cross-correlation
functions resulting from the decoding of code sl and its complement s2 have to
be added. The coherent integration is simply done, according to formula C in
Table 3, in the same hardware processor by just adding the samples for each l
(or k) separately over a preselected number of interputse periods.

We have to note that all these procedures have to be done separately for
the real part as well as for the imaginary part of the auadrature components.
For convenience we explain only the integration, decoding and correlation func-
tion computation for a single component.

In Fig. 47 we show a block diagram of such a described hybrid "correlator-
decoder-integrator". We admit that other realizations may be more practicable,
but this layout should show that such a hybrid processor Is feasible In prin-
ciple. The different modes can be understood by following the paths which are
selected by different multiplexer positions. In the integrator mode the multi-
plexer A (MUX A) is connecting ports 1 and 3, multiplexer B ports 2 and 3,
multiplexer C ports 1 and 3 and multiplexers D1 and D2 provide that each multi-

plier is connected to the correct range gate. The data are transferred from the
buffer memory to the multipliers, where the sign is changed according to the
corresponding phase flip of the transmitter pulse. The multiplier of course
could be eliminated if provision would be made to allow also subtractions in the
adder. For each range gate the data are added in the accumulator, from where
they are multiplexed into the result memory after the specified number of cohe-
rent integrations. Depending on the size of the result memory several sets of
coherently integrated data are stored and afterwards dumped to the main compu-
ter.

For correlation function computations the multiplexers have to be in the

positions A: I-3, B: I-3 and C: I-3. The main part of the correlator is the

shift register by which the data series is shifted according to the lag indices
of the decoding or correlation function. Each data sample of the shifted series

is then multiplied with the data sample of the non-shifted data series. For

decoding the shifted data series is the code, and for auto-correlation computa-
tion the shifted series is the same unshifted data series. After this multipli-

cation the data are accumulated, i.e. summed up, and after completion of the
correlation analysis dumped into the result memory from where they are transfer-
red into the host computer. The correct selection of.the lag products and their

redistribution to the result memory is again provided by multiplexers DI and D2.

For decoding of the original data series, the multiplexer A is in position
2-3, multiplexer B in position I-3, end multiplexer C in position I-3. The

original data are existent at the multipliers and according to the position of
the code in the shift register, the decoding is performed by multiplication. If

the multiplexer A is in position 2-3, B in I-3 and C in 2-3 a coherently inte-

grated sample set could be also decoded in the same processor and afterwards
dumped to the computer. It is noted that also a correlation function computation
of decoded as well as coherently integrated data could be possible tf the pre-
processed data are fed back by multiplexer C in position 2-3 to the result
memory. Although the described layout of a multi-purpose integrator-decoder
correlator explains the three main processing procedures of MST and IS radars
and the solution looks feasible, it may in praxis be more realistic to use three
separate units for integration, decoding and correlation function / spectrum
analysis.
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RADAR CONTROL

PRP

TXP

FLP

FRI

FR2

RGT

LOP

RIA

ADC

SGN

CAL

ANT

AUX

PRP

TRX

TXP

FLP

FRl

FR2

ANT

_n

__l---1

___£_1

__l_l

cycle I cycle 2

III

__J

IIIIIIIIIIIIIIlllillllll

R

lllllllllllllllllllllll

F

_1

n

= prepulse (trigger)

= transeitter-receiver duplexer

= transmitter on

= phase flip (coding)

= frequency i

= frequency 2

= antenna control

n

RGT = receiver gating on

LOP = local oscillator protect on

RIA : reset integrator address

ADC : analog-digital conversion

56N : sign for integration

C_L = calibration (noise injection)

AUX = auxiliary

All the timing control of the outtined procedure results from the radar
controller or system synchronizer, which of course a]so generates the control
pulses for the transmitter, the receiver and the ADC. A typical example of pulse
trains of control pulses, which are generated by the digital radar controller,
is demonstrated in the example of Table 4. Following a Me-pulse (PRP), which ts
used to to trigger external control or monitor devices, the transmlt-£ecelve
duplexer (TRX) is switched on, followed by a Eeceiver gate pulse (RGT) and the
pulse to turn off the local gscillator (LOP). Then the switch on of the trans-
mitrer Eadio frequency is controlled (RFC), which is phase f__!]iDped (FLP) between
0 ° to 180 ° for coding. The analogue-digital-converter starts sampling (ADC)
after RFC off and the TRX, RGT and LOP have opened the receiver and after the
£eset of the _ntegrator address (RIA) has taken place. At certain range gates a
calibration signal (CAL) is injected. The whole sequence is repeated after one
interpulse perlod when only the phase flip ls lnverted (for DC-ellmination). For
application of the complementary coding scheme a second double pulse code (con--
sisting of the complementary pattern) is transmitted, and this radar cycle lS
repeated N times to yield one radar burst. Additionally, different frequencies
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(FR.) and pulses for antenna control (ANT) and other purposes can be generated,
which can change from one to the next tnterpulse period or radar burst. In more
advanced systems multichannel receivers and ADCs are used (e.g. spaced antenna

parallel processing (e.g. ROTTGER, 1981)).

The MST radar operation, which is synchronized and which is usually started
and stopped by external clock control (in the host computer), takes place in
several nested sequences : (1) the radar cycle, i.e. the transmission of one
code unit of radar pulses with preselected duration and the sampling of the real

and imaginary signal at preselected range gates (e.g. 128). (2) the integration
cycle (burst), i.e. the repetition and coherent integration of an externally
selected number of radar cycles. (3) record cycle, i.e. the repetition of a

preselected number of integration cycles (e.g. 64) to form one total record
which Is stored in memory. Together with the time and other system parameter
information (such as the radar controller program etc.) the data record Is then

dumped via the computer to file or magnetic tape.

All the control sequences for the radar system are generated by the radar
controller, of which a basic block diagram is shown in Fig. 48. The computer
loads the instructions, which pulses should be generated and for how long these
should be switched on (duration) as well as how many tnterpulse periods should
be coherently integrated, into the radar controller memory. The computer can vla

the real-time clock start and stop the radar controller. Further interlocks,
either via the computer or other fast hardware devices, inhibit under certain

failure conditions radar controller pulses in order to protect the radar system

from malfunctions or damage if transmitter pulsing would be during the receiving

phase.

RADAR CONTROLI, ERI_YSTEM SYNCHRONIZER

from Iol0

COHPUT_--_ ]
INSTRUCTION

(PROGRAM)

TRANSMITTER, MEMORY

PREPROCESSOR ]

RATE CYCLE
ANTENNA to

IDURATION) IIPPs) CONTROL --'-"
MEMORY MEMORY ANT.

COUNTERANDCOMPARATOR

REALTIME1
CLOCK

Figure 48. Block diagram of a radar controller or system synchronizer.
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It is generally found that 8-bit ADCs are sufficiently matched to the line-

arity range of the receivers (> 60 dB). If strong clutter signals are present

the capacity must eventually be extended to >12 bit or a range-dependent attenu-
ation has to be used. Applying an 8-bit ADC and a 16-bit integrator allows to

add samples from at least N = 256 radar cycles in one channel. If more samples
would have to be added, the adder and result memory word length would have to be

extended. The dump could still be at 16-bit word length if a scaler would be

used to scale down the result data according to the number of integrations. The
preintegration time for 256 integrations would be t_ = 2N.Tipp = 128 ms for TIpp

= 250 Us, corresponding to a maximum unambiguous range of 37.5 km and a maximum
resolvable radial velocity of 12 ms -_ (fo=ax = 4 Hz). Applying a 4-bit comple-

mentary code and a 300-m range resolution would result in _ transmitter duty

cycle of about 3%.

MUFFIM FUNCTIOMAL BLOCK DIAGRAM

I VLrt al _ _F---'-I C_a.nel

FROM _ I _ _ I I I _ Memor!J

' I II I '

Convel'ter " " _ i _

cou"'er| STARTI MICRO-I PROGRAM LOAD|FIG CLOCK C ERROR ACCUMULAT IOH I SLJAPfrom _ADDRESS I PROGRAM MEMORY LOGIC TIuflMII_G LOGIC COI_TROL RELOADRadar I COrITROL I C0?ITROLLER from

Con fro ] Ier _ Radar

From Host Con fro IIer

Computer

Figure 49. Block diagram of a m_41ti-channel finite-impulse response

filter and integrator (MUFFIN) under development as preprocessor

for particular coding schemes applied at the EISCAT radars.

There exist many more sophisticated data preprocessing units at several
radars and it cannot be in the scope of this lecture to describe those in de-

tail, as it was not possible to line-out all the different variations of the
transmitter-receiver-antenna systems. We finally would only like to add the

block diagram (in Fig. 4g) of a multi-channel finite-impulse-response filter and

integrator which is presently under design at the EISCAT radar facilities and
shall be used for on-line preprocessing (integration, decoding, correlation

computation and radar control) of incoherent scatter and coherent scatter data

(POSTILA, 1988, personal communication).
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6. ANOVERVIEWONSOMERADAR SYSTEMS AND THEIR TECHNICAL PARAMETERS

Descriptions of the early VHF radar systems were given by WOODMAN and
GUILLEN (1974). GREEN et al. (1975), CZECHOWSKY et el. (1976)o ROTTGER et el.

(1978), BALSLEY et el. (1980), and design considerations were summarized by
BALSLEY (1978a,b), GAGE and BALSLEY (1978) and BALSLEY and GAGE (1982). More

recent developments and technical details were described for instance by

CZECHOWSKY et el. (Ig84), KATO et el. (1984), ROTTGER (1984), STRAUCH et al.

(1984), FUKAO et el. (1985a,b), FRISCH et el. (1986), ECKLUND et al. (1988) and
ROTTGER and LARSEN (i989).

We present in Table 5 the technical parameters of the MU radar (Middle and

Upper atmosphere radar) of the Radio Atmospheric Sclence Center of the Kyoto

University (from FUKJkO et el., 1985a,b), in Table 6 the basic parameters of a

405 MHz wind profiler radar (from FRISCH et el., 1986), In Table 7 the prlmary
system specifications for an operational wind profiler (from UNISYS, 1987) are

repeated, which is supposed to be used in meteorologlcal routlne applications.
In Table 8 the basic parameters of the EISCAT incoherent scatter radar systems

operating in the 933 MHz and 224 MHz bands are summarised. We then display In
Table 9 a most complete list of all the MST, ST and incoherent scatter radars as

well as some wind profiler systems. Finally we show In Fig. 50 photos of a few
well known research radar facilities.

TABLE 5

Basic Parametersof the NU(Middle and UpperAtmosphere)Radar
Operated by the RadioAtmosohareScience Canter of the Kyoto University

(fromFUKAOet el.,Ig85a,b)

LOCATION Shigaraki. Shiga, Japan
134.85BN.138,101E)

RAOARSYSTEM monostatlcpulse radar:
active phasedarray system

OPERATIONALFREQUENCY 46.5NHZ
ANTENNA circulararrayof 475 crossedYagis

aoertureB330ea 1103m dlametar)

Beamwidth 3,60 lone way: half power for full array)
Steerability steering is coepleteO in eachIPP
Beamdirections 1857; OLIO° off-zenith eagle
goiarlzations linear and circular

TRANSMITTER 475 solid stateampllflars
(TRmodules:eachwithoutputpower

of 2.4 ki peak and 120 W average)
Peakpower I WW (maximum)

AveragePower 50 kW (duty cycle of 5%)Izax_mum}
Bandwidth 1.85MNz (maxlmum)

(pulse width: 1-512 Us vlrlablal
IPP 400 ,s to 65 ms lvariablei

RECEIVER

Bandwidth i.85NHz (maximum)

Dynamicrange 70dB
IF 5 MHz
A/D converter 12 bits x 8 channels

PULSECOMPRESSION binaryphasecodingup to 32 elements.
Barker andcomplimentarycoons
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Figure 50. Photos of radar observatories:
Jlcamarca/Peru, Arecibo/Puerto Rico,
SOUSY/West Germany, Poker Flat/Alaska,
RU Radar/Japan, EISCAT/Norway.
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Chapter 4

Statistical Characteristics of MST Radar Echoes and its

Interpretation'

RONALDF. WOCOMAN

Jicamarca Radio Observatory
Instituto Geofisico del Peril

Introduction

As we shall see later, radar backscattedng is produced by fluctuations in

the refractive index of the illuminated medium with scale sizes equal to 1/2 the

wave length of the electromagnetic probing wave. The fluctuations are a random

process, and so are, consequently,-the signals received by the radar. Both have

to be characterized statistically. The power of the technique is based on the fact

that the statistical parameters that define the signal received are related to the

statistical parameters of the medium. This allows us to remote-sense the

medium from the ground.

It is important, then, in order to understand the technique, to know the

statistical ways of characterizing 1) the fluctuations in refractive index and 2)

signals received. The second may be familiar to many of you. The first may not.

The second is easier to understand slnce it is a one dimensional process (time).

The first is harder, since involves processes in four dimensions, 3 in space, and 1

in time; on the other hand, it uses extensions of concepts developed originally

for one dimension, and should present no difficulties if these one dimensional

concepts are understood.

Ructuations in index of refraction come about mainly as a consequence of

atmospheric turbulence. If we are going to use these fluctuations to study the

atmosphere, it is important, in order to interpret the signals received, that we

understand some of the fundamental concepts related to atmosphedc turbulence.

Because of above reasons, we have decided before entering on the main
subject of our lecture, that of the characterization of radar echoes and its
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interpretation, to review some fundamental concepts in random process statistics

and in atmospheric turbulence.

Some statistical_concepts

There are two concepts of fundamental importance which should be

reviewed: Autocorrelation Function and Frequency Power Spectrum. They are

interrelated. One can be defined in terms of the other. Mathematically it is much

simpler to define the first, although many find easier to grasp the physical

significance of the second.

Given a time series, either as a sequence of numbers in time s_s=s3..st..,or

as a random function of time, s(t), (We will use s(t) for both cases for

convenience, unless we want to stress the discrete nature of a sequence ), its

autocorrelation function is defined as:

p(_)= E[s(t),s(t+_)] (1)

where E[ ] stands for the expectation of its argument. Good estimators of this

expectation are:

T

p'(_)= s(t)s(t_), (2.)

if the process is stationary ,or, under more general conditions,

p'(_)==<s(t)s(t-_)>,. (3)

The overbar stands for a time average of duration T, and the brackets

stand for averaging over n identical experiments or observations.
The second estimator allows us to evaluate correlation functions even in

the case the process is not stationary. When the process is not stationary, we

should write p(_; t) , to stress the dependence on t, the time at which the
correlation is evaluated.

Let us see what a correlation function means physically. Let us take

equation (2) as a good definition (it is, for all practical purposes, if the time T

taken for the average is long enough ). Fig. ! show a sample function of the
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random functions s(t),s(t-_) and s(t)s(t-_) for three displacements, _'---0, t=- "small"

and _= "large". When _=0, we get s(t)= for the product function, the integral of

which corresponds to an estimation of the power of the process, which we use as

a reference.

If we increase t by small amount, s(t)s(t-_) does not vary much from the

_=0 case, and the integral is slightly smaller than the power . If t is large

enough, it is equally probable for the product to be positive or negative, and the

integral is zero.

But, what is small enough and what is large enough? The answer is

given by autocorrelation function itself. Note that, between the two _'s depicted in

figure t, there should be a _, _v=, at which the correlation is equal to 0.Sp(0) and

that the correlation function decays from its maximum value to zero in a

characteristic time, _c • This characteristic time or, alternatively, one derived from

the normalized second moment of p(_), has a ready interpretation and gives us

an idea of how fast the process varies. It can be centuries (changes in the

global temperature of the earth) or hours (changes in the ambient temperature)

or, seconds (changes in the punctual temperature of a turbulent process) or any

other time scale. This is the most usual interpretation given to the correlation

function. There is more information , of course, besides the power and the

characteristic time of the process in the functional shape of the correlation

function; for instance, if the shape is oscillatory it tells us that the process is

quasi-sinusoidal with a period given by the period of the oscillations.

Nevertheless, in many cases, it is sufficient to give only this simple interpretation.

Power spectrum - when defined carefully (e.g. Papoulis,1%5)-- is defined

as the Fourier Transform of P('0, namely

F(m) = 1/2n/-p('¢) exp(-_-_) d'¢ (4)

This is is a modern definition. The earlier definition and, in any case, a

good interpretative way of looking at it, is that the power spectrum, F(o),

measures the power density of a process at different frequencies. This means
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that, if the process is fed to a bank of filters centered at frequency o,, The

average power of each filter would be proportional to F(o_,), where o}, is the

center frequency of the filter. There are many estimators of F(m) which conform
to this definition. For instance

f-f(t) exp(-k_t) dtl=>,
F'(o))= <ll/TJ_ (5)

This is equivalent to getting the Fourier transform of a subset of the

sequence, obtain its power (square it) and average many sub-sequences.

Extension to 3-D and time____rocesses

A good example of a three space dimensions and time random process is

the temperature or the velocity of a boiling pan of water, or any other turbulent

process. These processes are also characterized by its autocorrelation function,

p(r,t). It is defined in a fashion similar to its one dimensional case. For

instance, if we take n to stand for the deviations in density, or the refractive index
of a medium, its autocorrelation function is defined as :

p(r,_) = E[n(x,t)n(x+r,t+_)] (6)

That is, it is the expectation (in practice,the average) of the product of the

density at point x at time t, multiplied by the density at a point displaced r from

x, at a time t units later. If the medium is stationary and homogeneous p does

not depend on x or t. Otherwise, we should write p(r,_;x,t), since the

autocorrelation would be different if measured in a different place or at different

time.

As in the case of one dimension, there is a characteristic length, r=, and a

characteristic time, t=, much beyond which the autocorrelation is small or zero. If

the medium is isotropic, the characteristic length is the same , regardless of the

direction of the displacement, r. In this case we can use the magnitude , r,

instead of the vector, r. If the medium is anisotropic, there can be as many as

three characteristic lengths, one in each major axis direction.

As in the case of onedimension, the characteristic time gives us an idea of
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how long we have to wait before the three dimensional structure of a sample

process changes significantly. Similarly, the characteristic scale gives us an idea

of how far we have to move from a specific point, from which we have taken a

snap shot at the process for a second snap shot, taken at the same instant, to

differ significantly and yet show some resemblance. The directions of

displacement shou/d preferabJy be taken along the three major axis of the
correlation function.

To envision the meaning of statistical anisotropy, let us consider the two

dimensional case of the vertical displacement of the surface of a choppy ocean

produced by a wind of constant direction. Here, there would be a tendency for the

waves, or even swell, to form in with preference in one direction, that of the wind.

If we displace ourselves along the crests of the waves, we have to move much

further for observational snapshots to look different than if we displace ourselves

along the direction of propagation of the waves (direction of the wind). The

characteristic lengths in this case are different, being shorter along the direction of
the wind.

Again, for the purpose of an introductory interpretation, we have talked

about a single parameter per dimension. This is over simplified. One or few

parameters does not replace the whole correlation function unless we accompany

it with knowledge of its functional shape (e.g. Gaussian, Lorentian, sinusoidal,

exponential,atc.), or by a sufficient number of evaluated points.

There is also a counterpart in 3-D processes to the concept of frequency

power spectrum. In this case we speak of wave-number-vector (extension of

wave--number) power spectrum, or k-spectrum.. In an analogous fashion, we

define it as the 3---D spatial Fourier transform of the space-time autocorrelation

function, p(r,_), specifically,

$(k) =1/(2_)3 f-p(r,0) exp(-jk.r) d'r (7)

Note that we have set _ equal to zero. Therefore in this definition, we are

performing the displacements in space at the same instant of time, i.e. no time

dynamics is included. We could also have used p(r) as a symbol for the same

concept. Again, its interpretation Is similar to the frequency power spectrum. We

can interpret _(k) as a function which describes the "power" density of the

different wave number components of the process. We imagine the process to

result from the ( Fourier ) superposition of different spatial waves with different
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directions and wavelengths , each with a power ( amplitude squared) given by

_(k).

There is an important concept in talking about the directional scattering

properties of a medium. One talks about the aspect sensitivity of the scatterers. It

is a consequence of the anisotropic character of the ¢(k) which characterizes

anisotropic turbulent fluctuations. This anisotropy is sometimes better perceived

from the shape of the autocorrelation function, p(r). In this regard it should be

kept in mind that, in any Fourier pair, like (I)(k) and p(r), wide functions transform

into narrow functions and viceversa. This means that if we have a horizontal,

pancake-like spatial autocorrelation function, it transforms into a vertical pencil-

like k-spectrum.

We can relax, above, the restriction for t to be zero. We would obtain a

function, _(k,_), which associates certain dynamics to each spatial wave

component. Each component will have a characteristic time associated to its life

time. This does not mean that the process no longer has power at that particular

wave-number vector, but rather that wave component is completely independent

of the one observed a few characteristic times ,%, ago.

To further complicate matters, we can perform an additional Fourier

transformation in time on p. We would obtain

d>(k,o)) = (1/2_)'f-p(r, t) exp(-jk.r-_) d'rdt. (8)

In this case the dynamics of the process, for each wave-number vector, k, is

represented by a superposition of temporal oscillations with frequency co, and

power density d)(k,oo).

We are not presenting this concepts for purely academical reasons. As we

shall see later, the signal statistics of the echoes recei_/ed in a MST radar are

directly related to the spectrum $,(k,,_) (or d)n(k,,oo) ) which characterizes the

density fluctuations of the medium. Although here, k, is no longer a variable but

an specific wave-number vector determined by the frequency and geometry of

the radar. We should, then, be familiar not only with the mathematical definition of

these concepts, but with their physical significance as well. Only then we can

attribute physical significance to the results of a MST radar experiment.

We have used the terms stationary and homogeneous. In the theory of

random process, they are defined as follows. A process is said to be stationary, if

the expectation of any function of its value, or values ( for instance E[s(t)] and
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E[s(t)s(t-_)] ), is independent of the time of the sample function taken. It is said

to be homogeneous, if the expectation is independent of where the values of the

sample function are taken.

In the exact context of this definition, the time and physical space have to

be infinite in extend. In practice one uses the concept of quasi-stationarity and

quasi-homogeneity, in which the "any time" or "any point" implicit in the strict

definition is replaced by finite intervals of time and finite regions of space,

sufficiently large as to contain a large number of characteristic times and length

scales. The assumption of stationarity or homogeneity is considered to be valid if

they hold within a particular observation time or region.

For further reading see Papoulis (1965)and Tatarsky (196l).

Some turbulenceconcepts.

The MST radar depends on turbulence to obtain echoes from the clear

atmosphere. It uses turbulence as a tracer of the dynamics of the background

atmosphere. Also, since the statistical parameters of the received signal depend

on the statistical parameters of the refractive index fluctuations -produced by

turbulence-, the radar can also be used to study the turbulence process proper.

It is important, then, to understand some of the basics of atmospheric turbulence.

We would like to underline "basics" since turbulence theory is a difficult

subject. In fact, as a consequence of its highly non linear behavior, and in spite

of all the advances in its mathematical description, we are still not able to predict

its behavior, even in a statistical sense.

The meaning of turbulence varies from a general dictionary type definition

to controversial and more limited definitions. For us, it suffices to define it as the

state of a fluid in which the velocity field is rotational and random in three

dimensions and time.

Although some atmospheric physicists envision the existence of two

(space) dimensional turbulence in the atmosphere, we will use the term only in a

three dimensional context. We are interested in 3-D turbulence with length

scales no larger than about a few hundreds of meters in the stratosphere and

stable troposphere (non-convective) and a few hundred to slightly above a

thousand meters in the mesosphere. We are also occasionally interested in the

small scales (meters to hundred of meters) as well as the larger ( kilometers )
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scales of tropospheric convectional turbulence.

For turbulence to exist we need a fluctuating velocity field. Radars, on the

other hand, are sensitive to fluctuations in refractive index or, equivalently,

fluctuations in density or temperature at constant pressure. Fortunately, in most

cases, velocity fluctuations bring about density fluctuations, although this is not

always the case.

If we consider a non stratified atmosphere (no gravity) at constant

pressure, velocity fluctuations would not produce density fluctuations. Different

parcels of air would interchange positions, but since they have the same density,

no fluctuations would be produced. But, if a gradient of density exist, for any

reason, then, regions of higher density would be brought to regions with lower

density and viceversa, producing fluctuations in density and hence in refractive
index.

If we steer pure water, for instance, we could not perceive optically any

change, but if we mix it with clear syrup, it would produce a whitish fluid (while

the emulsion last) as a consequence of the light scattering the small scale

fluctuations in refractive index are capable to produce.

Mixing in a gravitational stratified atmosphere is slightly more complicated.

We have to introduce in this case the concept of "potential density" and "potential

temperature".

Let us consider a medium with a constant temperature profile. Under the

influence of gravity it would have a density like n = exp(-z/H). If we interchange

two parcels of different altitudes adiabatically and in pressure equilibrium, we

would cool by decompression the parcel moving up into a lower pressure, and

heat the parcel moving down into higher pressure. So, if we steer locally an

atmosphere with a constant temperature profile, we end up with fluctuations in

temperature, apparently contradicting ourselves. It is more convenient -

conceptually and mathematically - to characterize, instead, the state of the

medium by the temperature it would have if it were to be brought to sea level

adiabatically. This "temperature" is called potential temperature. It is a conserved

property of the medium, i.e. it does not change as it is moved adiabatically to

other altitudes. In the language of turbulence theory it is said that it behaves as

a passive scalar. We can define a potential density in a similar fashion.

For turbulence to produce fluctuations in density or temperature we need a

gradient in potential density. Constant potential density backgrounds do not

produce fluctuations. When an atmosphere has such profile, we say that the
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(actual) temperature has an adiabatic lapse rate (about 1 every 100 meters).

The stratosphere has either a constant or positive gradient temperature profile,

hence it deviates more from an adiabatic lapse rata than the troposphere. It is

potentially capable, then, to produce larger fluctuations for the same mixed layer

thickness than the troposphere.

In the mesosphere the refractive index is produced by the density of free

electrons. The gradient of both potential and real electron density gradient is

positive and hence capable of producing refractive index fluctuations when mixed

by turbulence.

Assuming an initial gradient in a passive scalar, one can derive (e.g.

Tatarsky,1961) a quantitative formula relating the standard deviation of the scalar

(like potential temperature or potential refractive index) in terms of the original

gradient and the depth of the turbulent mixing layer thickness. Assuming further

a Kolmogorov power spectrum density law (see below), that is a dependence of

on k of the form k-'_ He derived and expression for the standard deviation of

the fluctuations of the form

_,(k)= a 0.033Lo_ (grad n)=k-l_ (9)

As expected the fluctuation density at any wavelength is directly

proportional to positive powers of the original gradient and the scale of the largest

mixing eddy, Lo. "a" is a constant of order unity.

We can also estimate roughly the variance on the velocity field in the

following way. If we mix a (stable) gradient in potential density we produce work,

since we are moving up potentially heavier and down potentially lighter parcels of

air. We need then an energy source. This source comes from shear. Without

shear, there is no source and no turbulence. The original shear after turbulence

is reduced to very low value due to turbulent viscosity. The excess of kinetic

energy resultant from the difference in velocity of the originally shear profile and

the new constant velocity profile (see fig. 2) has to go into potential energy, result

of the work we mention earlier, and the random turbulent kinetic energy. It we

assume equipartition of the energy derived from the shear into 4 parts, 3 for the 3

different orthogonal components of the turbulent velocity (<u'Z>, <v'_, <w'='> ) and

one for the potential energy, and iNe further assume a normal distribution of

velocities, we can derive that the variance of any of the velocity components

would be approximately (Woodman and Guillen, 1974; Sato and Woodman, ]982):
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Figure 2 - Schematic profile of the turbulent fluctuating component, u, and

its relationship to &v, the shear component that is randomized by
turbulence
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<u% = 1148(Av)2 (10)

where Bv is the difference in velocities between the top and bottom of the layered

region that went turbulent i.e.

<u'2>= 1/48( L.dWclz )2 (ll)

A normal distribution of velocities is a fair assumption, since it parcel of

fluid is influenced by the superposition in space and time ( velocity is the integral

of force) of many independent forces and the limit theorem applies. This is an

important additional statistical property of the medium with consequences in the

shape of the correlation and spectrum of the signal.

A related subject to that of equations (10) and (11) is that of Richardson's

criteria for stability. It says that a layer is unstable if

Ri = (g d/dz In0)/(dv/dz) = < 1/4 (12)

The criteria can be interpreted as a condition for turbulence to be energetically

possible, namely the available kinetic energy in the shear has to be 4 times larger

than the gain in potential energy after the mixing. This is in agrement with above

arguments.
Some of these criteria can be used to extract hidden information from MST

radar experiments, information that on first thought should not be available.

Woodman and Guillen, for instance, using above relations, assuming that the

original shears are marginally unstable, and from the measured values of the

spectral width, deduced that the turbulent layers in the stratosphere were of the

order of 50 meters, even though the resolution of the instrument was .5 kin. Sato

and Woodman have later validated this arguments by measuring <u'=> and I..=

with the 150 meter resolution 430 MHz radar at Arecibo.

Richardson's criteria tells us that turbulence is energetically possible, but it

does not tell us how it comes about. We need an unstable process that would

make small disturbances grow and eventually brake down into the non-linear

regime that we call turbulence. One such a process is the Kelvin-Helmholtz

instability. The process is analogous to the way wind, blowing on the ocean

surface, peaks a particular wave, that which has a phase velocity equal to the
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wind velocity, and make it grow until it breaks down. In the atmosphere shear

effectively produces a wind that blows with respect to the denser fluid underneath,

it peaks a particular gravity (buoyancy) wave, and makes it grow until eventually

brake into a billow and this in turn into smaller scale turbulence. The phenomena

is confined to the layers within which the process is energetically possible, i.e.
were Richardson's criteda is satisfied.

Turbulence is also possible without shear, if the numerator in equation (12),

that is if the gradient in potential temperature, is also zero or negative. We then

say that the atmosphere is statically unstable. We effectively have a heavier fluid

resting on top of a lighter one, a condition that is definitely unstable (Raleigh-

Taylor instability).

Both processes mentioned above, Kelvin-Helmholtz and Raleigh-Taylor

instabilies, can come about in the atmosphere as a consequence of large

amplitude gravity and lower frequency waves in the atmosphere. These waves

have a velocity field which is transverse to their k . Their k-vector is almost

vertical. It is then possible, as the waves grow in amplitude with height, to

produce almost horizontal shears that satisfy Richardson's criteria. The slight tilt of

the velocity field of the wave is also capable to lift regions of higher (potential)

density above regions of lower density, making them statically unstable.

An often quoted and very important conclusion that has come out of

turbulence theory is Kolgomorov's wave-number spectrum. It says that within a

given range of wave-number values the wave-number power spectra is of the
form

k%(k) = k-_ (]3)

We have place the k= factor on the left hand side to conform with the -5/3 power

law which is often quoted in the literature. The difference comes from the use of

what is referred as the one dimensional ( in three dimensions ) spectrum, in

which the Fourier transformation from r-space to k-space is performed by

transforming in one dimension integrating along the magnitude of r.

The range within which this law is valid is called the "inertial subrange'.

The relationship can be derived on pure dimensional arguments with the
assumption that for scales smaller than the primary energy containing scales, but

large enough so that molecular viscosity does not play a role, there should be a

dimensionless relationship between eddies of different sizes and that they should
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be isotropic. The law brakes down at dimensions close to the largest eddy

possible, and on the other end, at small dimensions where the inertial forces are

comparable to the ones produced by molecular viscosity , i.e. at scales where

molecular viscosity becomes important in extracting energy ( into thermal) from

the eddies. Within the inertial subrange, kinetic energy is cascaded from the

larger to the neighboring smaller eddies.

Kolmogorov's law is isotropic and valid for non stratified media. In the case

of the gravity stratified atmosphere, Kolgomorov's law is valid for the smaller

scales, where potential energy is smaller than kinetic energy. On the larger scale

it fails before it reaches the largest scales. The region between the "outer scale "

and the inertial subrange, where potential energy is significant is referred to as

the "buoyancy subrange'. Not only the -5/3 power law fails; isotropy is no longer

true, gravity, and the unstable phenomena responsible for the larger eddies, have

preferred directions which spoil the isotropic symmetry.
The turbulent state of a fluid is often specified by the outer scale, i.e. the

size of the largest eddies, and the energy dissipation rate, E (e.g. Hocking,1983). It

can also be specified by the outer scale and the velocity variance, the second

being also related to the energy levels involved. Both are theoretically related

through the molecular viscosity of the fluid. We prefer the velocity variance for
MST radar work, since it involves a radar measurable quantity, as compared to a

theoretically derived e, which involves certain assumptions.

For further reading see Batchelor 0953), Tennekes and Lumley(1972),

Bolgiano(1968) and Tatarsky

Relationship between radar _ and atmospheric medium statistics

statistics

The usefulness of a MST radar is based on the close relationship there is

between the statistics of the signal received and the statistical properties of the

atmosphere. It is our intention to show and discuss this relationship, its

implications and limitations. Before we get into this task, let us first review the

statistical nature of the signals received and ways to characterize their properties.

The experimental setup of an atmospheric radar has been covered by the

previous lectures (See also Balsley and Gage,J980). Regardless of the possible

variations of radar systems, it is convenient to think of the signals as a two
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dimensional process, but in which both dimensions have units of time. The idea

is depicted in figure 3. The figure shows radar signal returns for a sequence of

identical pulses. We are showing the signals after filtering and decoding, so we

can still talk about identical pulses even if we have used a complementary pulse

scheme. In one of the dimensions we have the delay time after the time of pulse

transmission. On the other dimension, we have the time of pulse transmission.

The process is discrete in this dimension. We can then represent the signal

received as s(t,t'), where t stands for the (discrete) time at which the pulse was

transmitted, and t' the delay time after the pulse, t' is continuous as an analogue

output of the receiver, but in practice it is also discretized by the sampling and

digital processing. As before we will be careless in differentiating the continuous

vs. the discrete representation of signals.

It is convenient to make a change of variables and replace t' by 21Vc,

where h stands for the radar range defined by the delay t', considering a pulse

propagation at he speed of light, c. We can then write s(t,h) to describe the

signal, dropping the 2Jc factor from the notation for convenience. In this way we

get around the disturbing dependence on two times as independent variables.

The radar signal is intrinsically a non-stationary time process as a

consequence of the non-homogeneous nature of the atmosphere. By writing it in

the form s(t,h) we have converted it into multiple (practically) stationary processes

in time t, one for each range of interest. We can change our notation once more

and write ,%(t) to stress the parametric nature of h. We can now think of h as a

label, labeling parallel processes, one for each altitude.

We know how to characterize a random stationary process: by its

autocorrelation function. If the echoes come from a (practically) homogeneous

turbulence, we can further argue using the limit theorem (sum of many

independent contributors) that the process is Gaussian, in which case all the

information we can extract from the process is in its autocorrelation function.

Gaussian or not, C,(_) is defined as

Ch(_)= E[s,(t)sh(t_)] (14)

A good estimator of C, is <s.(t)s,(t+_)>. where the average has been evaluated by

taking n pairs of sample points. Alternatively. as we have already seen. we can

characterize the signals by its frequency power spectrum. Fh(OO).given by the

Fourier transform of Ch(_). Good estimates of F,(o_) can be obtained from
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Figure 3 - Two dimensional schematic representation of the radar signals.

t is the time of each radar pulse and t" the radar range delay. The

process of interest is Sh(t), i.e. the sampled signal at a given range,

h, as a function of the time t of pulse transmission.
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discrete Fourier transforms of Ch(_) or directly from the sequence by the

techniques that will be described later in the lectures.

So far we have considered in the introduction and the discussions above

that the radar signals received are real. Indeed they are. We live in a real world.

On the other hand, for practical reasons, the signals which originally have a

frequency almost equal to the transmitter frequency are converted to base band.

To preserve all of the information contained in the original signal we need two

converted signals, The so call Q and I components ( see lecture on radar

hardware). It can be shown (e.g. Woodman and Kohl, ]976) that if we form a

complex signal with the Q and I component as real and imaginary component,

everything we have say is valid, if we replace s(t)s(t+_) by s(t)s'(t+_). We can

recover the statistics of the signals before baseband conversion by multiplying the

correlation function by exp(j(oot), where o_ is the transmitter frequency, and then

taking the real part. Any complex phase can then be interpreted as a real phase

with respect to the transmitter frequency. In particular a Doppler shift in the

received signal is manifested as a complex phase of the form o_t in the

converted signal, and as a complex phase of the form o)o_ in the correlation

function.

In the frequency domain, that is in the corresponding frequency power spectra,

the effects are simpler , a spectrum of the form F(o_oo) is converted to a

spectrum of the form F(o)). A Doppler shift shows as a displacement in both.

_relationship

In the appendix we have derived a very general relationship between the

statistical of a radar signal and the statistics of the fluctuations in density ( we

could have used the dielectdc properties, the temperature, electron density or any

other relevant linearly related quantity) of a scattering medium. There, we take the

approach of considering the most general conditions the least amount of

approximations. Particular cases allow further approximations and specific

expressions that one can use in practice to estimate medium parameters or to

discuss instrumental effects. It has the advantage of going from the most general

to the particular keeping good track of the approximations involved and their

limiting implications. Furthermore, it does not take any additional conceptual effort

to derive the most general expression, namely
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C(_, t) = : d3xd'r dt'dt' z(t;t',x) Z'(t+'c;t'+_',x+r)p(r,'_';x) (15)

Cumbersome as it looks, because of the variety of arguments, the expression

represents linear operations involving only two functions of easy interpretation, Z

and p. p is the space- time autocorrelation function of the fluctuations

responsible for the scattedng. It characterizes the medium and depends only on

the properties and dynamics of the medium. The function X,(t;t',x) may be called

the "instrument function". It can be interpreted as the output of the instrument as

a function of time as a consequence of a given arbitrary transmitter output shape

(pulsed or continuous) having placed a point scatterer at point x in space, for an

instant, at time t'. It is analogous to the impulse response of a system, although

here the impulse is in the system characteristics: the scattering density.

The instrument function , Z, includes the pulse shape of the transmitter,

any (amplitude, phase or frequency modulation) coding and decoding, match

filtering , the geometry of the experiment, the transmitting and receiving

characteristics of the antennas and the propagation properties of the medium,

including any refraction if necessary. The determination of p is a statistical

problem related to the physics of the medium, the determination of Z is an

electronics and electromagnetics problem. As far as the characteristic of the

medium, it includes non homogeneous and anisotropic cases. It is also valid for

ionospheric radars includingthe incoherent scatter technique.

Although not discussed here or in the appendix, the approach can be

extended easily to the case the system has two outputs, like in the case of a

radar interferometer. We just replace the product of identical _X'sby the product

Z,_" where the a and b label stand for the outputs of the two antennas, or the

two frequencies in a frequency domain interferometer (Kudeki and Stits, 1987)

At the appendix we have derived expressions which include explicitly the

.transmitter pulse shape, the receiver filter and decoding impulse response, and

the antenna pattern. In order to perform some of the integrations and make

discussion possible, we have also assumed that the scattering volume, defined by

the antenna patterns and the effective pulse width is larger than the characteristic

sizes of the fluctuations, although this assumption can be relaxed if necessary. It

is possible to reduce the complexity of the expressions further, taking

approximations which are valid for specific cases.
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TheMST____case

In the case of MST or clear-air radars it is well justified to assume that

the characteristic time of the medium is much larger than that of the pulse and

matching filter. In that case we can use equation A.15 and write (with a slight

change in notation):

=f • ,C('_,h) d_-_clh' K'=(s,h') _(k,(s),'c,s,h ) p(h-h')p'(h-h'-_) (16)

It differs from the appendix notation in the use of h' for the range (delay) variable

of integration and h for the "range" sampling time. We have also conveniently

selected length units such that c/2 ( half the speed of light) is unity. This allows

us to use h and h' for a spatial as well as a time variable. The coordinate

system of integration is defined by surfaces of equal delay and an arbitrary two

dimensional coordinate, $, in the transverse direction, k is in the direction of h.

The directional dependance of $ on s is shown explicitly. This dependance is

important in the case of anisotropic turbulence and will be responsible for aspect

sensitive effects. The possibility of non-homogeneous turbulence is also shown

explicitly in the dependance of $ on h and s. This is important since it is known

that turbulence occurs in layers thinner than the usual range resolution of the

radar. The formula is valid for mono-static and bi-static radars, and K(s,h) stand

for the product of the transmitter and receiver antenna weighing patterns. The

dependance of K in h is usually stow ( mainly the inverse of range squared ) and

can be taken out of the integral.

It is important to stress the fact that k. is not the variable vector k; it is a

constant vector defined by the vector difference of the incident and the scattered
wave number vectors which characterize the i'ncident and scattered

electromagnetic wave which leaves the transmitter and arrives to the receiving

antenna, respectively. In the case of a. backscatter radar it has a wave number

twice the corresponding wave number of the illuminating wave, and the same
direction.

If we crosscorrelate, as we should, only samples which correspond to the

same range, then we have an expression for the auto correlation of the time

stationary process s,(t) we defined above. This is equivalent to restrictingthe time

of the second sample to be at even multiples of the pulse repetition period. In

which case, since the filtered pulse function p(t) is periodic, i.e. since p(t)=
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p(t+nl'), we can replace the product of displaced p's above by Ip(h-h')l =.

If we further assume that the medium is homogeneous in the transverse

direction s, we get a simpler but yet very general expression for C,(_):

C,(_) = f dZ$ K=($) f dh' _(k,($),_; h') Ip(h-h')l = (17)

Before we continue with the discussion of this equation it is convenient to

make one further approximation, discuss the results and then come back to this

more general expression.

If we further assume that we have a homogeneous atmosphere in all

directions, and that the antenna has a beamwidth much narrower than the

characteristic angular width of any aspect sensitivity which _(k,(s),_) may present,

we can take _ out of the integral and write

or

C(t) = B _(k,,_) (18)

F(c_) = B _(l_,co). (19)

The success of radars to study the atmosphere is based on these simple

formulae. Even in the case that the approximations behind them are not quite

valid, its discussion allows us a first order approximation of the results. We shall

discuss the significance of this equation first, and then remove some of the

approximations that make it valid.

We will discuss only the implications of the terms _ or • on above

equations. Since both expressions are interrelated, we will most of the time limit

our discussions to the time domain expression, i.e equation (]8) and extend it to

the frequency domain (equation (19)) when desirable. We will not discuss the

proportionality term, B, since that is equivalent to a discussion of the radar

equation, which we have already seen in the previous lectures.

The first conclusion we can derive from these expressions is that the

amplitude and dynamics of the radar signal depends lineady on the amplitude and

dynamics of only one Fourier component of the density fluctuations of the

medium, that which has a wave-vector equal in amplitude and direction to twice

(backscatter case )the wave-vector of the probing electromagnetic wave. In

terms of wavelengths, the radar is sensitive only to fluctuations with a wave

length half the wavelength of the probing wave and a direction equal to the line
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of sight. The radar effectively filters out very sharply all the spatial Fourier

components which are not equal to k,. This wave component is still a random

process. Its dynamics is characterized by its temporal correlation function, $(k,,_).

The signal received has the same dynamics as this particular wave component.

The "power" , i.e. the amplitude squared averaged, of the particular wave

component of the density fluctuations the radar is sensitive to, is given by $(k,,0).

Therefore the power of the radar signal is proportionalto the "power" of the same

spatial wave component. Furthermore, if we assume that the k-spectrum follows

a Kolmogorov law, we can indirectly infer the power density at other wavelengths.

If the medium is inrnoble with respect to a frame of reference, in this frame

of reference we can show that ¢(k,t) is real. This is a consequence of the

invariance of p(r, t) under an interchange of r with -r for any t. If it were not

invadant we would violate our inmoble assumption since there would be

dynamically a preferred direction. An observer moving with respect to this

reference at velocity v would measure instead a correlation function of the form

p(r-w, t), as a consequence of a transformation x' = x-vt in the defining equation

(6) for p. Using the displacement theorem of Fourier transform pairs, we derive a

k-spectrum of the form ¢(k, _)exp(-jk,.v_). Replacing this spectral form in

equation (18), and remembering that d_(k,, _) is real,we conclude that the phase

slope of the signal correlation is a measure of the projected velocity of the

medium with respect to the radar. The projection is along k,. In terms of the

frequency power spectrum Fh(m),again using the displacement theorem, we get a

new expression, F,(oP_), where (% is, not surprising,the Doppler frequency,

= k,.v = (vj2C)mo. (2o)

Our next step is to show that the characteristic time of the signal

correlation is determined by the variance, <w'Z>,of the turbulent velocity. This is

better shown in the frequency domain. If the scattering volume is larger than the

largest eddies, we are sure to have a good sample of all possible velocities within

the volume. Normally the eddies are much larger than the wavelength of the

fluctuations the radar is sensitive to. We can then divide the scattering volume

into many scattering sub-volumes. The signal received would be equal to the

sum of each of the contributions of these sub-volumes, each of which would

impose a Doppler shift proportional to its averaged projected velocity w" . This

projected velocity would not differ much from a corresponding local w', since we
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know from turbulencetheorythatmost of the energy is in the largestscale

eddies. Therefore the power frequency distribution( spectrum) of the

backscatteredsignalsisgoingto be distributedinthe same way as the probability

distributionofw'. Itssecond moment, o_,would be proportionalto the variance

ofthe velocity<w'_>,withthe same constantof proportionalityas the one which

relatesthe velocitytothe Dopplershift,butsquared,namely

02= O_o2<Wa>/4C2 . (21)

Furthermore, we have mentioned before that from experimental results as

well as from limit theorem arguments, we expect the random turbulent velocities

to be normally distributed, therefore, we also expect the frequency power

spectrum of the radar signals to be distributed likewise.

A normal frequency power spectrum is defined by three parameters: its

area( total power), displacement and width; or, alternatively, by its three first

moments, it transforms to an autocorrelation function which is also normal,

although complex. The three parameters transform into : the amplitude , phase

slope and width of the autocorrelation function, respectively. That is all the

statistical information either one of them contains, and that is all we should look

for in this case. On the other hand we have seen that they are related to very

important parameters of the medium. In fact, the relation and importance holds

even if normality is not assumed.

Let us come back to the more general equation, (17). The whole

expression can be taken as a weighted averages of _, averaged over all ranges

weighted by the filtered pulse shape squared, and over all angles weighted by the

antenna pattem. In the case of a bi-static arrangement, the averages are taken

over surfaces of equal delay ("range') and over appropriate transverse

coordinates ("angle').

The pulse function is non-zero for values close to h-h'--0 , and a depth

equal to its width after convolving it with the filter function (similar shape for

matched conditions), this means that the range integral is effectively sampling

at h'=h, averaging neighboringvalues within approximately a pulse width.

Similarly, the antenna weighing function is non-zero for values close to the

axis of the beams, and a width given by the beamwidth of the antennas.

If the dependance of $ on s or h is relatively slow as compared to the

width of the weighing functions p=and K=, an average value of _, representative
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of the center point of the sampled scattering volume at range h and center angle

of the beam patterns s= so, can be taken out of the integral. The integrand is

reduced to the two weighing functions, which integrate to a volume V, as large as

the non zero regions of p= and K2, multiplied by the proportionality constants

imbedded in them. The result,

C,(x) = b V $(k,, x; h), (22)

is a proportional expresion as the one in 08) and (19), which we have already

discussed. We have replaced k,(s o) by k,, where I% stands for the

corresponding one at the center of the beam. The only difference being the

explicit linear dependance on the volume, V, and the averaging nature of the

integral operation

An important use of equation (17) is in the evaluation and discussion of

broadening of the spectrum, F(m), as a consequence of finite beamwidth and wind

shear. The evaluation should be done by actually using the equation, and a

model of the medium characteristics and the radar system in the integrand. But, it

is possible to get a feeling of how the broadening comes about by breaking the

integral into the sum of integrals over smaller volumes sufficiently small for

equation (18) to be valid. Each subvolume will contribute to the spectrum with

comparably shaped spectra but with different Doppler shift, 1%.v. The Doppler

shifts would be different either because k, varies in direction within the beamwidth

(beam broadening) or because v varies (shear broadening). The resultant

spectrum would be signiflcally wider if these shifts are larger than the ones

produced by the random turbulent velocities. ( See Hocking, 1983, for further

discussions).

Notice here that it is possible for non isotropic turbulence to have a

dependent on s through its dependance on the direction of k, , that is an aspect

sensitivity. If the aspect sensitivity is wider than the beamwidth, the radar would

be able to resolve it and actually measure the angular dependance, provided of

course that the beam is steerable. If the aspect sensitivity is sharper than the

beam pattem, then the weighing in the integrand will be performed by the aspect

sensitivity function , and the statistics of the echoes will be mainly that

corresponding to the most favored aspect angle. The contributing volume will

also be correspondingly smaller.(See Doviak and Zmic, 1954, for further

discussions).
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Something similar would happen if the h dependance of ¢ is smaller than

the pulse width. The most important consequence being that the volume would

be smaller than that defined by the pulse. Thus, the actual strength of turbulence,

_(k), would be underestimated if the h dependance of $ is not taken into account.

Partia_reftection:

So far we have considered only radar echoes that have been produced by

random turbulent-produced fluctuations in refractive index. It is possible to have

in the atmosphere stratified structure sufficiently large in the horizontal extent as

to be considered deterministic for all practical purposes. In fact, the aspect

sensitivity that has been measured is so sharp that has let some researchers (

R/_ttgerand Liu,19?8 ; Fukao et al,]979; Gage and Green 1978 ) to postulate that

the echoes are produced by partial reflection from stratified gradients. In this

case is more convenient to talk, borrowing from optics, about the raflectivity of the

structure, R. It is a coefficient, defined by the ratio of the intensity of the reflected

over the incident electromagnetic wave, incident on the structure. A formula
often used in the literature to evaluate R is

.J__] --_-znexp(-jk,z) dzR= _-

Recently, Woodman and Chu, 1988, have shown that the limits, !_/2, if they fall at

points where the integrand has not gone to zero on its own, can introduce

artificial discontinuities in the first derivative which overestimate the reflectivity by

many orders of magnitude. Nevertheless, partial reflection is possible if step like

structure of a fraction of a degree Kelvin exist within a length scale of a meter or
so. The existence or not of such a discontinuous structure would have to be

established with an independent technique. The aspect sensitivity observed with

radars can also be explained In terms of anisotropic turbulence at the edges of

the turbulent layers observed with the same technique (Woodman and Chu, 1988).

Characteristics f noise nd clutter interference

Radar echo signals are always contaminated, in variable degrees, with sky

and receiver noise and echoes from undesirable targets, like mountains, other

ground structures, ocean waves, etc.. The latter is referred as clutter. In order to
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properly interpret the desired signals, and be able to discriminate between them

and noise or clutter, we need to know the spectral characteristics of the latter as
well.

Sky and receiver noise, after passing through the receiver, has a

bandwidth determined by the receiver filter. The filter in turn is normally matched

to the transmitter pulse width, or Baud width if coded. The pulse width is a small

fraction of the pulse repetition period, which also determines the sample time of

the sequence s,(t). Therefore, at this sampling rate, the noise samples are

independent. They are also statistically independent with respect to the signal.
Hence, the noise contribution to the autocorrelation function of the received

signals is a Dirac function centered at the origin. Its contribution to the frequency

power spectrum is a flat threshold. It behaves, then as white noise.

The characteristics of ground clutter are the opposite to those of noise.

They are very narrow in the frequency domain and wide in the time domain. To

first approximation clutter shows as an spectral line in the frequency domain,

centered at zero frequency, since it comes from rigid structures with no relative

velocity with respect to the radar. At low VHF frequencies, this is practically the

case. At UHF frequencies, the reported clutter characteristics (Sato and

Woodman, 198I) have two components, an spectral component accompanied by a

weaker narrow, but finite, width component both centered at zero frequency. The

spectral line comes as in the VHF case from the rigid ground structures, the

wider component is believed to come from wind induced motion of tree branches

or from phase modulation of the spectral component induced by changes in the

effective phase path length between the radar and the target. Both are possible.

Changes in the width of this component with different surface wind conditions

support them both. Fortunately, except under very windy conditions, the wider
component is still a few to several times narrower that the width of the

atmospheric echoes and one can discriminate against them (Sato and Woodman,

1981). The task is made easier by its confinement to the center of the spectrum.

Under windy conditions, specially when one is interested in the small vertical

component, ground clutter is a problem at UHF frequencies.

For those radars near the ocean or large lakes, ocean clutter is a source

of interference. It can compete in strength with the atmospheric echoes, specially

at the higher ranges. Ocean clutter comes from wavelets on the surface with a

wave length equal to half the wavelength of radar. It is Doppler shifted by a

frequency corresponding to the phase velocity of the wavelet. This velocities are



140

of the order of a few meters per second, and hence comparable to the

atmospheric velocities we are interested in. This should not surprise us, since

the wavelets are exited by matching velocity components the surface wind speed.

To make matters worse, ocean clutter echoes have spectral widths which are also

comparable to that of the desired echoes (Sato and Woodman, 1982b). Still it is

possible to discriminate against them, taking advantage of the predictable

frequency shift and their constancy - in amplitude and frequency- as a function

of range and time. The problem being limited to those altitudes where the wind

profile crosses the value corresponding to the velocity of the wavelets, and only in

the case its strength is comparable or weaker to the interference.
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APPENDIX

ScatteringofEM Waves fromDielectricDensityFluctuations*

R. F. Woodman
Arccibo Observatory, Arecibo, PR

Radars arc used for remote probing of the upper atmosphere. Monostatic and bistatic
configurations have been used. The echoes arc obtained from the scattering of the illuminating
wave by fluctuations in the dielectric properties of the medium under study.

The fluctuations in the local dielectric constant of a medium are direct consequences of
fluctuations in the density of the medium or, more properly, on the density of that component or
components in the medium responsible for its dielectric behavior, e.g., electron density in an
ionized gas, "air" density and water vapor in the low atmosphere, etc.

In the case the medium is in thermodynamic equilibrium, the fluctuations are reduced to a
minimum (thermal level). In such a case, and for an ionized plasma, we refer to the technique as
incoherent matter. These fluctuations are never at zero level due to the discrete nature of matter
(Summations of delta functions will always produce fluctuations.)

Density fluctuations are statistically characterized by the density space-time correlation
function p(r, x, x) defined as

p( r,x; x) - < n(x,0 n(x + r, t + x) > (1)

where n(x,0 is the microscopic random density of the medium at position x in space and time t. In
(spatially_ homogeneous medium p is independent of x and p(r,x) -=p(r,x, x). . . .

Hagfors has treated the problem of how i'o find _)(x,x) for an ionized medium m
thermodynamic equilibrium (or quasi-thermodynamic for the ca_e T c ¢ Ti). Farley has described
the different techniques for obtaining estimates of p(r, x; x) from the scatter echoes.

We shall develop here the functional rel_tions-hip that exists t)etween the statistical
characterization of the signal received in a radar experiment and the fluctuations in the medium
characterized by p(r, x; x). The fluctuations need not be at the thermal level, so we are not limited
to the incoherent s_'atter_roblem. We should point out'that the usefulness of large radars for me
study of the upper atmosphere is not limited to incoherent scatter. Proof of which is found in the
large number of papers produced by the Jicamarca Observatory by studying backscatter echoes
from E- and F-region irregularities and from turbulent fluctuations in the neutral atmosphere. In
fact, some smaller radars are built (STARE, SOUSY and the TS radars) which depend on the
enhanced rcflectivity produced either by instabilities or turbulence. This could be the case in
EISCAT when observing auroral phenomena or the effects of artificial heating. It will also be the
ease when studying neutral dynamics using backscatter signals from turbulent fluctuations.

Said functional relationships can be found in the literature but it is usually derived from
very simplified conditions with assumptions which are not necessarily valid. The derivation is
usually heuristic and in many cases difficult to assess the range of validity of the derived
expressions. Such approach is, of course, useful for didactic purposes and when the purpose of
"the paper is on other aspects of the problem. Derived expressions in the literature are usually
derived for a specific technique (out of the many described here by Farley) and for specific
conditions (e.g., homogeneous media, continuous illumination, slowly varying echoes, narrow
pulses, etc.). We shall derive here the functional relationship between the statistical properties ol
theechoesand thestatisticalpropertiesofthemedium underverygeneralconditions.

*Lecture presented at the M.P.I. EISCAT School, January 1979, Oberstdorf, W. Germany
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We shah consider an experimental configuration as depicted in Figure 1. The medium
under study is illuminated by an EM wave of frequency w o, modulated by an arbitrary complex
signal p(t), mattered EM waves are received at a different location (or at same as a particular case),
coherently detected, properly filtered and decoded (if necessary). We are interested in evaluating
the complex autocorrelation of the signal received, O(0, i.e.,

C(x,t) -- < O(t) O* (t + '0 > (2)

in terms of the space and time density correlation of the medium.
The signal O(t) is a random process, usually nonstationary, is fully characterized by its time

autocorrelation function C(x,t). The dependence on t can normally be associated with a given
range, h, corresponding to the delay.

We assume: (1) that there is only primary scattering (first Born approximation valid), i.e.,
the medium is transparent, the illuminating field at a point x within the medium is due to the
primary illuminating field and the scattered fields at x are negli-gible; (2) the system is linear, i.e., if
Ol(t) is received for Pl(t) and O2(t) for P2(t). The-ctOl(t) + _O2(t) is received for an excitation
ctpl(t) + 5 P2(t). The linearity of the propagation in the medium is guaranteed by the linearity of
Maxwell equations.

The linearity of the system allows us to evaluate the output signal as the linear
superposition of the contributions of each differential volume, d3x with density n(x,t). This
differential contribution can be evaluated in terms of the linear operators depicted in Fig_e 2. Here
we have modeled the propagation of the transmitter to the scattering point by a delay operator with
delay Tl(X) and an amplitude factor Kl(X ) which represent the effect of antenna gain and other
system pa.Tameters. The scattered signal is proportional to the local instantaneous (random) density
n(x,t) of the medium times the volume d3x. The dielectric properties of the medium, the receiver,
antenna, and other propagation properties-are contained in a constant gain (in time) K2(x). There is
a delay block with delay T2(x), a detector and a filter before we finally get our output from the
differential contribution from-n(x,t). The filter is characterized by the complex input response h(t)
and includes any decoding scher_e. Decoding is a convolution operation and can be considered as
part of the filter.

The evaluation of the delay functions Tl(x), T2(x) and the constant terms Kl(X), K2(x )
does not concern us here and are assumed to be-known7 The output of the system can then be
written as

t'

o(t,x)d3x = d3x J dr" K(x) p(t' - T(x)) e-i WoT(X)n(x,t" - T2(x))h(t - t') (3)

where we have already operated on the "signal" with the delay operators _(t - Tl(X) and
8(t - T2(x)). Here we have used T(x) = Tl(X) + T2(x ) for the total delay and-K(x) = Kl(X ) •
K2(x ). The total signal output is then- - -

O(t) = _ d_ o(t,x) (4)

and the autocorrelation, C(z,t) - < 0(00*(t + '_) >, can then be written as:
r

C(x,t) -- J d3x d3x'dt'dt'"K(x) K(x') p(t'--T(x)) p*(t'---T(x)e -i Wo(T(x.)- T(x'))

• h(t - t') h(t + x - t") p[x" - x, t'" - t" - (T2(x) - T2(x')); x]

It is convenient to wfim this expression in terms of variables

(5)

r --xt-x

x" = t" - t"
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Figttre 2.



146

f
C(x.t) = J d3x d3r dt' dx' K(x) K*(x + r) p(t" - T(x )) p*(t" + x' - T(x + r))

• e-iWo(T(x) -T(x+ r)) h(t - t') h*(t + 't - t'- _') p[r,'t' - (T2(x) -T 2 (x + r)); x]
~ (_)

This expression is simplified considerably if we take advantage of the fact that in most cases the
characteristic length of the density correlation function, rc, (equal to the Debye length in the I.S.
case) is much smaller than the characteristic length of K(x) and the characteristic length, ct_
corresponding to the width of the pulse p(t). This allows us t-oreplace K(x + r) by K(x) and p(t'-'
T(x + r)) by p(t - T(x)) in the integrand with no appreciable effect on the i_teg_al. ~

Also, the difference in propagation time T2(x) - T2(x + r) is of the order of rJc for points
within a correlated volume. This is much smaller-than the"chaTracteristic time of the decay of the
correlation function unless one is dealing with relativistic plasma. Therefore we can ignore this
term in the time argument of the correlation function. In addition, the oscillatory nature of the
exponential, with a wavelength comparable to the wavelength of the probing wave, makes the
integrand unsensitive to any possible long scale structure of the correlation function across the
surfaces of constant T.

Furthermore, the almost linear behavior of T(x + r) on r for [ r I < rc allows us to linearly
expand T(x + r) in the exponent around x and write: ....

woT(x + r) -- wo T(x) + WoV r T(x) • r = w o T(x) + k(x) • r (7)

where k(x) = kl(X) - k2(x), and kl(X) and k2(x) are the local wave number of the incident and
scatter_ wave,-re'_pecta'_eTy. WithWthi'sapproxrin'_ationwe can write:

t"

C(%t) = J d3x dt'd_" K2(x) p(t' - T(x)) p*(t' + x' - T(x))

• h(t - t') h*(t + 't - t' - z') _(k(x), _'; x) (8)

where p = (_, x; x) is the spatial Fourier transform of p(r, x; x) defined by
I"

x)=Jd3r e-i_ • r (r,x; x) (9)

Notice that as far as r is concerned, x can be considered as a constant parameter. Also notice that
the output of the exp_'iment dependS'only on the Fourier component evaluated at a particular set of
wave numbers k(x), which for most cases is a constant. It is equal to 2k 1 in the backscatter case.
Equation (8) is_ general expression we are after;, it involves only tw_basic assumptions and one
approximation regarding the length scale of p(r). It can be used as the starting point for simpler
expressions applicable to the particular cases.

Next we consider a few particular cases as illustrative examples.

Case 1. Continuous excitation.

In the case of a cw bistatic experiment, e.g., the French incoherent scatter radar, we have
p(t) = a, where a is a constant.

In such a case the output of the experiment is time stationary and the correlation function,
C(x) = C(x,t), is given by

P P

J J
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where the second integral is the usual convolution of the correlation function of the input signal to a
filter by the autocorrelation function, (_hll(X) of the filter characteristic. The spatial integral
represents a weighted average of the contributions of each differential volume, weighted by the
beam patterns of the antenna (and the 1/R2 dependence). For homogeneous media and constant
k(x) = k, the spatial integral is independent of p and defines a volume, V, and we have

t

C(x) = a2K2 V J ^ " 'p(k,'c)Ohh(X-X )dx (I I)

The above equations, if expressed in the frequency domain, take an even simpler form where the
convolution integral is transformed to a product of frequency functions.

Case 2. Filter time scale smaller than characteristic time of p.

In this case the integrand is different from zero for small values of the argument of h(.),
i.e., when

t _ t r

"c_*x" + t'-t

Thus, p(k(x), x'; x) can be taken out of the x' integral evaluated at z" = z. We can then write (8) as

-IC(%t) = d3x K2(x) _(k(x), _; x) _(t-T(x)) _*(t + '_ -T(x)) (12)

where _ is defined as
/,

_(t) = J dt'p(t') h(t- t') (13)

that is thepulse shape passed through the filter or decoder. In optimum designs h(t) is identical to
p(t), and _(t) is then the autocorrelation of the pulse shape. In multiple pulse experiments the filter
is identical to a pulse element of the sequence and _(t) is a sequence of autocorrelated pulses.

Surface of constant delay, T = T(x), can be used as one of the variables of integration
(e.g., range in a backscatter case with plane wave fronts) and a suitable set of two transverse
coordinates, s, for the remaining two. We can then write:

d3x = d2s cdT (14)

where c is the local phase velocity of light taken to be a constant for simplicity, d2s is a surface
differential. Equation (2) then takes the form

C(x,t) = c f dZs f dT K2(s,T) _(k(x), x; s,T) _(t - T) p-*(t - T + x) (15)

Case 3. Backscattering from a (quasi-) homogeneous andisotropic medium.

This case illustrates the effect of decoding and filtering on .the dependence of the
autocorrelation function. The assumptions involved allow us to replace 15(k(x), '_'; x) by O(k, x )
and to take it out of the spatial integral. For quasi-homogeneous cases we c"an-take _k, "_;x)-with
the value it has at the center of the volume, which corresponds to the particular delay i" of the
measurement. Therefore we will write pt(k,x') to extend the generality.

We can also perform the spatial integral in terms of the variables s and T. Only K2(x) is a
function of s and we can perform the integral with respect to this variable. If K 2 is a factorXvhich
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groups all the dimensional factors in K2(x) then the spatial integral gives us K2A(T), where A(T) is
an equivalent area defined by the s dependence of the beam pattern. On most cases of interest A(T)
is a slowly varying function of T_',slower than the pulse length and can be taken out of the integral
evaluated at the sampling delay t. Considering the above we write equation (8) as

C(x,t)=CK2A(t)fd'gdt'dT_t(k,x')p(t'-T)p.(t'+'g-T)h(t-t')?(t+'c-_,-t ")
= CK2A(t)fd_'pt(k,x') _dt' h(t-t')h*(t-t' + "r-x')fd'r p(t-T) p*(t+ _'-T)

(16)

or

C(x,t) = CK2A(t) f d'_" _t(k, x') Opp (_') 0hh ('t - "() (17)

where Opp (x) is the autocorrelation function of the pulse shape and Ohh ('t) the autocorrelation
function of the fdter and decoding system.

Illustrative Examples

In order to gain a better understanding of the significance of the formulas derived for cases
2 and 3, we have constructed Figures 3 and 4, respectively, corresponding to two often used pulse
schemes. Case 1 does not need an illustration since in this case the spectrum of the signal received
is just the product of the spectrum of the medium with the systems filter characteristics.

Figure 3 depicts the different shapes of the functions involved for a double-pulse
experiment, in a backscatter mode, in which two narrow pulses are sent, "q apart. In this case the
experiment provides information on the correlation function ¢¢t(k x'), at only one delay, x = Xs,
corresponding to the pulse separation. In practice the correlatioff function is evaluated only at this
delay. To obtain the value of the correlation function at other delays, another pair of pulses is sent
with the proper spacing.

Notice that C(x,t) is different from zero only in the vicinity of Xs, the useful part, and in the
vicinity of x = 0 corresponding to a power measurement. Such power measurement is not useful
since it contains not only the contribution from the desired height but also the "self-clutter"
contribution from t - x s, as illustrated in the two-dimensional plot of _(t - T) ff*(t - T + x).

Multiple pulse schemes can be illustrated in a similar fashion, the main difference being that
several correlation delays can be estimated in a single sequence and that the self-clutter is larger and
coming from several different altitudes.

Figure 4 illustrates the case in which a long pulse (as compared to the medium correlation
times) is sent. The receiver impulse response is narrow and considered square for the sake of
simplicity. Two effects are clear from the picture, the medium correlation function is multiplied by
a triangular function, Otto(z), and the result convolved with a narrower function, _hh(X), given by
the self-convolution of tie filter input response.
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Data Acquisition and processing

Toshitaka Tsuda

Radio Atmospheric Science Center, Kyoto University

1 INTRODUCTION

This chapterisdevotedto describingfundamental methods ofsignalprocessingused in

normal MST radar observations.Complex time seriesof receivedsignalsobtained in

each range gate areconvertedintoDoppler spectra,from which the mean Doppler shift,

spectralwidth and signal-to-noiseratio(SNR) are estimated.These spectralparameters

are furtherutilizedto study characteristicsofscatterersand atmosphericmotions.

Sinceitisbeyond a scopeofthisnotetodescribegeneraltechniquesdevelopedinradar

engineering,readersareencouragedtostudy a comprehensivetextbookson modern radar

techniques such as Cook and Bernfeld [1967], Barton [1976], Skolnik [1981]. Fundamental

and advanced techniques of digital signal processing are also summarized by Gold and

Rader [1969] and Bendat and Piersol [1971].

Detailed descriptions of clear air radars operating at frequencies ranging from VHF

to a microwave are given by Gossard and Strauch [1983] and Doviak and Zrnid [1984].

General MST radar techniques are also reviewed by many authors [e.g., Gage and Balsley,

1978].
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2 RECEIVER HARDWARE

Fig. 1 schematically shows the simplified structure of an MST radar system and the flow

of received signals. A VHF or UHF sine wave carrier generated by a stable oscillator is

modulated by a rectangular pulse with a width of a few microseconds. This is commonly

called a pulsed continuous wave (CW). The transmitted radio wave is backscattered

toward the radar. The radar echo is fed to a receiver system through a TR-switch that

protects the receiver from damage caused by the high power of the transmitter during

the transmission. The received RF signal, which is usually a replica of the transmitted

signal, is pre-amplified by a radio frequency (RF) amplifier. The RF signal is mixed with

a coherent local (LO) signal and is down-converted to an intermediate frequency (IF)

signal.

After maximizing the peak-signal-to-noise power ratio in the IF amplifier, the IF

signal is detected by a quadrature detector, which produces a time series of sine and

cosine components of the received signal. The detected signal is finally converted to

digital signal by an analogne-to-digital (AD) converter, then transferred to a digital

signal processing system.

The pulse may be compressed by phase modulation, which is decoded before or after

the AD conversion by a.,_ analogue or digital correlator, respectively.

3 MATCHED FILTER

The IF-amplifier is generally regarded as a filter with gain, which should be designed to

maximize the peak signal-to-noise power ratio SNRp. Note that the peak signal power

defined here corresponds to the maximum instantaneous power, and not to the integrated

signal power within the bandwidth. Thus, the SNl:tp is not equal to the SNR, which is a
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ratio of the integrated signal power to the integrated noise power within the bandwidth.

The latter is used in later sections.

• : ". _.._,?,_%,.': •" L,o$=,_,;.. "':-v. • o _OT
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Fig. 1. Block diagram of a typical MST radar system, together with signal waveforms.
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Fig.2 shows typical frequency spectra of a pulsed CW signal with a width (duration)

r and of noise. The former is approximated by

(sin(2_r]/2) _2
. (1)

where ] is a frequency normalized by l/r, while the noise can be considered to be white,

i.e., its intensity is statically independent of frequency. Although the received signal

contains many Fourier spectral components, the receiver amplifies only components that

are within a finite bandwidth.
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Fig. 2. Frequency spectrum of a pulsed CW signal (top panel) and white noise

(bottom panel). The frequency is normalized by the inveme of the rectangular pulse

width.
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Fig. 3 shows the integrated power of the signal and noise spectra shown in Fig. 2

as a function of double-sided bandwidth B. Since noise spectral density is distributed

uniformly in the frequency range of the signal, the integrated noise power is proportional

to the receiver bandwidth B. On the other hand, the signal power increases rapidly when

B is small, then approaches a constant value as B becomes larger.

When B is considerably narrower than the bandwidth occupied by the signal, the

signal energy is not effectively detected by the signal processing, although the noise

energy is reduced. On the other hand, if B is wide compared with the signal bandwidth,

extraneous noise is introduced by the excess bandwidth, which lowem the output SNRp.

Thus, there is an optimum bandwidth depending on the signal spectrum.
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Fig. 3. Integrated power of the signal (upper curve) and noise (lower curve) spectra

shown in Fig. 2. The bandwidth is a double-sided frequency range.
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The optimum filter is obtained by applying a matched filter design [e.g., Barton, 1976;

Skolnik, 1981], which is generally defined as a network whose frequency-response function

is matched to the pre-filter signal spectrum in order to maximize SNP_p.

The frequency-response function of the IF-amplifier H(f) specifies the relative ampli-

tude and phase of the output signal with respect to the input when the input is a pure

sinusoid. For a received signal voltage spectrum S(f), H(f) for the matched filter can

be expressed as

g(f) = GaS'(f) exp(-i27r fQ) (2)

where G, and td are the gain of the network and the time delay. H(f) is the complex

conjugate of the signal spectrum except for a phase shift due to the time delay.

As a result, the normalized amplitude spectrum of the matched filter, which corre-

sponds to the filter passband characteristics, is the same as the anlplitude spectrum of the

signal, but the phase spectrum of the matched filter is the negative of the phase spectrum

of the signal plus a phase shift proportional to frequency. By using phase spectra Cs(f)

and CH(f) for the signal and matched filter, respectively, Eq. (2) can be rewritten as

follows:

Ig(f)l = ]S(f)l

eft(f) = -¢s(f) + 2_fta (3)

Specification of the optimum receiver characteristics involves the frequency-response func-

tion and the shape of the received waveform, v/hich is usually a replica of the transmitted

signal spectrum. The transmitted signal spectrum is usually tapered from the spectrum

of a rectangular pulsed CW in order to suppress harmonics and spurious transmission.

Therefore, the matched filter design largely depends on the transmitter characteristics.

It is often impractical to construct the exact matched filter. If the signal wave form
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is a rectangular pulsed CW, to simplify the filter hardware the matched filter for the

IF-amplifier is approximated by a band-pass filter (BPF). The optimum IF bandwidth

BjF is the order of 1/r. More precisely, it can be shown that BjF should be 1.4/r for

the optimum rectangular filter.

4 OUTLINE OF A DIGITAL PROCESSING SYSTEM

Fig. 4 shows the flow of the signal processing for a digital signal transferred from the

receiver. This processing can be done either in real-time or in an off-line computation,

depending on the capability of the system-installed computer system.

RECEIVEDSIGNAL J
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RANGING(SAMPLING) J

I
COHERENT INTEGRATION_TIME-DOMAIN AVERAGING) I

I
I SPECTRAL ANALYSIS_FOU_IERTRANSFORM)I

I
I INCOHERENT INTEGRATION_seEcre_ AV._ULUING)I

J
ESTIMATION

1
ESTIMATION

................ i .................

DOPPLER SHIFT

SPECTRAL WIDTH

Fig. 4. Flow diagram of a typical digital signal processing system.
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The sampled digital signal is arranged as a function of a round-trip time from trans-

mission to reception, which is generally called ranging, and is coherently integrated in

order to increase a signal-to-noise ratio SNR. The complex time series of the received

signal is Fourier transformed into Doppler spectra. After incoherently averaging the

Doppler spectra, the noise level is estimated. Spectral parameters such as the SNR,

mean Doppler shift and spectral width are estimated from the Doppler spectra. They

are usually stored in a mass storage system for further analysis of radar reflectivity, wind

fields and turbulence parameters.

5 RANGING

For a monostatic pulse radar, the distance, or range R to the scatterer from the radar

becomes

R = cTR (4)
2

where c is the speed of light c = 3 x 108 m/s, and TR is the time interval between the pulse

transmission and detection. The denominator 2 appears in (4) because TR corresponds to

the round-trip time interval for radio wave propagation over the range R. In convenient

units (4) becomes

R(km) = 0.15TR(ps) (5)

Fig. 5 schematically shows a time-height chart between the range and the round-trip

time interval for a radar echo. The interval t_pp between successive pulse transmissions

is called the inter-pulse-period (IPP), and the corresponding frequency is called the pulse

repetition frequency (PRF). Normally MST radars are operated with uniform IPP, which

is, for an example, set equal to 1 ms in Fig. 5. Hm in Fig. 5 is defined as C$1pp/2.
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The SNR is linearly dependent on the average transmitted po_ver in the IPP. There-

fore, in order to increase the SNR, the IPP should be as short as possible when the pulse

length and peak transmitting power are fixed. On the other harld, a sufficient length of

time must elapse after a pulse is transmitted in order to receive all of the radar echoes

before the transmission of the next pulse. Thus, the IPP is determined primarily by the

longest range at which targets are expected.
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Fig. 5. Time-height chart for MST radar observations when when IPP is 1 ms. Thick

and thin solid lines correspond to propagation of transmitted and scattered radiowaves,

respectively. The received signal is sampled 10 times with equally spaced range gates as

indicated by the dash lines. The dot-dash lines show a second-time-around echoes due

to ionospheric scattering.
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If the IPP is too short, echo signals from some targets might arrive after the trans-

mission of the next pulse, as indicated by the dot-dash lines in Fig. 5. These echoes from

a range greater than Ctlpp/2 are received during the same interval that as echoes from

targets nearer than Ctlpp/2 return echoes from the next pulse. As a result, instead of

their actual range R, they appear to have a range R - H,_ or R minus a multiple of H,_.

This ambiguity in the ranging is called a range aliasing. Signals that arrive after the

transmission of the next pulse are generally called second-time-around (or multiple-time-

around) echoes. The range H,, is called the maximum unambiguous range, beyond which

targets appear as second-time-around echoes.

w
LO
Z

Oc

EFFECTIVE IPP "-_ ....

BEAM 3

3

N

W E

5

PIP, P -"i 1 1 I I I
T_ME

Fig. 6. Time-height chart for an MST radar whose antenna beam is steered every

IPP into three directions as shown in the right panel.
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For normal MST radar observations, clear air echoes are usually detected at heights

lower than 100 km, which corresponds to tlpe = 667ps. So, the IPP is usually set equal

to less than 1 ms. Then, echoes scattered from the ionosphere would be received as shown

in Fig. 5. These can be considered as a kind of multiple-time-around echoes, although

characteristics of radar echoes are fairly different between the first and multiple-time-

around echoes. The normal ionospheric echoes are much weaker than the clear air echoes

and have much a broader spectral distribution, therefore, they may instead act as a

white noise added to the normal cosmic noise. Although range-aliased ionospheric echoes

increase the noise level, depending on the electron density, they do not usually present

a large problem in estimating the spectral parameters of the Doppler spectra when the

SNR is significantly large.

However, the intense radar echoes that are sometimes received from ionospheric irreg-

ularities such as sporadic E layers or meteor trails may seriously contaminate the clear

air echoes. In such cases, t,ep should be made large enough to remove the range aliasing.

Another way to weaken the effects of range aliasing is to change the antenna beam

direction between every pulse. Fig. 6 shows the time-height chart for an MST radar that

is steered sequentially into three directions, eastward, vertical and southward, denoted 1,

2 and 3. Thus, the effective IPP in each beam direction becomes three times the original

IPP, which is usually large enough to remove the multiple-time-around echoes from the

ionosphere. Of course, this technique can only be used with a directionally agile radar

such as the MU radar [Kato et al., 1984].
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6 RADAR SAMPLING VOLUME

Normal MST radar observations assume that the volume illuminated by the radar antenna

beam is filled with scatterers. Fig. 7 schematically shows transmission and reception of a

purely rectangular pulse with a width r. The leading edge of the transmitted pulse covers

distances from z0 to zo + cr/2, while the tail end of the pulse goes from Zo - CT/2 to Z0.

In total, the sampling Volume extends from zo - cr/2 to Zo + cr/2 with a thickness of cr.

The right panel in Fig. 7 shows that the weighting function of the sampling volume has

a triangular distribution partly overlapping the weighting function of the adjacent upper

and lower sampling volumes. The range resolution is usually expressed as cr/2, which

corresponds to the half power width of the weighting function.

TX-PULSE _ RECEIVED SIGNAL WEIGHTING
TIME FUNCTION

Fig. 7. Time-height chart and sampling weight when a rectangular pulse is transmit-

ted.
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The effective direction of radar echoes is usually assumed to be aligned with the

antenna bore-sight direction. Therefore, the height of the radar sampling volume can

be calculated by multiplying the range times cos8 as shown in Fig. 8. In the vertical

direction, the height resolution is the same as the range resolution. On the other hand,

since the sampling volume for an oblique antenna beam is inclined to the horizon, the

vertical distance between the highest and lowest points of the sampling volume is usually

larger than the range resolution. That is, ARcos8 is not necessarily equal to AH as

shown in Fig. 8.

/

Fig. 8. The sampling volume for an oblique antenna beam.
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The actual shape of the sampling volume depends on the exact shape of the transmit-

ted pulse and antenna gain pattern. Fig. 9 shows an example of the weighting function at

a range of 10 km when the pulse length and half-power, full-width antenna beam width

are 1 p.s and 3.7 °, respectively. In order to optimize the range resolution, the pulse width

should be as short as possible within the limitations of the radar system. However, the

height resolution in oblique directions may not be improved by shortening the transmitted

pulse width when the antenna beam is not narrow enough.

So far we have assumed that radar scatterers are uniformly distributed in the radar

sampling volume. In the real atmosphere, scatterers are sometimes horizontally stratified

in layers with thicknesses thinner than the sampling volume. When these thin layers

are distributed unevenly in the sampling volume, the effective antenna direction becomes

different from the antenna bore-sight direction, which causes an en'or in converting from

range to altitude [e.g, Fukao et al., 1988; May et ai., 1988].
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Fig. 9. The sampling weight for MU radar observations when the transmitted pulse

width and half-power, full-width beam width are 1 #s and 3.7 °, respectively.
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In the lower stratosphere scattering from stratified layers is usually not isotropic, but

has characteristics of specular reflection. In this case, the effective antenna direction is

determined by the product of the antenna pattern and the angular distribution of the

reflectivity. This usually biases the beam direction toward the zenith. [e.g., R_ttge_,

1981; Tsuda et al., 1986].

7 COHERENT INTEGRATION

The detected quadrature signals are usually integrated for many pulses in order to increase

the SNR. This digital signal processing is called a coherent integration, which requires

that the phase of successively received signals be consistent with that of the local reference

signal.

Before proceeding to a discussion of the effects of the coherent integration, it might

be useful to review briefly the concept of a x2-distribution, which is commonly used in

expressing noise power characteristics. We first assume that a random variable x has a

Gaussian probability distribution function, expressed as

] x 2

a(x)= _ exp(--_-) (6)

where the mean value and standard deviationare assumed to be 0 and i,respectively.

When intensities of x are integrated M times as

y= z_+z_+z]+...+z_, (7)

it can be shown that y has a )_2-distribution given by

(y/2) M/2-1 exp(-y/2) (8)
b(y) = 2F(M/2)
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where F(M/2) is defined as

M
F(M/2) = (y - 1)! (when M=even integer)

M_I)(M_2). 1

(when M=odd integer and M>3)

= V_ (when M=I)

The mean value/_ and standard deviation a of the xLdistribution are

(9)

#=M

a = _ (10)

Therefore, when the square of a random variable is intega'ated M times, the resultant

mean value is increased by M, where M is called the degrees of freedom of the X2-

distribution. It is noteworthy that the ratio between the standard deviation and mean

value is

o" _ (11);=
which means that after M of integrations, as in (7), the distribution about the mean

becomes narrower.

Now we investigate the increase of the SNR after coherent integration. If Nc coherent

signals with the same SNR are integrated, the resultant signal amplitude becomes N

times that of a single value, therefore, the signal intensity is increased by N_.

On the other hand, when uncorrelated noise amplitudes are integrated over Nc sana-

pies, the resultant noise power can be expressed by (7). Because we can assume that the
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noise amplitude has a Gaussian distribution, the noise power follows the x2-distribution

with degrees of freedom equal to No, so that the integrated noise power is increased by

No. As a result, coherent integration over Nc pulses improves the SNR by Arc.

Coherent integration corresponds to digital filtering with a boxcar weighting in the

time domain. The signal power spectrum after coherent integration becomes the product

of the original IF-signal spectrum and a weighting function expressed as

(smC2-z l12-T571 (121

where At = N3lpP.

In order to increase the $NR, the number of coherent integrations should be selected to

span the intervai over which the received signals are phase coherent with each other. There

are two effects that make the integration time finite: movement of the scatterers relative

to each other within the radar sampling volume, and the mean motion of scatterers

relative to the radar due to background wind fields.

The relative motion of the scatterers is estimated by the con'elation time, which is

defined as the half-power width of the auto-correlation function of the received signal.

It depends on the radar wavelength, antenna beam width and altitude [Gossard and

Strauch, 1983] and becomes of the order of 0.1 to 1 sec for MST radat_ operating at VHF

or UHF (radar wavelengths ranging from 0.1 to 10 m).

As described later, the inverse of the coherent integration time corresponds to half of

the maximum frequency range of the Doppler spectra. Therefore, the integration time

should be short enough to determine unambiguously the maximum radial wind velocity.

This condition usually puts a practical limit on the length of the coherent integration.
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8 DOPPLER VELOCITY

As shown in Fig. 4 the main procedure of digital signal processing is Fourier transforma-

tion of the time series of the received signal constructed at each range gate after increasing

the SNR by coherent integration.

For a monostatic radar, signals received from stationary targets have time indepen-

dent phase ¢ = -2_r(2R/A)+constant, where _ is the radar wavelength. If R increases

with time because of the radial component Va of the motion of the scatterer, the phase

decreases and the time rate of change of phase becomes

de 4_r dR 47:
d'--_= A dt ---_Ya =--27rfD (13)

which appears as the Doppler shift from the carrier frequency of the scattered radiowave.

The Doppler frequency shift is related to the radial Doppler velocity as

A
VR = _fo (14)

The shift is positive for motion toward the radar.

In the earth's atmosphere the horizontal wind velocity can range up to about 100 m/s

near the peak of jet streams, while the vertical wind speed is only of the order of one tenth

to a few m/s. Thus when radial wind velocities are sampled at zenith angles of 10 to 30 °,

they can be as large as 10 to 50 m/s. The Doppler spectrum should be constructed by

taking into account the wind velocity resolution and the maximum unambiguous velocity.

9 DISCRETE FOURIER TRANSFORM

Tile Fourier transform F(f) of an infnite time series X(t) is defined as

/:F(f) = X(t)e-i2"l'dt (15)
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where ] is the frequency. An actual signal processing system treats only a finite time

series that is discretely sampled N times at intervals of At. Thus the total length of the

time series is Tm= NAt.

Fig. 10 shows three sinusoidal oscillations with slightly different frequencies. The

vertical lines indicate sample timings. The oscillation plotted by the dashed CUlWehas a

frequency f_ = 1/(2At), which is half of the sampling frequency. When an oscillation

has a frequency lower than fN, it can be detected if the sampling is continued long

enough, while oscillations with frequencies higher than f_ cannot be correctly estimated.

In order to specify completely a sinusoidal oscillation, at least two sampling points are

needed within one cycle of the oscillation. Therefore, f_, called the Nyquist frequency, is

the highest frequency that can be unambiguously measured in a discretely sampled time

series.
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Fig. 10. Three sinusoidal signals with frequencies lower (solid), equal to (dash) and

higher (dot-dash) than the sampling frequency. The sample timings are indicated by the

thin vertical lines.
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The Fourier transform of a discrete complex time series X, (n=0 to N-l) is usually

approximated by a finite series of harmonic functions, called a discrete Fourier transform.

The coefficient of the k-th harmonic component Fk (k=0 to N-l) is defined as

1 N-I

Fk = _ _ X,W "k (16)

while the time series of data X, (n=0 to N-l) can be recomposed as

N-1

x. = F_, w-"k (17)
k--0

exp(- i2r At ) i27r.
W = T,, = exp(--N--)

where

(18)

Note that Fk+N = Fk-N = Fk, because W N = 1; that is, the width of the unambiguous

frequency range of a discrete Fourier transform is 21N. Doppler spectra are usually

plotted in a frequency range from --.fN to fN. The frequency resolution of a discrete

Fourier transform then becomes 2fN/N = 1/(NAt) = 1/T,,.

10 FREQUENCY ALIASING

We demonstrate in this section that a time series X, sometimes cannot be related to a

unique frequency because of the finite sampling resolution. We assume three oscillations

with different frequencies. The dot-dash line in Fig. 11 shows an oscillation with a

frequency of 0.BIN, while the solid and dash lines correspond to 2.SfN and -1.2f;v,

respectively, which differ by 2fN in the frequency domain. When these three oscillations

are sampled at the same timings indicated by the vertical lines, they produce the same

data time series. This effect, which occurs when frequencies of signals are separated by

all integer multiple of 2fN, is called a frequency alia.sing.
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If there are signals with frequencies outside of 4-f_, they contaminate the signal within

:t=f_v. However, because the weighting function of the coherent integration has the filter

pass characteristics described by (12) and also plotted in the center panel in Fig. 12, the

intensities of the components outside of 4-f_ are significantly reduced, as shown in the

bottom panel in Fig. 12. It should be noted that the power spectral density_within 4-/_

is also reduced because of the weighting. Note also that when the spectral width is large

the mean Doppler shift is slightly shifted. This is due to the asymmetric weighting of the

signal spectrum by the coherent integration.
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Fig. 11. The same as Fig. 10 except that the frequencies are at 0.8 (dot-d_h), -1.2

(dash), and 2.8 (solid) times the Nyquist frequency (after Doviak and Zrni_, 1984).
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Fig. 12. Schematic diagram of frequency aliasing. The top panel shows Doppler spec-

tra of three signals with center frequencies at 0.8fN (solid), --1.2fN (dash) and 2.8fN

(dot-dash), where fN is the Nyquist frequency. The center panel is the weighting func-

tion due to coherent integration, while the bottom panel shows the resultant spectrum.

Vertical solid lines indicate the limits of the frequency range, while the dash line is at 0.8
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II FAST FOURIER TRANSFORM (FFT)

Some recent MST radars have installed an array processor which is suitable for a large

matrix calculations such as the discrete Fourier transform shown by Eq. (16). Most of

them utilize a sophisticated technique called fast Fourier transform (FFT) [Singleton,

1967] in order to reduce computation time in analyzing the Doppler spectra.

Equation (16) indicates that N 2 multiplications are required to calculate a discrete

Fourier transform. However, when N is a power of 2, part of the computation can

be eliminated by using the characteristics of harmonic functions. For example, when

N = 8 = 23, (16) becomes

NFk = Xo + X,W _ + X_W _ + X3W ak + X4W 4k + XsW 5k + XsW sk + XTW 7k

= (Xo + X2W 2k + X4W 4k + X_W 6k) + (XIW k + XaW a_ + Xs1V sk + X71'V rk)

= ()Co + X2W 2_ + X4W 4k + _6W e_) + Wk(Xx + XaW 2k + XsW 4k + X_W e_) (19)

which can be further rewritten as

N/2-_ N/2-_
Fk = __, X2tW sk + w k _ X_+,W ''k = Gk + W_Hk (20)

I=0 I=0

Note that G_ and H_ are a matrix with a size of N/2. Therefore, total number of matrix

computations becomes 2(N/2) 2, which is reduced by a factor of 2 from (16). If N/2 is

again a power of 2, then Gk and Hk can be further divided into smaller matrices to further

reduce number of calculations. When N is a large power of 2, it can be shown that the

total number of additions and multiplications to calculate an FFT increase approximately

as N log 2 N and ½N log 2 N, respectively, which is significantly less than N 2 when N is

large. The basic idea of the FFT can also be applied in cases when N is expressed by a

mixed radix [Singleton, 1967].
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12 INCOHERENT INTEGRATION

AND DETECTABILITY

A typical Doppler velocity spectrum is shown in Fig. 13, which was observed by the MU

radar in the lower atmosphere at a zenith angle of 10 °. The horizontal axis corresponds

to the radial wind velocity, while the vertical axis shows relative power spectral density.

The signal is the broad enhancement centered at about 9 m/s, and the peak signal

spectral density is indicated by Ps. Random fluctuations spread in frequency ranges

located at the left and right of the signal are due to white noise with a mean value and

standard deviation of Pn and aN, respectively.
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Fig. 13. A typical example of a Doppler velocity spectrum taken by the MU radar.

The peak signal spectral density is indicated as Ps, while the noise level and standard

deviation of noise are denoted as Pn and an, respectively.
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The detectability of a Doppler spectrum can be defined as

D= Ps (21)
O'S+N

where Ps is peak spectral density of the signal spectrum, and o'$+N is standard deviation

of spectral densities. When the fluctuation of the signal spectral densities is much smaller

than that of the noise, (21) becomes

D = Ps (22)
UN

which is more commonly used as a definition of the detectability [e.g., Gage and Balsley,

1978; Balsley and Gage, 1980].

The noise spectral density has a x2-distribution with 2 degrees of fl'eedom, because the

noise spectral density is a summation of the squares of the real and imaginary components

of the amplitude spectrum, which are assumed to have a Ganssian distribution.

For a single spectrum aN is equal to P_. When Doppler spectra are integrated

incoherently by averaging Ni times, the mean values of the spectral densities of both

the signal and noise are not changed. But, oN/PN becomes 1/V/-_i according to (11),

because N_ incoherent integration of the noise produces a x2-distribution with 2N_ degrees

of freedom. As a result, D is increased by V'_.

Fig. 14 demonstrates the effects of incoherent integration by using a numerical simu-

lation. The signal portion is not clearly recognizable in the spectrum plotted in the top

panel in Fig. 14, which does not include any incoherent integration. On the other hand,

the signal spectrum becomes easily visible in the bottoln panel, which is the result of 20

incoherent integration. In normal MST radar observations, spectral parameter estimation

can be done reasonably well when D is larger than about 3.
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Fig. 14. Doppler spectra produced by a numerical simulation. The top panel shows

a single spectrum, while the bottom panel shows a spectrum after 20 incoherent integra-

tions.



177

13 NOISE LEVEL

In explaining Fig. 13 we have defined Pn as the mean value of the x_-distribution of

the noise spectral density. A correct estimate of Pjv, commonly called the noise level,

is important in determining SNR, from which the characteristics of the radar scatterers

such as reflectivity or reflection coefficients are derived.

Since a x_-distribution approaches a Gaussian distribution as its degrees of freedom

becomes larger, a simple averaging of noise spectral densities might give an estimate of

the noise level. However, the simple mean could be easily biased toward larger values due

to spurious enhancements of the noise power by radio interference or airplane echoes.

Another estimate of the noise level can be obtained by taking the median values of

the noise spectral densities. A median filter is more insensitive to spurious enhancements

than simple averaging, and therefore it gives a more reliable estimate: Nevertheless, since

calculation of the medians needs a large memory area and significant computation time,

it cannot be practically realized in a real-time data processing systems.

We here introduce a convenient method to estimate the noise level, which can also

be applied to determination of the echo power profile of incoherent scattering in the

ionosphere [Sato et al., 1988]. First, we need to pick up a portion of Doppler spectra

that includes only noise, and separate it into I(m sub-sets each of which includes I(_

spectral points. Second, in each sub-set the noise spectral densities for I_'o data points

are averaged. The resultant value follows a x2-distribution with the degree of freedom of

2I(a. Repeat this process I(m times for all of sub-sets and get a series of averaged noise

spectral densities. Finally, among these I(,, determinations we need to find the minimum

value P.,.

For any distribution Q(x) in order for a to be a minimum, the other K,,-1 events
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must have a value larger than a, whose probability/3 becomes

/3= K,_(Z _ Q(x)dx) A.-1 (23)

where the factor I(m appears because we do not specify the order of occurrence of the

events.

The expectation of the minimum value can be given by calculating the first moment

as follows

/: >K-(Z I- ( >e = _ o_ x x /_'-ldo_ 24
OO

When Q(x) is a normalized Ganssian distribution with a mean value and standard devi-

ation of 0 and 1, (24) can be simplified to

e = f: c_Q(a)K,,l (1- Erf(-_2))dc_

where Err is the error function defined as

Er f (y) = --_ foY exp(-t2)dt

(25)

(26)

Note that e is always negative, since it is the expectation of the minimum value for the

normalized Gaussian distribution with zero mean.

In our case Q(x) is a x2-distribution with 2I(o degrees of freedom, whose mean value

and standard deviation are P_ and PN/vt_. However, when I(, is large enough, it

can be approximated by a normalized Ganssian distribution. In this approximation, the

x-axis must be normalized by the standard deviation and displaced by the mean value.

In summary, e for the normalized Ganssian distribution can be related to P,, as

which is further modified to

P., = P_, -lel_ (27)

P_
P2v = 1 -lel/_-'_. (2s)
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Since the denominator of (28) is a constant for fixed Km and K°, P_ can be estimated

by a simple computation when P,,, is determined from observed Doppler spectra.

The SNR is defined as the ratio between the integrated signal and the noise power.

If the signal spectrum is approximated by a Gaussian distribution with a peak value and

standard deviation of Ps and as, the SNR becomes

vl_a s Ps

SNR.= PNBD (29)

where BD is the bandwidth of the Doppler spectra.

14 OBSERVATION PARAMETERS

We need to obtain a Doppler spectrum with large SNR and detectability in order to

estimate easily the spectral parameters such as the SNR, mean Doppler shift and spectral

width. Likewise, we need to take into account the effects of range or frequency aliasing

so as to remove ambiguities in the range and velocity measurements.

Fig. 15 schematically shows the relations among observation parameters. The IPP

is proportional to the maximum unambiguous range of the obse_,ation H,,,. The time

interval At of samples after coherent integration should be determined in order for the

Doppler spectra to include the maximum radial wind velocity V,,, expected in the observa-

tion height range. The number of coherent integrations N_oh, which is the ratio At/IPP,

is required to be as large as possible to improve the SNR; that is, IPP should be as short

as possible, and At should be as long as possible.

The velocity resolution AV of a Doppler spectrum in c/s is equal to the inverse of

the maximum time length T,, of the data samples. The number of FFT points NEff,

which is determined by dividing T,, by AT, needs to be a power of 2. Since AV does not
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necessarily correspond to the velocity resolution of a spectral parameter estimation, AV

could be adjusted in order to get an appropriate value of NEff.

H m V m

IPPocH m1 ' I PT+-'I2Vm AVI At=_

\/
N coh =

\/

Fig. 15. The relations among observation parameters. H,, mad V,_ are the maximum

range and radial velocity, respectively. At is the interval of data sampling. The minimum

unit of the Doppler velocity spectrum is AV, while T,, is the total length of data samples.

AT corresponds to a time resolution of Doppler spectra. Nc,_, Nrrr and N_,¢ are the

number of coherent integrations, FFT points and incoherent integrations, respectively.
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The time resolution At of the spectral parameter estimation ranges from a few minutes

to several hours, depending on the time scale of the phenomena to be detected by the

MST radar observations. The number of incoherent integrations N_,c is the ratio of AT

to T,_, which is required to be larger than about 10. Because the observation parameters

are closely related to each other, we may need some experience to find a set of optimum

observation parameters.

This chapter is concentrated on the description of basic concepts of the digital signal

processing used in normal MST radar observations. The author hopes it will contribute

to the understanding of Doppler spectra and stimulate further MST radar obse_vations.
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TO MIDDLE-ATMOSPHERE RADARS
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Case Westem Reserve University, Cleveland, Ohio 44106

1. Introduction

The first Doppler radar observations of waves and turbulence in the

stratosphere and mesosphere were reported in VHF experiments conducted

at Jicamarca, Peril by Woodman and Guill6n [1974]. Doppler radars at

frequencies near 450 and 50 MHz, and lately even at 2-3 MHz, continue to be

used in extensive studies of middle-atmosphere dynamics. They are

collectively called MST radars in view of their ability to probe parts of the

Mesosphere-Stratosphere-Troposphere region [Balsley, 1981; RSttger,

1987]. Information about the dynamics of the medium - in terms of its bulk

velocity (v) along the radar axis, spread (or) in this velocity due to turbulence

and background wind shears, and on the intensity of refractivity fluctuations

(Cn 2) induced by turbulence - is obtained from the low-order moments of the

power spectrum density of radar signals. The moments of the power

spectrum density may also be obtained equivalently from its Fourier

transform, the autocorrelation function, often with reduced computations.

Indeed, the latter method was used in the early experiments at Jicamarca.

Nearly simultaneous Doppler observations along three or more beams allow

measurements of the bulk velocity vector. The measured velocity

perturbations are indicative of atmospheric wave-like phenomena. Velocities

along coplanar beams, symmetrically offset from the vertical, provide a

direct measurement of the vertical momentum flux in the middle amaosphere

[Vincent and Reid, 1983]. Power spectrum density is once again of interest in

data analysis of time series {v[k]; k= 1,2,3...K } of velocity components v, as it

yields information about gravity-wave events [Rastogi and Woodman, 1974]
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and on the almost turbulence-like ensemble of atmospheric waves [Balsley

and Carter, 1982].

In this lecture we review the correlation and spectral analysis methods for

uniformly-sampled stationary random signals, estimation of their spectral

moments, and briefly address the problems arising due to nonstationarity.

Some of these methods are already in routine use in atmospheric radar

experiments. Others methods based on the maximum-entropy principle and

time-series models have been used in analyzing data, but are just beginning to

receive attention in the analysis of radar signals [Klostermeyer, 1986]. These

methods are also briefly discussed.

We begin with a recapitulation of random signals (or processes) in Section 2.

Several definitions used in the later sections are also introduced here. The

nature of radar signals, with several different sampling time scales, and the

contribution of unwanted components e.g. system noise and ground clutter, is

outlined in Section 3. In Section 4, white Gaussian noise is used as a

prototype to illustrate the salient statistical properties of the periodogram,

obtained via the squared discrete Fourier transform (DFT). Use of the time-

averaged periodogram to estimate the power spectrum density (PSD or

power spectrum) of a wide-sense stationary signal is also discussed. In

Section 5, methods for estimating the autocorrelation function (ACF) as

lagged-product sums, and indirectly through the DFT, are introduced. We

emphasize in Section 6 that, for nonstationary signals, the time-averaged

periodogram may give a severely distorted estimate of the power spectrum

and is not simply related to the true ACF via the Fourier transform. Use of

windows or normalized weighting functions to improve the statistical

properties of the PSD estimates is discussed in Section 7. The need for

windowing and trend removal in spectral analysis of nonstationary signals,

"and the consequences of coherent integration are also discussed. Spectral

parameters or moments can be estimated either directly, or by fitting an

assumed shape (e.g. Gaussian or Lorenzian) to the spectral components by

using a minimum mean squared error criterion. These fitting methods are

discussed in Section 8. An efficient way of estimating the spectral moments

from derivatives of the ACF at zero lag is discussed in Section 9. Limitations

of this two-pulse technique, so called as a sequence of two closely-sapced
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pulses suffices for obtaining the ACF derivatives, are also noted. Finally,

high-resolution spectral-analysis methods based on maximizing the entropy

for given ACF or data values, and through autoregressive moving-average

models of the time series, are briefly introduced in Section 10.

2. Random Signals: Recapitulation and Definitions

In this section we review the salient concepts for wide-sense stationary

random signals and introduce the definitions of the autocorrelation function

(ACF), the power spectrum density (PSD) and spectral moments, and the

notion of an estimate. An overall familiarity with the material of this section

is assumed. The following recapitulation serves also the purpose of

introducing the notation and other definitions used later. Further details may

be found in standard engineering texts on random processes [e.g. Davenport

and Root, 1958; Papoulis, 1983] and signal analysis [e.g. Steams, 1975;

Oppenheim and Willsky, 1983; Brigham, 1988].

Random Signals Suppose we perform some chance experiment E with

outcomes and events def'med as points (_) and subsets in a sample space S. A

random signal or process g(t,_) is a mapping of these points _ to real

functions of some independent variable, usually taken as the time (t) or some

spatial coordinate. The dependence on _ is usually implied, hence g(t,_) is

often written as g(t). By a random process g(t) we mean the ensemble of all

time functions {g(t,_)} with chance outcomes _ in the sample space S [see

Fig. 2.1]. For a given t, g(t) is merely a random variable. Associated with the

random process g(t) are the joint probability density functions of successive

orders at times (tO, (h,t2), (tbt2,t3) etc.. This allows one to form statistical

averages or moments of various products such as g(tl), g(h)g(t2),

g(t0g(t2)g(t3) etc.. Statistical averaging implies averaging over the entire

sample space, i.e. over the ensemble {g(t,_)}, with respect to an appropriate

probability density function.

Stationarity An important class of processes that we deal with has joint

densities and averages that do not depend on the choice of the time origin.

Such random signals are called statistically stationary, or simply stationary.

The statistical average or expectation E[g(t)]=l_(t)=_ of a stationary process



187

S, sample space ofa chance
experiment E

p-

as an ensemble

t!

-T/2

Random process g(t)

-FI g(t,(l)

g(t, (31

t 2

FIGURE 2.1. A random process g(t) as an ensemble of time functions

corresponding to the outcomes (4) in a sample space (S) for some chance
experiment E. A suitable probability assignment is def'med over S. Averages
may be defined in two different ways as discussed further in the text. The

time average m(_n) of a realization g(t,_n) is obtained by averaging it over a
time window (-T/2,T/2) which is eventually made infinitely wide. The

ensemble average g(t) is obtained by statistical averaging at some fixed time t

over all realizations. If the process is stationary and ergodic, then g(t) is

independent of t, m(_n) is independent of n, and the two averages are equal.
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g(t), evaluated with respect to the density function associated with it at time t,

does not depend on t. Its ACF is the second moment defined as the expectation

Rs(h,t2)=E[g(tl)g(t2)]=Rg(t2-h)=Rs(x) of the product g(tl)g(t2) of its values

at times t_ and t2=tl + x, and it depends only on the time lag x=-t2-tl. In a strict

sense, stationarity requires that similar conditions should hold for the joint

probability densities and moments (or correlations) of all orders. We limit

ourselves only to wide-sense stationary processes for which stationarity holds

for any two times (tl,t2), the average value ix8 is a constant, and the ACF Rs(x)

depends only on the time lag x.

Time Averages and Ergodicity A single realization or sample function

g(t,_) may be averaged in time over an interval (-T/2,+T/2) or (0,T) of

duration T. In a time averaged sense, the mean value of g(t,_) may be

obtained as m_.r(_) = <g(t,_)>-r and its ACF as r_.r(x) = <g(t,_)g(t+ x,_)>-r.

Higher order averages may be similarly defined. The dependence on the

interval duration T is removed by letting it become infinitely wide in the

limit. In this limit, < >r is denoted by < >. We then find that the time averages

ms(_) and rs(x,_) depend on the identity _ of the realization. Do time averages

equal statistical averages? Usually not, but if they do then we say that g(t) is

an ergodic process. An ergodic process must also be stationary. For an

ergodic process, moments can be obtained as time averages over just one long

(ideally, infinitely long) realization, as though different segments of the

realization correspond to different members in the ensemble. The concept of

ergodicity originated in statistical mechanics where it holds well for systems

with a large number of molecules. Ergodicity is a useful assumption for

atmospheric radar signals, but it is often quite difficult to verify.

Gaussian Processes A Gaussian process is one for which the first, second,

and higher order probability density functions are jointly Gaussian. These

processes are of interest for several reasons. First, it follows from the central

limit theorem that a linear combination of many statistically independent

identically distributed random variables tends to become Gaussian. In

atmospheric radar experiments the scattered signal often arises from many

small independent scatterers, hence its probability density functions

approaches Gaussian. Exceptions occur when there are only few dominant

components, due e.g. to coherent reflections from facets of turbulent layers
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or from irregular terrain. Second, the joint probability density functions of

any order for a Gaussian process can be expressed in terms of a correlation

matrix R, i.e. from a complete knowledge of its ACF. Finally, uncorrelated

Gaussian variables are also statistically independent. This implies that if the

ACF Rg(x) of a zero-mean Gaussian random process g(t) vanishes for x > xo'

then successive segments of a realization g(t,_) over windows (0,T),

(T,2T) .... etc of duration T >> xl become uncorrelated, therefore statistically

independent. In essence, a Gaussian process whose ACF has a finite ,support is

also ergodic. Uncorrelatedness does not usually imply independence for non-

Gaussian random variables and processes.

Complex Processes In radar experiments, the low-pass receiver output z(t)

following coherent detection is a complex signal in the following sense. It

comprises an in-phase part x(t) after demodulation the received signal with a

reference carrier cos(2_ot), and a quadrature component y(t) after a similar

demodulation with the orthogonal reference -sin(2rffot). Since both x(t) and

y(t) exhibit random fading, the signal z(t)=x(t)+ty(t), where t=q-1, can be

regarded as a complex random process [see e.g. Papoulis, 1983, or Miller,

1974]. The probability density of z(t) is simply the joint density function of

{x(t),y(t)}. Higher-order densities are similarly defined as joint densities of

x and y at times (tl,t2), (h,t2,t3), etc. Statistical averages of a complex random

process are defined with respect to these densities, but may also be evaluated

as time averages under the ergodic assumption for a stationary process. Then

the mean or average of the process z(t) is a complex constant (_+trl). The

autocorrelation function may then be obtained in either of the following

equivalent ways

Rz(x) = E {z(t)z*(t+x) } = rz(x) = <z(t,;)z'(t+x,_)> [2.1 ]
Rz ensemble average (independent of 0, rz time average (independent of 4)

where * denotes the complex conjugate. Different ordering of the lagged

term and conjugation gives three other forms, but we use the one above. The

signal power Pz defined as <z(t)z*(t)> is real, but the autocorrelation function

Rz(x) is generally complex. It may be expressed in the cartesian form as

Rz(x)=Rzx(X)+tRzy(X), or in the polar form as Rz(x) = IR_(x)I exp{t_(x )}. It is

readily seen that R,(x) has a Hermitian symmetry, i.e.
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Rz(x) = R_(-x) [2.2]

which implies that its real part R=(x) and magnitude IRz(x)l are even, but the

imaginary part R_v(x) and phase Oz(x) are odd in the time lag x.

The Wiener-Khintchine theorem relates the ACF R_(x) and the PSD Sz(f) of

z(t) as a Fourier transform pair (see e.g. Whalen, 1971; Miller, 1974),

Sz(f)= B {Rz(x)}= ___ Rz(x)exp(-t2rrfx)dz [2.3]

Rz(x)= Bl {Sz(f)}= Sd0 exp(12rffx)df [2.4]

The signal power or variance Pz=<Z(t)z*(t)>=Rd0) is obtained by integrating

the PSD Sdf) over the entire frequency range. Since the power in each

frequency band (f,f+Sf) must be real and non-negative, we infer that the PSD

Sz(f) must also be real and non-negative everywhere.

Periodogram Each realization of the complex random signal z(t) is a

deterministic signal. We assume that it has a Fourier transform Z(f). Its

energy spectrum is obtained as Edf) = IZ(f)l 2. By the Rayleigh energy

theorem, the signal energy can be obtained either as the time integral of lz(t)l 2

or as the frequency integral of IZ(f)l 2. It follows that for signals of finite

power Pz, the PSD Sdf) may alternatively be obtained as the time average of

IZ(f)l 2 over an interval (0,T) as T becomes infinite. Signals with infinite

energy or power may be handled by including generalized functions e.g. the

Dirac impulse. Consider now a truncated signal zT(t) which is zero outside

the interval (0,T). Then

T-113[ZT(t)]I2 = T-IIZT(f)I2

and the right hand side has properties similar to the PSD Sdf). It is called the

periodogram or sample spectrum. The time-averaged periodogram is often

used as an estimate of the power spectrum. The importance of periodogram

in power-spectrum estimation of uniformly sampled signals is due mainly to
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the availability of efficient Fast Fourier Transform (FFT) algorithms for

computing the DFT [see e.g. Cooley et al. 1977; Brigham, 1988]. As we see

later, the use of time-averaged periodogram as a power-spectrum estimate

requires several assumptions which do not always hold for atmospheric radar

signals and data.

Spectral moments Radar signals scattered form the atmosphere are slightly

Doppler shifted due to bulk atmospheric motions, and also undergo a

Doppler broadening due to local fluctuations in the bulk velocity. In the

absence of other components in the complex signal z(t) at the receiver

output, the PSD Sz(f) has a symmetric off-center peak. The area under the

peak corresponds to the signal power Pz, its location or center frequency fez

to the Doppler shift fa, and its width ar_ about the center frequency fez to the

Doppler frequency spread Crw.We note that, except for normalization to unit

area, the PSD Sz(f) shares all the properties of a probability density function.

Hence the location parameters that we seek may be derived from spectral

moments, defined almost identically to the moments E{Q k} of a random

variable Q, with respect to its probability density function fQ(q).

The first few noncentral spectral moments of z(t), denoted here by sz(O),sz(1),

sz(2) are are obtained by averaging fo, fa, and f2 with respect to its PSD S_(f)

over all frequencies. The zeroth moment s_(O)is the same as signal power Pz.

Sz(f)/Pz is then a probability density function. The location parameters fcz and

squared width (or_)z are obtained in the sense of mean and variance (or the

second central moment) of S_(f)/P_. These may also be derived by

transforming s_(l) and s_(2) as follows. First, Sz(l) and s_(2) are normalized by

dividing with sz(O) i.e.

Sz (1) -'-) Sz(1)/Sz (0) =fcz and sz(2)_ sz(2)/s_(O).

Next sz(2) is modified as

s_(2)_ [sI2) - {s_o)}2]= (0..)2.

A Doppler shifted peak of Gaussian shape Pz N(fcz,Or,2) is fully specified by

the (central) spectral moments Pz, fez, and on 2 as shown in Fig. 2.2.
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FIGURE 2.2. Power spectrum density and the corresponding spectral

moments for an off-center Gaussian spectral peak. Parameters Pz, fez, and ocz

define the shape of the peak through its area, center frequency and standard
deviation. These parameters also correspond to the zeroth, first and second
order normalized spectral moments sz(_, szO), and Sz(2) interpreted as signal
power, Doppler frequency shift and Doppler frequency spread. Note that the

frequency spread is Ocz, whereas Sz(:) equals (o=)2.
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If the signal z(t) at the receiver output contains components other than the

scattered atmospheric signal, then extra steps may be necessary to relate Pz,

fez, and o_z2 to the signal power, Doppler shift and Doppler spread of the

scattered signal. Finally, just as the moments of a random variable may be

obtained from successive derivatives of its characteristic function at the

origin, it is possible to infer the spectral moments via the autocorrelation

function.

Estimation In statistical signal and data analysis we frequently estimate a

random quantity 0 by some function O(0x,02,.. 0n) of n data points 0t,02,.. 0n.

There can be many possible estimates of 0, e.g. 01,0,,.. 0._ etc. We prefer

those that satisfy some reasonable properties viz. unbiasedness, minimum

variance, and consistency. An estimate 0 of 0 is unbiased if the statistical

average E[0-fi] of the bias or error e=0-0 is zero. An unbiased estimate 0, on

the average, neither overestimates nor underestimates 0 i.e. E[0] = E[O]. Of

all the available estimates, we also prefer the one(s) whose variance var 0 is

minimum. It may often be justifiable to use a biased estimate, if it has lower

variance. Finally, when the number m of data points is made infinite, we

should expect var 0 to approach zero, otherwise taking more observations

would be futile. In that case we say that the estimate 0 of 0 is consistent. It is

often possible to obtain a theoretical lower bound on the variance of an

estimator using the Cramer-Rao inequality of statistics. An estimator that

meets this bound is called an efficient estimator.

3. Nature of Radar Signals and Radar Data.

Essential statistical characteristics of sampled radar signals and time series of

derived velocity data are summarized in this section. Choice of a suitable

spectral-analysis scheme depends critically on these characteristics and the

sampling time scales. We also take a first look at the rudiments of spectral-

analysis methods using the DFI'.

In radar experiments, an amplitude and/or phase modulated pulse train is

transmitted in which each pulse has the form p(t) exp(t2rrfot) at a carder

frequency fo. The carder term is removed in coherent demodulation, in
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which the received signal is effectively multiplied with exp(-t2rffot). The

receiver should optimally have a bandpass frequency response to match the

modulated pulse shape p(t). Hence the receiver bandwidth B about fo is

decided primarily by the the correlation width Tp of the pulse shape p(t). A

simple way of defining Tp is as the distance between points at which the

magnitude of the ACF Rp(x), defined as <p(t)p*(t+x)>, becomes 1/2 Rp(0).

Roughly, it corresponds to the smallest modulation time scale in p(t). Then

Tp is nearly equal to the pulse duration for amplitude-modulated pulse trains,

but it is approximately equal to the baudlength Tb for binary phase-coded

pulses used in high-resolution experiments. The receiver output is sampled

in range with a time resolution Tr, which should be somewhat less than Tp to

avoid undersampling. Typically, Tr is 1-10 _ts for a nominal range resolution

of 0.15-1.5 km.

The pulses p(t) in the pulse train are repeated at an interval T_, typically

about one ms. The fading rate of the received signal is related to the nominal

Doppler frequency shift. It is, nevertheless, very much smaller than the

Nyquist frequency of -500 Hz implied by TI. The complex signal z(t) is

therefore coherently accumulated or integrated, range by range, over I

successive pulses to obtain an effective sampling time T=I.TI. Typical value

of I may be 100 in VHF experiments and 10 for the UHF case. The receiver

output signal is thus sampled in time as the function of two indices, j and i

denoting range and time. After coherent integration, the index i is changed to

k corresponding to the coarser time scale T=I.TI. As the signals are analyzed

separately for each range, in our subsequent analysis we need only consider a

single complex time series z[k]. A range index j and a sampling time T are

then implicit.

The complex series z[k] not only includes the scattered atmospheric signal

s[k], it also comprises a wide-band noise component n[k] due to the system

and sky noise, a very slowly fading ground clutter term c[k] due to sidelobe

returns from terrain, vegetation, weather etc., a sporadic interference

component i[k] due to unwanted transmitters in the receiver passband, and

possibly a residual d.c. or drift d[k] due to slow changes in the receiver

circuits. The drift term d[k] is easily removed. Due to the intermittent and
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sporadic nature of the unwanted interference, its identification and treatment

is done on an ad-hoc basis. The only remaining terms are s, n, and c. The

ground clutter component c[k] is the most problematic of these as it is often

nonstationary over the measurement interval.

The signal z(t) is sampled in time as z[k] = z(kT). The frequency range for its

PSD Sz(f) is then limited to the Nyquist interval F=(-0.5T-1,+0.ST-I). Any

components of Sz(f) outside F are aliased or folded back into it. Tl-fe aliasing

effect is most clear-cut for the wide-band noise component n(t), originally

limited by the receiver bandwidth B >> T -1. Hence the noise component is

aliased many times over. The eventual effect is to impart a nearly flat or

white-noise platform to Sz(f), even when n(t) is nonwhite. The slowly-fading

ground clutter component should be manifest in S_(f) as a near d.c. or very

low-frequency spike. This would be true if the measurement interval were

either too small or too large compared to the typical fading-time for the

clutter. We see later in section 6, that the clutter component usually appears

as an f.2 platform in the PSD estimate.

Only a finite number K of signal samples z[k] is generally available for

spectral analysis. The limitation on K is due to finite memory or storage in

the on-line processor. An intermediate step in estimating S_(f) is the K-

sample discrete Fourier transform (DFT) of z[k]. The DFT pair is defined as

K-I

Z[m] = FK{z[k]} = _'_ z[k] e-t2nkm/K where m=0,1 .... [K-l] [3.1]
k=0

K-I

z[k] = F_{Z[m]} =1_ Z[m] e+t2r'kn_ where k=0,1..,[K-1] [3.2]
Km_-o

The DFF converts K time samples of z[k]=z(kT) to K samples of its Fourier

transform Z(f), evaluated at equispaced frequency points in the Nyquist

frequency range F as Z[m]=Z(m/KT). The effect of sampling in the time

domain is to render Z(f) periodic outside the Nyquist range. Conversely, due

to sampling in the frequency domain, z(t) is also treated as periodic, with a

period KT. Thus both z[k] and Z[m] are periodic K-point sequences. Full

implications of time and frequency sampling in the DFT pair, and its
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equivalence to the continuous Fourier transform, has been discussed by

Brigham(1988). The sampled signal z[k] has a finite power, but infinite

energy. It can be shown that the following form of Parsevars relation holds

for z[k] and Z[m],

K-1 K-1

Iz[kll2 =1 _ iZ[mll 2
k=o K m=O

[3.31

The use of DFT in estimating the PSD, Sz(f'), by time-averaged periodograms

is examined in the next section.

Spectral analysis of derived parameters, e.g. the time series of a velocity

component v[k], is also of interest here. We note that v[k] are samples of a

real random process, and the index k denotes either the time or some spatial

coordinate with a basic sampling interval. The power spectrum Sv(f) often

shows a power-law decay of the form etf--_with a spectral index 13.Here f may

be a temporal or a spatial frequency. The power-law shape must be limited at

the low-frequency end by some frequency fu, else the power in v(t) may

become infinite for some 13.Unless the frequency fL is fully resolved, its

effect is manifest in v[k] as a non-stationary trend, similar to the ground-

clutter component c[k] in the radar signal z[k]. Implications of such trends in

spectral analysis are discussed in Section 6.

4. Time Averaged Periodogram Analysis

The sample spectrum or periodogram Pz(f) of a complex signal z(t) has

been briefly discussed in section 2. Suppose the signal z(t) is first truncated

over an interval of duration D, and Zo(f)=3 {zo(t)} is the Fourier transform

of the truncated signal zo(t). Then the periodogram Pz(f) is defined as

Pz(f)= Di IZD(f)I2 [4.1]

In the uniformly-sampled case, zD(t) is available at K sample points spaced an

interval T apart over a total duration D=KT. For simplicity denote these

sample values by the sequence {z[k], k--0,1 .... (K-I)}. The DFT F{z[k]} of
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this sequence is another complex sequence {Z[m], m=0,1 .... (K-I)}. The K

points in Z[m] have a frequency spacing (KT) -1 or (D) -1 over the entire

Nyquist frequency interval +l/(2T). The rightmost point Z[K] is excluded as

it equals Z[0] by periodicity. The periodogram in the sampled case is defined

in analogy with eqn. [4.1] as

Pz[m] = K11Z[m] 12 [4.2]

The sum of Pz[m] over all m, after scaling with the frequency spacing (KT)%

gives the signal power Pz. The distinction between the symbols used for the

periodogram Pz[m] and the signal power Pz should be noted.

In the limiting case we expect that the statistical average of the periodogram

will approach the PSD. This actually gives a physically reasonable altemative

definition for the PSD,

Sz(f) = E { limD_.._ D1IZD(012}
[4.3]

The above asymptotic equality will not hold for periodogram estimated from

samples of a single short realization. Hence we briefly state the statistical and

sampling properties of the periodogram defined in equation [4.2] as a PSD

estimator. Further details may be found in Blackman and Tukey(1958),

Cooley et al. (1977), Koopmans (1974), Marple (1987), and Oppenheim and

Schafer(1975).

The periodogram can be computed at any continuous frequency f. The signal

z(t), however, has been trtmcated beyond the interval (0,D) or, in effect, a

rectangular window has been applied to it. Hence ZD(0 is obtained by the

convolution of Z(0 with the window transform D sinc(fD). Then IZD(f)12 is

similarly obtained by convolving IZ(f)l 2 with D2sinc2(fD). The convolving

functions are modified slightly for K equispaced samples of z(t); the sine

function is now replaced with the Dirichlet kernel sin(m'TK)/sin(m'T). Those

frequency component in IZ(012 that fall exactly at a sampled frequency

point, when convolved with sin2(nTI'K)/sin2(m'I$, produce a null response at
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all other sampled frequencies. Hence the periodogram values at the sampled

frequencies tend to be uncorrelated, provided that the signal z(t) does not

have significant intermediate frequency components that fall in-between two

adjacent sampled frequencies. This fact has an important beating in PSD

estimation for signals with a strong clutter component, or with a power-law

PSD. We also see later that this gives a singularly irregular appearance to the

periodogram.

To simplify our discussion of the statistical properties of the periodogram,

we assume that z(t) = Zx(t) +t zv(t) is a zero-mean, complex Gaussian noise

with variance a 2 and a white or flat PSD. The signal power Pz then equals the

variance _2 and is divided evenly between the real and imaginary parts Zx(t)

and zv(t) of z(t). With samples at time spacing T, the PSD Sz[m] should equal

GET. Since the DFT Z[m] is a linear combination of sample values z[k], it

follows that Z[m] is also zero mean and Gaussian. From the definition of

DFT given in eqn [3.1] and using uncorrelatedness of adjacent samples of

white Gaussian noise, it can be verified that var{Z[m] } = K_ 2 and it is evenly

divided between the real and imaginary parts Zx[m] and Zv[m] of Z[m]. We

are interested in the statistics of IZ[m]l 2 = {Zx[m] }2 + {Zv[m] }2. We note that

a chi-square random variable Xn2 with n degrees of freedom (d.o.f.) is

obtained by quadratically adding n statistically independent zero-mean

Gaussian random variables from a density N(0,s2). It has a mean ns 2 and

variance 2ns 4. It follows then that IZ[m]l 2 has simply a chi-square density

with two d.o.f.. An alternative and simpler way of arriving at the same result

is to note that IZ[m]l has a Rayleigh density, hence tZ[m]l 2 has an exponential

density, which is the same as the chi-square density with two d.o.f.. Hence

E{IZ[m]I2}=Ka 2 and var{IZ[m]12}=K2o-4.These results for the mean and

variance of IZ[m]l 2 are only slightly modified when the convolutional effect

of the Dirichlet kernel is properly conside/'ed, and are valid at least locally in

the limit of large K.

With the sampling interval T included, and by noting that the area under the

periodogram Pz(f) must equal the signal variance Pz=a2, we see that Pz[m] is

an asymptotically unbiased estimate of PSD Sz(f) at the sampled frequencies,

with an average value cr2T and a variance o_T 2. As its variance remains
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independent of the sample size, Pz[m] is an inconsistent estimate of the PSD.

The standard deviation of the periodogram is o2T, same as its mean value.

We recall that the periodogram values at adjacent sampled frequency points

are nearly uncorrelated. However, as the sample size K increases, these

points only come closer in frequency without any reduction in their standard

deviation. Hence the periodogram usually shows large fluctuations, making it

appear more and more jagged as the number K of sample points increases.

Examples of this behavior may be found e.g. in Oppenheim and Schafer

(1975) and Marple (1987). These results are approximately valid for non-

Gaussian noise, as for even modest K the central limit theorem warrants

Gaussian statistics for Z[m]. As our analysis is localized in frequency, these

results also nearly correct for signals with colored PSD. Then the

periodogram Pz[m] has its mean value and its standard deviation approach the

local PSD Sz[m] for large K.

For reasons discussed above the periodogram is perhaps the most maligned

PSD estimator. Yet, the ease and efficiency with which it can be implemented

through FFT algorithms also make it the most frequently used technique for

spectral analysis. The FVI" algorithms can work in place without additional

storage, require only -K log 2 K complex multiply-adds instead of -K 2 for

direct DFT evaluation, and are modular so that repetitive and computation

intensive tasks such as bit reversal and sine-cosine computations can be

detached from the main program (see e.g. Cooley et al., 1977). The

periodogram Pz[m] becomes a usable PSD estimate only after time averaging

over many independent sequences of z[m] of length K. We show below that

its standard deviation is substantially reduced through averaging.

When M independent periodograms Pztq][m] for q=1,2., are averaged, then

each point in the averaged periodogram Qz[m] is obtained by quadratically

adding 2M zero-mean Gaussian random variables with density N(0,0.5Ko2).

The sum is normalized by division with KM, and then multiplying it with T,

to conserve the area under Qz[m] as the signal variance 02. Hence the mean of

the averaged periodogram Oz[m] becomes o2T and its variance, o4T2/M. The

standard deviation of the time averaged periodogram is then just o2T/x/M.

These results are approximate, but the approximations improve for larger K.

For an arbitrary PSD Sz[m], it follows that the averaged periodogram Qz[m]
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has a mean -Sz[m] and a standard deviation -Sz[m]/_/M. The variance of

Q_[m] tends to vanish as the number M of periodograms averaged together

increases. Hence the time-averaged periodogram is a consistent estimator of

the PSD.

We close our discussion with a relevant example. In a typical UHF radar

experiment with a 1 ms pulse repetition interval and coherent integration

over 10 pulses, 64 complex samples may be gathered in 640 ms. About 64 see

of observations suffice for averaging over 100 periodograms. The time-

averaged periodogram has a standard deviation that is l/x/100 or 10% of the

local PSD value. A Doppler shifted peak which occupies a sixth of the

available frequency window, and is 50% above the background noise level,

can be readily detected in the averaged periodogram. The total signal power

is only about 0.04 of the total noise power for a hypothetical triangular peak.

This corresponds to a detectable signal to noise ratio (SNR) of -14 dB with

one minute of observations. This detectability criterion may often be difficult

to attain in the presence of other dominant components. But the example

does illustrate the basic considerations.

5. Estimation of the Autocorrelation Function

An alternative approach to estimating the PSD is through the ACF, using the

Wiener-Khintchine relations stated in Section 2. These are readily modified

for the discrete case using the DFT. The ACF cannot be usually recovered

from the time-averaged periodogram estimates of PSD if the signal z(t) has a

nonstationary component, and if it does not satisfy certain ergodic conditions

that constrain the ACF to a finite support [Papoulis, 1977 and 1983; Marple,

1987]. These conditions are further examined in Section 6 for the MST radar

signals. Here we outline a direct and an indirect method of estimating the
ACT from data. The use of these estimates in PSD estimation is discussed in

Section 7.

As before, suppose z(t) is a realization of a complex, ergodic, wide-sense

stationary signal. Its samples z[k] are available at times kT for k=l,2..K.

Under the ergodic assumption, the ACF Rz('0 can be estimated as a time

average. Its estimates Rz[n] are obtained at discrete time lags nT, for indices
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Inl _<N < K. The estimate Rz[n] is evaluated as averaged lagged-products of

the form z[i] z*[i+n], provided that the indices [i] and [i+n] do not exceed the

bounds on k. We consider two different estimates Rill[n] and Rt2][n] that

differ only in the normalization :

K°Ii

Rill[n] -1 _ z[i] z*[i+n], n=0,1,..N < K [5.11
K-n _l

K°n

Rt2J[n] _ _ z[i] z*[i+n], n=0,1,..N < K [5.2]
i=-I

The estimates for negative n may be obtained either by inter-changing the

order of products in the summations, or by using the Hermitian symmetry

(see eqn. 2.2) that Rz[n] = Rz*[n].

Only [K-n] lagged products can be formed at a lag n. The estimate REll[n]

normalizes the lagged-product sums by the their actual count [K-n]. The

second estimate R[2][n] normalizes these sums by the number K of data points.

We may surmise that Rtl][n] should be an unbiased estimate of Rz[n]. Though

R[2J[n] is biased, it becomes asymptotically unbiased as K becomes infinite.

The variance of the unbiased estimate Rill[n] increases with index n as there

are fewer products averaged. For both the estimates, the variance decreases

with increasing number K of data points, and eventually vanishes. Hence both

the estimates are consistent. To ensure that a sufficient number of products

has been averaged at each lag, we require N/K<<I, with the ratio K/N of -10

or more usually desirable [Blackman and Tukey, 1958]. The two estimates

have nearly identical properties under these conditions. The biased estimate

Rf2][n] puts a triangular weight 1-1nl/K on the estimated values. This warrants

for Rt2][n] the very desirable ACF property that IRf2J[n]l<R[2_[0]. The

unbiased estimate Rr11[n] does not always satisfy the condition IR_lJ[n]l<RtlJ[0].

This condition may be readily violated for small K as the variance of RElI[n]
increases with n.

For a given maximum lag index N, the lagged product-sum scheme can be

automated using two buffers of size N. New data is sequentially stored in a

data buffer, at an address which wraps around the buffer. For each new data
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point, all possible N lagged product sums are updated in the second buffer.

Normalization can be done to obtain the ACF estimate, once the data buffer

has been filled several times around. This scheme is readily adapted for real-

time multi-channel signal processing. It was first used by R. M. Harper in

1974 for real-time data acquisition with the Jicamarca radar. The scheme has

also been found quite effective for analysis of irregularly spaced data. Since

an N-point history of the time-series is always available in the data buffer, the

scheme is readily adapted for editing bad data points or outliers using e.g.

mean, variance, median, and order statistics of the data.

An alternative and faster method of estimating the ACF is through the use of

DFTs [see e.g. Cooley et al. 1977; Oppenheim and Schafer, 1975, Press et aL

1986]. We recall that the DFT of a K-point sequence z[k] is another K-point

sequence Z[m], and convolution in time domain is equivalent to a product in

the frequency domain. We also notice the similarity of ACF R[n] with the

discrete self-convolution R®[n] of z[n]

R[n] = < z[i] z*[i+n] >

Rein] = z[n] ® z[n] = < zfi] z[n-i] >.

These operations yield (2K+l)-point sequences with zero end values. The

only difference between R[n] and Rein] is that in convolution one of the

terms is folded in the time index i, and in ACF one of the terms is conjugated.

Hence ACF may be obtained as R[n] = z[n] ® z*[-n] using the convolution. In

the frequency domain, the DFT of R[n] is merely the product of Z[m] with

Z*[m]. The only caution that needs be exercized is that R[n], hence its DFT

must be at least 2K-points long. The method then is to augment or extend the

K-point sequence z[n] with K zeros. The 2K-point DFT's of the extended

2K-point sequences zc[n] and zc*[-n] are then multiplied point by point.

Finally, the 2K-point inverse DFT gives the 2K-point periodic sequence R[n].

The estimate thus obtained is weighted by a triangle as for Rill[n]. The

method can be readily extended to the cross-correlation function (CCF)

Rxy[n] of two complex K-point sequences x[k] and y[k]. We merely note the

following relations
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R_[n] = x[n] ® y[n] = < x[i] y[n-i] >.

R_[n] = < x[i] y*[i+n] > = x[n]® y*[-n] = F-! [ X[m] Y*[m] ]

which suggest that the K-point sequences x[n], y[n] must first be augmented

with K zeros to get the 2K-point sequences xe[n] and ydn], one of which is

conjugated and inverted in time to get y,*[-n], as was also tacitly done for the

ACF. The CCF is obtained as the inverse DFT of the point by point product

X[m] Y*[m] of the DFTs of these sequences. Averaging over several K-point

data sequences is desirable to reduce the variance of ACF and CCF estimates.

This method has several advantages over the direct ACF estimation using

lagged-product sums. The DF1 _ (or FFT) computations can be carried out in-

situ. When 2K is of the form 2 _:, the number of complex multiplies and adds

in the FFF can be made as small as -2K_:. This computational advantage

becomes quite significant even for short data sequences. The PSD estimate,

moreover, is available as an intermediate step and it is related to the ACF

estimate Rt2l[n] by the DFF. However, augmenting the data sequence with

zeros also doubles the storage requirements. It is perhaps for this reason that

this method has not been used in real-time MST radar signal processing. The

declining cost of computer memory certainly favors its use.

6. Nonstationafity and Spectral Distortion

In the foregoing discussion we have assumed that the complex signal z(t) is a

wide-sense stationary and ergodic random process. Usually several sets of K

equispaced samples z[k] at sample spacing T are available from a single

realization z(t,_o). The assumption of wide-sense stationarity implies that the

low-order moments viz. the mean lXzand the variance az 2 of the process are

constant, and its ACF Rz(_) depends only on the time lag x, irrespective of the

time origin. The ergodic hypothesis is invoked to circumvent statistical

averaging, by estimating these quantities as time averages over many

statistically independent sub-sets from a single realization.

A constant mean value _tz contributes a platform of fLxed height _tz_z* to the

ACF, and a single spike of height (TK)_t_z* exactly at the zero frequency in

the K-point PSD estimate. If the mean gz is indeed a constant, then it can be
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effectively removed from z[k], rendering it a zero-mean process in further

analysis. The assumption of stationarity of mean is merely a convenient

model for the signal time series z[m]. It is readily violated in situations

described below making _tz(t) a slowly varying function of time with

discernible trends over the observation interval.

The ground clutter component c(t) in radar experiments arises due to

multiple paths to terrain seen through the antenna sidelobes. Its fading time

varies from fraction of a second to minutes due to atmospheric refraction

along the paths. When the same path is not traced back due to multiple

reflections, c(t) also has a very small Doppler shift. Fading time and Doppler

shift of c(t) critically depend on the radar frequency, radar location and on

severe weather conditions. Nonstationarity of c(t) is most serious for the

-450 MHz UHF radars. The same refractive multipath effects are nearly an

order less severe and nearly insignificant for the -50 MHz VHF radars.

Coherent reflections at near vertical incidence from planar or slightly curved

turbulent layers also produce a slowly fading component. Non-stationarity is

also evident in the velocity data v(t), especially when these are indicative of a

power-law PSD, as slow trends at time scale of several hours to several days.

Removal of a nonstationary trend Bz[k] from a single K-point sequence z[k] is

difficult unless K is very large or many contiguous K-point sequences are

available. Subtracting the mean value <z> from the points z[k] in a sequence

does not remove the trend. Gottman(1985) describes simple methods for

identifying and removing trends. These methods use averaging and

differencing at several time scales to estimate parameters of an ad-hoc linear

or quadratic trend model. Alternatively, the parameters of a low-order

polynomial that models trend can be found by computation, intensive least-

square methods [see e.g. Hamming, 1973, Press et al., 1986].

Nonstationary trends produce a severe distortion of time-averaged

periodogram estimates obtained by DFT methods as convincingly discussed

by Sato and Woodman (1982). Due to this distortion, ACF cannot generally

be recovered from time-averaged periodogram estimates Oz[m] of the PSD.

Suppose the N-point periodogram Pz[m] is formed from an N-point sequence

z[k] using its N-point DFT Z[m]. From the same sequence a (2N-1)-point



2O5

ACF estimate Rz[n], for n ranging over +(N-l), can be formed as

<z[i]z'[i+n]>. A zero value can be added at either end. Now both Pz[m] and its

inverse Db-T Pz-1[n] are periodic N-point sequences. We expect the periodic

N-point sequence Pz -1[n] and the aperiodic 2N-point sequence Rz[n] to be

related. Thus Pz -1In] is derived from Rz[n] by wrapping it around a circle

with N points indexed from 0 to _-1). If Rz[n] is constant at all lags, or if it is

zero for Inl > N/2, then Pz-1[n] unambiguously contains all the information

about Rz[n]. However, if the support of Rz[n] exceeds +_N/2, then Pz-l[n] is

severely distorted by wrap-around and its DFT, the periodogram Pz[m], is

no longer a reasonable PSD estimate. The problem can be alleviated with the

use of a 2N-point DFT with N-point data (extended by zero-padding) to

estimate both the PSD and triangular-weighted ACF estimate Rt2][n] as

outlined in the previous section.

An altemative way to explain the periodogram distortion is to realize that the

true PSD of the trends is a narrow spectral spike near, but not exactly at, the

zero frequency. The use of a uniformly weighted N-point sequence z[n] in

periodogram estimation smooths this spike by convolution with a squared

Dirichlet Kernel which can be approximated with sinc2(fr) for the

continuous case. The contribution of the spike thus leaks or spills over all

frequencies, and is evident at the sample points of the periodogram as an _f-2

platform. Due to sampling in time at spacing T, tails of the _f-2 platform are

also aliased into the Nyquist window (-0.5/T,+0.5/T). We discuss some ways

of containing this leakage in the next section.

7. Windowing and Coherent Integration

The PSD Sz[m] of an N-point sequence z[n] sampled at time steps T can be

estimated either directly from the N-point DFT Z[m] via the periodogram

Pz[m], or as the Db'rl" of an ACF estimate Rz[n]. Use of uniform weights or the

default rectangular time window is equivalent to a circular convolution of

Z[m] or Rz[n] with the Dirichlet kernel sin(_NfT)/sin(nfT). A sinusoid of

frequency f' is seen to leak at other frequencies f in the periodogram Pz[m] as

sin2(xN(f '-f)T}/sin 2{n(f '-f)T}.
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This leakage eventually decays only as -(f'-f)-2. In PSD estimates obtained as

DFT of the ACF, the Dirichlet kernel produces undesirable negative ripples

whose magnitude decreases as -I(f '-f)1-1. These effects are similar to the

familiar Gibbs phenomena in the Fourier reconstruction of signals near

discontinuities. The PSD estimates can be improved by shaping the data z[n]

or ACF Rz[n] with a suitable window. Since the sampling and aliasing effects

in PSD estimation have already been considered in detail, window properties
are discussed below in terms of the continuous variables t, x, and f. The

subscript z is also dropped for clarity.

In their classical monograph, Blackman and Tukey(1958) advocated the use

of shaping the ACF R(x) by multiplication with a window or weighting

function w(x) that depends on the lag x. The windowed PSD estimate Sw(f) is

obtained by convolving the true PSD S(f) with the window transform W(f) =

{w(x)}. Sw(f) has better statistical properties due to smoothing in frequency

by W(f). To conserve the signal power R(0), lag windows w(x) used with the

ACF are normalized to have w(0)=l. Other desirable attributes of w(x) are a

smooth decaying shape as a function of time lag -c,an even symmetry about

x=0, and negligible negative sidelobes in the transform W(f). Good ACF

windows are further selected to be well-behaved in frequency by requiring

that the transform magnitude IW(f)l has a small width, and a low sidelobe

level that decays sufficiently steeply with f.

A data window d(t) can be directly applied as a weighting function to the

signal z(t) before periodogram analysis. The windowed periodogram

estimate PD(f) is now obtained by convolving S(f) with the squared window-

transform iD(f)l 2. Data windows share nearly all the properties of ACF

windows, now stated in terms of d(t) and ID(f)l 2. The only major differences

are that d(0) need not be 1, the PSD estimates with data windowing are

always non-negative, and the signal power is modified because z(t) is scaled

by d(t). Due to peaked shape of a data window d(t), the values of z(t) near the

end points are not fully utilized. For this reason, as much as half of one set of

K points of z[m] can be used with the next set. This method of data

windowing with partially overlapping data segments has been described by

Welch (1967), who also discusses the statistical properties of the windowed

time-averaged periodogram.
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A very complete description of many windows, their transform properties,

and criteria for their selection has been compiled by Harris (1978).

Corrections to some of these are given by Nuttal(1981) who also discusses

sidelobe properties of some preferred windows. Rabiner et al. (1979) give

code for generating a few frequently used windows, including von Hann,

Hamming, Kaiser and Dolph-Chebyshev. The Dolph-Chebyshev window

attains a uniform sidelobe level and is described through its transform W(f).

The Kaiser window is a time-domain approximation to this window in terms

of the modified Bessel function I0(x) of zeroth order. These windows are

nearly ideal for data-processing applications.

Some of the simpler windows are given below as lag windows w(t) for a

support (-0.5,+0.5) of t. The rate at which their sidelobes in IW(f)l eventually

decay with f is also indicated.

Hamming

yon Harm (or Harming)

Approximate Blackman

w(t) = 0.54 + 0.46 cos(2nt) _f-I

w(t) = 0.50 + 0.50 cos(2rct) ~f-3

w(t) = 0.42 + 0.50 cos(2nt) + 0.08 cos(4nt) ~f-3

The Hamming window minimizes the fast sidelobe for a simple cosine shape

but its transform decays as _f-I due to the rectangular platform of height

0.08. The von Harm and the approximate Blackman windows have a better

sidelobe behavior./n the analysis of power-law PSD's, it may be desirable to

use windows with a steeper side-lobe decay. The Blackman window can be

modified by including higher-order cosine terms. The coefficients can be

selected in such a way that with m cosinusoids, the frequency response decays

at the rate lfl'(2m+i). Two examples of modified Blackman windows are given
below.

Modified Blackman :order 2, highest term cos(4nt)
Coefficients (0.375, 0.500, 0.125) ~f-5

Modified Blackma_ :order 4, highest term cos(8nt)
Coefficients(0.2734375, 0.4375000, 0.2187500, 0.0620000, 0.0078125) _f-9

The time-domain shape of these windows is shown in Fig. 7.1. The response

of the modified fourth-order Blackman window is shown in Fig. 7.2 with its
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FIGURE 7.1. Time windows of order 1, 2 and 4 with good sidelobe behavior
derived from the Blackman window are shown on a support (-0.5,0.5). The
order 1 window is just the von Harm or Harming window with a frequency
response decaying at 60 dB/decade. The order 2 and 4 windows have a
response decaying at 100 and 180 dB/decade respectively. The effective
temporal width of these windows is one-half to one-fourth of their support.
For a frequency resolution comparable to the rectangular, data length should
then be two to four times longer.
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FIGURE 7.2. Frequency response of the fourth order window shown in Fig.
7.1 is shown to decay at 180 riB/decade. This and other windows with well
constrained side-lobe behavior may be useful in spectral analysis of velocity

data with power-law spectra, and in suppressing the smearing of ground
clutter in radar signal spectra by using longer record lengths.
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~f-9 decay rate. Simulations indicate that windows with well constrained

sidelobes are effective in reducing the influence of trends, but require at least

two to four times longer data segments. It may be surmised that the use of the

modified Blackman windows, or any other suitable window, in the time-

averaged periodogram method can contain the effect of fading ground clutter

to near zero-frequencies.

We now briefly mention the effect of coherent integration of radar signals in

PSD estimation with periodograms [Rastogi, 1983]. In coherent integration, I

successive samples of z[i] at a time spacing TI are averaged with uniform

weights (l/I) and the averaged sequence y[i] is re-sampled with time spacing

T=ITI. The periodogram Py(f) of y[k]=y(klTI)=y(kT) is formed at K

frequencies in the Nyquist interval _+0.5(KT) -1 using the DFF.

The consequence of time averaging is to multiply the original periodogram

Pz(f) with a filter weighting function

IH(f)l 2 = _1_ sin2(xfTII)
12 Sin2(xfTi)

[7.1]

This filter function has maxima at multiples of 1/Tx. Between any two

maxima, there are (I-2) secondary peaks with nulls at multiples of 1/(1TI).

The principle lobe at zero frequency, with adjacent nulls at +I/(ITI), is twice

as wide as the Nyquist interval. Echoes with Doppler shifts near the end

points of the Nyquist interval are weighted down by nearly -4dB. A

correction for this effect must be applied in spectral-moment estimation. Any

components of Pz(f) outside the Nyquist interval are weighted by the filter

function of equation [7.1], and would then appear aliased in Py(f). Hence the

coherent integration scheme is not very successful as an anti-aliasing falter.

Coherent integration does provides a computationally efficient means,

through simple accumulation, of implementing a 'poor' matched filter for

radar signals. Its principal advantage is in reducing the overall data rate by a

factor I. The received signal z(t) is originally constrained by the receiver

bandwidth B. Sampling at interval TI>>B-1 aliases the entire received signal,
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including noise and interference, into the frequency interval _+0.5(TI) a. This

frequency interval is further reduced to the Nyquist interval +0.5(ITI) -1

through coherent integration. Obviously, the white-noise power outside the

Nyquist interval is rejected by weighting with the filter function and its

contribution is reduced by -1/I. But within the Nyquist interval, the Doppler

shifted signal peaks and white noise component are both weighted by the

same filter function. Hence the detectability of spectral peaks, as discussed in

Sec. 4, is not improved in any tangible way through coherent integration and

there is definitely some impairment near the ends of the Nyquist interval.

8. Least Squares Estimation and Spectral Parameters

The general problem of estimating parameters from observations or data can

only be examined within the frame work of a model. For any choice of

parameter values, the model produces an output, which generally differs

from observations. That choice of parameter values for which the model

output matches the observations, in some statistical sense e.g. by minimizing

the mean squared error (m.s.e.), can be said to agree with or derived from

the observations. The behavior of m.s.e, as a function of model parameters

may be visualized as an error surface. The best choice of parameters

corresponds to the true or global minimum on this surface. An exhaustive

search for the true minimum is impractical, so an acceptable local minimum

is sought only within a limited region of parameter values.

With an initial guess of parameter values, it is possible to seek a local

minimum in m.s.e, by using any of the several adaptive search strategies e.g.

by changing parameters in the direction in which the m.s.e, changes most

steeply. Excellent discussion of least mean square (1.m.s.) algorithms may be

found in Alexander(1986), Bard(1974), and Widrow and Stearns(1985).

Sato and Woodman(1982) have adapted Bard's formulation to spectral

parameter estimation in radar experiments at Arecibo. Their approach is

discussed below.

Suppose the observations X = x(k) represent an N-point vector. The model

input is a parameter vector P = p(j) with J points. The model output Y(P) --

y(k,P) is an N-point vector that depends on P. The error vector e(P) =
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e(k,P) varies with observation index k and depends on the choice of P. Since

e(k,P) may be either positive or negative, we seek to minimize its

accumulated square value (which divided by K is the m.s.e.)

N

e(P) = _ [ y(k,P) - x(k) ]2
k_l

[8.11

with respect to P. Equating the derivative of e(P) with respect to P gives J

conditions for each of its component p(j); j=1,2...J

N _v(k P_
-_'--'-" = o

[ y(k,P)- x(k) ] OP(J)
k=l

for j=l,2..J [8.2]

Now J linear equations in as many unknowns can be solved by matrix

methods, but eqns [8.2] contain nonlinear terms of the form y/)y/Op. The

equations may be linearized locally, about a parameter vector P0, through a

simple perturbation scheme. Then retaining linear terms in a Taylor series

about Po, gives P = Po + _iP. The model output y(k,P) can now be written as

J /)Y(k'P°)sp(i)=0 fork---1,2..N
y(k,P)= y(k,Po)+ _ Op(i)

i=l

[8.3]

Substituting for y(k,P) in the condition [8.2] for minimum m.s.e., we obtain

thefollowingJequationsforeachj=1,2,.J

N J _)y(k,P0) _y(k,Po) _ip(i) = 0 where j=l.2..J
C (j) + _ _ OP(J) Op(i)

k_l i=l

[8.4]

where the J constant terms C(j) are given by

N Oy(k,Po) where j=l.2..J [8.5]
C (j)= _" [y(k,Po)-x(k)] OP(J)

k=-I

Eqn [8.4] can be more effectively written in the matrix form
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C+D6P=O
K

or c(j) = _, d(ij) 6p(i) where j=l,2..J
j=l

[8.6]

Here C is a [Jxl] matrix defined in eqn [8.5], D is a [JxJ] matrix denoting the

product of derivatives of model output y in eqn [8.4], and _SPis a [Jxl] matrix

which denotes the desired change in P about P0 to locally minimize the

m.s.e. This equation can be inverted to yield,

iBP=-D -IC [8.7]

where D-1 is the inverse of the [JxJ] matrix D evaluated through any of the

conventional numerical methods [see Press et al, 1986], since D does not have

any special properties.

This gives the perturbation 6P about P0 to minimize the m.s.e. We are now at

a new value of P0 and the process can be iterated to find a parameter vector

which either stabilizes the m.s.e, near a local bottom of the error surface, or

brings it below an acceptable threshold corresponding to a 'good' estimate of

parameter vector. It should be emphasized that the above scheme does not

warrant a solution, though it often gives one for a reasonable initial guess P0,

and it is extremely computation intensive.

In the m.s.e, spectral parameter scheme implemented for the 430 MHz

Arecibo radar by Sato and Woodman (1982), the observation vector is the

DFT of the time averaged periodogram sequence. The model output vector is

then in the form of a distorted ACF sequence. In the model, MST radar

signals s(t) have one or two Doppler shifted components, each with three

ACF or PSD parameters for an assumed Gaussian shape in the PSD. Fading

ground clutter c(t) also has three similar parameters. But due to its narrow,

symmetric, and possibly unknown shape in the PSD, it is overspecified by the

coefficients of a third order polynomial in (x) 2 and a small Doppler shift.

With a noise platform included, the parameter vector has a length of 7(10)

for 1(2) Doppler peaks. The distortion of ACF and PSD has been outlined in
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Sec.6. The m.s.e, search is set about an initial guess of parameters obtained

either by an ad-hoc analysis of spectra, or using the ACF method discussed in

the next section. The m.s.e, implementation can routinely detect signals up to

50 dB below ground clutter, with a typical radial velocity uncertainty of 0.1-

0.2 m/s.

The ad-hoc analysis, instead of estimating the parameters of ground clutter,

merely removes it on the basis of its approximate symmetry in PSD estimates

about zero Doppler shift. Estimates of Doppler shift and other parameters

can be considerably improved by using time and range continuity of

measured velocity, statistical editing of spectra, and by a statistical analysis of

all the available data in several passes (Rastogi, 1984). These steps can be

used to set a narrow range of parameters P for the m.s.e, method. Adaptive

processing of spectral records using the available prior statistical

information, e.g. tracking Doppler peaks in range, searching for parameters

near a median Doppler-shift profile, and even using 'future' data, may speed

up spectral-moment processing.

9. Spectral Moment Estimation via Correlation Function

Consider a complex wide sense stationary process z(t) with power P, PSD

S(f) and ACF R(x). For simplicity z is omitted as a suffix. In as much as

S(f)/P has all the properties of a probability density function, and S(f) =

{R(x)}, the non-central moments of S(f) and parameters derived from these

are simply related to the successive derivatives of R(x) at x--0. This method

was originally used at licamarca for measuring the vertical motions in the F-

region using the incoherent-scatter radar technique and later applied to the

first middle-atmospheric radar experiments by Woodman and Guill6n

(1974). A complete statistical analysis of this approach has been

independently given by Miller and Rochwarger (1972).

Details can be seen by considering R(x) = B-t{R(x)} as in eqn. [2.4]. Using the

series expansion of exp(t2=fx) and evaluating the successive derivatives of

R(x) at i:-=0, we have
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R(0) = f__ S(f)df = s(0) [9.1]

R'(0) = (t 2_) f__ f S(f) df = (t 2_) s(1) [9.2]

R"(0) = (t 2g)2 ___ f2 S(f) df =(t 2r0 2 s(2) [9.3]

We find that these derivatives are related to the successive spectral moments,

s(0), s(l) and s(2). s(0) is merely the signal power P. The other two spectral

parameters of interest are the center frequency or the Doppler shift fe, and

the spread of of the PSD about it. As outlined in Sec. 2, these are related to the

central moments of the PSD. In terms of the noncentral moments s(1) and s_2),

fc = sO)/P [9.4]

= sC2)/p_ f2 [9.5]

which shows that uncertainties in a lower-order moment effects all higher-

order parameters.

An interesting case arises when the Doppler-shifted component in the PSD is

expressible through a simple shape such as the Gaussian. In terms of a

normalized Gaussian function N(fe, af2) with mean fc and variance of 2, the

PSD becomes S(0 = PN(fc, of 2). The ACF R(x) is generally complex with a

Hermitian symmetry. Its real part and magnitude are even, and the imaginary

part and phase are odd functions of the lag x. For the Gaussian PSD,

R(z) = P exp(t 2_xfex) exp[- _2_) 2 x2 o_} [9.6]

Comparing it with the polar form IR(x)l exp{t _(x)} of the ACF we see that

the phase _(x) increases linearly with lag x and the mean frequency f¢. The

magnitude IR(x)l has a Gaussian shape which can be approximated by a
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parabola for small x. From just two ACF values at zero lag and a small lag z,

we f'md P = R(0), and

(2=) fc = ,(x) / x [9.7]

(2_) 2 _ = 2 z-2 {1 - IR(x) I / P } [9.8]

Fig. 9.1 shows how the spectral parameters are related for the ACF and PSD.

The effect of two Gaussian components in signals scattered from two

turbulent layers has been considered by Rastogi and BowhiU (1976).

The ACF approach provides a clever method for finding spectral parameters

if z(t) contains only an atmospheric component s(t) conforming to the simple

models just discussed. Otherwise spectral contributions to z(t) from noise

n(t), ground clutter c(t) and interference i(t), are all included, by definition,

in the ACF R(x). We now use an appropriate suffix to identify these

components. Corrections to remove their effect require ACF measurements

at several lags.

An additive white noise n(t), merely adds a spike of size Pn to Rz(0) at zero

lag. Then Ps=Pz-Pn. A correction for Pn can be applied by using two or more
small non-zerolags of R(x) to estimate and remove the noise spike Rz(0).

Ground clutter c(t) has an effect On the estimation of fe only through the

error it introduces in the power estimate. It contributes a nearly constant

platform Rc to Rz(x) at small lags due to its long fading time. Its contribution

may be effectively removed by d.c. subtraction from z(t) [See Fig. 9.2].

Statistical errors in parameter estimates obtained by the ACF method are

discussed in detail by Miller and Rochw_rger (1972). The following analysis

of the uncertainty in Doppler estimation is, however, quite instructive.

Consider K samples of a complex, zero-mean Gaussian process z(t) = x(t) + j

y(t) with a sampling interval T. If the variance of z(t) is 02, identified also as

its power P, then the signal power PK estimated from K samples as

<z[k]z'[k]> has the statistics E[PK] = 02 and var[PK] = o4/1(. Hence PK is

unbiased and its statistical error P/'/K decreases with large K. Next we

estimate R(T)=R[1] at the first sampled lag index as <z[k]z*[k+l]> using
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FIGURE 9.1 : A hypothetical PSD and the corresponding ACF for zero
Doppler shift are shown in (a) and (b). The effect of a slight Doppler shift is
shown in (c) and (d). The area under the PSD and the ACF at zero lag are
equal to the signal power. The frequency width of the PSD and the relative
value of ACF magnitude at a small lag are related. When the PSD is Doppler
shifted by a small amount, the ACF becomes complex. Then the shift can be
estimated from the ACF phase at a small lag.
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FIGURE 9.2 : The effect of noise and clutter on the shape of the ACF and
their conritibution to the total power. The effect of noise and clutter can be

effectively removed from the total power using the ACF values measured at a
few key points. The ACF phase still remains linear at small lags, but the
Doppler shift is underestimated unless noise and clutter are removed from
the total signal power. The spectral width is overestimated from the ACF
value at a small lag, unless the noise spike at zero lag is removed.
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either of the two estimates REll or R[21 given in eqns [5.1] and [5.2]. The

biased estimate RE2] is preferable for reasons discussed earlier, but the use of

R[1] is more convenient. For small T, the K sample estimate _K of _ is

K-1

_K(T) ,_ tan 0i([1] = [[K-l] P}q _ y[k] x[k+l] -x[k] y[k+l]
k=l

[9.9]

This estimate is unbiased due to the use of RIll. Its variance.involves a

moment of the form E[abcd] of four zero-mean Gaussian variables. Using a

result due to Isserlis and Hotelling (see e.g. Papoulis, 1983) the fourth

moment reduces to E[abcd] = E[ab] E[cd] + E[ac] E[bd] + E[ad] E[bc]. The

final result,

var{_K(T)} = { p2_ IR(T)I 2} /2 K IR(T)I 2 [9.101

shows that at small lags the uncertainty in phase estimate is quite sensitive to

the relative magnitude of the ACF. The corresponding statistical error in the

radial velocity for a radar wavelength _ in terms of the normalized

autocorrelation magnitude 9 or IR(T)/R(0)I is

ov 1 _-0 ,_q_pl= [9.11]
4_T P

For a 50 MHz radar, with T=0.25 sec, 9=0.5, and K=100, we find that the

radial velocity can be measured with a standard deviation of 0.23 m/s. With

p=0.8 the figure improves to 0.1 m/s.

The ACF method provides a relatively fast means of estimating the spectral

moments for clean radar signals. Due to the ease of its implementation, it is

suited to real time estimation of spectral moments. Statistical averages of

these moments may also serve as an initial guess in the m.m.s.e, approach.

10. Spectral Analysis by Time Series Models and Maximum Entropy Method

Methods discussed so far for estimating the PSD S(f) of a complex random

process z(t), from its uniformly-spaced samples z[k], make some unrealistic
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assumptions about extension of data or its ACF R(x). The DFT assumes a

periodic extension of data. In methods that use the ACF, windowing or

tnmcation assumes zero correlation beyond a convenient maximum lag. J. P.

Burg has proposed a method which circumvents these objections by seeking

an extension of the ACF at measured lags that maximizes the entropy (in an

Information-theoretic sense) of the observed process [see Childers, 1978].

Alternatively, one seeks to extend the process or its ACF from limited

observations, using suitable time-series models. These are examined first.

Spectral analysis may be regarded as a filter design problem in which we seek

coefficients h[k] of a feedback ffdter excited by white noise n[k], so that its

output becomes the observed process z[k]. The filter output is taken as a

linear combinations of the current input, q past inputs, and p past outputs.

Such parametric representation of an observed process is called an

autoregressive moving-average or ARMA model

P q

z[k] = -_ a[i] z[k-i] + _ b[j] n[k-j]
i=l j=0

ARMA(p,q) model [10.1 ]

Recalling that shifting a signal s to the left by an interval iT amounts to

multiplying its Fourier transform by exp(-t2nifT), the PSD S(f) can be

represented in terms of two polynomials (with b[0]=l),

P q

A(f) = 1 +_ a[i] exp(-t2xifr)] and B(f) = 1 +_ b[j] exp(-t2_jfT)]
i=l j=l

and using the sampling interval T and noise variance o2, as

S(f) = o2T IB(f)12 [10.2]
IA(f)l 2

This representation has q zeros and p poles. Hence we expect the AR model to

be more suitable for representing a process with sharp peaks in the PSD, and

the MA process for a PSD with flat peaks. The ground clutter component c(t)

in radar experiments has a near-ideal representation as a pole. We surmise
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that the Doppler shifted components should require an MA part. An

ARMA(p,q) process can be overdef'med in terms of an AR(p') or an MA(q')

process with p'>>p, q'>>q. So a purely AR model, with q=0, may be

adequate for representing PSD of radar signals z(t).

For an AR(p) process z(0, the ACF R[k] is related for lags 0,1,..p through

the Yule-Walker normal equations.

R[0] R[-1] R[-p]

R[1] R[0] R[op+l]

R[1] R[-1]

R[0] R[-1]

R[p] R[p-1] R[1] R[0]

1

a[1]

a[2]

_ a[p]

0

-- 0

0

-0 -

[10.3]

These linear equations involve the (p+l) ACF values arranged as a Toeplitz

matrix. In this matrix form, the same elements appear along a diagonal. In

addition, the elements along cross diagonals have Hermitian symmetry. The

matrix can be inverted through Levinson's recursion in _p2 operations.

Programs for solving these equations may be found in Press et al. (1986) and

Marple (1987). Note that the use of Wiener-Khintchine theorem to find the

PSD S(f) would require the ACF values R[m] at all lags. BUt for an AR(p)

process, the p coefficients suffice through eqn [10.2] for finding the PSD.

The structure of these equations may also be discussed in terms of forward

and backward linear-prediction filters, which given some values of data z[k]

extend these in the both directions. Further discussion may be found in

several excellent papers in Childers(1978), and Marple (1987).

The modified Yule-Walker equations for MA and ARMA models are

"nonlinear and inherently difficult to solve for f'dter coefficients.

Entropy H of a random variable X with a probability density function fx is

defined as the expectation E {-In fx(x) }. It is a measure of the randomness in

the underlying chance experiment. Maximizing the entropy may yield a

solution in some statistical situations. An interesting example is that of a
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loaded die with an average face value of 3.5, instead of 4.5 for a fair one.

There are inf'mitely many solutions to the probabilities Pi for the six faces.

Maximizing the entropy H under the constraint of the given average value

can be set up as a nice variational problem. Using the method of Lagrange

multipliers, this gives pi's as a geometric series with a ratio r. The resulting

equations for Pt and r are nonlinear, but can be solved recursively from an

initial guess. The solution is pl = 0.05435, r = 1.44926. This is not a unique

solution, since changing any two pi's by a small amount +_5is also a solution.

For (2'4+1) uniformly-spaced samples of a complex, zero-mean, Gaussian

random process, the entropy H is obtained using the joint probability density

function of of 2(N+l) real Gaussian variables. This density involves the

Toeplitz ACF matrix form given in eqn. [10.3], albeit of size (N+I) instead

of (p+l). We denote this matrix by RN as it involves N distinct nonzero lags.

It is also convenient to use the base (2n)I/4 for the logarithm. Then the

entropy H becomes 0.5 log{det RN} and it increases with N, eventually

becoming infinite. We deal with the entropy rate h defined as h = H/(N+I)

which becomes 0.5 log{(det RN)I/_÷I)}. In the limiting case of infinite N, it

can be shown from that for the Toeplitz form of RN, the entropy rate h
reduces to

0.5iTh = -0.5 log T + 0.5T log S(f) df
J-0.5/T

[10.4]

where the integral is over the Nyquist interval. Complicated details leading to

this result may be found e.g. in Smylie et a1.(1973). We may expand S(f) in a

Fourier series using the ACF values R[k]. The entrolJy rate h may now be

maximized with respect to the unknown ACF values R[k] for Ikl>N under the

constraints that the first (N+I) values Of ACF, including the zero lag, are

known from the data. This difficult exercise, as in the loaded-die problem,

does not warrant a unique solution. The final result expressed in the form of
a PSD estimate is that
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S(f) = To2 [10.5]

t L1 + _ a[kl exp(-t 2re fkT)
k=l

This result is exactly the same as the PSD of an AR(p) process given in eqn

[10.2] with the moving-average order q set to zero and the numerator

polynomial IB(f)l 2 -- I. The p coefficients a[k] are the same as for the AR(p)

model obtained by solving the Yule-Walker equations [10.3]. Hence the

maximum entropy method (MEM) is equivalent to the AR(p) model for

equispaced samples of a complex Gaussian process.

If the process is not Gaussian, then the Final result in eqn [10.5] for entropy

rate would not hold. MEM still will give a result, but it may not be a

representative estimate of the PSD for the process. We also remark that

though we have shown eqn [10.5] in the AR form, actual implementations of

MEM are rather different and take the form of designing a linear-prediction

filter. Computer programs for MEM may be found in Press et al. (1986) and

in Marple (1987).

A fundamental problem in implementing the above methods is that of finding

the order p of the process. Use of an incorrect order give larger statistical

errors. The order must be found empirically for each class of processes. In a

recent experimental and numerical study, Klostermeyer (1986) has

compared the performance of periodogram, MEM and maximum likelihood

method (MLM) for PSD estimation of ST signals observed with the 53.5

MHz SOUSY radar. It was found that for SNR of 0.3 to 10, MEM and MLM

give better estimates of Doppler shift. The optimum order of the MEM filter

is -3+1 with a sampling time of 0.173 sec, and appears to decrease with the

SNR. Similar studies with other atmospheric radar signals, and of their

statistics, are needed for developing the use of MEM and AR PSD models.
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TARGET PARAMETER ESTIMATION

W. K. Hocking 1

Radio Atmospheric Science Center,

Kyoto University, Uji, Kyoto 611, JAPAN

Abstract

The objective of any radar experiment is to determine as much about the entities

which scatter the radiation as possible. This review discusses many of the various pa-

rameters which can be deduced in a radar experiment, and also critically examines the

procedures used to deduce them. Methods for determining the mean wind velocity, the

RMS fluctuating velocities, turbulence parameters (e.g. C_,_, KM), and the shapes of

the scatterers are considered. Complications with these determinations are discussed. It

is seen throughout that a detailed understanding about the shape and cause of of the

scatterers is important in order to make better determinations of these various quanti-

ties. Finally, some other parameters, which are less easily acquired, are considered. For

example, it is noted that momentum fluxes due to buoyancy waves and turbulence can

be determined, and on occasions radars can be used to determine stratospheric diffusion

coefficients and even temperature profiles in the atmosphere.

1 Introduction

The ultimate aim of any radar experiment is of course to determine information about the

structures which backscatter the radio waves, and the environment in which they exist. For

example, it might be of interest to study the shape of the scatterers, or to differentiate different

types of scatterers or reflectors. It might be of interest to determine the radar cross-section

of the scatterers, or their spatial distribution over the sky. Other desired information might

include the velocity of the scatterers, and information about the spatial and temporal variation

of these velocities. If the radio scatter is due to the turbulence, it might be desirable to measure

the intensity of the turbulence.

The purpose of this article is to discuss ways in which parameters like tkese can be de-

termined, and how they can be interpreted. Some of the approximations used in determining

these parameters are also critically examined. Some consideration will be given to experimen-

tal design, and then interpretation of the results. Studies of the parameters evaluated over

long periods of time can give a considerable amount of additional information, over and above

that which can be determined from a few discrete observations, but discussion of this .aspect

will not be considered in great detail, due to lack of space.

The paper is organized in such a way that the simplest parameters are discussed first, and

parameters which are more difficult to extract are considered later.

2 Wind vector determination

One of the the simplest and yet most important parameters to determine is the wind speed,

so we shall begin with a brief discussion of its determination, examining in detail some of the

1On leave from Department of Physics and Mathematical Physics,
University of Adelaide, S.A., 5001 Australia
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assumptions made in this evaluation.

There are at least two different approaches to the determination of the mean wind. One uti-

lizes large antenna arrays with correspondingly narrow radiation patterns, and with the beams

pointed in various directions to measure wind speeds; the Doppler shift of the backscattered

signal is utilized for this calculation, and such techniques are called "Doppler Beam Swing-

ing" (DBS) techniques. The second class of method, called spaced antenna methods, utilizes

systems of separated (spaced) arrays; wind speeds are determined by using phase and time

differences between signals received with the arrays. The sets of spaced antenna arrays usually

have smaller physical dimensions than the antenna arrays used in the DBS mode. In some

senses, the techniques which use time delays and the techniques which utilize phase delays can

even be regarded as distinct techniques, and they will be considered somewhat independently

in this paper; however they will both be considered as "spaced antenna" techniques. These

various different approaches will now be discussed.

2.1 Doppler measurements

a

c

(a)
Fig. 1 Principle of Doppler method;

(b)
off-vertical beam used to

record rate of change of phase of scatterers.

The principle of Doppler determination of the wind speed is to utilizethe change in the

phase of scattered radio waves as a function of time. Itisprobably the most common procedure

currently in use, so some time will be devoted to discussion of this technique.

2.1.1 Basic principles of the Doppler method

As the scatterers move, the path length between the transmitter, scatterer and receiver

changes, and this shows as a change in phase (fig. la). We can think of this as the rota-

tion of the vector in the argand plane (fig. lb). For a monostatic radar, the mean rate of

change of phase is a measure of the mean radial component of the velocity of the scatterers

viz.

d¢
< v,_a>= _ < -_- > (1)
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Here, <> represents the average value, averaged over the radar volume and the sampling time,

V,_d is the radial component of the velocity, A is the radar wavelength, ¢ is the phase, and

d¢/dt is the rate of change of phase. Each scatterer causes its appropriate vector to rotate

at a slightly different frequency, and we can represent this on a spectrum, where each line

corresponds to a different scatterer (fig. 2). Of course it should be borne in mind that in a

real spectrum, it may not be physical to think of each separate spectral line as due to such a

scatterer, but for our purposes this is adequate.

d
Frequency of Phasor rotation

Fig. 2

We shall assume for simplicity that the spectral density and frequency of each line is

invariant, so just the phase of the signal from each scatterer changes. If a single phasor at

time t can be described by _!0 = hoe a't, ( a0 =1 ao I) then at time t + 6t it is given by

g[o = ao ei_(t+6t). Given the two phasors, the phase difference can be found by calculating lt0".a_,

where (') means complex conjugate. This calculation gives a2oe''6t = a2oe''''_. We actually seek

< A¢ > averaged over all the scatterers in the radar volume, but if the phasors all have

equal amplitude, or even more generally the spectrum has a symmetric shape, then we can

say that < A¢ >= arg{< a2e i''¢ >}, even for large values of A¢. In other words, summing

the phasors and finding the rotation of the resultant gives the same result as averaging the

angles of rotation of each phasor. This is also true even in the presence of a moderate amount

of noise. Hence we will consider averages of a_e izx¢. This mean value calculated for n phasors

aje iA¢, (j = 1 to n) is

< a0 e >= - + (2)
n j=l

To improve the accuracy, imagine averaging over a reasonable length of time, say at N time

steps tx,t2,... ,tk,... ,tN, where tk = k6t. Then

1 N [n_ )1< a2oe'zx* >= _ _ aj(tk)aj(tk + 6t (3)
k=l [. j=l

We can write this as

l _-_ [n _1 " _" 1< a oe''* >= + ,st) , (4)
k=l k 1=1 i'

since the cross terms in the square brackets of (4) all involve terms like e-iw3tei%'t, where

wj _ ¢oj,, and such terms sum to zero when summed over a period substantially longer than

their beat period. In fact in the case that the time series is Fourier transformed by a discrete



231

Fourier transform, all frequencies are harmonically related and so these cross terms summed

over the data length are all exactly zero. But the term _=1 aj(tk) is simply the value of the

(complex) time series which would be recorded by the radar at time tk, which we will denote

as f(tk), and so (4) can be written as

1 N

< a_,e''_ >= _ r,L*(t_)L(t_+,) (5)
k=l

which is simply the autocovariance function at the first lag, p(6t) say. Thus the mean rate

of change of phase can be found from

d_¢ f,1m(p(_t))l,< T >= 2_ tan-' (6)[ Re(p(6t)) j
where Re means "the real part of" and lm means "the imaginary part o£'. This estimator

of the rate of change of phase was introduced by WOODMAN and GUILLEN, (1974). Notice

that the value of the autocovariance p(r) at r = 6t can also be found from the power spectrum

P(f) as (Wiener-Kintchine theorem e.g BRACEWELL, 1978)

PO St) = k P(fJ) c2"_iM' (7)

j=l

where fj = (j - 1)/T, T being the data length of the time series {f(tk)}.

Then

v,.d = _ < -_- >= tan-' t ne{E_=,P(k)e="J,"}

Since P(f) is real (by definition),

A¢ rz,'-_, }v,.e = _ < -_- >= tan-' t E£, P(fj)cos(2rik6t) (9)

In the limit that the term in the right hand brackets {}is is << 1 and the P(f_) values are

small for the larger fJ I, this approximates to

A _._L, f,P(f,) (10)Urad _ --
2 E:L, P(f,)

This last expression is one commonly employed as an estimator of the radial component of

the velocity (eg GAGE and BALSLEY, 1978; ZRNIC, 1979 ). Nevertheless, notice it is only an

approximation of the more exact expressions (6) and (9), and breaks down when the argument

of the tan-l{} expression in (9) becomes comparable to 1. This can happen particularly when

the signal is noisy or when the spectral peak is close to the Nyquist frequency, and in these

cases the approximation (10) can give erroneous estimates. In the case of high noise levels,

the true radial velocity is underestimated. The more exact expressions (6) and (9) will work

well in these cases, however.

Some workers extract the radial velocity from the spectrum not by using expressions like

(6) - (10), but by fitting a particular spectral shape to the data. Usually a Gaussian function

of the type

P [ (f- fd) 2]S(f)=N+_exp 9--_7 j' I1)
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is used, where f is frequency and P, fd and a are echo power, mean Doppler shift and root

mean square spectral width, respectively. N describes the noise contribution, and represents

a constant offset of the spectrum since noise appears with equal spectral density at all fre-

quencies. This method bypasses some of the problems involved in applying equation (10) (e.g.

WOODMAN, 1985); its application is fairly straight-forward and it will not be discussed in

any more detail here.

2.1.2 Practical problems with the DBS method

Having now determined the radial velocity, it is necessary to determine what it means in terms

of atmospheric dynamics. It is generally true that the measured velocity really is the radial

component of the mean velocity of the scatterers, but this is not always true, and cases can

occur in which the measured velocity is an effective phase velocity of a moving patch. Such

cases are rare, but should be born in mind. CROFT (1972) has given an excellent discussion

of the Doppler technique, and some of its potential pitfalls.

,/ v0,...

Side-view View from above

(a) (b)

Fig. 3 DBS beam configuration {typical}.

There are also many complicating features of a practical nature which arise in using the

Doppler method to determine a mean wind (e.g. ROETTGER, 1981). It is sometimes assumed

that the vertical wind component is zero, so that off vertical beams can beused to infer the

horizontal wind. The situation is described in fig. 3, and if the vertical velocity w is zero then

the component of the horizontal wind in the azimuthal direction of the radar Vho, can be found

as 1)ra d

Vho_- sinOT (12)

By using orthogonal beams, one say pointing Northward and one Eastward, the total mean

horizontal wind can be determined. However, the scatter recorded by each beam is received
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from different regions of the sky (fig. 3b), and it is often desirable to know the wind vector
at a single point in the sky. Provided that the wind does not vary too much spatially it is

possible to assume that both components apply immediately above the radar, but sometimes
the divergence of the wind field can be substantial. If the divergence is small, then it is also
possible to correct for the vertical velocity, because one can determine the vertical speed w
over the radar by using a vertical beam, and then when using an off vertical beam

Vrad = Vho_SinOT + WCOSOT (13)

SO

Vra d -- WC080 T

Vho_ - sinOr (14)

Nevertheless, the possibility of divergences in the wind field is a very real one, and must

always be borne in mind when using these expressions.
Even without the problems of spatial variation of the wind field, the above simple assump-

tions can be in error. For example, if the scatterers are not isotropic, but are on average "
stretched out " into horizontally aligned oval-type shapes, then they will have a nonisotropic

backscatter polar diagram. Radio waves incident vertically will be more efficiently backscat-
tered than those incident obliquely. Thus for an off vertical beam, strongest scatter will be
received from angles nearer to the zenith than from the mean direction of tilt of the beam

(e.g. ROETTGER 1981; HOCKING et al., 1986). We might parameterize the backscatter as

B(0) _ e-_ (15)

and then 0, is a parameter typifying the nature of the scatterers. For example, 8, =
90°corresponds to almost isotropic scatter provided we are only interested in angles of 0 out to
20°or so, and O, = 0°is for the case when reflection only occurs from overhead. (Some authors

-.q
use the form e 'o for B(8) .)

It can be shown that 8° relates to the ratio of the length to the depth of the scatterers
(HOCKING, 19870), and this relationship will be discussed in a later section. For the present,
we will simply note (e.g see appendix A) that in such cases one should replace the angles 0T

in equations (12) to (14) with the parameter 0_t1 where

[ 0°_]-' (16)sina,jl = sinar 1 + O2j

Here, it has been assumed that the radar two-way polar diagram has a Gaussian shape of

the form ezp{- sin_ 0___sin2 O0} (when aligned vertically), so that the half-power half-width of
the beam is 8x = _/en2.0o. Even beyond this, however, there are still potential problems with

2 , ,

Doppler determination of wind speeds. If there are a variety of shapes, for example, the simple

theory of appendix A is not valid. If stratified reflecting steps exist as well as isotropic and
anisotropic scatterers, then complications also arise.

The shapes of the scatterers can also affect determination of the vertical velocity. If, for
example, the atmospheric scatterers are not aligned exactly horizontally, but have a small tilt,

then the direction of preferred scatter will not be immediately overhead, but off to one side.
The result is that the small vertical velocities will be contaminated with a small component

of the horizontal wind. For example, if the effective tilt is only 1", and the beam half-power
half-width is say greater than about 3°, a horizontal wind of 50 ms -] results in a contribution
to the " vertical " velocity of ,,_ 1 ms -] . This is why most analyses of " vertical velocity
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" are made only by using long term means; it is hoped that such tilts average out to zero

when averaged over long times, but even then some caution must be exercised. Indeed, a
better radar configuration for estimates of the vertical velocity is a bistatic radar, with the
transmitter and the receiver well separated (e.g WATERMAN, 1983).

Other problems also exist; for example it is possible that erroneous wind speeds and wind
shears will result if the scattering layers are much thinner in depth than the radar pulse-length

(e.g. HOCKING, 1983a; FUKAO et al., 1988a, 1988b; MAY et al., 1988)
Despite all these potential problems, the Doppler method still remains a good way to get

mean winds in the atmosphere, but any user must be aware of these limitations and bear them

in mind during any experimental study.

2.2 Spaced antenna methods:

FCA and Interferometer techniques

There are alternative approaches for determining atmospheric wind speeds, and these are the

class of spaced antenna methods (e.g. see reviews by HOCKING, 1983c; BRIGGS, 1984;
HOCKING et al., 1989). In this, one uses separate groups of antennas, spaced apart on

the ground, to determine the wind speed. There are two main approaches ; the first uses
cross-correlation techniques to determine the time it takes for the diffraction pattern of the

irregularities to cross between groups of antennas, and in its most sophisticated form is called
Full Correlation Analysis, or FCA (BRIGGS, 1984). The second approach, originally intro-
duced by PFISTER(1971) and later by FARLEY et a1.,(1981), ROETTGER and IERKIC

(1985) and ADAMS et al.,(1985) involves using the groups of antennas to form an interfer-
ometer. Briefly, such interferometer methods using phase differences between signals received
at the groups of antennas to determine angles of arrival. Cross-spectral techniques are used

for such angle-of-arrival determinations. Doppler methods are then used to determine the
radial velocities associated with each separate scatterer. With such methods, it is possible to

calculate the positions of the main scatterers in the sky, hence enabling more accurate deter-
mination of horizontal and vertical winds. The major disadvantage of this technique is that

it requires that preferred regions of scatter, of narrow angular extent, do indeed exist, so that
a direction can be determined. If scatter is diffuse, from a wide range of angles, the method

breaks down; even though apparent directions of preferred scatter might still seem to result
from the analysis in this case, they are not meaningful (e.g. BRIGGS, 1980).

These two techniques have been discussed extensively in HOCKING et al. (1989), and
extensive discussions will not be entered into here. However, it is noted that they are viable

and effective alternatives to the DBS method, and their use is growing.

2.3 Brief comments on the various techniques

There are advantages and disadvantages in all these methods. For example, correlation analysis

techniques often use small groups of antennas, with corresponding wide polar diagrams. As a
consequence, they often produce winds which are averaged over a large area of the sky. On

the other hand, there is the advantage that both components of the wind speed are measured
in the same volume, directly above the radar. Furthermore, even if the atmospheric scatterers
have non-isotropic backscatter polar diagrams, correct estimates of the wind speed still result.

The vertical wind speed is not measured, and Doppler methods must be used to determine
this.

If isotropic scatterers are the main type of scatter, the spaced antenna and Doppler methods
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are equivalent (BRIGGS, 1980). If there is a significant contribution from specular reflectors,

it can result in enhanced scatter from the vertical, an advantage for the spaced antenna

technique, since that method uses only vertically aligned beams. However, in the extreme

that these specular reflector regions form a continuous blanket across the sky, with buoyancy

waves causing undulations in this blanket, then the FCA and other simpler versions of the

spaced antenna method can break down and effectively measure the phase speeds of the gravity

waves. This is a problem for E region studies using MF and HF frequencies, but in the middle

atmosphere it is rarely a problem (e.g. HOCKING et al., 1989).

As discussed, the major disadvantage of interferometer techniques is that they require that

there are preferred regions of scatter in the sky, of narrow angular extent, so that a direction

can be determined. If scatter is diffuse, from a wide range of angles, the method breaks down

completely. On the other hand, if such discrete scatterers axe present, interferometer methods

enable high resolution studies of the scatterers.

It is clear from the preceding discussions that while the principles of estimation of wind

speeds are simple, in practice there are many complicating features, and determination of

perhaps the simplest target parameters, - their speeds, - is quite complex for the atmospheric

case. To first order, all the methods are sound; but if one is interested in details about wind

fluctuations, it is clear that it is necessary to know other features of the target, such as their

"aspect sensitivity", their shape, the spatial distribution of the scatterers, and perhaps even

the cause of the scatterers. In due course, we will address methods to determine such target

parameters.

3 Spectral width estimates

So far we have concentrated on determination of mean winds. In the Doppler method, this

relates largely to the mean frequency offset of the spectrum, whilst in the FCA method it

relates to the time delay of the peak of the cross-correlation function. But there is more

information in the signal. In the SA method, the width of the auto and cross-correlation

functions holds extra information about the targets; in the Doppler method, the width of the

spectrum contains the information. In some ways the second case is easy to visualize, so let

us concentrate on this case.

A variety of methods can be used to determine this spectral width. One can utilize either

the width of the autocorrelation function where it falls to one half of its value at zero lag, or

the second lag of the autocorrelation function, or the second moment of the spectrum (e.g. see

the discussion by WOODMAN, 1985). In all cases, one must be careful about the effects of

noise, since noise can cause systematic errors. For example, noise produces a narrow spike at

zero lag of the autocorrelation function, and this spike should be eliminated before proceeding

with analysis. A procedure commonly used to determine the spectral width is least-squares

fitting of a Gaussian-like function as in equation (11). In some cases, it is necessary to remove

excessively large spikes from the spectra, a procedure which is especially necessary when there

are "mirror-like" partial reflectors in the radar volume (e.g. HOCKING, 1983b). The details

of these procedures will not be considered here; we are more concerned with the interpretation

of the spectral width.

What then can cause the broadening of the spectrum? Perhaps the most obvious is random

motion of the scatterers. If each scatterer has a velocity superimposed upon the mean speed,

then each produces a line in the spectrum with a different frequency, as illustrated in the

following diagram.
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If the scatterers have, for example, a Maxwellian distribution, then the vertical component

of velocity (w) must have a Gaussian distribution, which is proportional to

ezp{-w_/(2w2m_ts)}. Since for a vertical beam the Doppler shift from any scatterer is f = {.w,

the spectrum will have a shape of the form ezp{-f2/(2f]_us)}, where fRus = _.w_s.

For some years in the early period of VHF middle atmosphere studies, it was assumed that

this was the major cause of spectral broadening. However, for most VHF radars, this is not

in fact the case. There are other causes of spectral broadening, which while understood by a

few (e.g. ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a,

b), were not generally appreciated in the Middle Atmosphere community. Fortunately, this
attitude has changed recently. These effects will now be discussed.

[o) Beam Broodenlng
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Fig. 5 Contributors to the spectral broadening at any instant.

For a vertically pointing beam, probably the main cause of the non-zero spectral width is
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the so-called "beam broadening", which is illustrated in fig. 5a.

Even if all the scatterers are moving horizontally at the same velocity, each scatterer will

produce a different Doppler shift. The nett result is a spectrum of finite width. This spectral

broadening has been modelled by several workers (e.g. HITSCHFIELD and DENNIS, 1956;

ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a, b) , and

for relatively narrow beams ( < about 5 °half-power half-width), the spectral half-power half-

width f½b obeys the approximate relation (in units of Hz)

f½b = 2(1.0) I -V--.h_-I 0½ (17)

where 0½ is the two-way half-power half-width of the polar diagram in radians, and .]f_ is
the TOTAL horizontal wind vector. The same approximation is also fairly accurate even for

off-vertical beams, but it is important to note that the TOTAL wind speed should be used, and

NOT just the component parallel to the tilt direction of the beam. This formula is based on

the assumption that the scattering is statistically isotropic, an assumption which we will relax

shortly. When one compares the spectral half-widths due to the non-fluctuating components of

the wind-field to the experimental spectral half-widths measured with the vertical beam, one

frequently finds that the two are very similar. For example,figure 6 from HOCKING (1983)

shows an almost 1:1 relationship between the two parameters when spectra produced from 1 ls

data sets were used.

This point cannot be emphasized too strongly:- the spectral widths are often

dominated by so called beam broadening.

There are other effects which alter the spectral width, particularly if the beam is tilted

from the vertical. Horizontal fluctuating motions will alter the spectral width (e.g. see fig.

7), and so will changes of the mean wind with height, as occurs for example in a wind shear

(e.g. fig 5b). The former effect always broadens the spectrum, whilst the latter one can either

reduce or increase the spectral width depending on the sign of the wind shear. These points

are discussed in more detail by HOCKING (1983a), for example.
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Scatter plots of experimental spectral half-power half-widths determined from 11 s data sets vs. the

spectra] iutlf*width expected purely due to beam and wind-shear spectral broadening for the troposphere.
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Of course the target parazneter which is desired is the RMS fluctuating velocity of the

scatterers, but this often contributes only a small fraction to the total spectral width. To

determine the RMS fluctuating velocity, one should first use the measured mean wind speeds

as a function of height, and the known polar diagram (radiation pattern) of the radar, to

determine the spectral half-power half-width f½n! contributed by the non-fluctuating effects.
Then the contribution from the fluctuating component fll_,a can be found through the relation

f_luct 2 2= f½_=pt --/_nl (18)

This arises because the experimentai spectrum is approximately a convolution between the

spectrum which would be produced if there were no fluctuating components, and the spectrum

due to the fluctuating components alone (at least for very narrow beams (_< about 5°half-power

half-width); the more general case has been modelled by HOCKING, 1983a).

To properly consider all the contributions from the mean wind including wind shear, a

more accurate computer model needs to be used (eg HOCKING 1983a), but in many cases

equation (17) serves as a useful approximation to obtain f½nl"

Of course equation (17) is only a first-order estimate of the spectral half-width due to the

non-fluctuating component, and it also assumes that the scatterers scatter isotropically. If

the scatterers are anisotropic, as may be the case and as has been discussed previously, then

the true contribution from non-fluctuating components will be less than that calculated with

(17). That equation can still be used, but (see appendix A) 0½ must be replaced by 0_ = R.0_
where

[R= I+ o,_i ' (19)

0½ being the true half-power half-width of the radar beam, and 0,_ is the haif-power half-

width of the polar diagram of backscatter due to the scatterers (i.e. 0,½ =/x/T_.0,, oj being

defined by equation (15)). Notice that once again it is important to know the backscatter polar
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diagramdueto the scatterers, and it is becoming more and more important as we proceed

through this text to know this parameter.

Having now determined the contribution due to non-fluctuating aspects of the wind field,

and removed it from the experimentally determined spectral half-width, it is now necessary

to decide what this residual contribution means, and how to interpret it. There are at least 3

possible contributions to this remaining contribution to the spectral width, namely the effects

of fluctuations in the velocity due to turbulence, fluctuations due to buoyancy waves, and

the decorrelation time associated with the decay of turbulent eddies. It is not always easy to

separate out these terms.
In the case of a vertical beam, the most important effects are the vertical fluctuating

component of the turbulent velocity, and both the vertical and horizontal components of the

buoyancy-wave field. The horizontal component of the buoyancy field is important because

although the beam is vertical, if the wave amplitudes are substantial the radial components of

velocity fluctuations occurring near the edge of the beam may still contribute to the spectral

broadening. This is especially true when wide beams are used, and is an argument for the use

of narrow beams when studies of turbulence are made.

When off-vertical beams are used, both the vertical and horizontal fluctuating components

of the turbulent velocity field are important. However, the horizontal components of the

buoyancy-wave field become even more important in contributing to the spectral broadening;

variations of velocity due to buoyancy waves occur both as a function of position within the

radar beam and also as a function of time during the period of data collection. This latter

effect can be quite dominant, and swamp the contribution due to the turbulence. For example,

fig. 8, taken from HOCKING (1983b) illustrates this point, and shows the dramatic increase

in spectral width recorded when an off-vertical beam is used as compared to a vertical beam.

In this case the radar was an MF radar observing the mesosphere, and the beam-width was

wider than for many VHF radars (about 4.5 *half-width); data were collected for 12 rains in

order to emphasize the effect. In normal VHF experiments the effect may not be so dramatic,

but nevertheless occurs.
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Fig. 8: The solid curve shows a spectrum recorded with the Buckland Park 1.98 MHz radar, using

a 10 vain data length and a beam tilted 11.6%if-vertical. The dash-dot curve shows the approximate

shape of the spectrum recorded with a vertically pointing beam at the same time.
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Thus measurements of turbulent energy dissipation rates are best made using a vertical

beam. The contribution due to turbulence can be envisaged as follows, and is illustrated in

fig. 9. Backscatter occurs predominantly from scatterers with scales of the order of the radar

half-wavelength, but these scatterers are carried around by the larger scales. The mean square

fluctuating velocity measured by the radar is then the integrated effect from scales of the order

of the radar half-wavelength out to scales comparable with the radar volume (e.g SATO and

WOODMAN, 1982; HOCKING, 1983a).
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For radars with pulse lengths and beam-widths comparable to the buoyancy scaJe of tur-

bulence, scales even beyond the buoyancy scale may contribute to the mean square fluctuat-

ing velocity, although fortunately with reduced contributions. Let us say that the measured

mean-square fluctuating velocity is due to a fraction F from scales within the inertial range of

turbulence, and the remaining contribution comes from scales within the buoyancy range. The

exact value of F depends on the radar configuration, sampling time, etc., and for the present

we will not concern ourselves with its evaluation.

Then we may write (following HOCKING 1983a, 1986) that the velocity variance observed
with the radar is

/ Ol,(k,)dkl (20)

where Ozz(kz) is the longitudinal one-dimensional spectrum function (e.g.BATCHELOR,

1953, p.50) for the direction radial from the radar. The integration is performed over all scales

which can affect the radar measurements, which for VHF radars means scales out to the radar

pulse length or the buoyancy scale of turbulence, whichever is larger. For a radar pulse length

of 600 m, say, this means that scales well into the buoyancy range will be effective, since the

thicknesses of these layers is often well below 600 m (e.g. CRANE, 1980; BARAT, 1982) and
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the inertial range-buoyancy range transition scale is usually several times less than the layer

thickness (e.g. BARAT, 1982). If it is assumed that a fraction F of the measured velocity

variance resides in the inertial r____geand the rest in the buoyancy range, we may write that
the measured velocity variance v 2 obeys the relation

O,,(k,)ak,+ = F.v' (21)
k_ B

where ka isthe wave number ofthe buoyancy scale(transitionscalebetween the inertiM

and buoyancy ranges)and k_istheBragg backscatterwave number. For Kolmogoroff,inertial-

range turbulence,and definingthe turbulentenergydissipationrateas :,we may take

O:,(k) -- .1244C0:'/s1 k I'/3 (22)

and solve for e in terms of kB, kx, and v--_. C_ is well known from careful atmospheric

experiments (e.g. CAUGHEY et al., 1978) to be close to 2.0.
This may then be used (e.g HOCKING, 1983a) to derive

where

= £.LB/ L_/3- (23)

and using this relation with equation (24) gives

[12.24F l --
e= L C_ J v2fB' (26)

fB being the Brunt-Vaisala frequency in Hz. Again taking F = 0.5 and Cv2 = 2.0, we may
write

e _ 3.1v2fB (27)

Notice that this also means that
--1.

LB -- i.I-_-_-B ,

a usefulrelationformaking radarestimatesofthe Buoyancy scale.
Of coursev2can be found from the relation

-_ = f],,,c,/(2en2) (28)

provided of course that f_lh, ct can be shown to be entirely due to the turbulence.

2,r i -_
LB = "O--._e2WB2

F )3/_ 312�LB.(::) (24)
If F is taken to be 0.5 and C_ = 2.0, then we can write approximately that

= 3.45 (_-)3/_/LB. (25)

WEINSTOCK (1978b) has suggested that the Buoyancy scale relates to the Brunt-Vaisala
frequency and the energy dissipation rate through the relation
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If F actually varies up to 1.0 or down to 1/4, then the estimates represented by equations

(25 and 27) will be incorrect by a factor of 2-3.
These formulae assume that the scattering scale ),/2 lies in the inertial range. However,

it should be noted that if scatter occurs from the viscous range, as may at times happen
in the mesosphere, the formulae are still largely valid. It will be noted from (21) that the
mean square velocity is an integrated effect due to all scales between A/2 and Ls and this

integration is dominated by the large scales. A change in the spectral form from (22) within
the viscous range will not greatly affect the integral; at worst, the A/2 term in (23) may need
to be replaced with the inertial range inner scale.

When the radar volume has dimensions less than the buoyancy scale of turbulence, the

formula becomes slightly modified. The parameter Ls is replaced by the larger of the pulse
length and the radar beam-width at the height of scatter (which we will denote as Lr), and

the constant of proportionality changes slightly. In this case kB in equation (21) is replaced by
a Fourier scale representative of the range of Fourier components in the pulse (or the beam-
width, whichever is larger). For exarnple, if the pulse is Ganssian in shape with a half-power
half-width Lr, then its Fourier transform has a half-width at half-power of about 0.44x2_r/Lr.

This different situation means that for Lr << Ls, the following relation applies (e.g. LABITT,
1979; BOHNE, 1982 (appendix C))

_-_ 3/2
E _ 1.3(v) /L,. (29)

The constant (1.3) has changed considerably compared to that in (24) and (25), and
there are two main reasons for this. Firstly, the constant 1.64 assumes that there is no
Buoyancy scale, and assumes that the k-_ law applies over all scales; thus Fourier scales of

small wavenumber, although only a small contribution to the pulse, make a large contribution
to the integral in (21). As a result, (29) should not be applied even if Lr is less than but
comparable to LB; in that case, the constant to be used should be considerably larger. The
second reason relates to the different physical significances of L, and LB.

It should also be noted that even if L, <<:Ls, if data lengths of a minute or so are used in

forming the power spectra, equations (24) and (25) are better estimators of e; see fig. 9.
The relations (23-29) (whichever is applicable) may be used to determine the turbulent

energy dissipation rate if one knows the contribution to the spectrum from turbulent fluctu-

ations. However, we still must decide whether all the remaining spectral width is indeed due
to turbulent fluctuations. Even when vertical beams are used to measure the spectrum, there

may still be a small contribution due to buoyancy waves, (as has already been discussed),
hut it is possible to make at least some attempt to separate the turbulent and buoyancy

wave effects. Use of procedures which involve least-squares fitting to a Gaussian shape like
(11) help, because buoyancy-wave fluctuations of specular reflectors, for example, can produce
fairly non-Gaussian spectra. Thus spectra dominated by buoyancy-wave fluctuations are often

rejected by such procedures. Another possibility is that used by HOCKING (1988),who uti-

lized the fact that the buoyancy-wave field tends to have only a small contribution (if at all)
from oscillations with periods of less than 5 min. This is not to say, however, that using a data
length of less than 5 mins eliminates the wave effects, since even a fraction of a wave cycle
could cause significant contributions to the spectral width. However, one can predict how the

spectral width might change as a function of data length in this case, and by comparing this

prediction to the true variation in spectral width as a function of data length, can make some
estimate of the relative contributions of buoyancy waves and turbulence. Such a process has

some uncertainty associated with it, but is nevertheless of some value. An example was given
in HOCKING (1988).
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We have not yet addressed the contribution due to the decorrelation time associated with

the finite lifetime of the eddies. In fact provided that the radar wavelength is substantially

less than the buoyancy scale, this is not a major contribution, as will now be shown.

If the energy dissipation rate is again denoted e, the typical eddy scale as g and the velocity

associated with such an eddy is denoted as v, then the typical lifetime v of an eddy is

Hence

so that

where

g
r -,_ - (30)

V

V 2

e -_ -- (31)
T

T .... (32)

T .v g3e-3 (33)

Thus the growth and decay of eddies prduces an autocorrelation function with a half-width

at a value of 0.5 of about r , where _- is given by the above expression. If the autocorrelation

function is taken to be Gaussian, then its Fourier transform is also Gaussian, with a half- power

half-width of 0.22 / r, and we will denote this as fdc , where "de" stands for "decorrelation"
Thus

fdc .22 z__ -- ._ .22g-3 e_, (34)
T

where g can be taken to be of the order X/2.

Contrast this to the contribution due to fluctuating motions, which contribute out to scales

of the order of the Buoyancy scale, LB. In this case, we have already seen (equation 25) that

if we take F as about 0.5, then

t_3HS
-_ 3.5 .... . (35)

Ls

Then the half-power half-width of the spectrum due to the fluctuating motion of the scat-

terers is given by

fY",_(,_) "" .8 e, L_ (36)

Hence the ratio of spectral half-widths due to the eddy motions and the decorrelation time

of the eddies is

fac (37)

Physically thisarisesbecause the spectral width associated with the scatterermovement is

related to the buoyancy scale Ls, (since we have seen that this width is due to the integrated

efect of all scales up to LB), whilst the decorrelation time depends only on the scale of the

scatterers.

For a typical case with X/2 equal to 3m, and LB equal to say 200 m, the ratio is about 16.

Since the total spectral width due to these two components combined is equal to the square

root of the sum of the squares, the correction due to the decorrelation time in this case would

be only a fraction of a percent. Thus provided the Buoyancy scale is greater than the Bragg
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backscatter scale by a few times, the decorrelation time of the eddies is only a minor correction

to the spectral width and can usually be ignored.

It was mentioned earlier that information about the level of turbulence also exists in the

correlation functions, and can be obtained from the Full Correlation Analysis technique using

spaced antennas. Indeed, one of the output parameters of the Full Correlation Analysis is a

parameter which is usually denoted as Tl and represents the correlation function half-width

which would be measured with a radar wl_ich moved along the ground with the velocity of the

mean wind in the scattering region. Spectral beam-broadening has been removed from this

parameter, although the effects of wind-shear have not. Thus the parameter fz = 0.22/Tz
• 2

can be used in place of f/l,a in all the discussions above; the main potential pro2blem is that

there may be increased contributions from buoyancy waves if the polar diagram of the system

is wide•

Provided the effects of gravity waves can be adequately separated, or even shown to be

relatively unimportant, the procedures described above allows radars to be used to extract

estimates of atmospheric turbulence.

It is also possible to infer the turbulent diffusion coefficient for a turbulent layer through

the relation

g. = c2_1_ (38)

e.g. WEINSTOCK, 1978a, b; LILLY et al. 1974). The constant e_ is quoted to have a variety

of values in the literature, ranging from about 0.25 to 1•25• The most commonly accepted value

seems to be 0.8 (WEINSTOCK, 1978)• Ideally it is also necessary to know the Brunt-Vaisala

frequency averaged over the turbulent layer, but unfortunately it is not always possible to find

this• Some authors use climatological values, but it is better to use radio-sonde determinations

where possible.

The method of determining e described above has been used a few times, but is still largely

unexploited; a much greater use of these procedures is to be actively encouraged.

4 Power Measurements

One simple but effective method for deducing information about the scatterers is to record the

backscattered power. In many experiments powers are compared in a relative way; for example,

power variations as a function of time and height are usually studied in most experiments.

Even this simple process can give useful results, but it is even more effective if the radar can

be calibrated in an absolute sense. This requires some careful work by the user, but if this

is done it is then possible to convert the measured powers to effective reflection coefficients,

backscatter cross-sections, or perhaps estimates of the turbulence intensity. ( The parameter

actually calculated depends largely on the scattering mechanism, and we will consider ways

of determining this shortly.) Such calibration not only allows better comparisons to be made

world-wide, but also allows better comparison with theory.

Before showing how this calibration can be done, however, it is a useful exercise to look

in more detail at the mathematical formulation of the scattering process. We will begin by

considering the simplest case, namely that of reflection from stratified steps.
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4.1 Modelling the reflection and scattering processes

4.1.1 Horizontally stratified structure

Consider first, and for simplicity, a horizontally stratified atmosphere which has fluctuations

in the refractive index in the vertical direction but none horizontally. In fact we will see later

that this is not such an unreasonable model, and has some real applicability in the atmosphere.

A pulse of the form 91 (t- z/c)cos[wc(t - z/c)] is transmitted, where fc = wJ(21r) is the carrier

frequency. At z = 0, this is a pulse which varies in time as 91 (t)cos(w,t). This can be written

as 9(_) = 9,(()cos(k() where k = 2w/c = 4_r/A (,l being the radar wavelength) and ( = ct/2

is a length coordinate which closely matches the height of the scatterers (e.g. HOCKING and

ROETTGER, 1983). If the refractive index fluctuations are described by n(z), then the radio-

wave reflection coefficient profile is given approximately by r(z) = }(tin�dr) (eg HOCKING

and VINCENT, 1982a). The reflected complex amplitude as a function of height is then given

by

a(_) = {L_2} ® g(z) (30)

where ® stands for convolution. (e.g HOCKING and ROETTGER, 1983, and references

therein). (This expression is very accurate for VHF scatter, although if absorption is high or

the pulse is significantly dispersive, more careful approaches are necessary, such those given by

HOCKING and VINCENT (1982b), or even full-wave equations are necessary (e.g. BUDDEN,

1965).)

To begin, it is of interest to examine what happens when reflection occurs from a single

step of some finite thickness. The easiest step to deal with is one of the type with

z-z 2

r(z) oc e{-_ ). (40)

In this case the refractive index profile is a step of finite thickness, as shown in the following

diagram. Note that although d is a measure of the step depth, it is probably not the best

measure of this depth. A better measure of the step depth might be the distance between the

two points where the reflection coefficient falls to one half of it maximum value, or

to = 2/v/_-2.d

Fig. 10

y
a !

re z} ......
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The convolution can be done numerically, but it is instructive to examine the process using

a slightly different approach. From Fourier theory (e.g. BRACEWELL, 1978) the convolution

can be clone by Fourier transforming each of g(z) and r(z), multiplying the Fourier transforms

G(k) and R(k), and then re-Fourier transforming the product. The process is illustrated

diagramatically in the following diagram.
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Fig. 11

Note that the Fourier transform G(I¢) ofg(z) exists in a narrow band centred at k_ -- 47r/A.

Notice also that the narrower the step (smaller. d) the wider the function R(k) and so the

product of the Fourier transforms is larger. In fact the peak amplitude of the product is

A(kc) = e-k'-_ c¢ e- _i'_?- (41)

- so clearly once d exeeds ,_, the backscattered power is very small. In fact even if d = _/4

(w = 0.42_), the reflected amplitude is 0.08 times that for a step of zero width (ie a sharp

discontinuity). The power will therfore be reduced by 22 dB compared to a single step. Many

authors have taken this to infer that only steps much less than about a quarter wavelength in

thickness will ever be seen by radar, and this may well be true for say MF radars. However, with

coherent integration and the greater sensitivity of modern radars, particularly VHF radars, it

is not so easy to adopt this argument; VHF radars can often see such steps even if reduced in

efficiency by 20 dB, and they are indeed capable of detecting layers with a depth d of about
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)_/4. However, it is true that beyond this depth, the efficiency falls off remarkably quickly;

for example, if d = ,X/2, the power is reduced by 80 dB, and even VHF radars would not

normally detect such a step. HOCKING (1987a) has discussed this point and suggests that

some "specular reflectors" seen by VHF radars have typical depths with 2d = 3 - 4 m, or w

between 2.5 and 3 metres; in other words, the steps are right on the edge of the region of

detectability.
Another useful model is that of "Fresnel Scatter", a model known for many years in D region

MF studies, (eg AUSTIN et al., 1969; MANSON et al., 1969; GREGORY and VINCENT,

1970), but given renewed popularity by GAGE et ai (1981) in respect to VHF studies. In this

model, horizontal stratification is again assumed, but n(z) is assumed to vary randomly, so

the atmosphere can be thought of as a series of thin slabs sitting atop each other, each with

slightly different refractive indices. Despite some initial controversy, it is relatively easy to
show that in this case the backscattered power is proportional to the pulse length (HOCKING

and ROETTGER 1983), and if one includes the decrease in reflected power as a function of

height z then one finds that the power received by a radar takes the form

2 2
a PtA,

PR- (Z z) (42)

where PR is the received power, a is the array efficiency, P, is the peak transmitted power,

A, is the array effective area, ,k is the radar wavelength, z is the height of reflection, M is the

mean generalized refractive index gradient and F(A) is a "calibration constant" which must be

determined empirically for each radar. The term Az represents the radar pulse-length. In the
case that M varies substantially within one pulse-length this formula need some modification,

as described by HOCKING and ROETTGER (1983). Later developments of this model have

been discussed by GAGE et al., (1985) and GREEN and GAGE, (1985).

4.1.2 Three dimensional structures

The next extension to these models is to allow the scattering medium to have non-constant

structure in the horizontal direction as well. An example might be fully developed isotropic tur-

bulence, in which the refractive index has random fluctuations caused by the turbulent velocity

field. In this case, the theory for relating the backscattered signal to the turbulence intensity

has been fairly well developed (OTTERSTEN, 1969; VANZANDT et al, 1978; HOCKING,
1985). The backscattered power depends not only on the intensity of the turbulence, but

also the mean refractive index gradient in which the turbulence exists. In the mesosphere,

the latter term is largely determined by the electron density gradient, in the stratosphere by

the temperature gradient, and in the troposphere by the temperature and humidity gradient.

Expressions for these potential refractive index gradients are given below, but expressions for

evaluation of the turbulence intensity from measurements of the absolute backscattered power

wil be left until after the following section on calibration of a radar.

In the unionized atmosphere, and for centimetre and metre radio waves, the potential

refractive index gradient is given by (TATARSKI, 1961, p 57)

M = -79XT 210 -6 ./-'.- [1 + -'-_qj15500][dT_z + F,, 1 "vr7800Tql-gg'°°"";'-'azjdq], (43)

where P is the atmospheric pressure in units of millibars (hPa), T the temperature (°C),

F_ is the adiabatic lapse rate, and q = e/(1.62P) is the specific humidity, e being the water

vapour pressure.
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In the ionosphere, the relevant potential refractive index gradient is given by ( HOCKING,

1985)

Me=-_ N dz + p dzJ (44)

where N is the electron density, n is the refractive index, and p is the neutral density of

the atmosphere. The Brunt-Vaisala angular frequency is represented by w_, and g represents

the acceleration due to gravity. Notice that this can also be written as (e.g. THRANE and

GRANDAL, 1981)

Me = _ dz _ (45)

where 7 is the ratio of specific heats at constant pressure and constant volume.

For a VHF radar,
On 1 I 2

0# = (46)

where re isthe classicalelectron radius. At HF and MF, the relationbetween N and n becomes

more complex (e.g.BUDDEN, 1965).

Let us now turn our attention to the subject of calibratingthe radar, so we may then see

how to use the above expressions to determine turbulence intensities.

4.2 Calibration of the radar

In order to calculate the parameters like backscatter cross-sections of the scatterers or the

reflection coefficients of the reflectors, it is necessary to calibrate the radar. In this context,

"calibration" refers to calculation of appropriate coefficients which enable conversion between

the power received by the radar and reflection coefficients, back-scatter cross-sections etc

(rather than determination of the polar diagram of the radar, for which the term "calibration"

is also often used). Many radars world wide have still not been absolutely calibrated, which

is a great pity.

One simple way of "calibrating" the measurements is to compare the signal received to the

noise. For a VHF radar, the noise is predominantly sky-noise, due to extra-terrestrial sources.

By measuring the ratio of the signal-to-noise (S/N), it is possible to get an approximate

measure of the received power, provided the noise level is known (e.g. VANZANDT et al.,

1978). Standard charts exist which may be used to give the noise level. However, this is not

the best way to determine the signal power. For example, the true noise level has a diurnal

variation, depending on the passage of noise sources through the beam, and of course radars

at different locations have different dominant noise sources . It is also likely that the noise

level may change as one changes the orientation of the beam. Furthermore, the procedure

is of no use for MF and HF systems, in which noise depends on atmospherics like lightning.

Therefore, other more accurate calibration procedures are to be preferred.

A moderately effective technique is to use a noise generator to calibrate the receiver. A

noise generator is fed into the receivers at the point where the receiving antennas are normally

connected, and the signal is recorded. Usually VHF radars employ coherent integration of the

signal, and of course noise is incoherent, and this factor must be taken into account when the

calibration is performed. For noise, the sum of N coherent integrations increases the total

power by factor of N times, whilst for coherent signal it increases by a factor of N 2. These

differences are usually fairly easy to allow for, however, and calibration in this way is relatively

simple (e.g. HOCKING et al., 1983). One simply determines what a particular level of receiver

input power produces in terms of output units, and henceforth any measured receiver output
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canbeconvertedbackto an input noise power. Standard radar equations may then be used to

determine parameters like the scatterer cross-sections and reflection coefficients. For example,

knowing the output power of the transmitter, It, the reflection coefficient of a scattered layer

can be found through the relation

P, etG _ --_

PR -- 4-'_-_2 en,'tR ._ (47)

where PR is the received power, P, is the power produced by the transmitter, G is the gain of

the transmitting array, et and eR are the efficiences of the transmitting and receiving systems,

(including the efficiencies of the respective arrays), AR is the receiving area of the receiving
array, and R-'_ is the mean square reflection coefficient. In the case that the same array is used

both for transmission and reception, we may use the relation AR = G_2/(47r) to give

__ Pn64r_z 2
R 2 _ -- (48)

PtG2e_ )_2

If the scatter is due to turbulence, an effective backscatter cross-section a can be found.

Here, a is the power backscattered per unit solid angle, per unit incident power density, and

per unit volume, a is evaluated through the relation (e.g. HOCKING, 1985)

PtenetGAn V '(49)
Pn - 4rcz 4 .a.-gn2,

where V is the radar volume. For a monostatic radar, V = _r(zO½)2.Az, where 0z2 is the radar

two-way half-power half-width and Az is the pulse length ( = cr/2, where r is the transmitted

pulse length in seconds and c is the speed of light in ms-l).

The efficiency e is often hard to determine, but even if R 2 or a or C_ can be determined to

within a factor of 2 or 3, it is still useful. Various ways exist for calculating radar efficiencies,

but lack of space prevents their discussion here. Examples include methods discussed by

VINCENT et al., (1986) and MATHEWS et ai., (1988).

At HF and MF, use can be made of the fact that the radio pulses are totally reflected

from some part of the ionosphere. If a so called "second hop" echo occurs, (which arises when

the pulse is totally reflected, returns to the ground, is re-reflected back to the ionosphere and

returns), then the ratio of the strengths of the main and second hop echoes may be used to

determine a calibration constant for the system. To see this, write that the power received

form a reflecting layer at height z, and of reflection coefficient R is

Pin = tc-2-R_z-2 P_ . (50)

where s is a calibration constant. In this case, Pt need not even be the actual transmitted

power, but any value proportional to it. Then if a second-hop echo exists, the received power

from it is

P2n = g-2_-2(2z)-_Pt- (51)

Then squaring (50) and dividing through by (51) allows elimination or R 2 and so

- (52)
z Pln

In this case, neither /DR nor Pt need to be known absolutely, and each can be a quantity

which is simply proportional to the true received and transmitted powers. _ can be determined
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as above, and then for any echo, whether it be strong enough to have a second hop or not, R 2

can be evaluated through (50).

In VHF studies, there is no totally reflecting surface. It is possible to use artificial satellites,

or even the moon ( e.g. MATHEWS et al., 1988 ) to calibrate the system, provided that the

backscatter cross-section of the target is known. In this case, the efficiency terms can also be

evaluated.

The absolute calibration of radars by any of the means discussed above, or any other

means, is to be actively encouraged, and will make comparisons between radars and between

observations and theory much easier in the future.

4.2.1 Determination of turbulence intensities from measurements of received

power

Once it can be ascertained that turbulence is the main cause of the radio wave scatterers,

it is possible to convert the received powers to parameters which describe the turbulence.

One key parameter is the "(potential) refractive index structure constant", usually denoted as

C_. If the turbulence obeys the classical Kolmogoroff inertial spectrum, then the spectrum of

refractive index fluctuations is given by (TATARSKI, 1961, 1971)

¢,(k=, kv, kx) = 0.033C_ ] k 1-_ (53)

where a normalization has been chosen such that f f f-_oo ¢(_k)dk =< n 2 >. Thus C_ is a

parameter which indicates the level of refractive index fluctuation. C_ can be determined

from the cross-section defined above through the relation

cr = 0.00655r_C_A-} (54)

(Note that sometimes a cross-section 77 = 4ra is used, in which case 77 = 0.38C_A-_). When

combined with the equations seen earlier, we see that for a monostatic radar

PRz2 ,__
C_ _ 66. ptaae2A z (55)

Appropriate relations can also be easily derived for the case in which the transmitter and

receiver are separate systems (also see HOCKING, 1985).

C_ is a useful parameter, but an even more useful one is of course the turbulent energy

dissipation rate, e. It is possible to relate C_ to e in the following way.

Starting from TATARSKI, 1961, (p44, equation 3.19), we have

c_ = a_N, - _, (56)

where N is a parameter defined by

g = K.M 2 (57)

for a stratified environment. The constant a 2 has been measured to be about 2.8. Using the

definition of the Prandtl number P. = KM/K., defining a' = P7 a, and ilsing the relation seen

earlier that

g. = c2_1_ (58)

e.g. WEINSTOCK, 19785, b; LILLY et al., 1974), we may see that

r p2,,2 1 ]
=/ '-'._B /

La2-Tc_M2.j (59)
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These relations have also been derived by BLIX (private communication, 1988) ; a sim-

ilar expression was derived by VANZANDT et al., (1978) and noted by HOCKING (1985),
although a slightly different proof was used in the second case, with the result that

I 1'= . . (60)

/_(c) is the critical Richardson number at which turbulence should develop, and b is yet another
constant relating the energy dissipation rate to the mean win&hear. In fact VANZANDT et al.,

(1978) and HOCKING (1985) took b =1.0, so b did not appear explicitly in their expressions,
but with hindsight this was not wise. The first expression (59) is derived in a more fundamental
way, and requires less assumptions, than the second (60), and it is better to use the former.

The constant c2 is quoted to have a variety of values in the literature, ranging from about 0.25
to 1.25. The most commonly accepted value seems to be 0.8 (WEINSTOCK, 1978b).

An extra complication arises if the turbulence does not fill the radar volume, and indeed this

often appears to be the case. It appears that in the stratosphere and mesosphere, turbulence
occurs in relatively thin layers with thicknesses ranging from a few tens of metres to perhaps a

kilometre or so, but generally of the order of 100m. At any one instant, only a small fraction of
the radar volume contains turbulence, and this should be taken into account when calculating
e. In other words, the calculated value of O_ is actually too small by a factor Ft, where F,

is the fraction of the radar volume which is filled with turbulence at any one time. Thus one

normally calculates
C2.(turb) = C2.(radar)/F,, (61)

where C2.(radar) is the value determined from the radar measurements. VANZANDT et

ai.(1978, 1981) have developed models for the variation of F as a function of atmospheric
conditions, enabling estimates of e to be made. Furthermore, one is often interested in the
mean value of e averaged over the radar volume, so VANZANDT et al. suggested calculating

the quantity
-_= F,e,urb (62)

GAGE et al. (1980) used a simplified model based on VanZandt's model, in which they
1

showed that the parameter Ft3w_ could be determined to moderate accuracy from climatolog-
ical data, so that the simplified expression

s= 7[C_(radar)]] ] (63)

could be used, where 7 = 1.08 × 1022 for a dry troposphere and 3' = 3.25 × 1021 for the
stratosphere. Here, P is in millibars, T in Kelvin, C,2 is in units of m-] and e is in units

of Wkg -1. Variations on these principles have also been presented by CRANE (1980) and
WEINSTOCK (1981).

Further complications arise if the turbulence is not isotropic, but we will not discuss these

problems here, important though they are, due to lack of space.

5 Aspect sensitivity of the scatterers

We have seen several times throughout this text that a better understanding about the shapes

of the scatterers is necessary in order to better interpret measurements of wind speed and
turbulence intensities. It would also naturally help in understanding the cause of the scatterers.
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The shape of the scattering irregularities has been the subject of active debate over many

years. Models have ranged from flat, mirror-like partial reflectors to "pancake-like" scatterers
to inertial-range isotropic turbulence, and in this review we will not dwell too much on these

arguments. Rather, we will first describe the main models, and then concentrate on the sorts
of techniques which might be, and have been, used to determine the shapes of the scatterers.

If it is assumed that the polar diagram of backscatter of the scatterers is of the form

B(O) oce-_ (64)

, as assumed in equation (15), then 0, gives a measure of how rapidly the backscattered
power falls off as a function of zenith angle. If 0_ tends towards 90 °, it indicates isotropic
scatter, whilst if 0, tends towards 0°then it indicates highly aspect-sensitive scatter.

There are a variety of models which have been advanced, but they basically fall into 2

categories. (e.g. LINDNER, 1975 a,b; BRIGGS and VINCENT, 1975; ROETTGER and LIU,
1978; GAGE and GREEN, 1978; HOCKING, 1979; FUKAO et al., 1980a, b; ROETTGER,

!980b; GAGE et al., 1981; DOVIAK and ZRNIC, 1984; WATERMAN, 1985, amongst others).
(A) The first class assumes that individual scatterers are (on average) ellipsoidal in shape,

which may vary in their length to depth ratio as a function of scale. The extremes are spherical

shapes (isotropic scatter) and highly elongated structures.
(B) The second class of model assumes a horizontally stratified atmosphere consisting of

variations in refractive index in the vertical direction, so one can think of this as a series of
"sheets" of different refractive index. Such structures, if truly stratified, would have 0o =
0, but if we imagine that these sheets are gently "wrinkled", then 0, will become non-zero

(e.g. RATCLIFFE, 1956). In this case, the range of 00 values relates to the range of Fourier
components necessary to describe the wrinkles.

Proponents of model B do not claim that the whole atmosphere is like this, but that it is

like this in some plai:es at some times, and use the model to describe particular observations.
Sometimes hybrids of the two models are invoked and other, more complicated, models

have also been proposed, but they are generally based on the above models. To illustrate

these later models, as well as give a feel for how they are explained physically, some examples
of such more complicated models are shown below. The first (fig. 12a) is due to BOLGIANO
(1968), and assumes that an intense turbulent layer might mix the layer so that the potential

refractive index across the layer is constant, with sharp edges at the side. These edges might
be able to explain the model B reflectors, for example, although doubts about the possibility
of a turbulent layer maintaining sharp edges exist.

The second model in fig. 12 proposes that scatterers near the edges of a confined layer
of turbulence are more anisotropic than in the centre. The model has been discussed by

HOCKING et al. (1984), noted by HOCKING (1985), and also proposed independently by
WOODMAN and CHU (1989). Such a model is physically likely because turbulent layers are
often more stable near their edges (e.g. PELTIER et al., 1978; KLAASSEN and PELTIER,

1985), but for the purposes of this paper these models are simply noted as the type of extension
to the simple models proposed above which should be borne in mind.
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discussed in the text.

Fig. 12

Another model which may give a physical basis to model B is the proposal that the specular

reflectors might be damped gravity waves (e.g. VANZANDT and VINCENT, 1983; HOCK-

ING, 1987a and references therein) or even viscosity waves, the latter being capable of existing

at very short wavelengths (HOOKE and JONES, 1986).

Having now established that both models have some physical basis, let us concentrate on

the simpler models, since these form an excellent basis for later discussion of any of the more

complex models.

With regard to model A, it should be noted that 0, gives a direct measure of the length

to depth ratio of the scatterers. The following figure, from HOCKING (1987a), shows this

relationship.



254

What techniques, then can be used to determine the nature of these scatterers?

Fig. 13

12

LIh 8

Aspect ratio of scstterers, L/h,

as a function of e s, for h - .15_ (upper
curve), .195X, .25X and .32_.
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5.1 Experimental techniques to determine the nature of the scat-

terers

In the following section a variety of techniques which may be used to determine informa-

tion about the nature of the scatterers are described and some of the results obtained so far

discussed. The list is not, however, exhaustive.

5.1.1 Methods utilizing different beam configurations

One of the simplest methods to investigate the aspect sensitivity of the scatterers is to simply

point a narrow beam vertically, and then at several off-vertical angles. The variation in power

P as a function of beam tilt angle 0, is then related to 0,. In fact it can be shown that

(o e _aT)2 O_

P(0T) _ e (65)

where 0_//is defined by equation (16), OT is the beam tilt direction from the vertical, and the

polar diagram of the radar beam is assumed to be of the form exp{-(sin20)/(sin20o)} [e.g.

appendix A; HOCKING et al (1986); note that the derivation in appendix A corrects an error
0_

made in HOCKING et al 1986, in that the important term _ was neglected in the exponent02.

of e in that paper].

A typical experiment which might be performed is to compare the powers received with a

vertical and an off-vertical beam, and use this to deduce 0,. Utilizing equations (16) and (65)

(or equivalently (A4) and (A10)),it is possible to derive the following simple relation between

P(OT)/P(O), OT and 00. If R is defined to be In{P(O)/P(OT} (or R = 0.23026Rda, where RdB

is the ratio of P(O)/P(OT) expressed in dBs), then

o,= _ oo
R
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Typical variations of P(g) show an approximately Gaussian fall-off out to about 5°- 10 °,

and then an approximately constant value beyond this, indicating possibly isotropic turbulence
with more anisotropic scatterers either embedded or nearby (e.g. DOVIAK and ZRNIC, 1984).

Typical values of 8e are often in excess of 8°in the troposphere, whilst in the stratosphere at
VHF values can be as small as 3°- 4% The following diagrams from HOCKING et al (1986)
summarize some measurements made with the SOUSY radar in Germany (after correction for

the error noted above). Note also the tendency for the scatterers to become more isotropic in

the high stratosphere.
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Fig. 14

In the mesosphere, #_ is typically 4°for VHF scatter below 75 km, although on occasions
isotropic scatter is also seen. Above 80 km, VHF measurements give #, to be about 6°- 8%

At MF, /_, is typically 2°- 5 °below 80 km, increasing to about 8 - 15°above 80 km (e.g.
LINDNER, 1975a,b; VINCENT and BELROSE, 1978. REID (1989) has summarized the

various mesospheric measurements.
An alternative means which may be used to determine #, is to utilize equation (16). By

comparing wind speeds deduced using the DBS method for a beam pointed at say 5°off-zenith

to one at say 15°off zenith, it is possible to deduce 0, from (16), assuming that the value
deduced with the 15nbeam is the true wind speed. An alternative is to use spaced antenna
methods to determine the true wind speed, and then comparisons with the DBS measurements

may allow determination of #_.
Another interesting determination of #, was made by VINCENT and BELROSE (1978),
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who compared the powers received on two beams of different polar diagram widths, and used

the resultant ratios of powers to determine 0,. The method yielded results consistent with

determinations made by other techniques discussed in this section.

5.1.2 Spatial correlation methods

If one illuminates the sky from a transmitting array which has a very wide polar diagram,

and monitors the electric field received at the ground, then the variation of electric field as

a function of position is simply the diffraction pattern of the scattering irregularities. The

spatial autocorrelation function over the ground can be determined by using an array of

dipoles distributed over the ground, recording the signal on each dipole separately and then

cross-correlating between dipoles. The spatial autocorrelation function so produced is simply

the Fourier transform of the effective polar diagram (ie the combined polar diagrams of the

radar beam and the scatterers). If the e -1 width of the effective polar diagram is 0ob, then

the spatial lag at which the amplitude of the complex autocorrelation function falls to 0.5 is

approximately 12.0/6,b radar wavelengths, where O°b is expressed in degrees (e.g. HOCKING

et al., 1989).

Thus a useful technique for determination of the polar diagram of backscatter is to produce

the spatial autocorrelation function in the manner described, and then Fourier transform it.

Such a technique has been utilized by LINDNER (1975a, b) in order to study the aspect

sensitivity of mesospheric scatterers at an MF frequency of 1.98 MHz. For example, Lindner

found typical values for 0, of about 2%0 5 °below 80 km, and 10°to 15 °above. These results are

consistent with later observations using beam-swinging techniques (HOCKING, 1979). The

method has not been greatly utilized, however, and deserves further attention.

5.1.3 Spectral methods

It was noted earlier in regard to discussions about extraction of turbulence from spectra that

in many cases the main contribution to the spectral width was spectral-broadening due to the

finite width of the polar diagram of the radar beam. At the time this was a nuisance, but now

it can be turned to good effect. The effective polar diagram is the product between the polar

diagram of the radar and the backscatter polar diagram of the scatterers. As seen in appendix

A, if O,b is the e -1 half-width of the effective polar diagram (ie the product of the backscatter

polar diagram and the radar beam polar diagram) then

sin-20°b = sin-_Oo + sin -20, (66)

But from equation (17) the beam-broadening of the spectral width is

f}b = 2(1"0) ] Vho, 1O_., (67)

The total spectral half-power-half-width is given approximately by

f_ = f_,-t- f._.,c, (68)

if we ignore the contribution due to wind-shear. (This last term can in fact reduce f}, but it

is usually fairly small.) Then we can apply our experimentally measured spectral widths to

place upper limits on O°. That is, if we calculate

= ]__.L_ (69)
, 21 vh,,, [
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then this is a usful upper limit to 0_,q, the half-power half-width of the combined polar

diagram of the scatterers and the rad_:" beam. In the case that it can be shown that f½b

flt,,ct, as often happens, then 0_ is a good estimate of 0½,1I. Then 0,b = 6½,fl/lv_T_, and

equation (66) can be used to deduce 6°. In the special case that a relatively wide beam is
used, so that 80 >> 0s, 0sb = 0°.

The above principles have been used by HOCKING et al.,(1986), and HOCKING (1987a, b)
to make estimates of backscatter polar diagram half-widths. The method of using fading times

as a crude indicator of "specularity" , as done by for example RASTOGI and ROETTGER

(1982) may be also considered as a primitive special case of this method, although that proce-
dure does not really pay proper consideration to the role of the mean wind in determining the

fading time through beam-broadening. More recently WOODMAN and CHU (1989) have used
similar techniques, but rather than just using the spectral width and assuming Gaussian polar

diagrams as done here, they have used the whole spectrum and the one-to one correspondence
between the polar diagram of backscatter and the spectrum to determine additional detail
about the actual shape of the polar diagram of backscatter and so the irregularities them-
selves. Woodman and Chu also used a wide beam, but it should be noted that this procedure

assumes azimuthal symmetry.
A procedure like this is very useful if there are several types of scatterers in the beam. For

example, if scatterers and reflectors described by models A and B both exist in the same radar
volume, the spectrum will not be Gaussian, but will comprise two portions; a narrow central

component corresponding to the specular reflectors, and a wider component corresponding to
the "model A" scatterers. As it turned out, WOODMAN and CHU (1989) saw no evidence of

"model B" reflectors, but this is likely to be because their spectra were averaged over 45 min,

whilst specular reflectors, if they exist, are likely to be relatively short-lived.
Indeed, evidence for the coexistence of the two types of scatterers coexisting in the same

region of space has been given by HOCKING (1987a), and is illustrated in the following

diagram. The data are presented because they show yet another useful means of determining
information about the scatterers, as well as making the point that both specular reflectors and
turbulent scatterers do seem to coexist.

These data were obtained using a hybrid of the beam-swinging and spectral approaches.

Two beams were used, one vertical and one off-vertical. A strong signal of very narrow width
was seen with the vertical beam, but nothing else, whereas on the off-vertical beam two

separate contributions to the spectra were seen; first a broader component corresponding to

isotropic bakscatter received through the main lobe of the beam, and secondly the same narrow
spectrum as seen with the vertical beam. Clearly the second component was due to leakage
from overhead, and comparison of the powers in the specular component observed with the
narrow beam and the more isotropic component show that the specular component is some

70 times stronger. The model discussed in Fig. 12 may apply in some cases, but certainly
does not here, as it is unlikely that the anisotropic scatterers at the layer edges would be so

much stronger than their counterparts in the centre of the layer. Thus this figure does indeed
suggest the coexistence of both models, whilst at the same time demonstrating yet another
useful technique to determine the aspect-sensitivity and nature of the scatterers.
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5.1.4 Amplitude distributions

The preceding techniques have been designed to make measurements of 0_, and are particularly

powerful if model A is valid. However, there is a useful method which allows the validity of

model B to be tested, and which has been used with varying degrees of success in recent

years. This is the use of amplitude distributions (e.g. VON BIEL, 1971, 1981; VINCENT and

BELROSE, 1978; ROETTGER, 1980a; RAS.TOGI and HOLT, 1981; SHEEN et. al., 1985;

HOCKING, 1987b; KUO et al., 1987 amongst others).

There are many variations of this technique, but only the simplest will be discussed here,

in order to illustrate the method. If scatter is due to an ensemble of roughly similar scatterers,

as might occur in a turbulent patch, then the amplitudes of the resultant distribution will

have a so-called "Rayleigh distribution" (RAYLEIGH, 1894). If, however, there is also a much

stronger single scatterer in addition to these weaker scatterers, the distribution changes to a so-

called "Rice distribution" (RICE, 1944, 1945). The figure below shows how these distributions

change as the specular component is made larger. Each curve is parameterized by a parameter

called the "Rice parameter", which is a measure of the strength of the specular component

divided by the RMS "random" component. For a Rayleigh distribution, this parameter is zero.
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Rice distributions in steps of cc = 0.5 as a function of

v = z/a = _/2" z/k, where z -- received amplitude, k -- RMS
scattered power and cr = the standard deviation of each of
the inphase and quadrature components of the scattered

signal. These plots may also be regarded as the distribu-

tion of amplitudes for a constant RMS scatter component

k = ,,/2 and varying specular component.

Thus in principle, by making histograms of the amplitudes of the received signal and com-

paring them to the above curves, it is possible to determine if there is a single dominant
scatterer within the radar beam. More complex variations on this process exist, including

looking at the phase distributions (e.g. ROETTGER, 1980a) and using more complex distri-
butions such as the Nakagami-M distribution (e.g. SHEEN et al., 1985; KUO et al., 1987).

The latter generalization is particu]arly useful if the specular component has undulations on
it and causes focussing and de-focussing of the reflected radiation.

Unfortunately, as with almost all techniques, complications exist. For example, if there
is more than one specular reflector in the radar volume, then the amplitude distribution

changes, and if there are more than about 4, the distribution begins to look almost Rayleigh-
like again. Furthermore, if one uses relatively short data sets (less than about 10 rains of data),
statistical effects can cause a set of scatterers which should produce a Rayleigh distribution to

produce a Rice distribution, which wrongly suggests the existence of a specular component.
To properly utilize the so-called Rice parameter one must look at the distributions of the Rice

parameter itself; the calculation of several non-zero Rice parameters is not in itself evidence
for a non-Rayleigh distribution. The correct interpretation of the Rice parameter is discussed

by HOCKING, (1987b).
Nevertheless, the process can be useful, as illustrated by the many authors listed previously.

An interesting example is shown in fig.17 below, which was taken from HOCKING (1987b).
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This diagram shows the height profile of the mean Rice parameter (< a >) as a function of

height measured with the SOUSY radar, using a vertical beam and two off-vertical beams, one
directed at 7°off-vertical to the North, and one at 7°off-vertical to the East. Note the increase

in < a > just above the tropopause, when observing with the vertical beam, indicating the

presence of a few dominant reflectors within the radar volume in the stratosphere. Notice also

that there is still a non-Rayleigh character to the scattering process on the North beam, but

on the East beam the mean Rice parameter is fairly constant with height and consistent with

a Rayleigh process.

One possible interpretation of these results is that the scatterers are elongated in the

Eastward direction compared to the Northward (ie aligned along the mean wind vector, which

was predominately Eastward at the time). If such an elongation existed, then the polar

diagram of backscatter would be narrower in the East-West direction, and so the half-power

half-width may be substantially less than 7°and not show an effect on the 7°off-vertical beam;

only the effects of the turbulent scatter are seen. In the North-South direction, the polar

diagram would be wider, and some contribution from these scatterers may still show.

Alternatively, one might invoke model B, and speculate that flat specular reflectors exist

with small wrink]es, but that there were a wider range of Fourier components in the North-

South direction, causing a broadened polar diagram in this direction.

It is clear from the above techniques that there are a multitude of techniques available to

enable the nature of the scatterers to be understood. However, there are still many unresolved
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issues about these scatterers, and the application of the above procedures is to be actively en-

couraged, in the hope of eventually fully understanding the scattering and reflecting processes,

and the parameters which describe them. The importance of knowing these characteristics has

already been stressed.

6 Less easily determined target parameters

The discussion so far has concentrated on parameters which can be inferred fairly directly

from the radar measurements. There are, however, other parameters which can be deduced

with a little extra work. For example, VINCENT and REID (1983) showed how, by using

two off-vertical beams, measurements of the gravity-wave and turbulent momentum fluxes

could be calculated. The momentum flux is not actually a target parameter, _ad so has not

been discussed here greatly, but it nevertheless is a parameter which affects the targets, and

knowledge about is most desirable. Another example is the Brunt-Vaisala frequency. Normally

this is very difficult to measure, but if the mean winds are light, then spectral analysis of the

time series of velocity measurements can be used to measure the Brunt-Vaisala frequency.

That is, the spectrum shows a cutoff at the Brunt-Vaisala frequency, and this in turn allows

determination of the temperature gradient (e.g. ROETTGER, 1980b).

DEWAN (1981) and WOODMAN and RASTOGI (1984) have shown how careful measure-

ments of the temporal and spatial distribution of the occurrence of thin turbulent layers can

be used to infer the mean turbulent diffusion coefficient in the stratosphere, as distinct from

the diffusion coefficient within a turbulent layer (the latter can be determined from equation

(38)).

High resolution studies can also be used to infer something about the nature of the scat-

terers; for example ROETTGER and SCHMIDT (1979) used a resolution of 30m to observe

cat's-eye structures in the stratosphere, confirming that at least some of the observed turbulent

layers are due to dynamical instability. REID et al. (1987) have observed similar features in

the mesosphere. Other studies which allow information about the nature of the scatterers to

be obtained include, for example, those by KLOSTERMEYER and RUESTER (1980, 1981),

and YAMAMOTO et al. (1987, 1988); in these studies relations between power bursts and

buoyancy-wave oscillations were investigated.

By using radars in conjunction with other instruments, further information can be deduced.

A good example is the use of acoustic waves to act as reflectors for VHF radar waves, as done

with the RASS system at the MU radar in Japan. With this instrument, it is possible to

measure temperature profiles in the atmosphere. The use of such hybrid systems in the future

is likely to be of great benefit.

Of course, by using long time series of velocities, one can determine other characteristics

of the scattering region, like the buoyancy wave spectra, tidal amplitudes, planetary wave

amplitudes, and a whole host of dynamical quantities. In a broad sense one might like to

think of these as "target parameters" of a sort, but these are beyond the scope of the current

paper.

7 Conclusions

The main parameters which can be deduced directly from radar observations of the atmosphere

have been discussed. It is clear that it is not possible to make best use of the observations

without better understanding the scattering process, and the ways in which the scatterers arc
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formed. Methods for deducing more information about the scatterers have been described, as

well as some procedures by which routine information like wind speeds, turbulence intensities,

and scatterer shapes, can be deduced. The need for more observations of this sort is pressing.

Appendix A: Effective pointing angle

and beamwidth for anisotropic scatter

As pointed out by ROETTGER (1981), an anisotropy in the scattering mechanism alters

the effective pointing angles for an off-vertical radar. Such anisotropy also alters the effec-

tive beamwidth and this is important for the work in this paper. Let the polar diagram of

backscatter for the scatterers be

p,(e) _ _-_

and the two way polar diagram for a vertically pointing radar be (hl)

PR(e) (x e-_ (A2)

Then for a radar pointed off-vertical by angle 8T in the azimuth direction ¢ = 0, the polar

diagram at angle (8, _b) is

PaT(O, 4) e{-
/

oc [ ,,,as0 j j. (A3)

(Note that the expression exp[-sin2(8 - OT)/sin_Oo) (which has in the past been used to

represent a tilted beam) is NOT a good approximation, as that describes an annulus around

the zenithal point at a mean angle 0T.) When the effects of the polar diagram of the scatterers

are included, the effective polar diagram is the product of (A1) and (A3). This is a maximum

when the derivative of the exponent with respect to sinO is zero, or at

_i.=Oo]-_sinO, l! = sinOr 1 + _j (A4)

For 00, 0, less than about 10", this approximates to

sinO_t! = sinOr [1 + e_.j

Thus the effective pointing angle is given by (A4), and horizontal wind speeds will be

underestimated by the factor

[ <As)R,= 1+o, q

if one uses say equation (12) without any correction. This is in fact only approximate - to

properly determine the actual measured radial velocity, equation (35) of HOCKING (1983a)

should be integrated (including an aspect sensitivity for the scatterers) to produce the expected

power spectrum; this will not have a maximum at the exact point described by (A4), but it
will be close.

The half-width of the effective beam can be found by finding the angles (0, _b) where the

effective polar diagram [i.e. the product of (A1) and (A3)] falls to one half of the value at

(0, @) = (0_ii ,0). Consider only the line @ = 0. Then the product of (A1)and (A3) gives

{_ [_--,--_,r_ _ •.aia2.__l "!_

eL t .,.aoo +,.,a,,jS (A6)
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and we seek the two angles (0_)1,2 where this falls to one half of the value at 0 = 0_/I. Some

algebraic manipulation soon s_aows that a quadratic in sinO results, which has two roots at

[ 011-;(0½)x,= = sinO.y! -4- l_n2.sirtOo 1 -4-_s2j (A7)

(for 00, 00 less than about 10°), and this shows that the effective half-power half-width is

R:= + (AS)

0._j

timesthe half-widthofthe radaralone.Noticethatthisratioisindependentofthe radartilt

direction,at leastout to anglesof 10-15°.

Equivalently,we can writethatthe effectivehalf-powerhalf-width0_i/½obeys the relation

8irt-2(Oell_) = sin-2(O_) -4-8in-2(Os_), (A9)

where 0a is the half power half width of the radar beam and 0o½ is the half-power half-width
of the backscatter polar diagram of the scatterers.

Now let use address the issue of how the power received by the radar changes as a function

of tilt angle OT. The power received by the vertical beam can be found by integrating over
the beam, and for a Ganssian polar diagram this integral is proportional to (0_ t) 2 whereII.

0e//_ is the effective half-power half-width of the combined polar diagrams of the radar and
the scatterers. When the radar beam is phased to look at an off-vertical angle 0r, the peak

power will be reduced by a factor

fl = e{-_ }

because the peak returned power is returned from Oct f and not OT, and then by a further factor

bacanse of the reduction in power due to the polar diagram of backscatter of the scatterers.
Thus the total received power will be proportional to the product of fl and f2, and then

multiplied by the effective beam half-power half-width squared. Thus the received power on
the off-vertical beam divided by that received on the vertical beam is equal to

fl.f2.(O,ll_) 2

(o,_j½)2

or

=exp- +  1o:jjl"
Note that this final expression corrects an error in the original derivation of HOCKING et

al, (1986), in which the factor f2 was neglected.
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1. INTRODUCTION

The atmosphere moves ceaselessly on scales ranging from the dimension of the

earth down to the mean free path of individual air molecules. An understanding

of atmospheric motions requires the study of very specific problems that have to
be idealized to focus attention on the basic dynamical processes, and thus are not

faithful in detail. MST radar observations comprise large-scale processes like lon-

gitudinally averaged wind fields, planetary and tidal waves, and synoptic weather
disturbances, mesoscale processes like narrow jet streams, frontal zones and atmo-

spheric gravity waves, and small-scale processes like Kelvin-Helmholtz instability and

turbulence preferably at scales equal to half the radar wavelength. All these processes

interact nonlinearly, e.g. winds can enhance gravity waves and gravity waves can ac-

celerate winds (wave-mean flow interaction) or a gravity wave at a given wavelength

and period can enhance gravity waves at other wavelengths and periods (wave-wave

interaction). Idealizing a problem then means that some linear terms in the hy-

drodynamic equations are neglected to suppress unwanted types of motion and that

nonlinear terms are neglected or simplified to study particular types of interaction

with relatively simple mathematical tools.

It is clearly impossible to discuss the whole variety of atmospheric motions in this

lecture, therefore we will confine ourselves to some basic aspects of mesoscale and

smail-scale gravity waves and instability mechanisms. These processes can be (and

partly have been) investigated by single ST or MST radars rather than expensive

networks of radars and other techniques that would be necessary to study details of

large-scale processes (the physics of planetary waves, for example, depends strongly

on the zonal flow averaged around a latitude circle and thus cannot be investigated

by measuring only the time-averaged flow over a single radar station).

Internal gravity waves with wavelengths between ten and less than one kilome-

ter and periods between several hours and several minutes appear to play a central
role in atmospheric wavenumber and frequency spectra (VANZANDT, 1982). There-

fore we discuss the propagation of gravity waves in simplified atmospheric models

in Section 2. Their interaction with the wind, their mutual interaction and instabil-

ity mechanisms based upon these processes will be treated in Sections 3 and 4. All

sections stress the theoretical aspects but are completed by MST radar observations
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showing the relevant hydrodynamic processes. Such a short treatment necessarily

must be incomplete and sketchy but hopefully will stimulate further studies of dy-

namic processes by means of MST radars and other methods.

2. ATMOSPHERIC GRAVITY WAVES

To study atmospheric gravity waves it is convenient to consider an unbounded

non-rotating model atmosphere without molecular viscosity and thermal conductiv-

ity. Thereby we eliminate unwanted types of dynamic processes like gyroscopic or

inertial waves, viscosity waves and heat conduction waves resulting, respectively, from

the Coriotis force and the dissipative terms in the equations of momentum and energy

which play no role at the wavelengths and frequencies considered below. For fur-

ther details of these wavetypes see VOLLAND (1969) and LEBLOND and MYSAK

(1978). The remaining waves that can propagate through the model atmosphere

fall into two categories: High-frequency acoustic waves due to the compressibility of

the air and low-frequency internal gravity waves due to the gravitational force. The

periods and wavelengths of acoustic waves are smaller than about 1 s and 300 m,

respectively, whereas the corresponding values for internal gravity waves are larger

than about 300 s and 300 m. The dispersion curves of both wave types thus are

widely separated in the frequency-wavenumber plane and interactions can in general

be neglected. We can therefore eliminate acoustic waves by assuming that the model

atmosphere is incompressible so that the sound speed is infinite and the density

cannot vary along the path of an air parcel:

dp = 0 (I)
dt

where d/dt = 0/0t + u. _ and p and u denote density and fluid velocity. It should be

mentioned, however, that this approximation also filters out long-period Lamb waves

which propagate horizontally at the speed of sound and sometimes play a dominant

role in the atmospheric response to tropospheric excitations (KLOSTERMEYER,

1977; LIU et al., 1982).

Together with (1), the continuity equation and the Euler equation yield a closed

set of equations for describing the dynamics of the model atmosphere:

V.u = 0 (2)

du

p_- + Vp - #g = 0

where p and g denote pressure and gravitational acceleration.

(3)

Often it is useful to compare the actual atmospheric state with a reference state

defined by hydrostatic equilibrium
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p= p0(z),P= po(z),u- o (4)

satisfying (I) and (2) while (3) reduces to

po,= -pog. (5)

Here and in the following, the subscripts z, z and t denote partial derivatives with

respect to horizontal and verticalcoordinates and time, respectively. Equation (5)

yields po(Z) for any given density distribution po(z). An important quantity of the

equilibrium state is the VEis_l_.-Brunt frequency N given by

N2 Po== -g--. (6)
Po

It will be shown below that N is the angular frequency of an air parcel when it is ver-

tically displaced from its equilibrium position to a slightly higher or lower level. The

period 27r/N is about 5 to 10 min in the earth's atmosphere. N 2 < 0 (convection)

means that the air parcel would continue to rise or fall rather than oscillate around

its equilibrium position. Such unstable situation in general cannot persist because

this so-called static instability is eliminated by strong vertical mixing as fast as it

forms.

Small departures from the basic state (4) can be described by the perturbation

density Pl, pressure Pl and velocity ul defined by

p=po+pl, p=po+Pl, u=ul. (7)

Substituting into (1)-(3) and neglecting terms containing productes of perturbation

quantities yields

pl, + wlpo, = 0 (8)

V. ul = 0 (9)

ult + lXTpl Pl
Po - _0g = 0

(10)

where wl is the vertical component of ul. Equation (10) indicates that a reduced

gravitational acceleration (or buoyancy) gPl/Po and a modified pressure Pl act upon

a displaced parcel. In a stably stratified atmosphere, buoyancy pulls back any parcel

to its equilibrium position giving rise to internal wave oscillations. Linearization is

primarily an approximation dictated by our inability to treat nonlinear problems with

adequate mathematical tools. It is valid for wave motions of infinitesimal amplitude

implying that the fluid velocity must be much smaller than the phase velocity, and

clearly filters out all nonlinear interactions between waves of different wavelengths
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and periods as well as self-interaction.

It is convenient to eliminate the variables p,,p, and u_ (the horizontal component

of ul) yielding an equation for wl alone:

g 2

W2wltt + N2W_wl - --wl,tt = 0 (11)
g

where Vh = (c3/Oz, O/Ov,O). For constant V/iisiil/i-Brunt frequency N, (11) has

plane wave solutions of the form

Then the dispersion relation

w, = Wle i{_=+Mz-'_t). (12)

must hold for a nontriviai solution.

(13)

The imaginary term in (13) is a consequence of the fact that for constant N, the

unperturbed density P0 decreases exponentially with height while the wave energy

density should remain uniform in the absence of energy sources. Equation (6) in fact
yields

po(_)= po(O)e-_ (14)

where H = g/N 2 is the density scale height. To derive the perturbation energy
density we note that the vertical displacement _ of a fluid parcel from its equilibrium

level is given by

it = w, (15)

so that integrating (8) with respect to time yields

p0 (16)p, = _¢.

From the scalar product of u, with (10), and from (15) and (16) we then obtain

+ 2c2)]+v.(p,.1)=0 (17)
"2-\ 1 t

where p0u_/2 and poN2(2/2 are the kinetic and potential wave energy densities and

pul is the energy flux up to an arbitrary nondivergent contribution. The average

kinetic and potential energy densities are equal, and the average wave energy density

E varies as (ECKART_ 1960)

Constant E thus requires

E cx po(z)lwl 12. (18)
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wl oc e¢_. (19)

Indeed, with M = ReM + ilmM we obtain from (13)

1
ImM = -2--H /20)

and with m = ReM

12

w2 = N 2. (21)
12+m2 + z

The frequency is zero for vertical phase propagation (Z = 0) and equal to N for

horizontal phase propagation (m = 0) if 12 >> 1/4H 2. For w > N, no waves are

possible. The hyperbolae (dashed curves) in Figure la represent contours of constant
w in the wavenumber domain. The group velocity

cgw cgw ) (22)c_ = ('-8-f' Om

is normal to the contours always pointing away from the ordinate. It is typical of

internal gravity waves that the vertical components of the phase and group velocities

have different signs.

m
(o)

_0 = COn$_

(b}

ronts x

Fig. 1. (a) Contours of constant frequency in the wavenum-
bet domaJn for internal gravity waves in an incompressible

fluid (dashed lines) and in a Boussinesq fluid (continuous

lines). The group velocity cg is normal to the contours. (b)
Internal gravity waves are transverse with the fluid velocity

parallel to the wave fronts.

For short wavelengths with l2 + m 2 >> 1/4H 2, (21) yields

w2 = N 2 cos 2e (23)
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where without loss of generality, 8 is the angle between the horizontal and the

wavenumber vector k = (/,m) with 181 _< re�2. The short wave dispersion equation

(23) could have been obtained directly from the equations of motion by applying the

Boussinesq approximation which consists of neglecting density variations in the in-

ertia terms but retaining them in the buoyancy term. Then the last term on the left

of (1t) vanishes and (23) follows immediately. With the Boussinesq approximation,

the hyperbolic contours w = const in Figure la degenerate to linear asymptots of the

hyperbolae including the angle 8 with the l axis indicating that this approximation

is the better the larger k.

From (9) and (10) we find that plane internal gravity waves are transverse with

ul in the x - z plane parallel to the wave fronts (Figure lb). Note that at 8 = 0,

the phase propagation is horizontal and ul vertical, showing that for small vertical

displacements and N _ > 0, an air parcel oscillates at the VEisEl_-Brunt frequency.

A concise description of further details of the linearized theory of wave propa-

gation such as wave energy, wave action, slowly varying wave trains in nonuniform

media etc. is given by BRETHERTON (1971).

We will complete this chapter by showing MST radar observations that indicate the

relevance and applicability of the foregoing to dynamic processes in the troposphere,

stratosphere and mesosphere. Figure 2 contains contour lines of the power density

of vertical velocities observed after the passage of a severe thunderstorm. Convective

16.0

14.0 _' b -

E
lzo

a

l&O

8.0

300 8.6 5.0 3.5 29 22 2D

T/rain

Fig. 2. Time-height contours of power spectra of vertical ve-

locity measured with the SOUSY VHF Radar on 2 June 1978

after the passage of a thunderstorm. The peaks of the spec-

trogram correspond to a power of 1.1 x 10-Sm2s -2. The dot-

ted curve represents the height profile of the V_is/il_-Brunt

period obtained from radiosonde data (from ROTTGER,

1980).
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activity in the troposphere at times of thunderstorms should in particular excite inter-

nal wave motions in the stratosphere because rising columns of tropospheric air may

penetrate a short distance through the tropopause and transfer kinetic energy to the

stably stratified stratosphere (STULL, 1976). The spectrogram in Figure 2 demon-

strates that oscillations with periods larger than 2rr/N are observed at all heights

with the strongest oscillations occurring above the tropopause at a height near 10

km. No oscillations are found at periods less than 2r/N so that it appears possible

to derive mean potential temperature profiles from the cut-off period of gravity wave

spectra (ROTTGER, 1980).

r_0 t13o _ LT

• 7_.9

Eg.7

Fig. 3. Time variation of vertical velocity at four heights
measured with the mobile SOUSY VHF Radar at Andenes

(Norway) on 21 January 1984. Spectral analysis reveals

significant peaks at periods near 5, 16 and 30 min (from

ROSTER, 1984).

Figure 3 shows the time dependence of the vertical velocity component of gravity

waves measured in the arctic mesosphere. The spectra of the time series have three

significant peaks at periods near 5, 16 and 30 min. Spectra with multiple peaks

appear to be the rule rather than the exception at mesospheric heights. Almost all

radar records show the presence of horizontally propagating waves with periods near

27r/N that must be generated by local sources rather than sources at lower atmo-

spheric regions. Two possible source mechanism, Kelvin-Helmholtz and parametric

'instabilities, will be addressed in the next two chapters. There seem to be no detailed

case studies of the horizontal and vertical phase propagation of short-period gravity

waves in the literature.

3. WAVE-MEAN FLOW INTERACTION

In the previous chapter we discussed linear gravity waves that do not interact.

If interaction among waves or between waves and mean flow takes place, we can

distinguish between weak and strong interactions. In weak interactions, the space
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and time scales of energy exchange processes greatly exceed the typical wavelengths

and periods so that the solutions of the equations of motion can be expressed as

power series of small nondimensional parameters and can be found by perturbation

methods (KEVORKIAN and COLE, 1981). An example will be given in the next

chapter. Here we will study two types of strong wave-mean flow interaction charac-

terized by energy exchanges occurring over scales comparable to the wavelength and

period. The first type is the critical layer absorption of internal gravity waves loosing

their momentum to a vertically sheared mean flow, the second one is the stability of

parallel flows to infinitesimal wave perturbations.

3.1. GRAVITY WAVE CRITICAL LEVEL

Besides being partially or totally reflected by a height dependent mean wind uo(z),

an internal gravity wave can meet a critical level z = z, at which Uo(z) is equal to

its horizontal phase speed. In a continuously stratified shear flow, the Richardson

number is defined by

N 2

Ri- u_, (24)

representing the ratio of the energy required to interchange vertically adjacent fluid

parcels against the gravity acceleration to the available kinetic energy (e.g. CHAN-

DRASEKHAR, 1961). For Ri > 1/4, ray theory describing the propagation of waves

Z C

uo (z}

Fig. 4. Schematic of progression of a gravity wave packet

propagating toward a critical level zc at four different times.

The horizontal component of k remains constant. The fluid

velocity is parallel to the wave fronts.
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in a slightly nonuniform medium can be used to study how an internal gravity wave

packet approaches a critical level (BRETHERTON, 1966). The result is summarized

in Figure 4 showing that the wavenumber increases and the perturbation velocity

ul becomes more and more horizontally oriented as the packet comes closer to zc.

Moreover, the time required for the packet to reach zc becomes infinite indicating

that the packet would be effectively absorbed rather than reflected or transmitted.

Since ray theory becomes invalid at the critical ]eve], the Frobenius method was

used to determine the behaviour of an internal gravity wave at zc (BOOKER and

BRETHERTON, 1967). We again describe the perturbed state of the atmosphere

by (7) but assume

u = (u0(z) + u,, _1) (25)

considering only two-dimensional motions in the x-z plane. Substituting into (1)-(3),

neglecting products of perturbation quantities and eliminating Pl,Pl and ul yields
under the Boussinesq approximation

d2 d
-_(w,.. + w,..) - -_(Uo..W,=) + N=w_.. = 0 (26)

where d/dt = O/Ot + uoO/Ox. Equation (26) reduces to the Boussinesq approximation

of (11) for Uo = 0, and with N = const, u0 = const and (12) yields the dispersion
relation

£Z2 = N 2cos 2 0 (27)

where _ = w - luo is the intrinsic (or Doppler-shifted) frequency. If uo is height

dependent, there is a new restoring effect due to the vertical derivative of the mean

vorticity u0,. Assuming a solution of the form

w, = W,(z)e "(=-c') (28)

then gives the Boussinesq form of the Taylor-Goldstein equation

(Uo - c)=W;' + [N 2 - (uo - c)u'_ - (Uo - c)212]W_ = 0 (29)

with the prime denoting differentiation with respect to z. The original form of the
Taylor-Goldstein equation obtained from (1)-(3) without Boussinesq approximation
is

[po(,,o- c)W;]' - (pouoW,) t,_o- c + P°(_° - c)l_ w, = o. (30)

Besides containing the important special cases of internal gravity wave propagation

and static instability for u0 = 0, (29) is the starting point for analysing the effects of

wind shear on gravity waves. For further studies of the critical level problem we note

that at z = zc, u0 - c = 0 so that (29) has a singularity across which solutions have
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to be joined. We assume that around z = zc, u0 and N can be expanded in power

series

_0 = c + _,0(zo)Cz- zo)+...
(31)

N = N(zc) + N'(zc)(z - z:) +...

with U_o(Zc) _ 0 and try to find a solution of the form

OO

W1 = _ a)(z - zc) =+_, ao _ O. (32)
j=0

Substituting (31) and (32) into (29) yields

1 1

o_= _ =t=il_, p = (Ri(z:) - ._)2 (33)

requiring Ri(zc) >_ 1/4 for real #. Then the general solution near z = zc is

W, _ A(z - z:)] +i" + B(z - z:)} -i'. (34)

The foregoing analysis gives no indication how to join the solutions across z = z,.

A proper treatment requires some length (BOOKER and BRETHERTON, 1967) and

is therefore beyond the scope of this lecture. One finds that for U'o(Z: ) > 0, the A-

wave Wla= A(z - zc) I/2+iu is associated with upward propagating energy for z < zc

and z > zc whereas the B-wave Wle = B(z - z_) l/_-iu is associated with downward

propagating energy. For u_o(z¢) < 0, the roles of both waves are reversed, and we

obtain

1w,_(z > z_)l = Iw_a(z< zo)le-"'"m(")
]W1B(z > z_)l = IWxs(z < z:)le "'_"_(`=) (35)

indicating that both waves are severely attenuated as they cross z_. The vertical flux

of horizontal momentum is independent of height on each side of zc but discontin-

uous across z: with the attenuation factor e -2_" suggesting that there is significant

horizontal momentum transfer to the mean flow at the critical level.

From (34) we find that near z:,

Iw,l ~ Iz- =:1}, lu,I ~ tz - z¢l-} (36)

indicating that wi is well behaved whereas ul tends to infinity at ze. The wave-

associated shear tends to become infinite at an even higher rate:

tu.I ~ tz- =d-}. (37)

According to BOOKER and BRETHERTON (1967), these infinities are spurious

in the sense that nature always generates wave packets of finite spectral width so

that all Fourier components with infinitesimal amplitude encounter critical levels at
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different heights and the infinities do not in fact occur in the total integrated distur-

bance. Nevertheless, gravity waves generated by sufficiently monochromatic sources

may produce large-aznplitude oscillations near critical levels so that one of the hith-

erto neglected mechanisms may become important: (1) Nonlinearities due to large

perturbation amplitudes; (2) molecular dissipation due to strong vertical variations;

(3) instability due to strong vertical shears.

3.2 KELVIN-HELMHOLTZ INSTABILITY

For illustrating some of the mechanisms and concepts of dynamic stability, we will

work through a classic problem that was first addressed in 1868 by Helmholtz and in

1871 by Kelvin, and demands only little mathematics. We consider a basic flow of an

incompressible inviscid two-layer fluid that has unlimited extent, constant densities Pl

_'" UI Pl

"-" Un QI-'Q:

=X

Fig. 5. Kelvin-Helmholtz flow configuration.

and p1I, and horizontal velocities UI and Uu (Figure 5). We assume that the flow is

disturbed by an infinitesimal perturbation displacing the interface between the two

layers from z = 0 to

z = C,(x,_). (38)

Since the model is discontinuous, the Taylor-Goldstein equation (30) must be solved

separately in each layer, and both solutions must be matched across the interface

z = (1 by two matching conditions.

(1) The interracial displacement has to be continuous. To first order wl(+0) =

(it + UI (l_ and Wl(--0) = (lt "J- UII(lx at the upper and lower sides of the interface,

respectively. For a travelling wave solution of the form (28) we then get
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w,(+o) w,(-o)
UI - c Uzz - c"

(2) At z = (1, the total pressure must be continuous.

(e.g. LAMB, 1945), we obtain

(39)

Using Bernoulli's theorem

f ' w,(+o)] =p,,[(U.-c)w',(-o) u.-pl t(U_ - c)w'_(+0) U_ - c
(40)

The perturbation is further assumed to decay to zero for Izl _ ¢x_ yielding the

boundary conditions

wl _ 0 as z _ 5=00. (41)

For the Kelvin-Helmholtz flow configuration (Figure 5), the Taylor-Goldstein equa-

tion (30) reduces to

W;' - I_W1 = 0

and must have a solution of the form

(42)

Ae l" at z >0 (43)W1 = Bel_ at z < 0

to satisfy the boundary conditions (41). Equations (39) and (40) then yield two

homogeneous linear equations for A and B which are nontrivial only if

c = pl,U,,+p,U, 5= [PlI-Pl g P'tP' (UH - Ut)2] ½ (44)
Pit + Pl [Plt 7pl l (Pll + Pl) _

The first term on the right of (44) may be considered as the density-weighted mean

velocity of the two fluid layers. The wave perturbation then travels with a velocity d

given by

d 2 = do_

relative to the mean velocity where

PlltOl (UII - Ut)2 (45)
(pit + pl) 2

do= (PII-PJ l) ½ (46)\ptl _pl

is the phase velocity in the absence of any basic flow. For

(UH - UI) 2 > P_It - P_t g (47)
PltPl l

c is complex so that the wave perturbation grows and remains stationary with respect

to the mean flow. For any given UII - U1 _ 0, the interface is unstable for sufficiently
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small wavelengths. If P11 = Pl, it is unstable for all wavelengths indicating the

stabilizing influence of a density change. Finally we note that for small density

changes, P_I - P_ "_ 2pll(PI/- Pl). Then we can define a Richardson number by

Ri - pH - pl g
p_(U. - V_)2 I (48)

so that Ri > _ (< !)2 for stability (instability).

The instability of the Kelvin-Helmholtz flow configuration at high wavenumbers

is a consequence of the fact that vorticity is concentrated at a single height. A

physically more realistic model together with the neutral stability curve obtained by

DRAZIN (1958) is shown in Figure 6, where

(d) -_" (49)
u0=Autanh , P0=e , , Ri= \Au)

The flow is stable for Ri > 1/4. We note that the expression "Kelvin-Helmholtz

instability" is also used for shear flow instability in models with continuous density

and wind profiles.

,,/7

u_

0.2

Ri

0.1

0.0
o.o 2.O

1 ! t

0=_ stoble

I

O.5 1.o 1,5
Id

Fig. 6. (a) DRAZIN's (1958) model. (b)

Neutral stability curve.

We conclude the theoretical part of this chapter by summarizing some general

results on the stability of nonrotating stratified shear flows (for details cf. LE BLOND
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and MYSAK (1978)).

(1) YIH's (1955) extension of SQUIRE's (1933) theorem: For each unstable three-

dimensional disturbance in a stratified fluid, there is a more unstable two-dimensional

one propagating parallel to the flow. For this reason we have considered only two-

dimensional waves of the form (28).

(2) SYNGE's (1933) theorem: A necessary condition for instability is

[(u - or)= + c_](p0u')' - 2(u - _r)p0N= = 0 (50)

somewhere in the field of flow. Here, cr = Rec and c_ = Imc. For p0 = const, (50)

yields U" = 0 which is Rayleigh's inflection point theorem.

(3) MILES' (1961) stability condition: A sufficient condition for stability is Ri >_

1/4 everywhere in the flow.

(4) HOWARD's (1961) semicircle theorem: The complex wave velocity c of an

unstable wave with c_ > 0 lies in the semicircle

[cr - (uo,_ + u0=.)/2] 2 + c_ < [(u0_= - Uo_.)/2] 2. (51)

There are characteristic streamline patterns of fluid motions near critical levels

known as cat's eyes. For N = 0 and Uo - c -,, z - zc, Kelvin derived from (29) the cat's

eye pattern shown in Figure 7a as seen by an observer moving with the wave velocity.

The existence of closed streamline patterns is a purely kinematic consequence of a fi-

nite vertical velocity component at the critical level. In a stratified flow (N > 0), the

cat's eye pattern becomes asymmetric as indicated by Taylor's cockeyed cat's eye in a

three-layer model fluid (Figure 7b). According to HOWARD and MASLOWE (1973),

also intermediate forms between Kelvin's and Taylor's cat's eye patterns are possible.

Fig. 7. (a) Kelvin's cat's eye streamline pattern. (b)

Taylor's cockeyed cat's eye streamline pattern.

There is evidence that cat's eye structures occur in the time-height distributions of

MST radar echo power both in the troposphere (ROTTGER and SCHMIDT, 1979)
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and in the mesosphere (REID et al., 1987) (Figures 8 and 9). The enhanced echo

power is probably due to enhanced turbulence in thin layers surrounding the regions

of closed streamlines (KELLY and MASLOWE, 1970).

' + "-J k_2 _ _ "-/" -

_(m4300

_- 4200 .....

30s 40s 50s lOh/+4mOOs los 20s

Fig. 8. Contour plot of constant MST radar echo power in the time-height plane

indicating cat's eye structures (from ROTTGER and SCHMIDT, 1979).
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Fig. 9. Time-height intensity plot of MST radar echo power in three antenna beam

directions. A cat's eye is visible between 11:55 and 12:10 LT (from REID et al.,

1987).

Detailed investigations of cat's eye patterns observed by MST radars have not

yet been performed, but there are three examples of Kelvin-Helmholtz instabilities

that were analyzed and compared to numerical model computations (VANZANDT et

al., 1979; KLOSTERMEYER and ROSTER, 1980, 1981; ROSTER and KLOSTER-

MEYER, t983). Figure 10 shows the radial velocity oscillations associated with a

Kelvin-Helmholtz instability at the bottom side of a polar jetstream and measured
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with height and time resolutions of 150 m and 10 s, respectively. The oscillations re-
veal a period of about 4 min and amplitudes of the order of 1 m s-I. The critical level

tls

Fig. 10. Band pass-filtered time series of radial velocity

oscillations associated with a Kelvin-Helmholtz instability

and measured by the SOUSY VHF Radar on 11 April 1980
(from KLOSTERMEYER and RUSTER, 1981).

I [ Observed
. T

'"; t

] Computed

lu_l I/ms "1 _o/deg

Fig. 1i. Measured and computed heightprofilesof Kelvin-

Helmholtz-associatedvelocityoscillations(from KLOSTER-

MEYER and RUSTER, 1980).
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is near z = 5.55 km and is indicated by a vanishing amplitude and a sudden phase

jump of about 100 °. Figure 11 shows a comparison between measured and computed

height profiles of the amplitude and phase of the radial velocity oscillations. F_-

ther studies indicate that the growth of the observed Kelvin-Helmholtz instability is

limited by the onset of static instability producing periodic radar echo power bursts

(KLOSTERMEYER and ROSTER, 1981).

4. WAVE-WAVE INTERACTION

Here we will investigate the general nature of weak resonant interaction between

wave triplets and will always keep in mind that this is an oversimplification of nat-

ural processes which consist of resonant and forced energy transfer over continuous

wavenumber and frequency domains. The actual wave spectrum thus is the result of

a balance between the effects of sources, dissipation and redistribution due to non-

linear interaction. Moreover, the application of a weakly nonlinear theory which is

based on perturbation methods, is restricted to small-amplitude waves. It should be

mentioned, however, that the stability of a monochromatic internal gravity wave with

arbitrary amplitude is closely related to weak resonant interactions. This so-called

parametric instability provides a simple example for the instability of time dependent

and spatially varying flows and will therefore be discussed in the second part of this

chapter.

4.1. WEAK WAVE-WAVE INTERACTION

If we take into account the nonlinear terms that have been neglected in the previous

chapters, we obtain a wave equation of the form

z:(w) + Q(w, w) = 0 (52)

where /: and Q are differential operators which are linear and quadratic in w, re-

spectively, and w represents any of the perturbation variables. We assume that there

is a small nondimensional quantity E characterizing the relative magnitude of the

nonlinear term in (52). In a straight-forward perturbation procedure we expand w

in powers of e,

and solve the equations

w = ewl + s2w2 + ... (53)

L:(wl) = 0, (54)

£.(w2) = -Q(w,,wl) etc. (55)

Provided the expansion (53) converges we thus obtain a solution for (53) for waves

of finite but small amplitudes (for details of perturbation methods cf. KEVORKIAN
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and COLE (1981)). According to Chapter 2, (54) yields plane wave solutions in

uniform atmospheric models so that

_Wle'k'r-_t + complex conjugate (56)Wl

where the wavenumber vector k and angular frequency w satisfy a dispersion relation

_(k, _) = 0. (57)

To second order in _ we get from (55) a nonhomogeneous linear equation for w2 with

a forcing term depending on w_. The process can be continued to any order of e.

Now we consider the case that wa consists of two plane waves,

W 1 = Wa + Wb

both satisfying (54) and (57). Then (55) becomes

(58)

L(w,) = -Q(wo + wb,wo+ _b) (59)

where w2 = wc is the result of the interaction between w= and wb. Since the quadratic

operator on the right of (59) produces plane waves with wavenumber vectors kc =

0, +2ka, +2kb, +(ka =t=kb) and corresponding angular frequencies w=,w= has the

form

t W:i{k=. .... t) + complex conjugate (60)

provided 2)(kc,w=) # 0. The summation is performed over all sign combinations

resulting from the quadratic forcing term in (59). If a = b and both signs are allowed

for all wavenumbers and frequencies, all cases can be described by

k= + kb + k, = 0, wa +wb +w= = 0. (61)

The forced wave E2wc plays only a minor role in (53) as compared to c(w= +wb) unless

D(k,,w¢) = 0. Then resonance occurs so that the amplitude of w= grows in space

and time. Such a resonant wave is also called secular. It dominates the non-resonant

waves after the interaction has lasted for some time and can therefore be considered

as the most significant result.

It depends on the specific form of the dispersion relation whether three interacting

waves can satisfy the resonance conditions (61) and (57). Clearly, if the waves are

nondispersive, i.e. propagate at the same speed, all interactions are resonant. For

internal gravity waves in a Boussinesq fluid with N = const, the resonance conditions

may be written

k_ -l- kb = k,, cosO_ 4- cosOb = cosO_ (62)
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using (23). The loci of resonant triads can be calculated from simple geometrical
considerations and are shown in Figure 12. It should be mentioned, however, that

the Boussinesq approximation consists of neglecting terms of first and higher orders

in the ratio of wavelength to density scale height (Chapter 2) and thus is only appli-
cable if this ratio is much smaller than c (LONG, 1965).

YEH and LIU (1985) pointed out that resonant wave interaction may play an

important role in the evolution of the atmospheric wave spectrum. There are in

particular three classes of resonant triads that can provide efficient energy transfer
between separate parts of the gravity wave spectrum and have first been identified

by MCCOMAS and BRETHERTON (1977) as elastic scattering, induced diffusion

and parametric subharmonic instability (Figure 13). By elastic scattering, an upgoing

Fig. 12. Resonant interaction diagrams for internal gravity waves in a
Boussinesq fluid for #c = 0°,-30 ° and -60 °. Any point on a branch
defines a resonant triad satisfying (62). The wavenumber vector with
the least slope is always the vector sum of the other two. Thick (thin)
branches indicate unstable (stable) triads (after PHILLIPS, 1969).

_n

_b

b(

(ol lci •

Fig. 13. Characteristic classes of resonant triads:
(a) elastic scattering, (b) induced diffusion, (c) paramet-
ric subharmonic instability.
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wave is scattered into a downgoing one by resonantly interacting with a low frequency,

nearly vertically propagating wave with almost twice the vertical wavenumber of the

other two waves. This process makes the atmospheric spectrum vertically symmetric
if it is not so initially. The process of induced diffusion is responsible for the evolution
of small-scale waves and consists of two almost identical waves which interact reso-

nantly with a large-scale low-frequency wave propagating almost vertically. Finally,

in the process of parametric subharmonic instability, two waves with nearly oppo-

site large wavenumber vectors and almost identical frequencies resonate with a third

wave having a much smaller wavenumber and twice the frequency. This mechanism

provides energy transfer from an energetic large-scale wave to small-scale waves at
subharmonic frequencies.

4.2. PARAMETRIC INSTABILITY

There is a close connection between the interaction of weak internal gravity waves

and the parametric instability of a monochromatic internal gravity wave of arbitrary

amplitude (MIED, 1976; KLOSTERMEYER, 1982, 1983). For studying parametric
instability, it is useful to assume a uniformly stratified Boussinesq model and to
introduce the stream function '_ which describes the two-dimensional motion of an

incompressible fluid in the x - z plane by

u = (_,, - _)

and satisfies (2). We further introduce the buoyancy

(63)

B= P-P"--- g (64)
P.

where po is some suitable constant reference density used in the Boussinesq approx-

imation to replace p in the inertia terms (e.g. LEBLOND and MYSAK, 1978).

Buoyancy and V_iis_il_-Brunt frequency are related by

Equations (3) and (1) then yield

N _ = B=. (65)

_2_I'_ + Bz = @_@= - @,V2@_ (66)

Bt - N2@_ = @_B,- @,B_ (67)

We note that (66) results from the vorticity equation that is obtained by taking the
curl of (3). The plane wave

@ = Acos_, B = -N_lw-lAcosqo (68)
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with _o = Ix + rnz - wt is a solution of (66) and (67) if the dispersion relation (23)

is satisfied. The nonlinear terms are identically zero as a consequence of incompress-

ibility.

We thus have the opportunity to investigate the stability of a finite-amplitude

plane internal gravity wave by expressing the stream function and buoyancy fields as

sums of the basic state (68) and a perturbation:

v_ = Acosc2 + ¢, B = -N21w-]Acos_o + b. (69)

We define nondimensional variables by

(_,7)=k(x,z),"t=Nt, _=k:N-_q2, B=kN-2B, M=k2(2N)-]A (70)

with k = (l _ + rn2) 1/2 and introduce a rotated coordinate system (_,77) such that

the r/axis coincides with the direction of propagation of the basic wave (Figure 14).

q-al,_B l-a cMp_

|

Fig. 14. Wavenumber vector of ba-

sic internal gravity wave, (0,1), and

Floquet vector (-o sin/3, a cos/3) in

- 77coordinates (from KLOSTER-

MEYER, 1982).

Substituting (69) into (66) and (67) and neglecting terms containing products of thc

perturbation quantities ¢ and b then yields

X72V_t + sin0b_ +cos0b, = 2Msin_o(¢_ + _72¢_)
(71)

b, - sin0_b_ - cos0_b, = 2Msin_(¢_ + b{)

where the tilde of the nondimensional variables has been omitted and V 2 = 0_/0{ 2 +

O2/Orl 2, _2 = 77 - cos 0t. The terms on the right of (71) couple the perturbations with
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the basic state via a periodic coefficient 2M sin _ so that ¢ and b take a parametric

form dictated by Floquet theory (MIED, 1976):

(¢, b) = e;(-'_'inac'+°c°s_n)+_t _ (¢j, bj)e ij_. (72)
j_-oo

As indicated in Figure 14, ]a] can be considered as the magnitude of a Floquet vector

forming an angle _ with the basic wavenumber vector. Substitution of (72) into (71)

yields a linear eigenvalue problem for the complex quantities A and (¢j, bj),

p_-,)¢,_, + (p_0__ _)¢, + q_% + p_,)¢,+, = o
(73)

rJ-1)¢j_! .jr 3_-l)bj_l ..}_ rJ0)¢j .._ ($_0))t)bj -4- T'!')_i+I -3t- $_l)bj+ 1 = 0

with j = 0, +1, -4-2... and constant coefficients p, q,r, s depending on j, M,0, a,/_ (cf.

KLOSTERMEYER, 1982). Solutions can be obtained numerically for any given accu-

racy if the interation equations (73) axe truncated at j = -t-J with J sufficiently large.

The numerical search for growing disturbances (ReA > 0) is greatly facilitated by

considering the case M _ 0. Then (73) yields for nontrivial solutions (¢_, bj)

Re$ = 0, j cos 0 - ImA = a cos(0 +/_) + j cos 0
[(_sinB)_ + (_ cos_ + j)_11/2" (74)

From (72) and Figure 14, the nondimensional perturbation frequencies and wavenum-
bers in z - z coordinates are

wj = jcosO-ImA

kj = (a cos(8 + _) + j cos 0, a sin(8 + _) + j sin 0)

so that with (74)

(75)

_i = cos 0j (76)

where t_3 is the angle between kj and the horizontal. For M _ 0, the disturbances

thus are freely propagating waves that satisfy the resonance conditions

kj+l-kj=k, Wj+l-Wj=w (77)

for all j. Computations for M > 0 show in agreement with HASSELMANN's (1967)

criterion for nonlinear wave stability that Re$ > 0 (i.e. instability) for resonant sum

interactions and Re_ = 0 (i.e. stability) for resonant difference interactions. In Fig-
ure 12, the locl of unstable triads are indicated by the thick branches.

In a laboratory experiment, DAVIS and ACRIVOS (1967) demonstrated that an

internal gravity wave propagating along a diffuse stratified interface between fluids of
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different densities may become distorted by the growth of a three-wave resonance giv-

ing rise to local turbulent mixing. Their photographs are shown in Figure 15. MCF_,-

WAN and ROBINSON (1975) found good agreement between predicted and observed

small-scale parametric instabilities in a cylindrical chamber. Although the potential

,::_,.: , •

,,. _" .. ; ,. _.,.3_,,_ -,,

It)_.,_._lt_.,]li4_..---_ ' - .... >:- ': " "

Fig. 15. Progressive distortion of an internal gravity

wave by resonant wave-wave interaction (from DAVIS

and ACRIVOS, 1967).

role of parametric instability in forming internal wave spectra in the atmosphere has

been stressed by some authors (MCEWAN and ROBINSON, t975; DRAZIN, 1977),

there are only few atmospheric observations that have been interpreted in terms of res-

onant triads or parametric instability. Thus the power spectrum of a strong internal
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Fig. 16. Doppler shift of a 8 MHz continuous radio wave

recorded at four Japanese stations after the eruption of

Mount St. Helens on 18 May 1980." In the lower three

records, an internal gravity wave with a period near the

local V_sis/iJ_i-Brunt period is strongly disturbed by short-

period oscillations after 22:55 UT (from LIU et al., 1982).

gravity wave in the lower thermosphere which was generated by an eruption of Mount

St. Helens, was explained in terms of parametric instability (KLOSTERMEYER,

1984). Figure 16 showing the Doppler shift of an 8 MHz radio wave reflected from

the ionosphere near 200 km height, indicates strong high-frequency disturbances su-

perposed on a gravity wave at Kyoto, Yokaichi and Uji after 2255 UT. Note a certain
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resemblence of these records to Figure 15c.

RC)TTGER (1987) has noted that time series of spectra intensity plots obtained

from MST radar measurements also show high-frequency oscillations superposed on

low-frequency gravity waves. An example is seen in Figure 17 at 69.6 km after

1300 AST. R6ttger further points out that the amplitude the low-frequency waves

does not grow with inreasing height (visible between 1200 and 1300 AST in the height

Fig. 17. Time series of spectra intensity plots measured with the mo-

bile SOUSY VHF Radar at the Arecibo Observatory (from RC)TTGER,

1987).

interval from 69.6 to 76.8 km). Since wave breaking discernible from strong echo in-

tensities does not occur some other saturation process such as parametric instability

must be considered.

Short-period gravity waves with frequencies close to the local V_is/il£-Brunt fre-

quency occur frequently in mesospheric MST radar observations of vertical or near

vertical radial velocities (HARPER and WOODMAN, 1976; MILLER et al., 1978).

OF POOR .eaJA_TY
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These waves do not show any vertical phase variation over height intervals of sev-

era] kilometers indicating that they propagate horizontally and are generated in situ

rather than in lower or higher atmospheric regions. Occasionally the local source

mechanism is Kelvin-Helmholtz instability of a wind shear due to long-period iner-

tial or tidal waves (KLOSTERMEYER and RTJSTER, 1984; YAMAMOTO eta].,

1988). But in general the simultaneously observed wind shear is too weak for Kelvin-

Helmholtz instability to set in. A numerical simulation of the wave motions shown in

Figure 3 indicates that parametric instability could be another source candidate of

the observed short-period waves. Figure 18a shows the same observations as Figure

3 but with very high-frequency noise and high-frequency waves removed by recursive

Butterworth filters (continuous and dashed curves respectively). Figure 18b shows

the numerical simulation where the dashed lines represent the finite-amplitude basic

wave and the continuous lines the sum of the basic wave and the fastest growing para-

metric instability mode. Note that the height interval in Figure 18b is 75% of the basic

vertical wavelength whereas in Figure 18a, it is only about 10_. The observed and

computed short-period oscillations show good qualitative agreement. Both reveal in

particular considerable temporal amplitude modulation, and the dominating period

is not an integer multiple of the basic period. There is in general also no vertical phase

variation. But the computed short-period oscillations show sudden phase reversals,

e.g. at Nt = 20 and kz = 4.8. The loci of sudden phase reversals lie on basic wave

$OUSY VHF RADAR

21 JAN 19B_

-3J

zffi 70.6km

- . _ 70.]km

1130 1200 1230 1300

LOCOITl_ne

Fig. 18a. Same as Figure 3 but with noise and

high-frequency waves removed (continuous and dashed

curves, respectively). The time series at z = 70.6 km

is not continued beyond 12 LT with regard to very

small signal-to-noise ratios.
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Fig. 18b. Numerical simulation of a paramet-

ric instability. The dashed and continuous lines

represent the basic wave and the sum of basic

wave and fastest growing instability mode, re-

spectively. Time, height and vertical velocity

component are normalized according to (70).

fronts. Whereas there is no clear evidence for phase reversals in Figure 18a (perhaps

due to the small height interval ) they become visible if velocity measurements can

be obtained over larger height intervals (e.g. Figure 1 of MILLER et al. (1978)).
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Applications of MST Radars: Meteorological Applications

M. F. Larsen

Department of Physics and Astronomy
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1. Introduction

MST radars provide information about a broad range of scales. For example, wind

measurements provide information about circulations ranging in size from the microscale to the

synoptic or planetary scale; spectral width measurements contain information about microscale

turbulence within the beam; and reflectivity measurements show the presence of small scale turbulence,

as well as larger scale temperature gradients associated with the tropopanse or frontal boundaries. In

spite of the broad range of scales that can be investigated and the wide range of potential applications

of MST radars, I will limit the discussion to those applications that are directly relevant to mesoscale

meteorology since the radar technology seems to have found a natural niche in that area. The

applications to mesoscale meteorology include using the radars either as research tools to improve our

understanding of certain dynamical systems or as part of a network used to provide input data for

weather forecasting. The goal of operational meteorology is twofold. The first is to forecast the

weather over a variety of time scales, and the second is to monitor conditions so that we can assess the

state of the atmosphere at a given time. Weather forecasting is probably one of the most commonly

recognized tasks of operational meteorology since virtually all members of the public become users of

such a service at one time or another. However, forecasting often includes more than a prediction of

the chance of showers and the high and low temperature for the next day. User specific forecasts can

include the air stagnation in a metropolitan area, winds aloft for routing aircraft, the strength of

onshore winds and the associated beach errosion, or the strength and location of small-scale eddies and

the effect of such eddies on chemical spraying in agriculture. The list goes on and on.

The workhorse of the operational observing network has been and still is the radiosonde

balloon which provides measurements of pressure, temperature, humidity, and winds up to heights of

16-20 kin, i. e., into the lower stratosphere. The average separation between radiosonde stations in the

United States and Europe is _150-500 km depending on the area. In addition to the radiosonde

network, a much denser network of surface reporting stations cover the industrialized countries. The

latter report the same quantities as the radiosonde provides, but only at the surface, and they also

provide information about cloud cover, local precipitation, and tendencies, i. e., temporal changes, of

the various quantities.
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The station separation and measurement techniques used in the observing network lead to a

natural emphasis on synoptic meteorology which is characterized by spatial scales of ~500-5000 km

and time scales of 1/2 to 5 days. Increasingly the interest of the national weather services is focusing

on problems in mesoscale forecasting (see, e.g., Ray, 1986), first because we do not know very much

about most mesoscah dynamical processes and second because most of the severe weather is associated

with mesoscale phenomena. The mesoscale is characterized by spatial scales of ~ 1-500 km and time

scales of 1/2 to 12 hr. Satellites have provided important mesoscale data, particularly satellite

photographs, but the thermodynamic and wind measurements that the satellites yield generally have

poor vertical resolution which is unacceptable.

The seeds of MST radar technology have been sown on a fertile field. The radar wind profiler

appears to solve many of the problems related to obtaining mesoscale observations needed for

forecasting. The radars easily produce the time resolution, height resolution, and height coverage that

are needed. A single radar still does not provide any extended spatial coverage, but the cost of the

instruments is relatively low so that the possibility of deploying many of them still exists. The radars

only provide direct measurements of the winds, which could be a drawback, but two factors operate in

the radars' favor in this regard. The first is a result of geostrophic adjustment theory which predicts

that at large scales, the wind field tends to adjust to the imposed pressure field, but at small scales the

reverse happens. Therefore, if only one mesoscale quantity can be measured, the wind field is probably

the best choice. The second factor again derives from the dynamic relationships and exploits the fact

that the wind field is interrelated with the pressure and temperature fields through the balance

equation and the vorticity equation. Thus, if the wind field is known over an extended horizontal

region, information about the temperature and pressure fields can be derived. The accuracy and

usefulness of these techniques still need to be carefully assessed but show great promise for the

application of the radar technique to operational mesoscale forecasting.

My intent here is not to provide a complete review of the applications of MST radars to

meteorological operations or research or to provide a complete literaturh review. Therefore, some

important work will probably be slighted in my treatment. Rather, I hope to make the reader aware of

some of the important issues presently being consideredl and some of the potential of the technique for

future applications. With this background, I will proceed to describe more specific aspects of the

application of MST radar technology to meteorology. The next section deals with the characteristics of

the horizontal wind measurements, Section 3 describes how the reflectivity measurements obtained

from the radars can be used, Section 4 deals with the vertical velocity measurements from the radars,

Section 5 describes quantities that are derived from the radar measurements, Section 6 deal- with
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special characteristicsof an operational system, and Section 7 outlines some of the important open

questions that remain about the usefulnessof the technique.

2. Horizontal Velocity Measurement Capabilities

Interest in using MST radars for studies of mesoscale dynamics derives primarily from the

possibility of measuring the horizontal winds over a large height range, with good height resolution and

excellent time resolution. The time resolution, in particular, is the main advantage in using radars

instead of balloons for horizontal wind measurements.

(a) Precision, Accuracy, and Errors

The wind profiler's capabilities for measuring the horizontal winds are the ones that have been

explored most extensively to date. The first experiments that were carried out involved comparisons of

the horizontal winds obtained from the radar measurements with the wind data from nearby

radiosonde stations. An example of the type of agreement that can be expected is shown in Figure 1

which represents measurements made with the SOUSY-VtlF-Radar located in the Harz Mountains in

West Germany with wind data from the nearby Hannover radiosonde station (R_ttger, 1983). The

comparisons have shown good agreement from the outset and have led to a general acceptance of the

radars' wind measurement capabilities. Two early studies attempted to quantify the comparisons by

using longer time series and by making a better assessment of the magnitude of the errors that could be

expected. The first was carried out by Fukao et al. (1982) and was based on 26 days of radar data

obtained with the 430-MHz Arecibo radar and the corresponding radiosonde data from the San Juan

station. Figure 2 shows the relative locations of the two sites and the trajectories of the balloons

launched during the period. The figure also shows that the balloon measurements actually cover a

large area during the ascent which can be a problem if small-scale flow features are of interest. The

agreement was generally good, although errors varied between ~5 m/s in the troposphere and ~3 m/s

in the lower stratosphere. The steady character of the flow in the subtropical region led to a nearly

constant pattern in which the ascending balloons first traveled slightly to the east of San Juan, away

from Arecibo, and then turned toward the west at higher altitudes. The authors argued that the

differences in the lower stratosphere could be explained by errors in the radiosonde observations that

occurred when the balloons were far from the launch site and therefore at low elevation angles. At

least part of the difference between the two data sets in the troposphere, however, had to be due to

variability in the flow.

Jasperson (1982a,b) has carried out numerous twin balloon experiments. Combinations of
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spatially and temporally separated launches were carried out, and some launches from the same

location at the same time were also made. The results provided an estimate of the errors attributable

to the balloons and also the natural variability that occurs within the atmosphere as a function of

temporal or spatial lag. Jasperson's data covered scales slightly different than the separation between

San Juan and Arecibo but, when extrapolated to the appropriate scale, the natural variability could

easily account for the differences between the radar winds and the radiosonde winds, without requiring

large balloon errors, as pointed out by Larsen (1983).

Larsen (1983) compared data from the Poker Flat, Alaska, VHF radar to radiosonde data from

nearby stations. Direct comparisons between the Poker Flat data and winds obtained with the

Fairbanks radiosonde, only 30 km away, were made. Also, the radar and radiosonde winds were

compared to the geostrophic winds calculated from the grid of radiosonde stations located closest to the

radar. The l-hr average radar and radiosonde winds were found to deviate from the geostrophic wind

by about 5-6 m/s and they were found to deviate from each other by a smaller amount of _2-3 m/s.

Thus, the accuracy of the two wind measurement techniques appears to be comparable. The

differences between the two wind measurements were again explainable on the basis of the natural

variability in the flow which is a function of the spatial separation. RSttger (1983) came to a similar

conclusion based on the calculated auto- and cross-correlations between SOUSY radar data and winds

measured by nearby radiosonde stations.

The Wave Propagation Lab in Boulder, Colorado, has carried out a series of experiments with

a 5-beam 405-MHz wind profiler to assess the precision and accuracy of the measurements first during

clear air conditions over a one-month period (Strauch et al., 1987) and then during periods when

precipitation was in the beam (Wuertz et al., 1988). One beam was pointed toward the vertical, and

the other four beams were pointed toward north, east, west, and south at a zenith angle of 15". The

differences in the east/west and north/south line-of-sight pairs could be combined to yield independent

measures of the vertical velocity. The results in the form of scatter diagrams are shown in Figure 3.

Figure 3a represents (Vn-Vs) on the vertical axis and (Ue-Uw) on the horizontal axis where the

subscripts refer to the direction. Strauch et al. (1987) showed that deviations along an axis running at

45" from lower left to upper right includes both the measurement error and the vertical velocity

contamination of the horizontal wind measurements. The axis. running from lower right to upper left

includes only the measurement error. Figure 3b shows a corresponding diagram in which the vertical

beam measurements have been used to correct the horizontal wind measurements. In the latter case,

the scatter in the plot is more nearly circular. The measurement error was found to be 1.7 m/s

without the vertical beam correction and 1.3 m/s with the vertical beam correction. The study of the
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precipitation cases carried out by Wuertz et al. (1988) showed that comparable measurement errors

occurred when the precipitation was stratiform, i.e., spatially uniform, so that vertical velocity

corrections could be made. The errors increased substantially when the precipitation was not uniform,

however.

The radars not only provide better time resolution than the balloons but also overcome some

other inherent limitations in the balloon technique, such as the problems that occur when balloons are

launched during adverse conditions. Augustine and Zipser (1987) found that a series of balloons

launched during a squall-line passage in Kansas during the Pre-STORM experiment did not reach

heights much above the melting level. Wind profilers operating during the same period did not suffer

from such problems. In fact, the conditions led to enhanced reflectivities that increased the signal-to-

noise ratio during the period.

(b) Geostrophic Adjustment and Model Initialization

A good deal of the interest in using MST radars or wind profilers for mesoscale studies stems

from the high time resolution and good temporal coverage afforded by the radars that will make it

possible to study dynamical systems _hat have previously fallen between the "cracks" of the

observational network. However, there is equally great interest in using a network of profilers as an

observing system to provide the input for numerical forecast models, especially because geostrophic

adjustment theory predicts that wind measurements are more useful when the scales of interest are

small. The basic theory was worked out by Rossby (1937) and has been extended by numerous authors

in various contexts. Ar_ excellent review is given by Blumen (1972). The theory predicts that the

adjustment of the wind field and the mass field will be quite different depending on the ratio of the

scale of the disturbance to the so-called Rossby radius of deformation. The Rossby radius L R is

defined as

C N
LR= T (2)

where f is the Coriolis parameter and C N is a characteristic velocity in the medium. In a shallow-

water model that velocity becomes

CN=_ (2)

where g is the acceleration of gravity and h is the fluid depth. Eq. 2 defines the gravity wave phase

velocity in such a model. In a stratified atmosphere, the expression for C N in a lineacized treatment
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_om_

CN2----N2(N2cs "2 + r _ + m2) -z (3)

where N is the Brunt-Vaisala frequency, cs is the speed of sound, F is Eckart's coefficient which would

vanish in the Bousinesq approximation, and m is the vertical wave number (Blumen, 1972). The

Rossby radius varies substantially but typically has values in the range of 500-1000 kin. The theory

predicts that for scale sizes that are large compared to the Rossby radius, the wind field will tend to

adjust to the pressure field. Therefore, if a synoptic scale perturbation pressure is induced in the flow,

a wind that balances the pressure gradient will evolve over a time scale comparable to 1-1 where f is the

Coriolis parameter. If a large-scale perturbation in the wind field is induced, however, the energy input

will be dissipated by gravity waves that propagate out of the region and carry the energy away. For

small scales, the reverse situation holds, and a perturbation in the wind field will produce a pressure

gradient that balances tile wind geostrophically. A small-scale pressure perturbation, on the other

hand, is dissipated by gravity waves that redistribute the energy.

A numerical model encompasses the same physics a.s the real atmosphere (or so we hope).

Therefore, when observations of the pressure field at small scales are used to update the model, the

effects of updated pressures are felt less. The situation is further worsened by the fact that gravity

waves which are not handled well by the model are generated as part of the process of dissipating the

pressure perturbation. Wind perturbations, on the other hand, tend to be maintained by the flow at

small scales, and the pressure gradients needed to balance the flow develop with time. These

considerations lead to an inherent preference for wind observations when small scales of motion are

involved, ttoke and Anthes (1976), among others, have discussed these points in more detail, and

Anthes (1983) has reviewed a number issues and strategies related to mesoscale models.

The wind profiler built and operated by NOAA's Aeronomy Lab at Christmas Island in the

Pacific is the first facility to provide winds routinely by satellite transmission. After January 1987, the

wind data was incorporated in the operational analysis of the National Meteorological Center and after

April of that year the data was used in the European Centre for Medium-range Weather Forecasting's

(ECMWF) operational analysis procedure. Gage et al. (1988) have described the results of a study

designed to assess the improvement in the analysis procedure attributable to the profiler data. Before

the data were incorporated in the analysis procedure, the standard deviations between the analysis and

the observations was in the range of 3-5 m/s up to 250 rob. After the centers started using the profiler

observations, the standard deviations decreased to 1-3 m/s. Figure 4 shows the deviations as a
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function of height. The solid line indicates the variability in the profiler data alone and gives a

reference by which the deviations between analysis and observations can be judged. In general, the

NMC routine does a poorer job above 200-300 mb, apparently because less weight is assigned to this

kind of data in carrying out the analysis. The study has shown the potential impact of wind profilers

on initialization in remote areas. The minimal maintenance and unattended operation make the

technique ideal for operation in isolated and remote locations. In the tropics, where the geostrophic

relation is not applicable, direct observations of the winds are expected to be extremely important if

significant improvements in forecasts are expected.

3. Reflectivity Data

Aside from the horizontal velocity components, the other parameter provided by all the radars

is the reflectivity. The magnitude of the refhctivity is usually associated with the strength of the

turbulence within the sampling volume, but strong gradients in the refractive index can also lead to

enhanced reflectivities at longer wavelengths associated with what has become known as specular

echoes or Fresnel reflection (see, e.g., R.Sttger and Larsen, 1988, or Gage, 1988). Whether the signal is

due to Bragg or turbulent scatter or specular reflection, structure with a scale size comparable to the

wavelength of the transmitted signal has to be present. In the former case, the structure is expected to

be more microscopic in nature and characterized by shorter coherence times. In the latter case, the

structure is expected to be more macroscopic in nature with longer coherence times. There is still

considerable debate at meetings and in the literature about the dynamics associated with these two

different kinds of scatter. Also, although we like to characterize the scatter as being of one type or the

other, the actual scatter received in any real situation is likely to be the result of a combination of both

effects.

These important questions need to be resolved in the future, but, in spite of the uncertainties

about the details of the dynamics, we already know that in practice the result is an enhancement in the

reflectivities observed at VRF at heights just below the radiosonde tropopause. Figure 5 shows an

example of the reflectivities measured with the SOUSY-VHF-Radar, and the tropopause heights

derived from the Hannover radiosonde data are shown by the arrows (Rastogi and RSttger, 1982).

Gage and Green (1982a) have established objective criteria for locating the tropopause based on radar

reflectivity data. They found that the errors were typically +270 m, although the authors expected the

errors to increase slightly if the technique is used operationally. Gage et al. (1986) have extended the

earlier work, and Sweezy and Westwater (1986) have compared different techniques for deriving the

tropopause height from VHF radar data. Knowing the height of the tropopause can be valuable in



310

E

I_5

135

IQ5

75

"_'r; --F_!,i.'l_'i_.'.hli_.:

,,i ,ll!!l!,t _ : ''_ ''r ''[ %#

; !.:,_-_',:•>_'.-•,
' , - ! o.!'..

•., • :'.'_

t 1 I

O0 O0 O0

J 3Q_1978 J 31.5. J

i<:i:_::....-,,:;,,_.,,,,:;:.i_,i!;i !;::,,. , ....:.,.,,,.,,
;li_ I 'h.,: "'i' ' .... :" -" ; ;_i"'qEt L':'_r_'i::I" "]'' t_""

,:.-:..:,,..... !111111 I,,,_!!i,,tll,J,t_.,._i,,l_J.
• _... ":; ! _:-';, I.. 1#:'" "" i'

,:.:;.,,,;...,:,[-, ;",;-.:::,:,".:::_,....,.:. .
";_- :.,,,!l:;!l;,,ll.i,_:;ll! igl|i': ,_,li!_..:,l,,;l*id,li;,ll;,_JJl,,,
' I ' I I I

Figure 5. Plot of relative reflectivity indicating the fine structure of the tropopause region•
The arrows show the tropopause height deduced from nearby radiosonde profiles.



311

fine-tuning the temperatures obtained from either satellite or ground-based microwave remote sensing

data. Tropopause height information will not be available if UHF profilers are used since the shorter

wavelengths are not sensitive to the aspect sensitivity effects that lead to the enhanced scatter from the

tropopause region. Gage and Green (1982b) also pointed out that the measured radar reflectivity

profiles could be used, in conjunction with information about the surface temperature, to provide an

estimate of the temperature profile. Above the tropopause, the variations in reflectivitity provided

information about the temperature gradients. Below the tropopause, a constant ]apse rate was

assumed. Radiosonde profiles will be much more detailed and accurate than the profiles derived in this

way, but temperature information derived from the radar data can be used as a supplement where no

other information is available. Also, the potential improvements in microwave radiometer-derived

temperature profiles when the two types of data are combined have not been fully explored (Hogg et

al., 1983).

An effect related to the enhanced backscatter from the tropopause seen at VHF is the enhanced

scatter from frontal boundaries. RSttger (1979) was the first to describe this effect based on analysis of

data obtained with the SOUSY-VHF-Radar located in the Harz Mountains in West Germany. Larsen

and RBttger (1982, 1983, 1985) have analyzed a series of frontal passage events using the same

instrument. In essence, the enhanced reflectivities occur very close to the location of the frontal

boundary as determined from radiosonde data. The boundaries usually slope either upward with time

(cold frontal passage) or downward with time (warm frontal passage). An example is shown in Figure

6 which corresponds to the passage of a cold front indicated by the cross-hatched area followed by a

warm front shown by the stippled areas during the period February 7-9, 1982. The tropopause heights

measured by the Hannover radiosonde are shown by the crosses. On February 8 at 12 GMT, the

passage of the front caused a very low tropopause height to be reported, in agreement with the radar

refiectivity contours. The lower half of the figure represents the potential refractivity M 2 calculated

from the radioe)nde data for the same period. M given by

titre P is the pressure in millibars, T is temperature in Kelvin, 0 is the potential temperature, q is the

specific humidity in grams per kilogram, and z is height in meters. The agreement in the gross features

of both cross sections is evident. Recently, similar reflectlvity structures have been observed with the

Flatland radar in connection with frontal passages in Illinois (Nastrom, private communication, 1988).

Larsen and R_ttger (1982, 1983, 1985) made comparisons between calculated refractivities and
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oboerved reflectivitles in a series of frontal passages. The agreement between the gross features of the

two quantities was striking and indicated that the structure responsible for the scattering was being

organized on a large scale. At least it persisted over the scale separating the radar and radiosonde

which was approximately 90 km. An alternative hypothesis would have been that the enhanced

refiectivities were generated by small-scale turbulence produced locally near the front. Some of the fine

structure probably had this kind of source, but the larger organizing features were of mesoscale origin.

Some of the reflectivity data obtained with SOUSY has shown that the frontal boundary

consists of smaller-scah filamented structure. Detailed reflectivity structure is shown in the gray-scale

plot in Figure 7 for the March 6-7, 1981, warm-frontal passage. Presumably better height resolution

would show even finer-scale structure. The dynamics of the upper level frontal zones are extremely

important both in generating and enhancing tropospheric systems and in mixing constituents between

the stratosphere and troposphere. The mixing that occurs during tropopause folding events was

already documented by Danielsen (1968) in connection with experiments designed to study the

transport of radioactivity and trace constituents through the tropopause region. It has become clear

that the mixing between the troposphere and stratosphere is not steady and continuous but occurs

discretely during certain special events, usually associated with frontal passages. We still know very

little about the small-scah dynamics actually responsible for the mixing (see, e.g., Ray, 1986), but the

radar reflectivities and radar measurements of velocities may provide us with more information about

this aspect of the circulation.

4. Vertical Velocity Measurement Capabilities

The vertical velocity measurement capability of the MST radars has been one of the most

intriguing as far as meteorological applications are concerned. Deployment of either an operational or

a research network can be justified on the basis of the horizontal wind measurement capabilities alone,

but vertical velocities have always had a special place in meteorology for a number of reasons. First,

much of the effort in the field is devoted to predicting or understanding the vertical circulations that

develop in the atmosphere. Clouds and precipitation are produced by upward vertical velocities; the

large vertical gradients in density in the atmosphere lead to heating or cooling during adiabatic ascents

or descents that produce significant temperature changes in competition with horizontal advection; and

the vertical gradients in chemical constituent concentrations imply that vertical circulations will have a

large effect on trace concentrations. In spite of the importance of the vertical velocity fields, the

vertical circulation is almost always an inferred quantity. A few specialized techniques, such as aircraft

measurements, exist for measuring vertical velocities, but for large-scale measurements, the vertical
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velocity is usually calculated from the divergence of the horizontal winds. Short-wavelength

precipitation radars have been used to "measure" the vertical velocities in connection with special

experiments, but the measurements usually amount to integrating the divergence over height to yield

the vertical velocity. Since the radars are sensitive to precipitation, only the motion of the

precipitation can be measured, and while the horizontal velocities of the precipitation and the air are

expected to be the same, the vertical velocities are generally quite different.

Thus, with some reservations that I will explain later, we can say that the MST radars are the

first instruments capable of providing vertical velocity measurements routinely over extended periods

and over a large height range. Immediately the possibilities for verifying model forecasts of vertical

velocities come to mind. Also, if the vertical velocity measurements can be trusted, the measurement

of the vertical velocity can be inverted to provide us with information about the variation of divergence

with height (Clark et al., 1986). The latter quantity would be extremely useful in initializing forecast

models which generally use the horizontal wind field as part of the input parameters. Vertical velocity

information would help the numerical models to develop realistic vertical circulations in a shorter time.

Typically, the horizontal wind information is the only velocity input to the model, and it takes some

time before realistic vertical circulations develop. The latter is not a problem if the ultimate goal is a

12-day forecast, but the problem is a serious one if a 2-3 hr forecast is sought. Finally, the vertical

velocities may be characteristic of small-scale processes too small for the model to resolve, but even

subgrid-scale momentum and heat fluxes are important in forcing the larger-scale dynamics. These

fluxes are generally parameterized, but measurements of the vertical fluxes could be used to update the

parameterization at the time of model initialization.

In spite of the clear need for and many potential uses of the radar vertical velocity

measurements, there are still many uncertainties that need to be resolved before the potential can be

realized. The first problem is related to the accuracy of the vertical velocity measurements, Although

several different techniques have been used to measure horizontal velocities, including the Doppler

method, the spaced antenna method, and the interfcrometer method, all the various techniques

measure vertical velocities by the Doppler method. There seems to be general agreement that the

signal received from the vertical direction is scattered by irregularities or sharp gradients in the

refractive index, and that the Doppler shift of the received signal gives the line-of-sight, in this cs.se

vertical, velocity of the refractive index irregularities. The uncertainty relates to whether the

irregularity velocity is the same as the air motion so that the Taylor hypothesis is valid.

A logical way to proceed in determining the accuracy of the vertical velocity measurements is

to compare the measurements with vertical velocities obtained by some other technique, but in this
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case no real basis for comparison exists. The next best approach is to compare the measured velocities

with vertical velocities calculated from other data. The number of studies of this type is very limited

so far. Nastrom et al. (1985) utilized data from the Platteville, Colorado, VHF radar obtained over a

period of several weeks. A number of different methods for calculating the vertical velocity were

applied to the gridded values produced by the NMC analysis for the surrounding region. The

kinematic method was used to integrate the divergence to produce a vertical velocity profile, the

thermodynamic method was used to calculate the vertical velocity based on temperature changes

associated with adiabatic warming or cooling during ascent or descent, and the quasi-geostrophic

omega equation was also used. Three examples of the profiles of calculated and observed vertical

velocities from the study by Nastrom et al. (1985) are shown in Figure 8. The various methods for

calculating the vertical velocities, indicated by letters, were found to yield comparable results, but large

differences between the measured and calculated values were found throughout the period. Specifically,

the radar measurements were generally 2-3 times larger than the calculated values, but there was better

agreement between the signs of the velocities.

Larsen et al. (1988) compared vertical velocities obtained with the SOUSY-VHF-1Ladar located

in the Harz Mountains in West Germany to the vertical velocities produced by the operational analysis

procedure of the European Centre for Medium-range Weather Forecasting (ECMWF). The analysis

uses a normal mode initialization procedure which is known to preserve more of the divergence in the

horizontal velocity field than some of the other techniques. Therefore, larger and perhaps more

realistic vertical velocities are expected from this type of calculation. The result of the study was that

the magnitudes of the calculated and measured values were nearly the same. However, the agreement

between specific features observed in connection with the passage of fronts, for example, was not as

good. An example is shown in Figure 9 which represents contours of the upward vertical velocities

measured with the radar over a two-week period in November 1981 in the upper panel and the

operational analysis vertical velocities for the corresponding period in the lower panel. The same gross

features are present in both the observed and calculated data sets. For example, 4-5 bands of upward

velocity were seen in both data sets in connection with the passage of a cold front on November 6, but

the timing of the passage of the bands varied by as much as 12 hr and one band that was present in

the radar data after noon on November 6 was missing in the a_nalysis. In some sense, discrepancies of

this _ype are not surprising, but we need to be able to account for the discrepancies in the future before

we can make use of the measurements for verification and initialization of models.

Gage and Nastrom (1986) compared vertical velocities obtained with the Platteville radar

located in Colorado to precipitation data from the surrounding area. They concluded that there was a
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general relationship of the type that would be expected between the times when precipitation occurred

downwind from the radar and the times when the radar showed a pattern of upward motion. Results

of this type are encouraging, but more quantitative comparisons are difficult due to the large horizontal

gradients and local variability in precipitation.

Wakasugi et al. (1985) measured the vertical velocities with the MU VttF radar during the

passage of a cold front. A meteorological radar also provided data on the location of the precipitation

during the period. Figure 10 is an example of the VHF data which shows the reflectivities at off-

vertical incidence in the upper panel, the reflectivity at vertical incidence in the middle panel, and the

circulation in the cross-frontal plane in the lower panel. The reflectivities clearly show the aspect

sensitivity effects. The upward vertical velocities are strongest close to the time of the frontal passage,

but a number of cells of alternating upward and downward velocities are evident before and after the

passage. The times when precipitation occurred correlated well with the times when the updrafts were

present, although not all updrafts produced precipitation. This type of data shows the potential for the

observation of mesoscale systems and gives an indication of the insights that can be expected.

As mentioned above, an important question for lhe near future will be to determine the source

of discrepancies between radar vertical velocity measurements

produced by operational analysis. In comparing horizontal

immediately adjacent to the radar and a direct comparison can

and calculated values such as those

winds, a balloon can be launched

be made. Thus, the effects of small-

scale gradients in the flow can be minimized. When the vertical velocities are calculated, usually from

the divergence equation, at least three spatially separated wind profiles are needed. The result is that

the derived vertical velocities represent a different quantity than the measured values since the derived

values are effectively an average over the area defined by the area between the observing sites. The

radar vertical velocities are representative of a single point within the domain. An attempt to reconcile

the two values can be made by averaging the radar velocities in time. If the Taylor hypothesis is valid

and the fluctuations are "frozen" within the flow, averaging in time should be equivalent to averaging

in the spatial domain. There is some evidence that such an approach is valid (Brown and Robinson,

1979), but the two quantities will always be somewhat different. Some of these issues will likely be

resolved when networks of wind profilers are deployed, such as the network proposed for the central

United States as part of the STORM program (Augustine and Zipser, 1987).

Another potential problem is due to the effects of aspect sensitivity on the effective look angle

of the radar beam. These effects will only be significant when longer wavelengths such as 6 m are used

since the aspect sensitivity at 70 cm, for example, is negligible in virtually all but the most exceptional

circumstances. Aspect sensitivity causes the largest signal to be received when the look direction is
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perpendicular to strong gradients in the refractive index associated with layers in the atmosphere. The

layers are generally tilted by a few degrees, but except for the largest arrays, the tilt angle will be

within the beamwidth. Thus, a beam that is nominally pointed in the vertical direction may receive

the strongest signal from a look direction that is a degree or a few degrees off vertical. The

measurement will then consist of the projection of the true vertical velocity on the effective look

direction, which is usually a minimal error, plus the component of the horizontal velocity along the

look direction. The latter can create errors of over 100%, i. e., even the sign of the apparent vertical

velocity can be wrong in some instances. RSttger and Icrkic (1985) have described these problems and

have shown that data from a spaced antenna array can be used to calculate the tilt angle of the layers

in order to make the necessary corrections to the measured velocities. Very little analysis of this type

of error has been carried out so far, but the effects need to be taken into account when VHF profilers

are used. Such effects may be responsible for some of the discrepancies found in the studies by

Nastrom et al. (1985) and Larscn et al. (1988) since both studies used data obtained with VtIF radars.

Recently a VIIF radar has been constructed near Champaign, Illinois, in one of the flattest

portions of the central United States. The site has tremendous advantages for studies of the vertical

velocities since almost no orographic effects are expected. Figure 11 from the article by Green et al.

(1988) shows samples of the time series of vertical velocities obtained at the Flatland radar, at

Plattevitle, Colorado, just east of the Rocky Mountains, and at Sunset, Colorado, in the mountains.

The variability and amplitudes of the vertical velocities increase with proximity to the mountains. The

active periods that occur with some regularity in the data sets taken near the mountains are due to

generation of waves by the flow over the topography.

UHF radars are unlikely to suffer from the errors introduced by aspect sensitivity effects, but

the shorter wavelengths are extremely sensitive to precipitation. Thus, if there is precipitation in the

beam, the measured vertical velocity will be the fall velocity of the precipitation (see, e. g., Larsen and

RSttger, 1987, and Wuertz et al., 1988). Periods of strong precipitation are easily distinguished in the

data since the reflectivities increase significantly beyond the levels that can be accounted for by

turbulent scatter. Periods of moderate precipitation may be more difficult to handle in practice.

Eliminating all questionable data is not difficult but leads to a rather unsatisfactory solution since we

will be deprived of data whenever the meteorological situation becomes interesting. More work is

needed to determine the optimum approach that gives Tls the maximum usable information but

eliminates the erroneous data.
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5. Derivable Quantities or Parameters

(a) Pressure and Temperature Fields

The reflectivity data can be used to provide an estimate of the temperature profiles as

described above, but the estimates are likely to be extremely coarse. However, there is a balance

between the pressure and temperature fields and the winds imposed by the dynamical constraints. A

simple example is the geostrophic relationship which relates the horizontal wind components and the

horizontal pressure gradients. The balance equation is based on less limiting approximations than the

geostrophic approximation and has been used in studies by Gal-Chen (1988) and by Kuo et al.

(1987a,b) to determine how the wind information from a profiler network can be used to derive the

temperature field. The input to the calculation is the observed wind field, and the output is a

temperature field consistent with the wind field through the constraints imposed by the balance

equation. The results to date have been very enconraging and show the potential for deriving

parameters other than just the horizontal winds from the profiler observations.

(b) Divergence and Vorticity

Since the divergence is related to the vertical gradient of the vertical wind, the divergence can

always be calculated once the vertical velocity profile is obtained (Clark et al., 1986). Alternatively,

four off-vertical beams pointed along different azimuths can be combined to yield the divergence

directly.

Ordinarily, a single radar cannot yield the vorticity in the flow since the radar measures the

line-of-sight velocity and the vorticity is the circulation perpendicular to the look direction if the radar

beam is cycled around in different azimuth directions. Itowever, Smythe and Doviak (1987) have

suggested that correlations of the signals obtained with the beams pointed in different directions can

provide the cross-beam component of the flow. The procedure is similar, although not identical, to the

spaced antenna method for obtaining the winds (e.g., RSttger and Vincent, 1978; Larsen and RSttger,

1988). The latter technique uses at least three vertically pointing but spatially separated beams. The

cross-correlation between the signals in the various beams gives the time lag for the scatterers to move

from one beam to the next. Thus, the cross-beam velocity component is derived. The spaced antenna

set-up may be the most natural to use for obtaining the vorticity in the flow since the lags between the

signals in the three beams are calculated anyway as part of the process of deriving the horizontal

winds. The line integral of the inverse lags around the triangle defined by the receiving antennas

divided by the area of the triangle will then be proportional to the vorticity.

The vorticity is an extremely important quantity in defining the properties of any
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meteorological flow. The vorticity associated with frontogenetic flows would be a valuable parameter

to measure. Observations of this quantity could be used to study the mixing that takes place near

upper-level fronts in connection with tropopause folding and in the boundary layer in connection with

convection, for example. Even if this type of measurement is shown to be feasible, we still have to

determine how the microscale vorticity that is measured by the radar is related to the mesoscale

vorticity. The problem is similar to the one that we face in determining how representative and useful

the vertical velocity measurements will be for studies of mesoscale and synoptic scale dynamics.

(c) _ss

The RASS (Radar and Acoustic Sounding System) technique was introduced already in the

1960's. The system uses an acoustic generator to produce waves with half the wavelength used by the

radar. The acoustic disturbances thus produce refractive index variations that cause strong Bragg

scatter of the radar wave field. Measuring the velocity of the acoustic waves yields the temperature

directly since the speed of sound is a function of tile temperature. The early experiments used

meteorological radars with relatively short wavelengths in the centimeter range, and the high

frequencies made it difficult to obtain signals much above the boundary layer. Matuura etal. (1986)

were the first to implement the technique at VHF with the MU radar in Japan. The longer wavelength

of 3 m for the acoustic signal decreased the attenuation and made it possible to obtain temperature

profiles well into the stratosphere.

The first experiments took over a day to carry out because of the problems associated with

moving the acoustic source so that the sound waves would pass through the radar beam. Since the

acoustic waves are blown around by the winds, the alignment problems can be severe. Obtaining the

Doppler velocity which is then converted to temperature is a relatively quick process once the acoustic

beam is within the radar beam. Placing an array of acoustic sources near the radar in more recent

experiments has reduced the measurement time significantly to less than one hour. The radar beam

still has to be steered, but the necessary calculations and movement of the beam can be carried out

quickly.

The MU radar is rather special in the sense that it is extremely flexible and powerful compared

to the wind profiler systems that are being deployed operationally. Therefore, it is not immediately

obvious that the RASS technique can be applied with some of the simpler systems. However, the

potential uses for the temperature data that could be obtained in this way are tremendous and will, no

doubt, be explored in depth in the next 5-10 years. Work has already been carried out to test the

application of the RASS technique with some of the systems developed at NOAA in the Aeronomy Lab
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(Ecklund, private communication, 1988) and in the Wave Propagation Lab (Strauch, private

communication, 1988). The work has produced at least some modest success.

(d) Momentum fluxes

Vincent and Reid (1983) have shown that two symmetrical off-vertical beams can be used to

measure the vertical flux of horizontal momentum. Other beam configurations are possible, but the

Vincent-Reid set-up appears to have some distinct advantages. Only a few studies of the momentum

fluxes in the troposphere and lower stratosphere have been carried out so far. Cornish and Larsen

(1984) used VAD data obtained with the 430 MHz Arecibo Observatory radar, Nastrom and Green

(1986) obtained momentum flux data with the Sunset radar, and Fukao et al. (1988) calculated the

momentum flux from MU radar data. The latter study also compared the three beam (one vertical,

two off vertical) and four beam (four off vertical) methods for obtaining tile momentum flux.

The momentum fluxes are extremely important in the dynamics of the atmosphere. Gravity

waves serve as the agents for redistributing energy" rapidly in the vertical direction. Wave dissipation

results in a convergence of the momentum flux that causes an acceleration of the flow. In particular,

1 d ,' ," (10)Fv =--?_-_z(p', w )

and

_ 1 d 'w' (10)ru--_Tz(pu )

where p is the atmospheric density, z is height, and u', v', and w' are the fluctuating zonal, rneridional,

and vertical velocities, respectively. F u and F v are the accelerations induced in the flow in the zonal

and meridional directions and are usually expressed in units of ms-lday -1. Nastrom and Green (1988)

found values of _10"Tms -_. There was considerable variability in the data, and the direction of the

momentum flux changed over intervals of 1-6 hr. Fukao et al. (1988) found accelerations of 5-25

ms-lday -l for data averaged over a 4-day period. In the latter study, there was no evidence of large

accelerations of the flow. Therefore, other processes must be balancing the induced accelerations. The

study by Fukao et al. (1988) also found that the largest contribution to the momentum flux was from

long period waves with periods of _300 rain.

Studies of the momentum fluxes have only begun to scratch the surface of the important

dynamics associated with the vertical redistribution of energy effected by the higher frequency gravity
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wave motions. It is likely that more studies of this type will help to clarify the important

interconnections between orography and atmospheric dynamics and the mechanisms whereby energy

generated in connection with dynamical processes is redistributed by the smaller-scale waves.

6. Special Operational Requirements

In certain instances, systems or networks of systems have been set up for meteorological

experiments on a short-term campaign basis. However, the systems used for operational monitoring of

the meteorological environment will have some special requirements in terms of strength of the system

construction, reliability of the system, and accuracy.

(a) Construction and Reliability

When research systems such as the MU radar in Japan or the Flatland radar in the United

States are deployed, the site is usually chosen carefully, and arrangements are made to have the site

visited and maintained often. Large-scale networks generally do not afford such luxuries. Since

extensive areas have to be covered by the instruments, relatively advantageous sites can be chosen, but

often less than ideal choices will have to be made. Finally, the systems have to be capable of operating

in a variety of weather conditions, and sometimes even in extreme weather. All of these requirements

add up to the need for an exceptionally sturdy construction with a long mean time between failures.

(b) Accuracy and Precision

The required accuracy and precision are related quantities since the precision has to be at least

as good as the accuracy, but the measurement error that can be tolerated is still unknown. Studies

such as those of Kuo et al. (1987a, b) will help to establish the appropriate criteria. Meanwhile the

systems deployed as part of the Colorado network (Strauch et al., 1987) appear to have measurement

errors of about 1.5 m/s.

(c) Height Coverage

It is difficult to come up with a quantitative criteria for the height coverage required for a

wind profiling system or network. In terms of the upper height limit, the more height coverage the

better is probably a reasonable rule-of-thumb subject to various practical considerations. The Wave

Propagation Lab in Boulder, Colorado, has compiled statistics on the height range coverage provided

by systems with three different frequencies (Frisch et al., 1986). The prototype network has used a

better height resolution at lower altitudes and poorer height resolution aloft, the rationale being that

the larger-scale structure above still has a considerable effect on the flow closer to the surface, but the
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small-scale structure aloft is less likely to influence tile flow at lower levels. The increased pulse length

at higher altitude_ increases the signal-to-noise ratio in that part of the atmosphere where the signal

usually becomes weaker. At least in some cases, we know that the small-scale structure aloft is crucial

in the evolution of the larger scale flow, especially near frontal zones. Then the strategy may have

disadvantages.

A major concern in the meteorological community has been the lack of coverage of the lower

altitudes in the planetary boundary layer rather than poorer coverage of the upper troposphere or lower

stratosphere. The boundary layer is the source of important fluxes of heat and moisture that fuel the

systems in the free flow above the friction layer. Therefore, measurements of winds and momentum

fluxes close to the surface but above the height covered by meteorological towers are extremely

important. The Aeronomy Lab and Wave Propagation Labs of NOAA in Boulder, Colorado, have

built special boundary layer radars (BLR's). Eck/und et al. (1988) have described one of the systems.

These instruments use high frequencies that allow fast transmit/receive switches to be utilized. Since

the signals in the boundary layer are relatively strong, small antenna sizes can be used. Already, these

small specialized systems have shown good results, and the systems appear to provide good overlap

with the larger profilers.

(d) Choice of Frequency

So far, only a few frequencies have been used in profiler applications. The popular choices to

date have been near 50 MHz and 400 MHz. The ideal frequency, even for a particular application, is

not known because the range of the frequency spectrum that has been explored is so limited. In

practice, it may be almost impossible to choose any frequency but the 405 MHz frequency that is

already allocated for meteorological use. The advantages of the 405 MHz band are that large

bandwidths are easier to obtain, making it possible to operate with better height resolution, and faster

T-R switches are generally available at the higher frequencies so that better coverage of the lower

heights can be realized. The disadvantages include lack of aspect sensitivity, which eliminates the

enhanced scatter from the tropopause or frontal boundaries, and the sensitivity to precipitation. Even

low rainfall rates will result in the signal being dominated by the precipitation so that direct

measurements of the vertical air motion become unreliable or impos.sible.

7. Remaining Questions

(a) Best Configuration for Networks

The prototype profiler network being deployed as part of the STORM program in the United
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States is being established with an average spacing comparable to that of the radiosonde network,

although a subgrid array with a smaller spacing will be embedded in the larger array. The plan seems

reasonable, but it is still unclear whether this is an optimum spacing. We will need experience with the

network to determine what characteristics of the various dynamical systems can be observed and

whether important features are slipping between the cracks.

(b) Initialization of Models

There are still many important unanswered questions about how the profiler data can best be

used to initialize numerical forecast models. Clearly, the straightforward input of profiler winds at the

initial time step is a likely possibility, but various four-dimensional data assimilation schemes may also

be useful, especially since the wind profilers have tremendous time resolution but provide limited

spatial coverage.

(c) Usefulness of Vertical Velocity Measurements

We have already described some of the potential problems with the vertical velocity

measurements with regard to the effect of small-scale variability on the representativeness of the

measurements. In addition, we need to determine if the measurements can be used in model

initializations in some way. Verifying model output with the vertical velocities is possible, but it may

be that the implied divergence information can be used to generate more realistic vertical velocities at

an earlier stage in the model run. The profile of vertical velocity can also be indicative of the latent

heating associated with convection. Such information would be useful in parameterizing the heating

and momentum fluxes generated by clouds. The errors introduced by the different types of scatter and

by the effects of precipitation need to be determined more accurately in the future so that we can make

the best use of the vertical velocity information.

(d) Usefulness of Small-Scale Turbulence Parameter Measurements

There is still disagreement about the dependence of the reflectivity and spectral width on the

turbulent dissipation rate, although the work of Hocking (1983) has served to clarify a number of these

issues. These small-scale fluxes can be extremely important in certain dynamical situations and can be

potentially important in improving parameterizations of subgrid scale motions in numerical models.

However, more comparisons between radar-derived values and observed quantities are needed to gain

confidence in the turbulence data that can be obtained from the radar measurements. Also, Hocking et

al. (1986) have shown that the spectral width measurements will be strongly contaminated by beam

broadening and shears for any typical flows within the troposphere. We need to determine if other

radar techniques can alleviate this problem and provide comparable information in a different way.
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(e) Usefulness of Momentum Flux

The momentum fluxes measured by the Vincent-Reid (1983) technique appear to have a great

potential for improving the parameterizations of small-scale dynamics used in virtually all of the

forecast models. Again, the representativeness of fluxes measured at a single location will have to be

determined. The possibility of updating the parameterizations based on flux-measurement input at

initialization time should be explored.

(0 Advantages of Various Radar Techniques

So far, all the operational profiler applications have used the Doppler technique which involves

two or more beams pointed in off-vertical directions. The combination of the line-of-sight velocities

measured in the various beams produces the wind components. Alternative methods for measuring the

winds include the spaced antenna method and the interferometer technique. The spaced antenna

method has already been tested sufficiently so that we know that it can be used routinely. There are

even various advantages of the technique for certain applications. The interferometer technique has not

been tested extensively and its operationa] potential is unknown, but it provides some possibilities for

measuring small scale structure in the flow that is impossible with other techniques, at least in the

simplified implementations typical of the operational profilers.
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1. Introduction

Incoherent scatterradar (ISR) has become the most powerful means of studying the iono-

sphere from the ground. Many of the ideas and methods underlying the troposphere and

stratosphere (ST) radars have been taken over from ISP,-Whereas the theory of refractive

index fluctuationsin the lower atmosphere, depending as it does on turbulence, is poorly

understood, the theory of the refractivityfluctuationsin the ionosphere, which depend on

thermal fluctuations,isknown in great detail. The underlying theory is one of the most

successfultheoriesin plasma physics,and allows for many detailed investigationsof a num-

ber of parameters such as electron density no, electron temperature Y,, ion temperature

Ti, electron mean velocity v,, ion mean velocity V/ as well as parameters pertaining to

composition, neutral density and others.

Here we shallreview the fundamental processes involved in the scatteringfrom a plasma

undergoing thermal or near thermal fluctuationsindensity.We shallrelatethe fundamental

scatteringpropertiesof the plasma to the physical parameters characterizingit from first

principles.We shallnot discussthe observation process itself,as the observational principles

are quitesimilar whether they are applied to a neutral gas or a fluctuating plasma. These

observational principlesare dealt with in other ISAR presentations.

Figure 1. Volume element d(_ in volume V illuminated by plane wave.

2. Volume Scattering from Random Irre_zularities, Continuum

In the neutral atmosphere the scattering is derived from the following consideration:

With an incoming wave: Eo e -iT`''¢ [note that exp (i_ot) is understood] and _ dielectric

constant in medium:
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the polarization of the medium becomes:

This oscillating polarization acts as an equivalent current:

/(_ = i.,o&_ = i..,oat,go. _-a...

and the vector potential at a point far from volume V is:

#o iWo_,o f

(2)

(3)

(4)

Observer

z

=_Observer

Figure 2. Scattering geometry to calculatevector potential at the observer.

with IV- V'] _ ]rl - _,. _',, where HI _ _-"

We obtain:

&_.) = _,_. i,,,0£ . ,-,* t,r L ,a_{_") . _-,¢'a,,-g,.._d(_.,)

at(L.-L,,)

which means that the received field depends on the spatial Fourier component with wave
vector k" =/_i, - g,..
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Figure 3. Relation between the wave vectors of the transmitted and revised

waves and the spatial Fourier component of the dielectricfluctuation.

It is easy to show from this that for a plane incoming wave of flux (Poynting vector mag-

nitude) Si., the flux at the receiver is:

4 2
_o_'o ,in=x laE(g,. - _..o)1=S_. (6)

S.,o = (4.)=RI

#0 = 4a'.10.7 Henry/m

sinx = polarization factor, see next section.

Rl = distance between scattering volume and observe_

In a plasma

_vVhere:

A((_')= An(_'). e2
m ._._ (7)

An(F) = electr(m density fluctuation

e = 1.602.10 -lg Coulomb = elementary charge

m = 9.110. I0-31kg --electronicmass

and one obtains by substitution:

('° _ _lAn(_,. - _..)1 _. sin_x • s,.
S.. =\_/

where r, is the classical radius of the electron defined by

(s)
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eo = 8.854.10 -12 F/m

c = 2.998- 108 m/s

3. Scattering from Individual Electrons, Discrete Particles

Let us recapitulate the derivation of the scattering by a free electron of electromagnetic

waves impinging on it. It was originally thought that the scattering from a plasma could be

considered a super-position of scattering from individual free electrons and that the strength

and spectral broadening can be used to determine density and electron temperature. For

the ionospheric plasma and for the frequency used in such scatter experiments, it turned

out that the scattering could not usually be considered that simply and that the actual

situation was more favorable from an experimental point of view. Nevertheless, even with

the more complex theory of interacting electrons the scattering from an individual free

electron forms an important and essential ingredient.

Assume as in Section 2 that the electric field set up at the position occupied by the electron

is:

_(t) = _o. ¢+,wo, (o)

where Eo is a complex electric field amplitude which allows for an arbitrary polarization.

When we assume that wo >> fl,, where fl, is the angular gyrofrequency of an electron.

the equation of motio n of the electron becomes:

-_oe +_'' = ,,,. #/e (101

Solving for _7(t) with the substitution if(t) : fro e +_w't one obtains:

_'o= +i _---L-_o (tl)
171._1,/°

Note that we have neglected the spatial variation of the extern,q electric field and the fact

that the electron moves in this field. We have also ignored the force caused by the motion

of the electron in the magnetic field of the incoming wave. Botla of these effects could

contribute to a ponderomotive force which we ignore. We also note that the motion of

the electron is considered undamped. This cannot be strictly true since the electron, even

without collisions, is re-r_di_ing because of the osciUation and hence, must experience

damping.

The current density associated with the motion of this electron becomes:

;(_',t) = -_(t) 6[e- e,(t)] (12)

where _'e(t) is the position of the electron and where 6(_ is a spatial deltafunction. With

such an oscillating current at the origin we obtain as in the previous section:

/Joe _ _oe+,(_,.__g,...,9 1 (13)
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The position of the observer ¢" may vary with time due to motion of the electron and we

must substitute when necessary:

where f"(t) is the radius vector describing the position of the electron relative to the position

of the observer at time t.

The Poynting flux vector at the receiver due to the radiation from this electron becomes:

(14)

and along the y-axis:

we obtain:

S,,e = (ro/R1) 2 • sin2x " Si, = 10 -2s sin2x • Si, (17)

The usual radar cross section a, is defined by:

a, = 4rrR_ • S_,e = 4rr_ sin2x "" 10 -2a sin2x(rn 2) (18)

In calculating the single electron scattering we have implicitly assumed that the driving

electric field is linearly polarized and that the angle between the field and the direction of

the receiver is X. In actual fact the electron is often oscillating in two linearly polarized

fields of arbitrary relative phase and amplitude. When this is the case the interpretation of

sin_x is more complex and the amount of scattered energy available may only be received

provided the receiver is properly "matched" to the scattered wave.

Consider a plane wave propagating along a positive z-axis. The complex amplitude/_0 may

then be represented as;

[ cos }E,o = (o(COSt_" e', + e i_ sin/3, g_) = (o [ sinB. e i6 -- (°/7 (19)

A linear polarization along the z-axis corresponds to:

where r/= x/c_',/eo = 376.7 ohms. Introducing the polarization angle X through

IL. × _ol (15)
si,_x - lk,-I' IE.I

and the power density incident on the electron, Sin by:

i (16)
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Circular polarization is represented by:

1

f=_ +i

It follows that the scattered fieldat the receiver can be expressed as follows:

g,(_',t) = r--z-:"R, n, x (a, x _o)e -_(_''-r_''°_) (.00)

where _1 is a unit vector along the direction of the scattered wave. In order to specify

the polarization both of the transmitted and scattered wave we introduce the following two

coordinate systems:

A. For the transmitted wave:

g, = _.<,= [',,,/1_'_,,1

e'i = unit vector normal to plane defined by ki,; k,,c

_', = normal to both _'y and _', in a right handed coordinate system.

B. For the scattered wave:

_, = a_= k,-.oflk',--I

_f
e, = normal to ey" and e," in right handed coordinate system.

nt " _R "" RX

ry:r;

Figure 4, Relationship between polarization of incom-

ing and scattered waves.
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In terms of these two coordinate systems we maY write:

E'y 0 1 ( sin/J . e '6

or:

_0 { co_Z' T0 [ co,Z_i,_,,,,, } = -_ { ;°'° °1} },o[ sin_e '6
(21a)

This determines the relationship of the two fields. In particular we note that

sin2x = sin21_ + cos2_ . cos20 (22)

where 0 is the angle between r_o and r_l.

It is now clear that one may express the relationship between scattered and incident electric

field amplitudes as:

TO_o_' = -w-_o_p (21b)
xtl

where:

o__{o°,,°1 } (geometry)

cos�5 }(transmitter)f = sin_eis

iff'={sinfl,ei6,c°sff }(receiver)

4. The Scattering from a Collection of Electrons

When many scattering electrons are present inside a volume V rather than a single one the

observed field is given by the sum

N

To . J/"_"" e '_'_'(t)
_', = -_-Tgo P2_ (23)

p=l

where N is the total number of electrons within the volume V, where the polarization and

geometry of all the electrons are the same so that we do not have to sum over different _f':

The previous distance between a scattering electron and the observer, Rl, now represents

the distance from an origin within the scattering volume and _'p(t) represents the position

of electron number p within this volume. The vector k = k,te - &,, comes about as follows:
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Z

 ,oo,
i / / /X _2"D:_,,

Figure 5. Scattering from electron at _'p.

In the scattering volume, apart from a phase factor, the incoming wave has the form:

g,.(r, t) = _o¢- _'('"-__'-)

so that the field at electron number p is:

E,,(_',, t) = ,_o¢. e _('''-_''_') (24)

Prom the previous section the field at the receiver due to electron p becomes

r O • -

If the distance from the receiver to the origin in the scattering volume is Rl we have:

Rip _ Rl - _,-.<"G

Substituting this into (25), ignoring an irrelevant phase factor (e ;ira ) and summing over

all electrons gives eqn. (23) provided

J7= L.° - L., (2_)

We next imagine the particle density to be expanded.in a spatial Fourier series through:

,,(_.,,)= _-_,,(_.,t),-,,_., (27)
ir

where

,.,(£,t) = fv d(_n(;, t), +'__ (2S)

Since the scattering electrons must be considered point particles at fie(t), p = 1, ..N the

density is:
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with a spatialspectrum

N

n(;,t)= _6[;- 6(t)l
F----1

N N

n(_,,)= _+'_",")= _,_,(_,t) (29)
p----I p=l

A comparison with (23)shows thatthe observedscatteredfieldfrom the electronsmay be

expressedas:

ro ¢i,#,(t-Rt/c)
P..= -_. ,p_. •.(_,t) (30)

The complex amplitudeofthe receivedsignalis

a,(t)= I_° _p].n(_,t)
(31)

= .4.. n(_, t)

< a;(t)A.(t+ _)> = A_0< _'(Lt).(_,t+ _)>
(3i)

2= A°_°. v < n; (_,t),,(L t + _) >

where < ...> denotes ensemble average,where individualparticlesare assumed to be

independent,where no isthe mean electrondensityand where:

< n; (k,t)n,(k,t+ r)>=< eig'[,'(`+,)-_'(')]>= pe(k',r) (33)

isthe autocorrelationofdensityfluctuationsassociatedwith a singleelectron.

Similarly,the power spectrum receivedisdeterminedfrom the Wiener-Khlnchine'stheorem,
and

Pr,c(_o)= n°. V. Poe@e(E,_) (34)

where Po, isthe power scatteredby an individualelectronunder the same geometricaland
externalconditionsand where:

= [+o. < "; (_,t).,(_,t + _-)>@p(Fc,w) ¢-i,Ordr
./-oo

We oftenneed the integral:

With thisfunctionthe spectrum ofa particlebecomes

(35)

(36)
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_p(k,w) = 2. Re[G(k,w)]. (37)

It will become apparent in the next two sections that both the plasma response to an electric

field as well as the thermal driving force can be described on the basis of the motion of

non- interacting particles. It is, therefore, useful to study their motion in some detail.

We assume that the static magnetic field/_o is directed along the z-axis. It will be conve-

nient to introduce "polarized" coordinates to describe the position of a particle:

Cartesian: Polarized:

_'= {x,y,z} _'= {r+_,r_t,ro} (38)

The relationship between the two descriptions is

+iy)
1

r__ = _ (= - fi,,)
Tong

Y = _2 (T-I -- 1"2)

Z_T O (39)

The advantage of these polarized coordinates becomes evident when we state the equation

of free motion of a particle:

doe,
- iaflvo, (a = -t- 1,0)

dt (40)
fl_ qBo

m

where q and m are the charge and the mass of the particle (electron or ion) respectively.

From this we determine the relationship between the (past) velocity at time t' = t - r in

terms of the present velocity (at t)

_(t - ,-) = t'(,-) _(t)

where I'(r) is a diagonal matrix with elements.

(41)

[i'(,)lo. = ,,°a. = O.(,) (42)

The past particle position can be determined similarly in terms of present position and

present velocity through

_t - r) = r-'(t) - F(r) if(t) (43)

where F(r) is a diagonal matrix which determines the particle helical motion. The elements

are given by

e iaflr - 1

[r(r)]o° = i_a = go(r) (_ = ±1,0) (44)

The single particle autocorrelation, eqn. (33) now i_ecomes:

where

p_(f., ,-) =< e_'_ > (45)

.o = ko .g_. (46)
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The actual form of pp(k,r) depends on the statisticaldistributionof velocities,the magnetic

fieldstrength and the angle ",/between f¢and the magnetic fielddirection.

For a MaxweLUan velocity distribution:

/,,(_ = (2_.)-3n ,.,-_3_-,,'n,,;, (47)

where

V_h= T/m

T = kinetic temperature (in energy units)

we obtain:

pp(k', T) -- e- ½_'_P'I=1'

(48)

The gyration radius R is defined as:

_vth

R-- _ (49)

It equals the ratio of the r.m.s, orbital velocity and the angular gyration frequency.

We note that for weak magnetic fields and arbitrary 7, or for /_ [I /_o (i.e. 7 -- 0) and

arbitary magnetic field strength the autocorrelation becomes

(50)

When k is exactly perpendicular to the magnetic field, the autocorrelation for the plasma-

density becomes periodic with period T = 2_r/f/. The depth of modulation increases with

R and decreases with the scale of the density fluctuation A = 2r/k, see Figure 6.

4

T r

Figure 6. Autocorrelation of density fluctuationwhen ]_.I.]_o.



344

For intermediate angles between k and Bo the autocorrelation of the density fluctuation

can be regarded a product of two factors, see (48).

A) e

-(kR)2 aina (-_ -) . ,in='l
B) e

which are sketched in Figure 7.

Factor A

1"

Factor B

T r

Figure 7. The two factors which in the autocorrelation of in the

density fluctuationof non-interacting particles.

The spectral function _b(k,w) becomes (see 37):

where

i

/_ hl_,t:_,_,.dr
JO

(51)

(52)

The next section introduces particle interaction through a self-consistent electric field.

5. Resoonse to a Field Particlv. Elect_@tatic Interactions.

We now introduce particle correlations in the plasma components (electrons, various types
of ions) by considering the particles smeared out into a continuum and by assessing the
response of this continuum to each discrete particle separately.

The plasma response to an electric field E(_', t)can be obtained by solving the Vlasov equa-

tion to first order in 6n(_', if, t) and _(_', t).. The perturbation solution for any of the species
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is given by (see Appendix A)

"°qm//_ £(_', t') 0-_0/"dr' (53)

Here/_(_', t) is a small electric field which we shall later assume set up by the fluctuating

charges, often referred to as the self-consistent field. The integration is carried out along

the unperturbed particle orbits which were studied previously. This is indicated by the

primed quantities in the integrand.

We make the following substitutions:

t_=t--r

t') = t -
(54)

Of" _ _(r)Ofo(v')

Integrating over all possible ff we obtain the induced density fluctuation:

/. / Ofo( ) #_.r(,)_ (55),_(;, t) = '_o___!q_ dr £(g, t - r) d(_i'(r) ----fir-
rn

We now take the Fourier transform with respect to time, and relate the electric field to the

total electric charge fluctuation Q(k',w) by:

iF
g(_,_) = _ Q(_,_) (56)

We, therefore, only include longitudinal electrostatic interactions. This is exact when there

is no external magnetic field. When such a field is present the longitudinal and transverse

modes are coupled and the electrostatic approximation breaks down particularly at very.

long wavelengths. In diagnostic experiments on the ionosphere only short wavelengths are

used and the electrostatic approximation is adequate.

Substitution of (56) into (55) gives

_o_:-k2 Q(k,w) dr. e -_" d(_(r) e i_e (57)

For each of the species we now introduce

noq_ -, 2

Soma

and,

fo _ f Of° e+,g g (SS)_i dr_ -'_ d(_.(r)-_-Z,, = +,

Hence, we obtain for the fluctuation induced in species a:

,,,,(_,w) = - t--X.(;,_ ) • q(_:,_) (591
qo'

We now have all the ingredients nece_ary to compute the density fluctuations in the plasma.
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6. Calculation of the Fluctuation Spectrum

Let us now assume that we have a plasma of electrons and one type of singly charged ions.

For the electrons we substitute: For the ions we substitute:
2

2 ¢.d2 ...., h,,i_2 -..4 t_e

qa --*--e qo --*+e

Trlet --4 rl% 7T_ --4 M

foo--'fo fo.-+Fo

X_ -* X_ Xo -* Xi

_a" ......4 rt Ig o _ N

Consider first the fluctuation associated with a particular electron.

A. Intrinsic fluctuation np(fc, w), See Section 4.

B. Induced electron fluctuation n.l(/_,_) = +_Q_(;,w)

(electron dressing on electron)

C. Induced ion fluctuation Y:(k,w) = -_Q_(;,w)

(ion-dressing on electron)

The total charge fluctuation associated with this single electron is

+
from which:

(60)

-e. _p(g,_)
Q+(k'_:)= l+X,+x, (61)

Since we are interested in the total electron-density fluctuation induced by electrons, not

the charge fluctuation, we have:

(62)

= np(k',u.,)+ -X'nF(k'w) = np(l_,w)(1 + Xi)
I+X,+Xi l+xe+xi

The mean power spectrum associated with the thermal excitation by electrons is, therefore.

found by averaging over the electron velocity distribution. If the velocity distribution is

Maxwelllan (47), then the independent electron spectrum is given by (51) and the result is

< in.(g,,,.,)l2>= < Inp(_',,,,)l2 > It + x_l2 +,(;,,,.')111+ x,I2 (63)
I l+k',,+,_,t 2 = ]I+x.+X,I 2

where 'I,,(/¢,w) is the independent single electron mean power spectrum discussed in Section

5.
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Next consider the more important fluctuation arising from the thermal motion of an ion:

A. Intrinsic fluctuation Np(_¢, w), see Section 4.

B. Induced electron fluctuation n_(k, w) = + _ Qi(k, w)
(electron dressing on ion)

C. Induced ion fluctuation N_(k, cu) -- -_ Qi(_z,w)

Solving for the charge fluctuation Qi(k, w) we obtain:

eNp(k,w) (64)
Qi(k,w) = 1 + Xe + Xi

and the fluctuation induced in the electron density is given by:

_(_,_) = x,Np(_,_) = n,(r,,_) (65)
1 +X, + Xi

The totalelectrondensityfluctuationinthe plasma, therefore,can be expressedin terms

of the independent particle spectra for electrons and ions and the response functions of the
plasma as follows:

< I.(_,_,)12> = [< In.(k',_,)l2 > + < 1_,(_,_)1_ >].oV

(66)

= II+ x+l_O,(g,_)+ Ix,lZO+(_,_)_oV
II+ x,+ x+l_

This is the form of the spectrum which has been widely used in the analysis of the incoherent
scatter data, and which has remained valid for nearly 30 years!

Fluctuations in ion density, charge density, electric field, currents, etc. can all be obtained
by an analogous procedure. An extension to a multi-ion plasma is relatively trivial. Differ-
ent temperatures for electrons and ions are allowed.

Collisions have not been considered but can, in some cases, be taken into account by
regarding the particle motion as a stochastic rather than a deterministic process, see Section
8.

7. Discussion of Results

The spectrum function contains the X+ and X, together with @e and @,. All of these

functions are related to the autocorrelation of independent particle fluctuations as follows:

Introduce for electrons (see 48):

po(k',,')= p,(E,') = e-t4,1+l'

vh= T,
m

a-a : k-a'ga (go computed with f_ = fie = eBo)
rtl

no" • 2 (Debye length)
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And for the ions:

Ti
v?.= ?q
M = ionic mass

A__ = k_,, - g=

D_ = eoT,
ri o . _2

eBo.

(ga computed withft = £ti = +-_--) _

With these definitions we obtain:

X,(fc,w) = _ [1 +w - •

and:

Here, from Section 4:

= / e-= v,'.l=l coswrdr

/-{ } o,,.Im G,(k,w) =- e-½ .,la'l s,nwrdr

with similar definitions for the ions.

When there is no magnetic field or when EIIBo one obtains:

wRe {G(k,w)} = _ Z e -½z=

1-Z 2+_Z (-_Z 6 ..... Z<<ll+wIm{G(k,w)}= -b-b-. .... Z>>l

where we have put

Z = w v_
kvth vta

(67)

(68)

(69)
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Figure 8. Plasma dispersion functions.

The only difference in the electronic and the ionic functions comes from the difference in

thermal velocities.

For values of w such that w < kVth _C/and 1¢, are of the same order of magnitude.

However, _e/@i "" Re Ge/ReGi '-, Vth/?Yth _'_ VI'-_/M

It follows that as long as kDe and kDi << 1 the dominant excitation of density waves

at low frequencies must stem from the ion excitation, see the numerator of (66). In the
1 2

denominator Xe "" (i-b'7.) whenever w < kV_h.

It follows that the low frequency part of the spectrum simplifies to:

< In(g,_)l _ >_. 2noV ('tO)
11+ _,[1 -itoa,(to, _)ll 2

For Te = Ti the factor multiplying Re (Gi(w,[¢)_ starts at ¼ at to = 0. As Te/Ti increases
%1

above unity the depression near to = 0 increases and a near line spectrum develops, see

Figure 9.

When kD, and kDi become much larger than unity, then the electronic part of the spectrum

will dominate and we obtain a Gaussian spectrum with a width corresponding to the thermal
motion of electrons.

A resonance occurs near the electron plasma frequency toe. This can be established by

looking for a zero in the denominator of (66) near the plasma frequency. Since X, has

vanished near to, we have:

1+ _ {l+toIm(a_)-itoRe(Ge)}-O (71)
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Figure 9. The ionic part of the fluctuation spectrum for various values of T_/T,.

As w is close to we the expansion of the plasma dispersion functions for Lar,gg arguments
can be used and we obtain

Where we have neglected the imaginary part. The solution is the familiar expression:

J = w_[1 + 3(kD,) 2] (73)

the spectral peak associated with this oscillation is apparent in Figure 10. The peak can
be strongly enhanced by the presence of photoelectrons or other suprathermal charged

particles. The actual enhancement level involves the short-range Coulomb collisions as well
as the angular distribution of the suprathermal electrons.

Let us now briefly turn to the effect of the magnetic field. As far as the ions are concerned

the gyrofrequency f_i satifies the relation:

kVth >> f_

This means that the correlation function

e-U,R)=(l:_.)=.coo=7

becomes modulated with a periodicity Ti = 27r/f_i.

In practice, however, these modulations are blurred out because of the diffusion of the ions

away from their deterministic orbits. Very close to perpendicularity with the magnetic
field (i.e. 3' = 90*) the spectrum may become very narrow if the radius of gyration of the
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Figure 10. The fluctuation spectrum for Te/T_ = 1 for

va.r_ng Debye length D_, Xp = _ • _kVlh "

electrons is so small that the electrons are prevented from participating in the fluctuations
of the ions.

With a magnetic field the resonance associated with the plasma frequency becomes modi-
fied. When ca, >> fl,, when kR < 1 and when 7 is not too close to 90 ° one obtains:

w2 = w_[1 + 3(kD,) 2] + 9,2. sin27 (74)

An additional resonance, which can also be observed, arises because of the presence of the

magnetic field. As 7 --* 90 ° :

Whenw_ > f/_ one obtains:

_ 2 2 2 2= n,(_p, + _, )/(_, + n_) (75)

w_ = Q,f_, (76)

which is sometimes referred to as the lower hybrid frequency. The strength of these lines

depend on the relative magnitudes of plasma frequency and gyrofrequency, on the presence

of suprathermal electrons (or ions) etc.

The total power residing in the electron plasma oscillation at thermal equilibrium is deter-
mined by integrating the spectrum through the electron lines with the result that

, (kD,)2_dw = (77_
t,a_,,u., 1 + (kD,) _
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whereas the power in the ion line becomes:

fo 1. ¢ _ = [x + (kD,)_l [1 + _ + (kD,)2l (7S)

Hence, whenever kD, is small the ion contribution dominates.

Note that (78) ---* ½ when (kD) _ -..* 0 or more generally ---* _ when Te # Ti. Hence,

the "ion-scattering" is half of the free electron scattering, which is obtained from (77).
When (kD) 2 ---+oo (77) --4 1.

8. The Effects of Collisions

Let us return to the solution of the inhomogeneous Vlasov first order equation:

f_ .Ofo(,S').6n(F, if, t) = _ qn.._.__o g(F', t - rl_ar (79)m

Remember that the past /_, V at time t - r approach F, ff at time t, and that the posi-

tion/velocity travel back in time exactly as in deterministic orbit in accordance with the
equations of motion of free particles.

Suppose that the particles suffer collisions. In this case, it is no longer possible to say for
certain where they came from, because the previous history of the particle arriving at F, ff
at time t is a random process. If the collisions occur with like particles the process becomes
difficult because pairs of particles have unrelated motions in this theory. However it is
often the case that the collisions occur with particles of another kind with little dynamical

mutual coupling. Important examples are:

ions in low ionosphere collide with neutral gas molecules which
are much more numerous than the ions.

electrons deviating from their deterministic orbits because they
have to move in the random field of near-stationary ions.

In eases such as the two quoted we introduce:

W+(F, fi*,t[F-/_, _, t - r) = conditional probability density
of finding a particle at F,ff
at time t given that at time t - r it was
at f'-/_,

The joint probability density of the two events (_, 0",t) and (F- R, V, t - r) is

W+(F,,7,tie-/i, r?, t - ,-)f,(l?)

The individual probability of F-/_, _', t - r given that the present coordinates are F, if, t is:

W_(F- R, V, t - ,'IF,tY,t)

and the joint probability density of F, fi', t and F- _, Q, t - r is:
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but,

clearly must equal

W_(:'- _, _',t - rl¢,_,t)f.(v-3 =

= W+(_',_,tle- _i, 9,t - O/.(9)

w_(-fi, 9,-,-Io,_,o)

w+(R,9,,% _,o)

from the symmetry of the equations of motion.

Taking the spatial Fourier transform of the perturbation solution one obtains:

f,® Ofo( _') . e+,1;.a.(g,_,t) = _q.___omg(_,t - ,-) < a_---r- > d,-

where the average is taken over all the different particle orbits which lead to (_, b', t).

Explicitly with _ = _ = --_..f0:

(80)

(81)

Hence,ifwe introduce:

/o<_ ff d(R)d(9) W+(r)V. e+'gtl = .4(k, _, r) (83)

we obtain:

n(g,_,t) = _e* f,o. g(g,t-r).X(k,g,r)dr (84)

Let us formulate the modified scatter theory in terms of transition probability averaging.

Introducing as before:

-- ifc -

E(t,_) = _ O(t,_) (85)

and taking Fourier transforms, one obtains:

Q(_,_) _®-(E _,_) = i q(tDp d__-'' _. Z(T,,_, O (86)

Integrating over all arrival velocities one finally obtains:

1

-(g,_)= -_ x(_, _,)"O(g,_,) (87)

where now
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l f_dre-_'_/d(_.fo(V-').x(_,_) = -i

ffa(_)a(_ w+(Jq,_',,-Io,,7,o)(ge)_-,_.,_ (88)

Similarly - studying independent partides - diffusing along as a result of collisions with
another gas - but not exposed to an external field - one obtains the expression:

lnv(k,w]' = 2 fo" dr . e-'_" / d(_ fo(v" ).

ffa(R)d(@ W+(_q, V, _', e-i_gTIO_ O) (S9)

So that what we previously referred to as G now takes the form:

G(k',w) = _" dr¢ -iw_ f d(_ fo(_// d(_)d(V).

•W+(_t, V, rio, 6',o) e-ff''g (90)

By properly manipulating the expression for x(k, w) we obtain

1 (l+wImG -iwReG) (91)x(g,_) = (_O)2

which is of the same form as before. Consider a model for W(R, v, rio, if, o) :

Suppose the particle is moving as if in Brownian motion with an equation

d__.__= _Bg+ A(t) (Langevin's equation) (92)
dt

(do not confuse with/3 in Section 2!)

Then, from Chandrasekhar'swork:

1 a l*,-=Bl.l+r_'

W+(,E,l_,rlv--') = 8aa(FG_ H2)3/2 e-- ,era-s,, (93)

/_o = ]_ - _(1 - e-_')

g = 9 - _'.e-B"

F = _ [2_, - 3 + 4. e-B, _ e-2_,i

a = .zI1 - _-*_'1

The correspondence for/3 _ 0

w+(_, ¢,,-1@= ,_(_- _'.,),_(_ - @ 04)
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This is a formulation which preserves particles,momentum and energy (with the back-

ground). We shallnow use itfor a study of plasma lineenhancement due to photoelectrons.

or other energetic "tail"electrons,neglecting the magnetic field.

By substitution one obtains:

c(_,_0) = e-½-,-;Pt_'-l+'-''j • _-_'_'d_

If we assume 3 to be small we obtain:

G(g,_) _ fo °° -_"-'_'_ , a3 [°° T 3 e-a_u-iWrdr
e a'r-.p---_Jo

with ot=
2

(95)

(96)

Hence:

30aO_ Go(g,_o)

The asymptotic expansion for Im G for _ _ = Z is

_! {1+ z -_+ 3z-'...}
O0

v/friction term collision frequency

(97)

( 1 + (kv_A) } {1 a }_ .2+ .... + 2_-_... (98)

Hence, we obtain approximately:

+
k_v_h

= Go(g,_o) + 3 - -LT- + ...

(kD)2
_- Go(f:,_) + _. _

Turning to the fluctuation spectrum for electron plasma oscillations one obtains

(99)

< In(g,_)l =>=
tl + )C_[2

(10o)

Denominator:

l+xe=l+ _-_ [l+wImG-wlmG-iwReG]

(kv,a)_ 2 i
_, t - _T - 3 _ w, (kDp w. ReG
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1 - -_ - 3(kD)'. w--_e2
W2 W2 (101)

Expand to first order in w about _ = _,

21+ x, "_+ (_ - _,,) - (-TD-_ Reg

_ 2(,,, _,,,,) + i _ d -'z,, )+... (102)

The power spectral shape in this approximation becomes:

2no Re G
< In(g,,_)l2 >_- (lO3)

+

This isa Lorentzianwhich can be integrated.If thisisdone one obtainsfor the intensity:

z,.., 1 f.(v,)+4(_,)+# (104)
2(kD)2 f.(v¢) -T_-_75(v,)+_

lnA
When electron-ion collisions dominate, /3 can be expressed approximation by as w_ "T-
( A ,-_ number of electrons in Debye sphere.)

v_,,, _-

L. ~ n,,,( _ )m a, e-_d /_T background plasma

fp ,,- same for hot plasma.

Collisions between ions and the neutrals cause the mobility of the ions to decrease. The

collisions, therefore, effectively damps the ion-acoustic waves, which causes the frequency
spectrum to narrow. Studies of the narrowing of the frequency spectrum with decreasing

height can be used for studies of the neutral density at D and the E-region heights.

9.Surnm_,ryand some finalrew, a4"ks

A summary of the application of the ion line of the incoherent scatter radar technique to

ionospheric measurements can best be given in terms of the sketches shown in Figure 11.

The plasma line, in addition to providing information on suprathermal flux, see equation

(104), also provides the possibility to determine the electron temerature and the electron

density. Ignoringthe geomagnetic field for simplicity we have, for the effective k-vectors /_
and k2(= ki, - k,.,_) the following plasma line frequency offsets apply, see equation (73):

fir = f_[1 + 3(ktD) 2]

f_R = f_[1 + 3(k2D) 2]
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Figure II. Sketchesshowing variousobservationsleadingtoseveralplasma parameters.

Ifthe two diiT_'entk-vectorsaxe generated by shiftingthe raclarcenterfrequency,the

plasma linespectraatthe two rm:lax_equenciesf01and/o2 willappear asshown inFigure

12. Di_'erentk-valuescan alsobe obtainedby changing the geometry ina bistaticsetup.

In the caseshown inFigure 12 we have:
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(hn hR)(hR+hR) 30 _- = -/:(k2 - h)(k2 + k_)

6f = ]'2R - I1R = 3 D 2" f'' 4_r(fo2 -/ot)4_r(fo2 + Iol)
2 e 2

= 24r 2" v_---_h"IR f°22 - f°2' -- 6 T, 7"o22- fo21
w_ e 2 IR m e 2

(107)

(108)

I

I

I

I

f_R
ftR l-

i

,, I

lot !

i

f2R ! f2R I I

_1 _ . i

',
I

f02

fo_ < f02

Figure 12. Plasma llne spectra at radar frequencies f01 and fo2.

All of the quantities involved are well determined except for T, which can be found this

way.

Numerical example (EISCAT parameters)

T, _, 2000*K

fo2 = 933MEz

.tot = 224MHz

f, = 5MHz

bI _ 335kHz

Hence, from a two-frequency plsz_na line experiment one can deduce the electron temper-

ature accurately and independently.

In Section 2 of these lecture notes we started out considering the scattering from random

irregularities in the dielectric function. Throughout the dielectric considered in this pa-

per was a nearly lossless plasma. However, a neutral gas also exhibits random density

fluctuations, and the curious reaclar might wonder whether they are detectable at radio

wavelengths. In order to answer this question, consider a gas dense enough to support

sound waves. The density fluctuation may, therefore, be considered as a superposition of

thermally excited sound-works of varying wavelength and direction. As in Section 4 we ex-

pand the parameters (velocity, density, temperature) associated with the acoustic wave-field

:a a spatial Fourier series:



359

I En(/_,t) "e_iL_,-(Kt)= V
i

where n can be density,pressure,velocityetc.The wave-fieldamplitudesn(_:,t)a/1must

satisfy the wave-equation
fi(_:,t)+ k2c,_n(/_,t)--0 (100)

where
2 T

c, = _ "7 (110)

where T isthe mean gas temperatureinenergyunits,M themolecularmass and 7 (1.4for

air)the ratioofspecificheat atconstantpressureand constantvolume. From equipa.rtition

arguments (assuming minute lossestoinsureequipartition)asused inderivingspecificheat
of solidswe findthat

no. V [6(w- kc.) + 6(w + kc.)] (111)
< In(_)l_ >= 27

From Toru Sato'slecture,hisequation2,we seethatfordry,nonionizedair:.

Ae(k)= e0.1.55.10 -9 v(k)(mb) =

T(oK)

1._5. to-' _(k)(N/m_) =
= Go" T(oK )

(112)

= e0 • 1.55- 10-r 5. _. n(k)

where

n = Boltzmann's constant = 1.38.10 -2a J/*K

combining 111 and 112, one obtains:

< IA*(k)l' >= _]7" ,,2" n9. v- 2.4.10 -t4 (113)

The radar crosssectionper unitvolume of the gas isformed by combining equations(6)

and (18) to give:

a = 3.73. I0-e°no (m2/m _)

As a specificnumericalexample, takethe AreciboS-band wavelengthand the atmospheric

number densityat sea level:

A0 = 0.125m

This gives for the troposphere:

nof2.688.1028m -3

at,,_ m 5. I0-_6m2/rn 3
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As a comparison the cross section per unit volume in the F-region is typically:

aF -_ 10 -llm2/m 3

If the Arecibo beam could be focused at lower altitude, if full advantage could be taken of

the reduced distance and the reduced bandwidth of scattering one might be able to make

up for the nearly seven orders of magnitude discrepancy in specific radar cross section. It

is probably a much more practical approaz.h to excite low frequency sound waves as done

with the SbAgaraki MV radar system, and scatter from them.
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Notes on V]asov's Equation.

APPENDIX A

ions \
electrons |

n(_', _, t). d(_d(_ ~ # particles atoms j
molecules /

in "volume" d(_d(_

Equation of motion for n(f', if, t):

n(_',_',t). a(_a(_

= n(_',_',t + nt). d(_")d(_') particlespreserved! (A1)

On 0% On )n(_",g',t+At)=n(f',g,t)+ _-_l,,=,._e+_-rl_,___.A_+_-._t +... (A2)

Af'= ft. At

= _. At = --P .AtAf"

Hence

On an P an),_(¢',_', t + At) = n(_ _,t)+ _ + _. -_ + -_ . -_ •at + ...

But from Liovilles theorem: incompressible flow in phase space:

d(_d(_ = d(e')d(g')

Which means that:

(A3)

With = + +{

an+#.an P an
_- _ + ....m 017 0 (A4)

This is only true provided the particles are conserved and are allowed to travel along their

dynamical orbits. There are several reasons why this might not be the cue. For instance:

A) Collisions with particles not in the same phase-space volume will remove particles from

this volume or:

B) Collisions between particles outside this volume d(_d(v-') causing particles to appear

inside volume.

C) Reaction or loss due to chemical or physical processes.
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D On On
(Boltzmama's equation) (A5)

When collisions are ignored, and reactions are ignored, one obtains:

D
D----_n= 0 (Vlasov's equation)

For gas of charged particles we have:

so that:

771

Dn On On q On-5; = _ + _. -_ + (_ + _ × _) -_

First order perturbation:
1"1 _12o-._-rt 1

E_= _, (,mall)

#=#0+#_

(A6)

(A7)

(AS)

°no +,7.-_._+ q--(_'x B,,). On,

+_&_+_.____+_0.,on, q( o,-,o o,,o -_4)E, • -_.- + (ff x /_,) • -_-- + ff x /3o - =0 (A9)m

For no independent of t and _"and with a velocity distribution which is isotropic about Bo
the zero order terms vanish and one obtains:

o'9nl On1 q /_o) On1 q E, _no (AIO)-_--+ _. -_. + - (_"x,-,-, ....._ ,,-,

A solutionof the iahomogeneous equationmay be obtainedby Green'sfunction:

G(t,_',g;t',f",g')

which has the property

D G(e,_,t;e',_',t') = 6(t - t')_(e- e')6(_- _') (AZZ)
Dt

It is then clear that a solution of the iahomogenous equation is:
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,-,,(e,_',t) = _i=/ .../,_(_")d(,7'),teC(_',,Zt; _",_",t'). g,(_", t) • _"°(_'),_,

The Green function required clearly is given by:

c(_, _',t;7', _', t') = 6[(e- _(t, _', _', t')]6[_'- ¢(t, _",_', t')]o(t - t')

wl'lere

_(t,F',if',t')= position of particle at time t which at time t' had coordinates f",if'

17(t,f",if',t')= velocity of particle at time t which at time t' had coordinates f', if'

D(t - t')= unit step function

( =1 whent>t')D(t-t') =0 whent<t'

From Section 4 we have:

(A12)

(AI3)

¢(t, 7', _', t') = r(t' - t)_'(t')
(A14)

_(t, _',¢', t') = _"(t') - r(t' - t)_"(t')

The use of these orbits to construct the Green function explains our preoccupation with

the orbits of non-interacting particles.

Finally,we must prove that _ G = 6(t - t')6(F'-_")di(_- iT')

a oh aG a¢ ac
c = 6(t - t')6(e- _")6(_- 9') - _-. _ - _-.

(A15)

OG BG

= 6(t - t')6(e- e')6(_- _') - _. _ - _. --_

The two last terms cancel and:

D

_-_ G ----6(t - t')5(ff- ¢)6(_*- R) (A16)

Hence, when integrating _",..ff', t' contribution can only be obtained for such F', if', at time

t' which can cause/_ and V to equal _' and 0" at time t. Hence, by substitution we obtain

qno [' g(_,tl Oh(_)
hi(F, _', t) -- 6n(F, _', t) = -_J-oom _ .dr' (A17)
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