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Abstract

The Controlled Ecological Life Support System (CELSS) Breadboard

Project at the John F. Kennedy Space Center is a research program to integrate

and evaluate biological processes to provide air, water, and food for humans in

closed environments for space habitation. This project focuses on the use of

conventional crop plants as grown in the Biomass Production Chamber (BPC) for

the production and recycling of oxygen, food, and water. The inedible portion of

these crops has the potential to be converted to edible biomass or directly to the

elemental constituents for direct recycling. Converting inedible biomass directly,

by combustion, to carbon dioxide, water, and minerals could provide a baseline

for estimating partitioning of the mass balance during recycling in a CELSS.

Converting the inedible biomass to carbon dioxide and water requires the same

amount of oxygen that was produced by photosynthesis. The oxygen produced

during crop growth is just equal to the oxygen required to oxidize all the biomass

produced during growth. Thus, the amount of oxygen produced that is available

for human consumption is in proportion to the amount of biomass actually utilized

by humans. The remaining oxygen must be available to oxidize the rest of the

biomass back to carbon dioxide and water or the system will not be a

regenerative one. Human nutrition and water requirements, and the material

requirements of other processes must also be taken into account. All this

information is needed to determine the combination of crops and recovery

processes to meet the crew needs and optimize mass flows in a CELSS.
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Introduction:

The Biomass Production Chamber (BPC) is a crop production facility built

in support of the Kennedy Space Center Controlled Ecological Ufe Support

System (CELSS) Breadboard Project. It is an atmospherically closed, 113 m 3

controlled environment plant growth chamber with 16 m 2 of hydroponic growing

area under electric lighting (Prince et al., 1987, Wheeler et al., 1990).

The biomass produced in the BPC can be divided into edible (EB) and

inedible biomass (IB). The EB is composed of the seed and grain from crops

such as soybean and wheat, and leaves of crops such as lettuce. The IB is

composed of all the other plant components which are not normally included in

the harvested food material such as the roots, stems, leaves, etc. Our data have

shown that these IB components are a significant portion of the total plant mass.

Specifically, the IB for lettuce is 10%, for soybean is 65%, and for wheat is 60%.

However, it should be noted that not all of the edible biomass is digestable and

will require further oxidation outside of the humans before it can be recycled back

to the plant production unit.

Taking into account the severe limitations of space, volume, and energy

that are inherent in space travel, serious consideration must be given to recycling

the constituents of the lB. The Kennedy Space Center Breadboard Project is

approaching this problem from two perspectives: a series of conversion

processes for the biological production of edible material from inedible biomass;

and the conversion of IB by direct combustion to establish baseline requirements

for all conversion processes. This paper evaluates the direct combustion

conversion option in greater detail while other conversion options are being

addressed in other reports.
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The complete combustion of the IB to carbon dioxide, water, and minerals

is a direct way to recycle this material. Analysis of the major components of this

material (ultimate analysis) can be used to project the amounts of carbon dioxide,

water, and ash produced as well as the oxygen required during conversion of the

inedible biomass. Heating value analysis yields a projection of the potential

amount of energy produced during combustion.

The total amount of oxygen liberated during photosynthesis will ultimately

be required to oxidize that biomass produced during photosynthesis to its initial

state. If all the biomass produced, both EB and IB, were combusted, the oxygen

produced during photosynthesis would be sufficient to oxidize it but would be

totally consumed in this process. However, in a life support system designed for

space travel with total mass closure, it is desirable that the maximum amount of

biomass produced be utilized by the crew, in order to minimize the weight,

volume, and energy required by a CELSS. Any biomass oxidation process

outside of the crew food cycle reduces the efficiency of the CELSS in terms of

direct crew life support. Therefore, increasing the amount of IB that can be

converted to EB for the crew increases the efficiency of the system.

Materials and Methods:

Proximate, ultimate, and heating value analyses were performed on

selected residues from three different BPC crops. This included: wheat leaves,

stems, chaff, and roots; soybean leaves, stems, pods, and roots; and lettuce

roots. The residues were oven-dried at 70°C and ground using a Wiley mill with a

2-mm screen. Portions of the wheat residue and the soybean residue were

leached in deionized water at room temperature (23-25°C) for two hours using 50



grams of IB per liter of water with constant stirring rapidly on a magnetic stirrer.

The leached residuewas filtered in a buchner funnel and again oven-dried at

70°C. The leaching was performed to extract water-soluble inorganic and

organic compounds for further processing into a medium for edible, microbial

biomass production and to return mineral components to the hydroponic solution

(Garland et al., 1988; Brannon and Strayer, 1990).

Moisture and ash analysis were performed thermogravimetrically at 105°C

and 550°C with a LECO* TGA-500 analyzer. Sulfur was determined by infrared

detection of sulfur dioxide from a combusted sample using a LECO* SC-132

analyzer. Carbon and hydrogen were determined by infrared detection of carbon

dioxide and water vapor, and nitrogen by thermal conductivity detection of

nitrogen gas from a combusted sample using oxygen and catalysts with a LECO*

CHN-600 analyzer. Oxygen was calculated by difference. The values reported

for these analyses are the mean of three subsamples from each biomass sample.

Heating value was measured in a Parr* bomb calorimeter. The values reported

for heating value are the mean of two subsamples from each biomass sample.

These analyses were performed by the Chemical Research Services of the

Institute of Gas Technology*, Chicago, Illinois.

Formulas used to calculate conversions of carbon, hydrogen and oxygen,

and are presented in Appendix I.

*The mention of a brand name or vendor does not imply endorsemen t by NASA
or The Bionetics Corporation.
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Results and Discussion:

The results of the analyses of the raw materials along with the total inedible

residue produced from each of the three crops are presented in Table 1. On the

average, IB from different crops was comprised of about 40% carbon, 34%

oxygen, 15-20% ash, with hydrogen, nitrogen, and sulfur generally being less

than 5%. Heating values were also similar and ranged near 900 kJ/kg. The

primary difference between the crops was the total amount of residue produced.

The calculated amounts of carbon dioxide, water, and energy produced

and the amount of oxygen required (above the amount already present in the

inedible biomass) from the three crops are presented as Table 2 (Appendix 1,

equations 4-11). It is assumed that nitrogen and sulfur will be returned to

elemental forms.

Calculated values of photosynthetic gas exchange from the total biomass

measured for each crop as well as the requirements for direct combustion of the

inedible biomass and net oxygen produced by each crop are presented in Table 3

(Appendix 1, equations 11-14). The gas exchange values assume all carbon

dioxide assimilated is converted to carbohydrate, which would also give a mole

for mole production of oxygen (from water during photosynthesis). Average gas

exchange measurements made directly in the BPC yielded somewhat higher

amounts of carbon dioxide uptake during crop growth: 64.5 kg for wheat and

37.4 kg for soybeans (Wheeler and Sager, 1990). The differences may be due to:

respiration of plant material during air drying following harvest; the fact that not all

carbon dioxide is fixed as carbohydrate but also as fats or proteins (this is

especially true since the EB are contributing to empirical gas exchange values);

the method used to calculate the mean gas exchange rate from carbon dioxide

4



Table 1. Analysis of Inedible Biomass from Three Crops

Grown in the Biomass Production Chamber. 1

Wheat Soybean Lettuce
Residue Residue Roots

% Ash 15.21 15.79 20.37

% Carbon 39.83 42.30 38.55

% Hydrogen 4.45 4.89 4,50

% Nitrogen 3.94 2.47 5.41

% Sulfur 0.10 0.05 0.14

% Oxygen 36.47 34.50 31.03

Heating
Value

(kJ/kg) 890 921 868

1Values represent percent by weight.
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Table 2. Amount and Calculated Results of Complete

Combustion of Inedible Biomass (Carbon and Hydrogen) from

Three Crops Grown in the Biomass Production Chamber 1.

Wheat Soybean Lettuce
Residue Residue Roots

Total Inedible

Biomass (kg)

Carbon Dioxide (kg)

Water (kg)

Energy (kJ)

26.8 12.6 0.14

39.1 19.5 0.20

10.7 5.6 0.06

23,806 11,622 120

14.8 0.15Oxygen Needed (kg) 28.2

1Assumes that nitrogen and sulfur will be reduced to their

elemental forms.
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Table 3. Biomass, Carbon, and Oxygen Balance for Three

Crops Grown in the Biomass Production Chamber. 1

Wheat Soybean Leffuce

Total Biomass (kg) 37.8 18.9 2.8

CO 2 (kg) fixed 2
(Biomass/0.68) 55.5 27.9 4.2

0 2 (kg) 3
liberated 40.4 20.3 3.0

0 2 (kg) to
Oxidize Inedible
Biomass 28.2 14.8 0.15

Net 0 2 (kg)
from BPC Crop 12.2 5.5 2.9

1Calculations based on assumption that all biomass is fixed as

carbohydrate (Cn(H20)n).

2Molecular weight of CH20/molecular weight of CO 2 = 30/44.

3Oxygen liberated assumed to be a 1:1 molar ratio with Carbon
dioxide fixed.
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uptake may overestimate the mean for the total light period; and the atmospheric

leakage rate of 5 to 10% per day for the BPC (Wheeler and Sager, 1990). The fact

that all carbon dioxide is not fixed as carbohydrate is evident from the fact that

analysis has showed {carbon:oxygen:hydrogen} mass ratios of {41:39:5} for

wheat and {45:34:5} for soybean (carbohydrate = {40:53:7}), which translate to

values of 56.8 kg and 31.2 kg carbon dioxide fixed, respectively per crop.

The large differences in biomass productivity between the crops are

affected primarily by the differences in total photosynthetically active radiation

(PAR) provided. The total PAR in turn is affected by both the instantaneous

irradiance and the length of the daily photoperiod. In related studies, Bugbee

(1991) has shown that high irradiance and long photoperiods can be used to

greatly increase the yields of wheat. In addition, by increasing the harvest index

(the percent EB), the amount of IB can be reduced accordingly.

Leaching of the wheat and soybean residues (Fables 4 and 5) reduces the

amount of total mass in the solid residue by 32% and 30%, respectively, but only

reduces its oxygen requirements of combustion by about 20%. If the recovery of

mineral nutrients is a primary goal in the leaching of the inedible biomass, then

there may be justification in doing so, particularly if combustion ash residues are

largely insoluble. Garland et al. (1988) have shown that with some pre-treatment

to reduce the amount of dissolved organic carbon in the wheat straw leachate,

the resulting solution was compatible with a hydroponic wheat nutrient solution.

8



Table 4. A Comparison of Raw Wheat Residue with Leached

Wheat Residue. 1

Raw Leached
Wheat Wheat
Residue Residue

Soluble
Residue ,_
Constituents'-

% Total Mass 100 68 32

% Ash 15.2 2.1 13.1

% Carbon 39.8 33.6 6.2

% Hydrogen 4.5 3.7 0.8

% Nitrogen 3.9 1.4 2.5

% Sulfur 0.1 0.1 0.0

% Oxygen 36.5 27.1 9.4

1Residue leached in deionized water for 2 hours at a rate of 50

grams per liter.

2From Brannon and Strayer, 1990.
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Table 5. A Comparison of Raw Soybean Residue with Leached

Soybean Residue. 1

Raw Leached Soluble
Soybean Soybean
Residue Residue

Residue ,_
Constituents L

% Total Mass 100 70 30

% Ash 15.8 3.9 11.9

% Carbon 42.3 33.5 8.8

% Hydrogen 4.9 3.9 1.0

% Nitrogen 2.5 1.5 1.0

% Sulfur 0.1 0.1 0.0

% Oxygen 34.4 27.1 7.3

1Residue leached in deionized water for 2 hours at a rate of 50

grams per liter.

2From Brannon and Strayer, 1990.
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Conclusions:

Proximate, ultimate, and heating value analysis of the IB from crops grown in the

BPC can be used to estimate mass flows of carbon and oxygen in a CELSS

utilizing a combustion option for converting IB directly to carbon dioxide and

water. Any recovery process or combination of processes will ultimately require

the same amount of oxygen to convert the biomass to carbon dioxide and water

as was required to produce it. The primary difference is the amount which is

converted as food within the human crew, which is the ultimate purpose for

producing biomass.

The amount of oxygen from photosynthesis remaining after combustion of

IB is directly related to the edible biomass/total biomass ratio or harvest index. A

crop with a large harvest index (approaching unity) requires little oxygen for

combustion of IB (lettuce), whereas one with a smaller harvest index (wheat and

soybeans) requires much more. Other processes being studied (enzyme

saccharification, fungal biomass production, aquaculture) also require oxygen,

but provide additional EB.

There are trade-offs between direct combustion, which provides a direct

way to recover the excess carbon and return it to the plant growth chamber, and

various biological processes which increase the edible portion of the crop. Also

of importance is the solubility of the ash (mineral nutrients) resulting from

combustion, which must ultimately be returned to the plant nutrient solution.

Future studies with the ash will indicate to what degree and with what difficulty

these mineral nutrients can be recovered. Further testing of crops and recovery

processes will be needed to determine which will meet the nutritional needs of the

inhabitants, and optimize mass flows of oxygen and carbon dioxide in a CELSS.
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Appendix I. Conversion Calculations

o

2.

3.

4.

o

o

o

8.

9.

10.

11.

12.

13.

14.

Carbon (kg) in inedible biomass (IB) in kg = % carbon X total IB

Carbon (kmole) in IB = carbon (kg)/12 kg per kmole

Fixed oxygen (kg) in IB = % oxygen X total IB (kg)

Diatomic oxygen (kmole) required to oxidize carbon in IB = the number of
kmoles of carbon in IB

Diatomic oxygen (kg) required to oxidize carbon in IB = diatomic oxygen
(kmole) X 32 kg per kmole

Carbon dioxide produced in combusting IB = carbon (kg) in IB + diatomic
oxygen (kg) required for oxidation

Hydrogen (kg) in IB = % hydrogen X total IB (kg)

Hydrogen (kmole) = hydrogen (kg)

Diatomic oxygen (kmole) required to oxidize hydrogen in IB = 1/4 X the
number of kmoles of hydrogen in IB

Diatomic oxygen (kg) required to oxidize hydrogen in IB = diatomic
oxygen (kmole) X 32 kg per kmole

Diatomic oxygen (kg) required for combustion of IB (assuming all elements
except carbon and hydrogen are returned to their elemental forms) =
(diatomic oxygen (kg) required to oxidize carbon in IB + diatomic oxygen
(kg) required to oxidize hydrogen in IB) - fixed oxygen (kg) from IB

Carbon dioxide (kg) fixed during crop growth = total biomass (kg) X (30 kg
per kmole for carbohydrate/44 kg per kmole for carbon dioxide)

Diatomic oxygen (kg) liberated during BPC crop growth was approximately
= (carbon dioxide (kg) fixed/44 kg carbon dioxide per kmole) X 32 kg per
mole for oxygen

Net diatomic oxygen from BPC crop = diatomic oxygen (kg) liberated
during crop growth - diatomic oxygen (kg) required for combustion of IB
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