
NASA Conference Publication 10074

Sand and Dust
on Mars

(k{A'tA-L.P-]Uf"7 ", )

Workshop Sponsored by the NASA Mars Science

Working Group at the Department of Geology
Arizona State University,

Tempe, Arizona
February 4-5, 1991

NASA

https://ntrs.nasa.gov/search.jsp?R=19910017743 2020-03-19T16:54:58+00:00Z





NASA Conference Publication 10074

Sand and Dust
on Mars

Edited by
Ronald Greeley

Arizona State University
Tempe, Arizona

Robert M. Haberle
Ames Research Center
Moffett Field, Cafifomia

Workshop Sponsored by the NASA Mars Science
Working Group at the Department of Geology

Arizona State University
Tempe, Arizona

February 4-5, 1991

NI_A
National Aeronautics and

Space Administration

Scientific and Technical
Information Branch

1991





TABLE OF CONTENTS

Introduction, Sand and Dust on Mars ......................................................................................................... 1

Table 1. List of participants ................................................................................................................... 3

Table 2. Values for key parameters dealing with Sand and Dust on Mars ......................................................... 4

Table 3. Supporting studies related to Sand and Dust on Mars ..................................................................... 10

Abstracts ........................................................................................................................................... 11

Banin, A., The Chemistry and Mineralogy of Mars Soil and Dust ....................................................... 11

Christensen, P.R., The Distribution of Particulate Material on Mars ................................................. 13

Clancy, R.T., S.W. Lee, and D.O. Muhleman, Recent Studies of Optical Properties of Dust ......... 16

Gaier, J.R.and M.E. Perez-Davis, Effects of Martian Dust on Power System Components ................ 18

Golombek, M.P. and P.A. Davis, Have Graben Wall Scarps Accumulated Sand and Dust on Mars ...... 20

Gooding, J.L., Chemistry and Mineralogy of Martian Dust: An Explorer's Primer ................................ 21

Greeley, R., Wind Abrasion on Mars ............................................................................................. 23

Iversen, J.D., The Aeolian Wind Tunnel ....................................................................................... 24

Jakosky, B.M., Measurements of Dust on Mars to be Obtained from Upcoming Missions ...................... 26

Kaplan, D.I., Engineering Knowledge Requirements for Sand and Dust on Mars .................................... 33

Kolecki, J.C., Electrical System/Environment Interactions on the Planet Mars ..................................... 34

Leach, R.N., Effect of Pressure on Electrostatic Processes on Mars ..................................................... 36

Leach, R.N., Saltation Threshold Detection in a Wind Tunnel by the Measurement of the Net
Electrostatic Charge ................................................................................................................... 37

Leach, R.N. and Greeley, R., Saltation Threshold Reduction Due to the Electrostatic
Agglomeration of Fine Particles .................................................................................................. 38

Lee, S.W. and R.T. Clancy, The Effects of Atmospheric Dust on Observations of Martian
Surface Albedo ......................................................................................................................... 39

Moore, Hj., Martian Surface Materials ......................................................................................... 41

Olhoeft, G.R., Electrical Properties of Martian Particles ................................................................... 44

Orenberg, J.B. and J. Handy, Reflectance Spectroscopy of Palagonite and Iron-rich
Montmorillonite Clay Mixtures: Implications for the Surface Composition of Mars .............................. 47

Paige, D.A. and K.D. Keegan, Thermal and Albedo Mapping of the North and South Polar
Regions of Mars ....................................................................................................................... 49

°.*

111

PRECEF_!qG F'Y3E BLANK NOT FILMED



Roush, T.L., J.B. Pollack,and J.B. Orenberg, Derivation of Mid-infrared (5-25lzm) Optical
Constants of some Silicatesand Palagonite....................................................................................51

Sentman, D.D., Electrostatic Fields in a Dusty Martian Environment ................................................. 53

Simonds, C.H., Impact of Mars Sand on Dust on the Design of Space Suits and Life Support
Equipment - A Technology Assessment ........................................................................................ 54

Wercinski, P.F. and G.S. Hubbard, Sand and Dust Issues for the Mesur Mission ............................ 56

White, B.R., R. Greeley, and R.N. Leach, Martian Dust Threshold Measurements -
Simulations Under Heated Surface Conditions ................................................................................ 58

Zurek, R.W. and R.M. Haberle, Dust in the Mars Atmosphere ..................................................... 60

iv



INTRODUCTION, SAND AND DUST ON MARS

Ronald Greeley

Department of Geology, Arizona State University
Tempe, AZ 85287-1404

Sand and Dust. There is a difference between these two sets of particles, and anyone
concerned with windblown material on Mars or any other planet must be familiar with the

distinctions. Sand refers to particles between about 60 and 2000 I.tm in diameter; dust refers to

particles smaller than about 20 _tm in diameter; both are independent of composition. What
happens to particles 20 to 60 I.tm in diameter? On Earth there is a general lack of grains of this
size, which is thought to be due to a combination of the rocks and processes that contribute to the
production of small particles in general. We do not know if the same is true of the evolution of

particles on Mars.

Aside from the size distinction between sand and dust, there are fundamental differences in

the behavior of the two classes of particles. First is the minimum windspeed needed to move
particles of specific sizes. Termed the threshold "friction" velocity, this parameter is related to the
surface shear stress imparted by the atmospheric boundary layer to the ground. Extensive wind
tunnel experiments and field measurements show that as sand size decreases, lower winds are
required for threshold, until the size of about 80 I.tm in diameters is reached. This is the size that is
most easily moved by the gentlest wind. The threshold curve then increases, with decreasing
particle size, so that finer and finer dust becomes progressively more difficult to entrain by the
wind. The reasons for this relationship are related to aerodynamic effects (small grains like dust

are immersed in a laminar sublayer below the turbulent boundary.layer) and to the greater influence
of interparticle forces (such as electrostatic forces) on smaller grams.

Once particles are set into motion (i.e., "threshold" is achieved) there is a fundamental
difference in the mode of transportation by the wind for sand and for dust. Most dust particles--
once set into motion--are carried aloft in suspension and maybe carried long distance before they

settle to the ground. In contrast, most sand grains move in a series of short "hops", called
saltation, in which the grain bounces along the surface in trajectories which seldom exceed a meter

or so in height. As saltating grains return to the surface they achieve their greatest speed, having
been accelerated by the wind, and "splash" into other grains, setting them into motion by pushing
them along the surface, ejecting them into suspension, or by initiating saltation in a cascading
effect.

Experiments under martian conditions show that the general distinctions between sand and
dust on Earth also apply to Mars. Thus, even though the wind speeds needed to initiate particle
motion are much higher on Mars than on Earth because of the lower martian atmospheric density,

the general shape of the threshold curve is the same, and the size grain most easily moved remains
the same at about 100 l.tm in diameter.

Even before planetary exploration via spacecraft, there was speculation about duststorms on
Mars. Earthbased telescopic observations showed color and albedo patterns that appeared,

disappeared, and shifted with Mars seasons, and these changes were attributed by some
planetologists to the growth and decay of duststorms.

Mariner 9, and later Viking, showed abundant evidence for aeolian, or windblown

processes, and landforms on Mars. In the nearly two decades of analysis of spacecraft data,
laboratory experiments, and development of various numerical models, a great deal has been
learned about sand and dust on Mars. However, there is also much that remains unknown. Yet,



from bothanengineeringandscientificprospective,windblownsandanddustplay animportant
role in planningfor futuremissions. Infiltration of dustinto spacecraftcomponents,abrasionby
windblown sand, roving vehicles becomingstuck in loose sand and dust, the influence of
windblown materialin thecollectionof scientific samplesfor analysis,andtheinterpretationof
remotesensingobservationsarebut someof theconsiderationsthatmustbetakenintoaccountfor
futuremissionsto Mars.

This workshopis designedto providea forum for spacecraftengineers/missiondesigners
andrepresentativesfrom thescientificcommunityknowledgeableof windblownsandandduston
Marsto discusscommoninterests.Thegoalswereto determinewhichparametersareimportant
for future missions,both from anoperationalpoint of view, anda scientific perspective,and to
assesswhatis currentlyknown,inferred,or "guessed"abouttheseparameters.Resultsareshown
in Table2.

The workshopconcludedwith a discussionof studiesthat needto be undertakento shed
furtherlight onproblemsrelatedto sandanddustonMars,asindicatedinTable3.
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Table 3. Supporting studies related to Sand and Dust on Mars

Mars Observations (to increase time-history of dust storms)

• HST

• Telescopic

• Radar observations/roughness mapping of Mars

Experiments (physical and chemical)

• Electrical properties, martian environment

Paschen's curves

Dust properties

• Chemical and physical behavior of particles < 1 _m

• Effects of all interparticle forces on grains < 60 _m

• Soil properties around Viking Landing sites

• Develop Mars soil analogs and assess development of duricrust

• Wind tunnel experiments of physics of sand and dust in martian

environment

• Laboratory "bench tests" for Mars remote sensing observation

• Abrasion test (engineering) of materials under Mars conditions

• Engineering tests of solar panels in Mars environment

• Determine near surface particle threshold, velocity, and flux as

function of surface roughness on Mars

Analyses

Assess "threshold of significance" of Mars sand and dust from

engineering perspective

• Develop software models of electrical properties

• Use of Mars soil and dust of source of water

• Refinement of General Circulation Model (smaller "bin size", etc.)

• Determine required height for wind measurements to characterize Mars

near-surface boundary layer

• Develop sand and dust instrument "package" for Mars

• Develop models for sand and dust movement, to be tested in future

observations (MOC, etc.)

Field Studies

• Develop/refine Mars analog sites for sand and dust

• Test results from experiments/analyses

• Develop more realistic (i.e., more complex!) scientific/engineering

models for Mars

]0



N91-27058

THE CHEMISTRY AND MINERALOGY OF MARS SOIL AND DUST. A.

Banin, NRC/NASA Ames Research Center (MS 239-12), Moffett Field,

CA 94305, and Hebrew University, Rehovot 76100, Israel.

A single "geological unit" consisting of fine, apparently

weathered soil material is covering large portions of the surface

of Mars. This soil material has been thoroughly homogenized by

global dust storms and it is plausible to assume that Mars dust is

strongly correlated with it.

The chemical-elemental composition of the soil has been

directly measured by the Viking Landers. Positive detection of

Si, AI, Fe, Mg, Ca, Ti, S, C1 and Br was achieved. Compared to

most basalts, Fe is high and the Mg0/AI203 ratio is uncommonly

close to one. Potassium concentration is relatively low.

Analyses of the SNC meteorites, a group of metorites that has been

suggested to be ejected martian rocks, supply additional

elemental-concentration data, broadening considerably our chemical

data-base on the surface materials. A compositional model for

Mars soil, giving selected average elemental concentrations of

major and trace elements, was recently suggested (Table i) . It

was constructed by combining the Viking Lander data, the SNC

meteorite analyses, and other related analyses.

The mineralogy of the surface materials on Mars has not been

directly measured yet. By use of various indirect approaches,

including chemical correspondence to the surface anlayses,

spectral analogies, simulations of Viking Lander experiments,

analyses of the SNC meteorites and various modelling efforts, the

mineralogical composition has been constrained to some extent. It

is suggested that the fine surface materials on Mars are a

multicomponent mixture of weathered and non-weathered minerals.

Smectite clays, silicate mineraloids similar to palagonite, and

scapolite, have been suggested as possible major candidate

components among the weathered minerals. Iron is present as

amorphous iron oxyhydroxides mixed with small amounts of

crystallized iron oxides and oxyhydroxides, having extremely small

particle sizes ("nanophases") . Specific candidate minerals that

II



have been proposed include nanophase hematite, lepidocrocite,

goethite, and jarosite. As accessory minerals, it is likely that

the soil contains various sulfate minerals, most probably calcium

and magnesium sulfate, and chloride salts. If present, carbonates

are likely to be at very low concentrations, although siderite
(FeCO3) may be present at somewhat higher concentrations. Organic

matter is totally lacking.

No direct analyses of soil reactivity have been done yet.

Indirect evidence, mostly from the Viking biology experimental

results, suggests that the soil probably has a slightly acidic
reaction (pH<7) and is generally oxidized. Upon humidification

during the Viking biology experiments, the soil released oxygen

and various other atmospheric gases. The amount of oxygen

released was 70-770 nM/g. Whether the oxygen was physi-sorbed,

present in peroxide or superoxide compounds, or both is not clear

at present. Small particle size (nanophases) of both the silicate

and the iron oxide minerals in the soil, may lead to high specific

surface area and suggest potentially high catalytic reacitivty and
high adsorption capacity of the soil.

Unambiguous identification of the Mars soil minerals by
direct mineralogical analyses, and non-disturbed or in situ

measurements of the soil's reactivity, are of primary importance

in future Mars research.

Table 1

AVERAGE CHEMICAL COMPOSITION MODEL OF THE FINE MARTIAN SOIL

Selected Selected Selected

Constit- Average Constit- Average
uent Concentration uent Concentration

% %

SIO 2 43.4* K20 0.10"*

AI203 7.2* P205 0.68**

Fe203 18.2" MnO 0.45**

MgO 6.0* Na20 1.34"*

CaO 5.8* Cr20 0.29**

TIO 2 0.6*

Constit- Average
uent Concentration

%

SO3 7.2*
CI 0.8*

CO3 <2***

NO 3 ?

H20 0-1 +

4-

Based on direct soil analyses by Vlking XRF.

Based on SNC meteorite analyses.
Estimated from LR simulation.

Varying content.
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N91-27059
The Distribution of Particulate Material on Mars

Philip R. Christensen, Dept. of Geology, Arizona St. Univ., Tempe, AZ 95287

The surface materials on Mars have been extensively studied using a variety of spacecraft and
Earth-based remote-sensing observations (1-7). These measurements include: 1) diurnal themlal
measurements, used to determine average particle size, rock abundance, and the presence of crusts;
2) radar observations, used to estimate the surface slope distributions, wavelength-scale
roughness, and density; 3) radio emission observations, used to estimate subsurface density; 4)
broadband albedo measurements, used to study the time variation of surface brightness and dust
deposition and removal; and 5) color observations, used to infer composition, mixing, and the
presence of crusts. Remote sensing observations generally require some degree of modeling to
interpret, making them more difficult to interpret than direct observations from the surface. They
do, however, provide a means for examining the surface properties over the entire planet and a
means of sampling varying depths within the regolith. Albedo and color observations only indicate
the properties of the upper-most few microns, but are very sensitive to thin, sometimes
emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2-10 cm.
Rock abundance measurements give an indirect indication of surface mantling, where the absence
of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate
several meters into the surface, providing an estimate of subsurface density and roughness.

For an assumed smooth, homogeneous surface, the average particle size can be determined
fi'om tile thermal inertia using diurnal temperature measurements (3). For typical geologic
materials in the martian environment, thermal inertia is primarily controlled by the thermal
conductivity. Variations in conductivity are due to differences in particle size, porosity, or the
degree of bonding, with laboratory measurements providing the link between thermal inertia and
these parameters (8). Conductivity, density, and therefore thermal inertia, are lowest for small
particles with small cohesion, such as loose dust, and highest for solid rock. It is important to
note, however, that thermal inertia is a bulk property, such that unimodal, medium sand, a mixture
of fine sand and pebbles, or crusted fines could all have identical thermal inertias.

Some of the ambiguity in thermal inertia can be resolved by incorporating multi-wavelengU1
thermal observations to resolve the surface materials into fine and rock components. This
modeling is based on the fact that the temperatures of high-thermal-inertia rocks and low-thcnual-
inertia fines differ by up to 60 K at night. The energy emitted from a surface of materials at
different kinetic temperatures is not blackbody in nature, and the observed thermal spectrum can bc

inverted to determine the fraction of the surface covered by each temperature component. To keep
the number of free parameters in this model small, yet provide useful surface information, only
two components are assumed: rocks (-10-15 cm in diameter and larger) and fines. This model is
only weakly sensitive to the exact size of the rocks, and provides an estimate of the total fraction of
the surface covered by rocks greater than 10 cm in diameter.

Thermal data reveal the presence of large low- and high-inertia regions in the northern
hemisphere, with much of the south covered by material of moderate inertia. Substantial regions in
Tharsis and Arabia appear dust covered, suggesting active accumulation of deposits 1-2 m thick
(6). Results from the rock modeling indicate that the modal surface rock cover is 6%, with
abundances ranging from several percent to -35%. The rock abundances of the regions
surrounding the Viking 1 and 2 landing sites, determined from this model, are -10% and 20%
respectively, in good agreement with the rock abundances observed from the landers, as discussed
previously. Thus, in retrospect, it can be seen that both sites have above average rock abundances,
and the VL2 site is one of the rockiest regions on the planet.

Radar observations of Mars from Earth and from Mars orbit provide information on surface
reflectivity and dielectric constant, and fine-scale roughness on a scale of the radar wavelength and

smaIIer. The reflectivity may be used to estimate the dielectric constant (e) of the surface materials

(e.g. 10). Variations in e are primarily due to changes in the bulk density of the surface, with lower

density material generally having a lower c and lower reflectivity. Downs et al. (10) reported an

13



"average"reflectivity for Marsof 6.4%basedonanextensiveseriesof measurementsin thesouth
equatorial region (14-22° S). They noted considerablevariation, however, in particular the
extremelylow reflectivities in Tharsisandthe regionto the west,correspondingto densitiesof
approximately1.5g/cm3,consistentwith powderedrock values,andhigh values(_:=4)in Syrtis
Major (11), suggestingthepresenceof solidrockatthesurface.

That partof theradarechothatcannotbeattributedto mirror-likereflectionfrom largefacets
is called the "diffuse" component. It arisesfrom scatteringby irregularstructurein thesurface,
perturbationson thefacets,and from multiple scattering,typically at scalesof 0.3 to 3 timesthe
radarwavelength.This scatteringresultsin adepolarizedechoin additionto thequasi-specular,
polarized return. Dual-polarization radar observationsat 12.6cm have detectedthe diffuse
reflection,with aconcentrationof datain theTharsisregionat20-25° N. Thesedataindicateth_tt
the Tharsisregion hasvery largeconcentrationsof surfaceto nearsurfaceroughnesselements
(12). Theseobservationsappearto conflict with thethem_alresults,but canbereconciledby a
modelof high-radar-reflectingrocksburiedby 1-2m of dust.

Albedo observationshave beenusedto study the composition, particle size, packing,
porosity, andmacroscaleroughnessof the uppermostmicronsof the surfaceusing broadband
Viking IRTM reflectancemeasurements(4). IRTM observationshavealsobeenusedto detemfi_e
thespatialandtemporalvariationsof thealbedoof themartiansurfaceandatmospherethroughout
the Viking mission (4,8). The northern hemisphereatmospherewas dustier during storms,
consistentwith south-to-northtransportof dust. Northern-hemispheredark regionswere also
brighter following the storm,indicatingthedepositionof -7 to 45 t.tmof dust peryear. Thcse
surfacessubsequentlydarkenedoverthefollowing months,suggestingactiveremovalof materi_ll.

Ot_a global basisthereis astronganticorrelationbetweeninertia andalbedo,a correlation
betweeninertiaandrock abundance,and,overmuchof theplanet,acorrelationof radar-derived
densitywith inertia(13). Thecorrelationbetweendensityandinertiamightbedueto thepresence
of subsurfacecrustswhichwouldsimultaneouslyincreasebothof theseproperties.Viking Orbiter
colordataindicatethepresenceof threemajorsurfacematerials:low-inertia,bright-redmaterialthat
is presumablydust; high-inertia,dark-greymaterial interpretedto be lithic materialmixed with
palagor_ite-likedust; andmoderate-inertia,dark-redmaterialthatis roughat sub-pixelscales_md
interpretedto be indurated. Observationsfrom the Viking landing sitesshow rocks, fines of
varyingcohesion,andcrusts.Thesesiteshaveindicationsof aeolianerosionanddepositionin the
recent past. Large rocks have been exhumed from beneath fines, suggesting one or more cycles of
deposition and erosion. Taken together, the remote and in-situ data suggest that much of the
surface can be characterized by four basic units. Unit 1 is covered by fine, bright dust, with few
rocks exposed at the surface. Radar observations indicate that much of this unit is very rough,
suggcstir_g a rough surface that is mostly buried beneath several meters of fine dust. This unit may
be a recent deposit, whose location may be linked to periodic climate changes. Unit 2 is also
active, with the motion of particles keeping the surface free of dust, resulting in a dark, coarse-
grained surface with abundant rocks. Unit 3 has intermediate inertia, albedo, and color, and is
i_terpreted to be a rough, indurated surface. Unit 4 is a relatively minor unit, but it contains both
Viking landing sites. It is characterized by relatively high inertia and high albedo, suggesting theft a
thitl layer of dust may have accumulated. The landing sites appear to be representative of the types
of processes that have occurred globally, but are not completely representative of the major units.
They have not accumulated significant amounts of dust, nor are they experiencing active transport
and erosion by sand-sized particles. Crusts are present, but not to the degree that may be present
elsewhere. Numerous, recently-active processes are inferred from the surface characteristics,
ir_cluding dust deposition, erosion, aeolian transport and sorting, and crust formation. The
available data suggest that cyclic changes in sedimentary processes may occur over sever:_l
timescales associated with periodic climate changes. Large dust deposits presently occur in the
north, with maximum winds and dust storm activity in the south. Under different environmental
conditions these deposits may be eroded and transported elsewhere. Much of the present surface

appears young and may have been continually reworked. The continued erosion and redeposition
of this loose material, rather than erosion of fresh surfaces, may provide the material for the high
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rates of aeolian activity. As a consequence, much of the fine material on the surface may have been
globally homogenized and essentially decoupled from the underlying bedrock.

Perhaps the most the most significant conclusion that can be drawn from our current

understanding of the upper layer is that much of the present surface is young and has been
continually reworked. The continued erosion and redeposition of this loose material, rather th:_n

erosion of fresh surfaces, may provide the material for the high rates of aeolian activity. As a

consequence, much of the fine material on the surface may have been globally homogenized _uld

nl:_y be essentially decoupled from the underlying bedrock.
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N91-27060 I:

RECENT STUDIES OF THE OPTICAL PROPERTIES OF DUST AND CLOUD PARTICLES IN THE MARS

ATMOSPHERE, AND THE INTERANNUAL FREQUENCY OF GLOBAL DUST STORMS

R. T. Clancy and S. W. Lee, LASP, Univ. of Colorado, Boulder, CO 80309, and D. O. Muhleman,Caltech,
Pasadena, CA 91125

The results of research with two distinctly separate sets of observations yield new information on the optical

properties of particulate scatterers in the Mars atmosphere, and on the interannual variability of the abundance of
such scatterers in the Mars atmosphere. The first set of observations were taken by the IRTM (Infrared Thermal

Mapper) instrument onboard the Viking orbiters, during the period 1976-1980. Several hundred emission-phase-
function (EPF) sequences were obtained over the Viking mission, in which the IRTM visual brightness channel

observed the same area of surface/atmosphere as the spacecraft passed overhead. The 1-2% accuracy of calibration

[1] and the phase-angle coverage that characterizes these data make them ideally suited to determining both the

optical depths and optical properties of dust and cloud scatterers in the Mars atmosphere versus latitude, longitude,

season (Ls), and surface elevation over the extended period of Viking observations. The range of seasons and

locations for these observations are indicated in figure 1, in which the dust optical depth over regions from 19

separate EPF sequences are plotted versus Ls. [2] Mars cloud opacities are presented in figure 2. We have analyzed
the EPF data with a multiple scattering radiative wansfex code [3] to determine dust single scattering albedos which

are distinctly higher (0.92 vs 0.86) than indicated by the Viking lander observations [4]. Although we trmd a single

scattering phase function that is very consistent with that returned by the Viking lander observations, the scattering
asymmetry parameter is 0.55 rather than the value of 0.79 reported by Pollack et al. [4]. These differences in the

optical properties of atmospheric dust lead to very different radiative properties, and suggest much smaller particle

sizes than previously considered (effective radins<0.4 Izm vs 2.5 lxm). Implications regarding dust heating of the
atmosphere, dust settling times, opacity ratios between visible and infrared wavelengths, and the dust-corrected
albedos of the Mars surface are considered.

The second set of observations regard ground-based observations of the 1.3-2.6 mm rotational transitions of CO

in the Mars atmsophere. We have derived the low-to-mid latitude average of the atmospheric temperature profile (0-
70 km altitude) from a number of such observations over the 1980- 1990 period [5]. A comparison of these mi-

crowave temperatures with those inferred from the Viking lander descent and orbiter IRTM observations (figure 3)
indicates a distinct difference. The microwave temperatures are -20 K cooler at all altitudes, and are consistent with

radiative-convective equilibrium temperatures for the Mars atmosphere in the absence of significant dust heating [6].
Implications concerning the relative infrequence of global dust storms over the 1980-1990 period, the enhanced

frequency of clouds expected with such colder atmospheric temperatures, and the accompanying changes in the
atmospheric density profile are presented.

RECENT STUDIES OF OPTICAL PROPERTIES OF DUST; Clancy, Lee, & Muhleman

REFERENCES: [1] Pleskot, L.K., and E.D. Miner (1981). Time variability of martian bolomelric albedo. Icarus 45,

179-201. [2] Clancy, R.T., and S. W. Lee (1991) A new look at dust and clouds in the Mars atmosphere: an analysis

of emission-phase-function sequences from global Viking IRTM observations, Icarus, in prepartion, [3] Stamnes,
K., S.C. Tsay, W. Wiscombe, and K. Jayaweera (1988). A numerically stable algorithm for discrete-cxdinate-method

radiative transfer in scattering and emitting layered media. Appl. Opt., 27, 2502-2509. [4] Pollack, J.B., D.S.

Colburn, F.M. Flasar, R. Kahn, C.E. Carlston, and D. Pidek (1979), Properties and effects of dust particles

suspended in the martian atmosphere, J. Geophys. Res., g4, 2929-2945. [5] Clarity, R.T., D.O. Muhleman, and G.L.

Berge (1990). Global changes in the 0-70 km thermal structure of the Mars atmosphere derived from 1975-1989

microwave Co spectra, J. Geophys. Res., 95, 14543-14554. [6] Gierasch, PJ. and R.M. Goody (1968). A study of
the thermal and dynamical structure of the Martian lower atmosphere, Planet. Space Sci., 16, 615.
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Figure 3. The low-to-mid latitude
average temperature of the 0.5 mbar
(-25 kin) pressure level of the Mars
atmosphere is plotted versus Mars
season (Ls). The measurements
connected by a solid li,,e are ob-
tained from Viking l_nder descents,
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related to low-dust loading in the
Mars atmosphere. The month and
year of the microwave
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N91 -27061 i
EFFECTS OF MARTIAN DUST ON POWER SYSTEM COMPONENTS

J.R. Gaier, M.E. Perez-Davis, NASA Lewis Research Center

Manned exploration of the Martian surface as envisioned by the Space Exploration

Initiative proposed by President Bush in 1989 will require large amounts of power. In
contrast to the Viking landers, which used about 70 watts of power, most scenarios of a

manned Martian mission envision power systems generating hundreds of kilowatts.

Radioisotope thermal generators (RTG's) which were so successful in providing the Viking

landers with power, will have to be supplanted with larger power systems based on large

photovoltaic arrays coupled to regenerative fuel cells or with nuclear reactors. Before these

large power systems can be put into place, it must be determined how their performance will

be affected by the Martian environment.
There are several hostile elements within the Martian environment which have the

potential to degrade the power system. These include wide daily temperature swings (up
to 50 K), ultraviolet radiation, high energy particle radiation, high velocity winds (albeit at

low pressure), chemically reactive species in the soil, atmospheric condensates, and dust
storms. At NASA Lewis we have initiated a program to assess the impact of these

environmental factors on power system performance. It is also part of our goal to find ways

to mitigate these degradative effects.
The effects of blowing dust on photovoltaic (PV) and radiator surfaces is the subject

of our initial work. In this work we have made extensive use of the Martian Surface Wind

Tunnel (MARSWlT) located at NASA Ames Research Center to simulate Martian winds.

To date we have run two basic types of experiment sets. In the first, we have studied the

threshold clearing velocity of dust deposited on PV coverslip materials and high emissivity
radiator materials in clear Martian-like winds. In the second, we have dropped dust near

the inlet of the wind tunnel and allowed the winds to carry the dust past the samples,

simulating a dust storm. Below is a summary of our results.
In order to test the ability of the wind to remove dust from surfaces, dust must first

be deposited on those surfaces. In order to most closely simulate the way that dust would

deposited on a surface after a storm, a dust deposition box was constructed. The box has

three principle components, an inverted square pyramidal base, a 1 meter high upper
chamber, and a sliding drawer. A quantity of dust is first placed in the bottom of the

inverted pyramid. A blast of dried air is directed downward onto the dust with sufficient
force to elevate the dust into the upper chamber. The air is then turned off and the dust

allowed to settle out. Stokes law tells us that large particles will fall the fastest, so for the

first 15 seconds the larger particles and conglomerates are allowed to fall back into the

inverted pyramid. The drawer holding the samples is then slid into the path of the falling

dust so that the fine particles settle onto the sample holder. See NASA CP-3096 (1990) p.
447, for additional information.

Three different types of dust were used. In the initial experiments, an aluminum

oxide based optical polishing grit with a size range of 1.5 to 30 #m was used. This material

does not easily form agglomerates in air and so was easy to work with. In later experiments

a basaltic dust of the same approximate size was used because its chemistry is similar to that

of Martian dust. Finally, very fine grained (0.3 to 3 gm) ferric oxide powder was used.
In the first series of tests, optical polishing grit was deposited six different types of

PV coverslips and three different types of high emittance radiator surfaces. The height from
the MARSWIT floor, angle of attack, and wind velocity were all varied in an attempt to

determine the important parameters. It was found using optical transmittance that the PV

coating material and height from the MARSWlT floor were only minor influences in the

clearing of dust from these surfaces. Angle of attack and wind velocity were found to be
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the major influences. The wind velocitiesof 55,85,and 124m/s were found to be sufficient
to clear most of the dust off of the PV surfaceswithin a few minutes.

In the secondseriesof tests, lower velocity winds were used (10, 30, and 35 m/s).
At 10m/s, virtually no clearing occurred. A small amount of clearing occurred during the
30 m/s test, and considerablymore at 35 m/s. The threshold value varies with angle of
attack, and at 45", that value is near 35 m/s. The clearing dropped both at lower and at
higher angles. In thosesampleswhere the dust removal was incomplete it wasnoted that
the dust appearedto be lifted directly upward from the surface. This seemsto implicate
and aerodynamic lift mechanismwhich plucks the dust particles directly off of the surface
before the wind stream carries it off. Evidencewasalso found for a seconddust removal
mechanism. At lower velocities the dust left streaks in the wind direction, indicating
perhapsthat the dust particles "roll" along the surfacefor a short distancebefore they are
lifted up into the wind. Evidence for this was seenonly in the low angle (22.5°) sample.
During the secondset of testsa turbulence fence was introduced with the idea to induce
clearing at lower wind velocities byproviding regionsof high local velocity. However, it was
found that the turbulence fence actually raised the threshold clearing velocity instead of
lowering it. Theseexperimentsare summarizedin NASA TM-102507 (1990).

The goal of the third seriesof testswas to examinethe sensitivity of the threshold
clearing velocity to the composition of the dust. Thus, in addition to the optical polishing
grit, b_s:_ltand ferric oxide dustedsampleswere placed in the MARSWIT. The threshold
clc:_ring velocity of the basaltwasvery similar to the optical polishing grit, ranging between
30 and 40 m/s for a 45° angle. The threshold clearing velocity for the ferric oxide was
much higher (between85 and 95 m/s), but it is unclear how much of the effect is due to
chemistry and how much is due to particle sizeeffects. These two samplesdid, however,
confirm that the optimum angle for dustclearing is somethingnear 45°. It appearedfrom
these tests that of the two dust removal mechanismsthat the "rolling" mechanismhas a
lower threshold velocity, but that the "aerodynamic" mechanismis more efficient and so
dominatesat higher velocities. Degradation of the emittance of radiator surfaceswasalso
ol)._ervc,t. It was found that ion beam textured graphite and carbon-carbon composite

samples legraded less that did arc-textured copper or niobium-1%-zirconium. This was due
to the :_',rasion of the carbon from the surface of the arc-textured metal samples, which

hm _rcd their emittance appreciably. The radiator work is reported in NASA TM-103205

(1990), qd PV work in NASA CP-3096 (1990) p. 379.
"1*_e fourth test series examined the effects of blowing dust on PV and radiator

surfaces. It was found that exposure to dust laden wind changed the dust clearing behavior

of the sa,nples. Initially clean samples became dusty even when they were exposed to winds

well above the threshold clearing values (97 m/s). Initially dusted samples partially cleared

well bel_,w the threshold velocity (19 m/s). Samples tended to converge to an equilibrium

dustiness independent of their initial condition, but dependant upon the wind velocity. It

was found that abrasion was much more of a problem with both arc-textured metals, and

glass coverslips. Interestingly, it was found that an initial coating of dust actually reduced

the amount of abrasion, at least in the case of arc-textured radiator samples. NASA TM-
103704 (1991) summarizes this work.

The most important information we have learned to date is that interactions between
the wind-blown dust on Mars and power system components are complex. We do not yet

have answers even to the extent of the problem. The results of these types of tests have far-

ranging implications for the design of the power system, and thus this work needs to be

performed during the early stages of system design.
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HAVE GRABEN WALL SCARPS ACCUMULATED SAND AND DUST ON MARS?

M. P. Golombek 1 and P. A. Davis 2, 1Jet Propulsion Laboratory, Caltech, Pasadena, CA,

91109, 2U. S. Geological Survey, Flagstaff, AZ 86001.

Grabens are linear fault bounded troughs that are extremely abundant on Mars (about 7000
cover the western hemisphere). Their dimensions are variable, but commonly are a few kilometers
wide, a hundred meters deep and tens to hundreds of kilometers long. In their simplest form,
grabens have flat floors, parallel bounding scarps of equal width (and height), flat shoulders at
equal elevations, and extend for many kilometers in length with only small changes in width. In
surface appearance and morphology many look fresh and unmodified.

Analysis of lunar and martian grabens as well as analogous structures on Earth indicates
that grabens form under extension when the crust is pulled apart. The graben accommodates the
extension by slip along inward dipping normal faults that allow the floor of the graben to drop.
Measurement of the increase in width of simple grabens over local regions of high relief on the
Moon (e.g., 1) and observations of the trace of faults bounding grabens where they intersect the
walls of steep troughs on Mars (2) shows that faults bounding grabens dip at about 60 °.
Nevertheless the slopes of graben wall scarps are substantially shallower than this. On the Moon,
measurement of graben wall slopes (1), where high resolution topographic maps exist (Lunar
Topographic Orthophotomaps), shows slopes of 15-23 ° (average of 18° for 17 determinations). It
is not clear how graben scarps weather from their initial steep slopes to slopes lower than the angle
of repose (about 30 ° for unconsolidated material applicable to the outer layers of the Moon). A
possible explanation is mass wasting by seismic shaking and impact by micrometeorites. Mass
wasting involves unconsolidated material along the top of the scarp sliding and crumbling down
the graben walls thereby reducing the slope down to the angle of repose. Micrometeorite
bombardment could be responsible for reducing angle of repose slopes to those observed.

On Mars topographic maps are not of sufficient resolution to measure graben wall slopes.
However, about 150 measurements have been made using photoclinometry, a technique based on
pixel brightness variations along a profile being due to topographic relief (assuming the albedo is
constant), which has been shown to be accurate to within 15% over areas of local relief (e.g., 3).
Results show low slopes of 7-11 ° (2, 3), with an average of 9 ° or about half that of lunar graben
scarps. Even if there is a factor of 2 uncertainty in the slopes they are still well below the angle of
repose expected simply from mass wasting and micrometeorite bombardment cannot be appealed to
on Mars. Although the cause of such low slopes is not known, the deposition of sand and dust is
a possible explanation.

Seismic shaking on Mars might be capable of reducing 60 ° fault scarps to the angle of
repose. Some other process must be responsible for further reducing graben wall slopes.
Whatever process this is, it has not altered the fresh appearance and simple symmetric profile
observed at the resolution of the Viking images. This seems to rule out water driven processes
such as sapping or runoff (erosion), as such processes would not preserve the parallel linear scarp
edges across the structure, but would tend to scallop out and further make the edges irregular,
which is not observed. In contrast the deposition of sand and dust along graben walls might be
capable of producing a smooth even scarp of low slope.

If the deposition of sand and dust along graben walls is responsible for their extremely low
slopes, then a variety of implications are possible. Sand and/or dust movement and deposition is
ubiquitous in grabens over most of Mars, as similar looking grabens are found over the entire
western hemisphere and this requires a plentiful supply of sand or dust. If the material that
accumulates is of low density and cohesion, attempts to traverse graben walls might be difficult.
Finally, rimless shallow depressions could be more effective sinks for sand and dust on Mars than
has been realized.

References:
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(3) Tanaka, K. L., and P. A. Davis, Jour. Geophys. Res., v. 93, p. 14,893-14,917, 1988.
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CHEMISTRY AND MINERALOGY OF MARTIAN DUST: AN EXPLORER'S PRIMER

James L. Gooding, SN21/Planetary Science Branch, NASA/Johnson Space Center, Houston, TX 77058

Introduction. A summary of chemical and mineralogical properties of Martian surface dust is offered

for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface

exploration. For technical details and specialized explanations, reference should be made to the literature cited.

We have four sources of information about Martian dust composition:

(1) Experiments performed on the Mars surface by the Viking Landers (VL) 1 and 2 (1976-1978) and
Earth-based laboratory experiments attempting to duplicate those results [1];

(2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9 (1971-72) [2]

and to be continued with Mars Observer (MO; 1992 launch);

(3) Visible and infrared spectrophotometry remotely performed from Earth [3];

(4) Laboratory studies of the shergottite-nakhlite-chassignite (SNC) clan of meteorites (since 1985) [4], for

which compelling evidence suggests origin on Mars.

Source (1) is limited to fine-grained sediments at (or a few centimeters below) the surface (no rock

analyses were possible) whereas (2) and (3) contain mixed information about surface dust (and associated

rocks) and atmospheric dust. Source (4) has provided surprisingly detailed information but investigations are

still incomplete.

Chemical Composition. Each VL carried a gas chromatograph/mass spectrometer (GCMS) and X-ray

fluorescence spectrometer (XRFS) that produced information on the elemental composition of fine-grained

surface sediments. The GCMS found no organic matter (for detection limits of a few parts per billion (ppb) to

a few parts per million (ppm) by weight) but revealed water and adsorbed gases. Volatile inorganic compounds

were not precisely measured except to bracket concentrations of 0.1-1 (and possibly as high as 3) wt. % H20

and 50-700 ppm CO 2 in the sediments. Better measurements must be left to future experiments.

The XRFS found iron-rich sediments with surprisingly high concentrations of sulfur and chlorine (Table 1);

virtually identical compositions at the two widely separated landing sites implicd that the surface sediments

represent homogenized, windblown dust. Unfortunately, the XRFS was not sensitive to several important

chemical elements (including carbon, nitrogen, and sodium) and had comparatively large uncertainties for

others. In addition, XRFS, as a method, is not capable of identifying the ways in which elements are combined

as compounds. Therefore, our direct knowledge of chemical composition of sediments remains incomplete.
Precise analyses of more than 60 elements in SNC meteorites have been used to prepare detailed, if

somewhat conjectural, compositional models for Martian rocks. Nonetheless, it is still not clear how these

models might pertain to the dust, which is almost certainly more complex than pulverized volcanic rocks.

The MO gamma ray spectrometer (GRS) experiment will map the abundances of about 18 chemical

elements from Mars orbit but its spatial resolution (footprint size) on the surface will be a few hundred

kilometers. Also, the GRS emphasizes the search for variations rather than the precise numerical measurement

of concentration values; GRS data will supplement but not supplant VL XRFS data.

Mineral Composition. None of the VL experiments were capable of directly identifying minerals;

conclusions about minerals rest on inference only. The surface sediments apparently contain 1-7 wt. % of a

strongly magnetic material which is probably a ferric (iron) oxide. Laboratory simulations of VL biology results

(see below) are consistent with (but do not prove) presence of iron-rich clays of the smectite mineral family.

Remote-sensing spectrophotometry favors a material denoted as "palagonite" which, on Earth, forms by natural

water-driven weathering of volcanic glasses produced by basaltic (Hawaiian-type) volcanoes. Much of the

favorable comparison between remotely sensed Mars spectra and laboratory spectra for palagonite is

attributable to an ultrafine-grained ferric oxide known as nanophase hematite.

The Mariner 9 infrared radiometer interferometer spectrometer (IRIS) observed the Martian atmosphere
during various stages of dust storm activity. No firm mineral identifications were achieved but the suspended

dust was inferred to be mostly silicon-oxygen-based minerals such as clays or feldspars. Although surface dust

is undoubtedly related to high-altitude atmospheric dust, the IRIS results for atmospheric dust can explain only

a portion of the surface dust as characterized by the XRFS. The MO thermal emission spectrometer (TES) will

map minerals from Mars orbit at a surface resolution of about 3 km/pixei but will emphasize global and

regional differences rather than exact and comprehensive mineral identifications.
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WeatheringproductsinSNCmeteoritesmightrepresentourcurrentbestviewof mineralsmostlikelyto
formMartiandust.AlthoughSNCmeteoritesarevolcanicproducts,theycontaintracesof mineralsthatclearly
formedin oxidizing,wateryenvironmentsof thetypeswemightexpectat theMarssurface.Theminerals
provisionallyidentified(Table2) includeiron-rich,clay-likematerialsandsulfur-andchlorine-bearingsaltsthat
areentirelyconsistentwith thebulkelementalcompositionsof MartiansedimentsasmeasuredbytheVL
XRFS; the carbonate minerals in SNCs would not have been detected by either the GCMS or XRFS. Precise

identification of these tiny mineral grains (most < 20/_ m size) remains an active area of research from which

further significant conclusions are expected.

Chemical Reactivity and Corrosivity. The three different microbiological life-detection experiments
on each VL produced apparently "positive" results that were eventually interpreted as the action of vigorously

reactive inorganic compounds (rather than microbial life). These agents evolved oxygen when wetted with

water, oxidized simple organic compounds in water-based solution, and faced carbon dioxide into a form that
was non-volatile under ambient Martian conditions. The VL experiments were incapable of identifying the

reactive agents although, through Earth-based simulation experiments, they were variously inferred to be metal

peroxides or superoxides, alkali peroxonitrites or catalytically active minerals (such as clays or iron oxides).

Although their actions were striking, their concentrations were quite low: perhaps 1 ppb to a few tens of ppm

when expressed in terms of reactivity equivalent to hydrogen peroxide. Although further analyses are
important, it appears that at least one of the reactive agents can be decomposed by simple treatment with water.

Over nearly three Martian years of observations, no obvious corrosion of the VLs was observed. Mars dust

wetted with water might become electrochemically corrosive toward metals if the sulfur and chlorine in the dust

occur as salts (as the SNC evidence suggests) but only further experiments will constrain the possibilities.

Toxicity. None of the VL, laboratory, or remote-sensing results can be used to make blanket statements
about toxicity or non-toxicity of Martian dust. Neither the VL XRFS data nor the extensive analyses of SNC

meteorites has revealed unexpected concentrations of heavy-metal toxins (e.g., Cd, Hg); organic compounds,

likewise, seem to be rare or absent. Although complete toxicology assessments require knowledge of how
elements are combined into compounds (in addition to bulk-elemental assays), we can say that none of the

minerals inferred from VL results or found in SNC meteorites presents a recognized toxic hazard. Indeed, the

only significant issue surrounds interpretation of the unidentified trace-level reactants discovered by the VL

biology experiments. Until the active agents are identified, however, we cannot assess their toxic potentials.

References: [1]Arvidson R. E., Goading J. L., and Moore ti. J. (1989) Rev. Geophys., 27, 39-60. [2] Aronson J. R. and Emslie A. G.

(1975) J. Geophys. Res., 80, 4925-4931. [3] Singer R. B. (1982) J. Geophys. Res., 87, 10159-10168. [4] Goading J. L., Wentworth S. J., and

Zolensky M. E. (1988) Geochim. Cosmochim. Acta, 52, 909-915.

"Fable1: Weight percent compositions of surface sediments

(after B. C. Clark and others; summarized by [1l)

Table 2: Possible dust-forming minerals found as grainsin

SNC meteorites (J. L. Gooding and collaborators)

Shergottite
VL-1 VL-2 Uncertainty EETA79001 Nakhla Chassigny

SiO2 44 43 + 6
TiO_ 0.62 0.54 + 0.25 CoCO3 X X

AI2_3 7.3 n.d. + 4 CoSO 4. nil20 X X
F%03 17.5 17.3 -2 to +5
MgO 6 n.d. -.3 to +5 (Mg),(PO4)y. nH20 X

CoO 5.7 5.7 + 2 (Mg)x(SO4)y. nil20 XK 0 < 0.5 < 0.5 4- 0.5

S_)3 6.7 7.9 -2 to +6 NoCI X
CI 0.8 0.4 -0.5 to +1.5 S,Cl-aluminosilicate X

Notes: Expression as oxides is by convention; Smectite (?) X
minerals end compounds not identified (Co,K,Mg)o.2(Fe,Mg)2

n.d. = nOtinstrumentdeterminednoisebeCauseof (Si,AI,Fe)4Ot0(OH)2. nil20

X

X
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WIND ABRASION ON MARS R. Greeley, Department of Geology, Arizona State

University, Tempe, AZ 85287-1404

Aeolian activity was predicted for Mars from earth-based observations of changing surface
patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for
aeolian processes in the form of active dust storms and various aeolian landforms including dunes
and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars
than on Earth because of the low atmospheric density on Mars. It was reasoned that saltating

particles on Mars therefore would travel much faster than on Earth and would be effective agents of
abrasion. This consideration, coupled with the frequent dust storms observed telescopically, led to

predictions of extremely high rates of aeolian erosion (Sagan, 1973; Henry, 1975). Viking results,
however, led to a reassessment of wind erosion on Mars. The Viking orbiters reveal surfaces that
have small (-10 m) impact craters whose presence indicate surfaces that are millions or even
hundreds of millions of years old but which have been little modified by erosion of any type

(Arvidson et al., 1979). If the rates predicted prior to the Viking mission were correct, these
craters should have been "erased" long ago.

In order to determine rates of abrasion by wind-blown particles, knowledge of three factors

is required (Figure 1): (1) particle parameters such as numbers and velocities of windblown grains
as functions of windspeeds at various heights above the surface, (2) the susceptibility to abrasion

(Sa) of various rocks and minerals, and (3) wind frequencies and speeds. For estimates
appropriate to Mars, data for the first two parameters can be determined through laboratory and
wind tunnel experiments; data for the last factor are available directly from the Viking Lander (VL)

meteorology experiments for the two landing sites.
Experiments (Greeley et al., 1982) have been conducted to collect information on the

parameters required for Mars. Assuming an abundant supply of sand-sized particles, estimated
rates range up to 2.1 x 10 -2 cm of abrasion per year in the vicinity of Viking Lander 1. This rate is
orders of magnitude too great to be in agreement with the inferred age of the surface based on
models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed
old age of the surface cannot be explained easily by changes in climate or exhumation of ancient
surfaces. The primary reason for the discrepancy appear to be related to the agents of abrasion.
Either windblown grains are in very short supply, or the grains are ineffective as agents of
abrasion. At least some sand-sized (-100 I.tm) grains appear to be present, as inferred from both

lander and orbiter observations. High rates of abrasion occur for all experimental cases involving

sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly
comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show
that these fine grains are electrostatically charged and bond together as sand-sized aggregates
(Greeley, 1979). Laboratory simulations of wind abrasion involving aggregates show that at

impact velocities capable of destroying sand, aggregates form a protective veneer on the target
surface and can give rise to extremely low abrasion rates (Greeley et al., 1982)..

It must be noted, however, that rates of abrasion at the scale of rocks cennmeters to meters in

size cannot be extrapolated to rates of _ at the > kilometer-scale of landforms such as craters,
and the rate of surface erosion determined by the preservation of impact craters may not be

appropriate for consideration of abrasion of spacecraft. Moreover, the experiments outlined here
emphasize the importance of the supply of sand-size material. Although such grains may be in
short supply at the two Viking Landing sites, they may be abundant in other regions as evidenced

by sand dunes.

References:

Arvidson, R., E. Guinness, and S. Lee, Differential aeolian redistribution rates on Mars, Nature, 278, 533-535, 1979.

Greeley, R., Silt-clay aggregates on Mars, J. Geophys..Res., 84, 6248-6254, 1979.
Greeley, R., R.N. Leach, S.H. Williams, B.R. White, J.B. Pollack, D.H. Krinsley, and J.R. Marshall, Rate of Wind

Abrasion on Mars, J. Geophys. Res., B12, 10,009-10,024, 1982.

Henry, R.M., Saltation on Mars and expected lifetime of Viking 75 wind sensors, NASA Tech. Note, D-8035, 39 pp.,
1975.

Sagan, C., Sandstorms and eolian erosion on Mars, J. Geophys. Res., 78, 4155-4161, 1973.
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N91-27065 i
THE AEOLIAN WIND TUNNEL

J.D. Iversen, Department of Aerospace Engineering, Iowa State University,
Ames, IA 50010

The aeolian wind tunnel is a special case of a larger subset of the wind tunnel

family which is designed to simulate the atmospheric surface layer winds to small scale

(a member of this larger subset is usually called an atmospheric boundary layer wind
tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is

designed to simulate, as closely as possible, the mean velocity and turbulence that

occur naturally in the atmospheric boundary layer (defined as the lowest portion of the

atmosphere, of the order of 500 m, in which the winds are most greatly affected by

surface roughness and topography). The aeolian wind tunnel is used for two purposes:

(1) to simulate the physics of the saltation process and (2) to model at small scale the

erosional and depositionat processes associated with topographic surface features.

A long test section for the environmental wind tunnelis desirable in order to

achieve sufficient boundary layer depth, turbulence characteristics, and for the aeolian

wind tunnel, equilibrium particle transport rate. Although the side-walls restrict lateral

motion of the wind compared to the natural atmosphere, and the turbulent spectrum is
"narrower" (i.e., the frequency of the maximum energy containing eddies is higher than

for the natural atmosphere), that descrepancy is not as important for sand-sized particles

(> 100 I_m) as it is for modeling transport by suspension (diffusion of dust particles < 100

[um). Other important considerations for modeling saltation phenomena include

minimum criteria for Reynolds number (u*3/gv, Uoox/v) and maximum criteria for Froude

number (Uoo2/gH, u*2/gH).

Minimum size requirements for the aeolian wind tunnel are based on the

necessity for development of a thick turbulent boundary layer, for equilibrium of mass

transport rate as a function of downwind distance, and for (small-scale modeling) the

geometric scale ratio desired. The upper limit to wind tunnel size is determined by
practicability, available space, and cost. Owen and Gillette (1985) have suggested a

lower limit on wind tunnel height based on wind tunnel Froude number. Recent
experimental data seem to confirm Owen's criterion of a maximum wind tunnel speed

during saltation. The criterion is based on a maximum wind tunnel Froude number, i.e.,

2
Uoo

(1)  <20
gH
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where U_ is the wind tunnel free stream speed and H the test section height. For

Froude numbers above that value, the shear stress, and thus mass transport rate, might

not reach an equilibrium value in the wind tunnel. Cermak (1982) has suggested a

minimum wind tunnel length criterion based on tunnel length Reynolds number to

achieve a thick turbulent boundary layer. His criterion is

]/4

(2) L > 3.47 8 (SUdv)

where (_ is the desired boundary layer thickness and v is kinematic viscosity. The

minimum test section length for a boundary layer depth of H/4 for the aeolian wind

tunnel according to these criteria can be found by combining Eqns. (1) & (2):

11 2

(3) L > 0.89 (H g/v )

1/8

For purposes of investigating aeolian effects on the surfaces of Mars and Venus

as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for

estimating wind speeds necessary to move small particles on the three planets as well
as to determine the effects of topography on the evolution of aeolian features such as

wind streaks and dune patterns.
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 91-27066 ,.
MEASUREMENTS OF DUST ON MARS TO BE OBTAINED FROM UPCOMING

MISSIONS. Bruce M. Jakosky, Laboratory for Atmospheric and Space Physics and

Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0392.

Measurements of dust on the Mars surface and in its atmosphere will be made

from several upcoming missions. The best-defined missions are Mars Observer, the
Soviet Mars 94 mission, and the Mars Environmental Survey (MESUR) mission.

Following is a discussion of what measurements pertaining to airborne or surface dust
will be made and what properties can be inferred from them. The payloads for the latter
two missions are, of course, not yet determined or absolutely known, in all cases, only
that information which pertains to dust is included; each mission contains additional in-
struments that provide no information on this topic. Following the discussion of individual
instruments is a summary of the types of measurements and observations that will be
made from the ensemble collection of instruments and missions, and a brief discussion

of the types of measurements of dust which will not be made. This revised abstract con-
tains the results of the group discussion from the workshop.

Observations of dust to be made from upcoming missions:

Mars Observer (MO):

Pressure Modulator Infrared Radiometer (PMIRR):

Vertical profile of dust absorption coefficient
Column abundance, spatial and vertical distribution of dust amount in

atmosphere
Thermal emission from surface

Some information on surface structure

Vertical profiles of temperature
Clues to dust-induced atmospheric dynamics

Thermal Emission Spectrometer (TES):

Emission spectrum of dusty atmosphere
Particle-size distribution of airborne dust

Composition of airborne dust
Vertical profile of emission spectrum of airborne dust

Vertical distribution of dust

Variations in composition or particle size with height
Emission spectrum of surface

Surface structure (thermal inertia, block abundance, etc.)
Composition and mineralogy of dust on the surface

Gamma-Ray Spectrometer (GRS):

Relative numbers of atoms at the surface

Surface composition, global variability of dust

Camera (MOC):
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High-resolution images of the surface
Surface structure, block abundance, etc.
Clues to ongoing geomorphological processes pertaining to sand and

dust
Moderate-resolution images of the surface

Temporal changes in surface albedo related to deposition or removal of
dust from the surface

Low-resolution (daily) global images in two colors
Spatial information on dust distribution, with clues to the genesis of

global and local dust storms

Laser Altimeter (MOLA):

Altitude of whatever reflects at 1.06 microns
Possible heights of discrete dust clouds or local dust storms

Radio Science (RS):

High-vertical-resolution atmospheric structure in polar regions
Clues to dust-induced atmospheric dynamics

Mars Environmental Survey (MESUR):

Atmospheric structure experiment:

Entry profile of temperature and winds in lower atmosphere
Clues to dust-induced atmospheric dynamics

Descent/sutrace imaging:

High-resolution images of surface
Surface structure, block abundance, etc.
Clues to ongoing geomorphological processes pertaining to sand and

dust

Meteorology at surface:

Diurnal variation in atmospheric pressure
Clues to dust-induced atmospheric dynamics

Winds at surface
Clues to dust-induced atmospheric dynamics
Information on ability of wind to raise dust or to saltate sand

Atmospheric opacity at surface:

Atmospheric opacity of dust at surface
Atmospheric opacity of dust at surface

Surface composition experiment:
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Elemental abundances at surface
Composition and mineralogy of surface

Differential thermal analysis experiment:
Volatile content of surface materials

Mars 94:

(Orbiter)

Overall mission

Diurnal variability at local times other than will be obtained from other
missions, due to different orbit

TV camera:

High-resolution images of the surface (about 10 m/pixel, four-
color, stereo)

Clues to ongoing geomorphological processes pertaining to sand and
dust

Three-dimensional structure at scales larger than 10 m

Omega (Infrared Spectrometer):

Surface reflection spectra between 1 and 5 microns
Surface mineralogy

Fourier spectrometer:

Thermal emission spectra between 1.2 and 40 microns
Particle-size distribution of airborne dust

Composition of airborne dust
Surface structure (thermal inertia, blocks, etc.)
Composition and mineralogy of dust on the surface

Stellar occultation atmospheric spectrometer:

Vertical profiles of stellar radiance through the atmosphere
Vertical profiles of atmospheric dust absorption, and column opacity

Gamma-Ray Spectrometer:

Relative number of atoms at the surface

Surface composition, global variability of dust

Termoskan:

Broadband thermal emission from surface
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Surface thermal inertia and spatial variability

Radar sounder (at multiple frequencies near 1 Mhz):

Electrical properties of surface (if ionosphere is absent)
Density of near-surface layer
Possible vertical structure of surface
Possible presence of liquid water

(Balloon)

Gondola

TV camera:

High-resolution images of the surface
Spatial variability of surface features and dust clouds

Meteorology package:

Structure of atmosphere within diurnal boundary layer
Clues to dust-induced atmospheric dynamics

Infrared Spectrometer:

Dust composition and mineralogy

Aerosol sensor:

Column dust opacity

Electromagnetic induction sounder:

Electrical properties of subsurface
Structure of subsurface at kilometer scale
Possible presence of liquid water

Snake

Gamma-ray Spectrometer:

Same as above

Accelerometers:

Structure and cohesion of surface at small scales

Ground-penetrating radar (approx. 1 m wavelength in ground)
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Electrical properties of surface layer
Structure of top 100 m of regolith
Possible presence of liquid water

Rover

TV camera:

Images of the surface at high spatial resolution

Alpha-proton spectrometer:

Numbers of atoms in surface materials
Composition and mineralogy of surface

Reflection and fluorescence spectrometer:

Surface composition and mineralogy

Mossbauer spectrometer:

Surface mineralogy

Electrostatic instrument:

Electrostatic properties of dust/atmosphere

Penetrator

TV camera, viewing over 360 degrees:

Same as above

Gamma-ray Spectrometer:

Same as above

The following is a list of the types of nformation that will be obtained from the
above instruments, sorted by type of information rather than by instrument or mission.
The missions which will measure each piece of information are listed (MO = Mars
Observer, M94 = Mars 94, MSR = MESUR; S indicates that some type of synoptic cov-
erage will be obtained, and L indicates that information will be obtained only at discrete
or small number of times/locations, where appropriate).

ATMOSPHERIC DUST
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Vertical profiles of temperature and dust absorption through the atmosphere.
MO/S, M94/S, MSR/L

Particle size distribution of airborne dust, within range of about 1 to 10 microns;
less-detailed information on sizes down to about 0.1 micron.

MO/S, M94/S

Some information on vertical profiles of particle size distribution.
MO/S, M94/S

Some information on composition of dust and on vertical profiles of
compositional variation.
MO/S, M94/S

Spatial distribution of atmospheric dust clouds or storms.
MO/S, M94/?

Column opacity of airborne dust, and spatial variations.
MO/S, M94/S, MSR/L

Direct measure of winds/dynamical properties at some locations and times.
MO/S, M94/S, MSR/L

SURFACE DUST

1. Information on sources and sinks of atmospheric dust.
MO/S, M94/S

2. Elemental composition of surface materials.
MO, M94, MSR/L

3. Mineralogy of surface materials.
MO, M94

4. Thermal inertia, block abundance and size distribution.
MO, M94, MSR/L

. Geologic information at high spatial resolution over some fraction of the surface
(and clues to ongoing geological processes).
ME), M94, MSR/L

° Some information on cohesion of the surface at a single location (from Mars 94
penetrator).
M94/L

, Some information on trafficability of surface at a single location (from Mars 94
rover).
M94/L
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. Some information on thickness of dust deposits and structure of near-surface

layer.
M94

9. Presence or absence of liquid water within regolith, at varying vertical scales.
M94

10. Some information on electrostatic properties of surface dust.
M94/?

The following list includes information that is pertinent to the properties or evolution
of dust on the surface and in the atmosphere but which will not be obtained by any of
these missions or instruments. Notice that some information could be obtained by in-
struments which could still find their way onto the payload of MESUR or Mars 94. Also
listed is the type of instrument which could make the desired measurements, if possible
and if known.

1. Actual particle size and shape distribution of dust in the atmosphere and on the
ground (particle counters; sky brightness and polarization measurements; optical and
electron microscopes).

2. Global information on cohesion of surface dust or fine materials and on traffi-

cability of surface materials (could be obtained from a small number of landed pack-
ages, in conjunction with global remote-sensing observations).

3. Electrostatic properties of surface/airborne dust and atmospheric breakdown of
electrical conductivity (in-situ (landed) DC voltmeter).

4. Chemical properties of surface dust (such as chemical reactivity, corrosiveness)
(essentially same experiment as electrostatic properties).

5. Detailed information on incremental and net motion of surface and airborne dust

over the course of a year (sounding board particle counter for movement of sand-sized
grains; yardstick stuck into ground; observations over many years).

6. Direct measure of shear stress at surface (wind velocity at three heights above
surface).

7. Direct measure of mineralogy (currently to be done possibly on one landed
package) (XRD; Infrared spectrometer; cross-polarized optical microscope).

8. Toxicity (send a rabbit).

9. Dust-deposit thickness (cores; EM sounding; penetrator; seismometer).
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ENGINEERING KNOWLEDGE REQUIREMENTS FOR SAND AND DUST

MARS

D. I. Kaplan, Lunar & Mars Exploration Program Office, NASA/Johnson Space Center

ON

The successful landing of human beings on Mars and the establishment of a permanent outpost

there will require an understanding of the martian environment by the engineers. A key feature of

the martian environment is the nearly ubiquitous presence of sand and dust.

The engineering community will be tasked to perform many critical functions at Mars. Each of

these functions will certainly be influenced by the sand and dust in the environment. For example,

safe landing (entry, descent, and touchdown) will require good visibility, knowledge of

atmospheric density, and an aeroshell which will not be critically eroded. Habitat emplacement

will require appropriate site selection, site preparation, actual emplacement of the habitat, and

emplacement of radiation protection around the habitat. Surface operations will require surface

mobility and mining (including the location of resources as well as excavation). The effects of

sand and dust on equipment will be of great importance to many scientific and engineering

functions.

The engineering teams will begin with the best understanding of sand and dust from the

scientific community, and they will evaluate the sensitivities of their engineering designs and

operations to that knowledge. In some areas, a broad range of possible sand and dust values will

have little effect on outpost or vehicle designs. In other areas, knowledge which is lacking, or

uncertainties which are high, may potentially have a huge influence on the designs and operations.

For these latter cases, the mission planners of the Space Exploration Initiative (SEI) will need to

evaluate the advantages of acquiring precise martian environmental data through the flights of

robotic precursor missions.

The paper will focus on the process which the engineering community will undertake to

determine the sensitivities of their designs to the current level of knowledge about Mars sand and

dust. It will also describe the interaction of the engineering community with the SEI mission

planners and management.
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ELECTRICAL SYSTEM/ENVIRONMENT INTERACTIONS ON THE

PLANET MARS J.C. Kolecki, G.B. Hillard, and D.C. Ferguson, Space
Environment Interactions Br., NASA Lewis Research Center, NASA 2100 Brookpark Road,
Cleveland, OH 44135

The Martian environment is a diverse environment with which systems will interact

in numerous ways. The following comments are preliminary thoughts on electrical

system/environment interactions which might be of interest to system designers at all stages

of system design.

Stationary surface sand and dust may be subject to electrical charging due to incident

solar ultraviolet light which reaches the Martian surface at an intensity approximately equal

to its value in Mars space. Additionally, sand and dust charging could also occur around

electrically powered systems by induced dipole coupling effects with exposed high voltage

surfaces. When such charging occurs, regardless of the mechanism involved, Coulombic

forces result in the sand and dust being attracted and adhering to surfaces, thereby

modifying surface thermal, optical, and dielectric properties. Stationary surfaces will acquire

variable coatings of sand and dust which must be dealt with both in system design, and later,

in situ on the Martian surface. Further, sand and dust transported on roving vehicles,

and/or human explorers moving out of and into controlled volumes could pose a significant

contamination problem.

Wind borne dust may also be subject to electrical charging due to triboelectric

mechanisms. Differential settling of triboelectrically charged dust following major dust

storms may result in significant charge seperation with concomitant electrical breakdowns

between surfaces, or to the Martian ground or atmosphere. Additionally, the presence of

variable levels of sand and dust in the Martian atmosphere may significantly modify

atmospheric electrical properties as seen by systems on the Martian surface. As a gas, the

7 - 9 Torr surface atmosphere is ideal for Paschen electrical breakdown over mm to cm

distances at a few hundred volts, and cm to m distances at a few kilovolts. Atmospheric

dust will certainly modify the breakdown properties of the atmosphere, acting possibly to

seed or suppress breakdown phenomena around high voltage surfaces depending on such

factors as atmospheric dust concentration, dust surface adhesion (or lack thereof), and dust

dielectric properties. Paschen breakdown phenomena have been observed on Earth in

simulated Martian conditions, and are known to result in system power loss and

electromagnetic noise. Transient and sustained electrical discharges in general may sputter

erode surfaces and result in contamination due to transport and redeposition of material.
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The questionwhich is of most interest here is: What happens when you add a system

to an environment and "shake well?" How does one characterize the resulting interaction

and use that knowledge to produce optimal system designs? Some areas for

consideration/development include:

1.)
2.)

3.)
4.)

5.)
6.)

Identifying relevant physical mechanisms/equations

Producing, and (where necessary) experimentally verifying mathematical

models

Understanding user needs and establishing appropriate user interfaces

Establishing appropriate input/output formats

Identifying/performing relevant laboratory/space tests and analyses

Delivering user-friendly software with appropriate interfaces

The Space Environment Effects Branch has worked for almost two decades on the

development of analysis tools and computer software for use in designing systems for the

LEO and GEO plasma environments. This software includes NASCAP/LEO and

NASCAP/GEO (NASCAP = NASA Charging Analysis Program), which model system-

plasma interactions including spacecraft charging, arcs and transient phenomena, anomalous

switching, spacecraft grounding effects, and numerous related issues. Other software

packages (EPSAT, and SSF ENVIRONMENT WORKBENCH) are also under development

which will provide frameworks into which specific environment and system models may

inserted, and interactions predicted. The charter of the Space Environment Effects Branch

is to develop and provide modeling and analysis tools for the interactions between given

environments and given systems, and to conduct whatever experimental and/or flight

activities are necessary to validate those tools. With the advent of the Space Exploration

Initiative, it seems appropriate that interactions models be developed for the moon and

Mars. These models will provide systems engineers with unique, user-friendly tools which

will couple the environmental models currently under development with systems models

either extant or yet to be developed, and to predict the interplay of the two from an

electrical/plasma interactions point of view. This capability will enable the best possible use

of the environmental models for the moon and Mars in the production of optimal system

designs.
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EFFECT OF PRESSURE ON ELECTROSTATIC PROCESSES ON MARS

R. N. LEACH, Arizona State University at NASA-Ames Research

Center, Mail Stop 242-6, Moffett Field, Ca. 91035

Paschen's Law as illustrated by Paschen curves for

various gases (Figure 1) shows that the minimum breakdown

voltage for gases for breakdown distances of interest i.e.

1-1000 mm will be at or near the surface pressure on Mars.

This means that the physics of many electrostatic processes

will be markedly different on Mars than on Earth.

The primary effect will be that voltage potentials

above I00 volts will most certainly be subject to breakdown

in the martian atmosphere. The curves of Figure 1 are the

minimums produced under ideal conditions with smooth, clean

electrodes. Sharp electrodes, dusty atmosphere conditions or

other anomalies will modify the breakdown voltage, usually

causing lower breakdown voltages.

Paschen's curves for most common pure gases have been

experimentrally determined. A very small amount of mixing of

different gases radically changes the curve as shown in the

curve for neon plus 0.1% argon compared to either neon or

argon. Paschen's curve for the exact composition of gases
for Mars has not been determined and thus the breakdown

voltages are not known.

A second important effect is that the breakdown for

most martian cases will be a glow discharge rather than a

spark discharge. It would seem that simple measurements o+

breakdown manner and voltage should be included on a Mars

lander vehicle
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SALTATION THRESHOLD DETECTION IN A WIND TUNNEL BY THE
MEASUREMENT OF THE NET ELECTROSTATIC CHARGE

R.N. Leach, Arizona State University at NASA-Ames Research Center, Mail Stop 241-6,
Moffett Field, CA 91035

MARSWIT (Mars Surface Wind Tunnel) is an open circuit wind tunnel used for aeolian

studies and is located inside a large vacuum chamber allowing testing at martian surface

atmosphere pressure (Greeley et al., 1977). Since direct access is not available to the tunnel during

operation at low pressure a remote method of saltation detection is needed. The bed is observed by

means of closed circuit video, but it is often difficult to determine the initiation of threshold. The

measurement by means of an electrometer of the net electric charge produced by the saltating

particles has provided a reliable means of saltation threshold detection.

Saltating particles become charged several ways, both in wind tunnels and in a natural

environment. The most significant of these methods are tribo-charging and contact charging,

which always occur. Fracture charging may also occur under the high velocities associated with

particle transport on Mars or under simulated martian conditions.

The method of detection used in MARSWJT is by allowing the saltating panicles to impinge

on a planar conducting surface normal to the flow that is connected to ground through a Keithly

Electrometer. The signal from the electrometer is connected to a strip chart recorder along with the

analog signal from the pitot tube transducer that is used to determine the wind velocity in the

tunnel. Thus a record of wind velocity and the initiation of particle saltation is conveniently

displayed together.

While both positive and negative charges are produced during saltation this method measures

only the net charge and thus may be either positive or negative depending upon the particles being

tested, the size and size distribution of the test material and the wind velocity.

This has proved to be a very trustworthy and sensitive method of saltation threshold

detection, being especially useful with the smaller sized particles which are the most difficult to

observe visually.

References: Greeley, R. et al. 1977. NASA TM 78423, 2a p.
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SALTATION THRESHOLD REDUCTION DUE TO THE ELECTROSTATIC
AGGLOMERATION OF FINE PARTICLES

R.N. Leach and R. Greeley, Department of Geology, Arizona State University, Tempe, AZ
85287-1404

Particles between 80 and 110 microns in diameter are the most easily moved by the wind. As

the particle size decreases below 60 microns they are increasingly more difficult to move by surface

winds and a number of experiments have been performed in an attempt to reduce the required wind

velocity. These include (1) the bombardment of a bed of fine particles by particles near the

optimum size, the larger particles kicking the fine particles into the windstream where they are

entrained and (2) the electrostatic agglomeration of fine particles into sizes more easily saltated.

Particles have been formed into large agglomerates (up to 700 microns in diameter)

electrostatically in an erosion devise that moves the particles at high speed in a low pressure

environment by means of a rapidly spinning paddle wheel. It has required relatively long times to

form such agglomerates, 10 to 20 minutes. Once formed these agglomerates will last for months,

and if physically broken apart will readily re-form. These long-lasting agglomerates are more

easily moved by the wind than the fines from which they are formed, but these agglomerates have

not yet been produced in a wind tunnel probably due to the short duration of particle interaction

time in the wind tunnel. If another method of agglomeration is verified, such as their formation in

the atmosphere after a dust storm, this may be a valid process for the entrainment of fines at low to

moderate windspeeds.

What has been observed in the wind tunnel is that fine particles cling electrostatically to

larger, more easily moved particles, and thus are carried along when optimum sized particles are

moved by the wind. This process would enhance the number of fine particles, removed from a

bed of fines by method (1) above, but would not necessarily cause such fine particles to be

entrained into the atmosphere unless some mechanism is discovered to remove the fines from the

larger particles. In fact, it may be causing a reduction of the number of fines entrained in the

atmosphere as they are electrostatically captured by the impinging larger particles.
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THE EFFECTS OF ATMOSPHERIC DUST ON OBSERVATIONS OF

MARTIAN SURFACE ALBEDO; S.W. Lee and R.T. Clancy, Laboratory for Atmospheric
and Space Physics, Univ. Colorado, Boulder, CO 80309

The Mariner 9 and Viking missions provided abundant evidence that aeo'_,ian processes z;'_
active over much of the surface of Mars [1; 2]. Past studies have demonsuated that variations in

regional albedo and wind streak patterns are indicative of sediment transport through a region [?;
4], while thermal inertia data [derived from the Viking Infrared Thermal Mapper _RTM) data set]
are indicative of the degree of surface mantling by dust deposits [5; 6; 7; 8; 91. The visual ane
thermal data are therefore diagnostic of whether net erosion or deposition cf dust-store, failo,,_ _s
taking place currently and whether such processes have been active in a region over the long term.
These previous investigations, however, have not attempted to correct for the effect¢ oi
atmospheric dust loading on observations of the martian surface, so quantitative studies of ctu_enr
sediment transport rates have included large errors due to uncertainty in "_kc magnit:Me cf tt_:"
"atmospheric contamination".

We have developed a radiative transfer model which allows the effL_._t_ t, 1";:_mo',F':c:_,.: ,u
loading and variable surface albedo to be investigated [see related abstract, !(1] This model

incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of
atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewiag

geometry.
The Cerberus albedo feature has been examined in detail using this technique. Previous

studies have shown the Cerberus region to have a moderately time-variable albedo [4]. IRTM
observations obtained at ten different times (spanning one full martian year) have been corrected
for the contribution of atmospheric dust in the following manner:

• A "slice" across the IRTM visual brightness observations was taken for each time step.
Values within this area were binned to 1o latitude, longitude resolution.

• The atmospheric opacity (x) for each time was estimated from [11]. As ",.hevalue of ":
strongly influences the radiative transfer modelling results, spatial and temporal
variability of x was included to generate an error estimate.

• The radiative transfer model was applied, including dust and surface phase functLor,,:,
viewing and lighting geometry of the actual observations, and the range of 't [ l 0].

• Offsets were applied to the visual brightness observations to match the model results at
each x.

• The "true surface aibedo" was determined by applying the radiative transfer model to
the offset brightness values, assuming x = 0 and a fixed geometry. (0 ° incidence, 30 °
emission). Repetition of this technique for each time step allows values of albedo for
specific locations to be tracked as a function of time (Figure 1).

The initial results for Cerberus indicate the region darkens prior to the major 1977 dust
storms, consistent with erosion of dust from the surface (possibly contributing to the increasing
atmospheric dust load). There is some indication of regional brightening during the dust storms
followed by a general darkening, consistent with enhanced dust deposition during the storms
followed by erosion of the added dust. There is only minor variability during the second year,
consistent with little regional dust transport during that period.

The results of this study indicate that atmospheric dust loading has a significant effect on
observations of surface albedo, amounting to albedo corrections of as much as several tens of
percent. This correction is not constant or linear, but depends upon surface albedo, viewing and
lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear
that the quantitative study of surface albedo, especially where small variations in observed albedo
are important (such as photometric analyses), needs to account for the effects of atmospheric dust
loading. Our future work will expand this study to other regional albedo features on Mars.

This research was supported under NASA Planetary Geology grant NAGW 1378.
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MARTIAN SURFACE MATERIALS

H. J. Moore, U.S. Geol. Survey, Menlo Park, CA, 94025

Our knowledge of the physical properties of the surface materials on Mars

is very limited. I. No experiments aboard the Viking Landers were designed to

measure physical properties. 2. Orbital and Earth-based remote sensing

observations have measurement uncertainties, model dependent interpretations,

and different sensitivity scales and depths; large areas are sampled so that

the physical properties of a number of components are integrated. 3. Some

materials have not been properly sampled or not sampled at all. 4. Relevant

laboratory data are incomplete. 5. Natural materials have variable physical

properties that may not be separable with the available data. Despite these

shortcomings, a semlquantitative appreciation for the physical proFerties of

the surface materials and their global variations can be gained from the

lander and remote sensing observations.

Analyses of Lander data yield estimates of the mechanical properties of

the soillike surface materials [1,2] and "best guess" estimates carl be made

for the remote sensing signatures of the soillike materials at the landing

sites [2,3]. Two soillike materials (blocky and crusty to cloddy) at the

landing sites appear to be strong and compatible with natural soils, but the

third (drift) presents a problem because it appears to be weak and unlike most

natural soils. Footpad 3 of Lander I penetrated blocky material a few

centimeters upon landing at about 2.4 m/s but footpad 2 penetrated 16.5 cm

into drift material. It is unclear whether drift material, a strong substrate

of blocky material, or buried rocks arrested the penetration of footpad 2

[2]. The friction angle for drift material (18!2.4°), estimated from the

limits of surface deformation in front the sampler for trenches in drift

material [1,2], is compatibl_ with lunar regollth simulants [4] that have bulk

densities about 800-900 kg/m J, but the estimated cohesions (|.6±1.2 kPa;

range: 0-3.7) are typically much larger. It is possible that the friction

angle has been underestimated [5] and the cohesions overestimated. Smaller

cohesions would be consistent with the lumpy appearance of the materials in

the tailings of trenches, natural slope failures, and the stabilities of

trench walls in trenches of drift material [2]. The friction angles and

cohesions of the lunar regolith slmulants are direct functions of the bulk

densities [4]. If drift material is like the lunar regolith simulant. I

friction qngle about 27 ° , a cohesion about 40 Pa, and a bulk density abcut

1100 kg/m J is possible. This bulk density is the same as that of dlst_2rbed

drift material [61. Friction angles and cohesions between the extremes are

possible, but drift material remains relatively weak.

Drift material is fine grained [7] and powderlike [2]; it has a low hulk

density. Thus, the thermal inertia should be low and range from I to 3 X
10 cgs units [8,9,10,2,3}. This range of thermal inertlas is comparable to

those reported from orbital observations for vast regions on Mars such as

Tharsis [11,12]. Powders and very porous rocks with bulk densities thst range

from 800 to II00 kg/m _ should have relative dielectric constants that range

from about 1.8 to 2.2 [131. Normal reflectivitles of quasl-specular radar

echoes from the Tharsls region I14,15,16] suggest relative dielectric

constants in this range. Color reflectances vary but they are like telescopic

bright areas [17,18]. Thus, significant thicknesses of powderlike surface

materials with physical properties similar to drift material are present on

Mars and probably pervasive in the Tharsis region.
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Crusty to cloddy mater_al is fine grained [19], reasonably strong, and
moderately dense (1400 kg/mJ) with estimated friction angles of 34.5±4.7°
[1,21. These friction angles are compatible with those of natural dry loess
[20] and lunar regolith slmulants [4] with moderate bulk densities. Cohesions
(1.1±0.8 kPa; range: 0-3.2) are less than those of the loess, but larger than
those of the lunar regollth simulants. Upondisruption, crusty to cloddy
material breaks into thin crusts and prismatic clods, suggesting that the
material is cemented. The effect of cementation on thermal Inertias is not
understood, but cementation should increase thermal inertlas [2_]. The
thermal inertia has been estimated to be about 5.6 to 6.3 X I0 cgs units
[2,3], using Orbiter thermal [22] and Lander data and theory [23]. These
Inertias are near the principal modal values for the bulk and fine component
thermal inertias determined from Orbiter thermal data [11,12]. The relative
dielectric constant of this material should be about 2.8 [3] and comparable to
the 3.0 inferred from average normal reflectivities of quasl-specular radar
echoes from Mars [14]. Although color reflectances vary, they resemble
telescopic bright regions [17,18]. Thus, it appears likely that soillike
materials similar to crusty to cloddy material are typical for Mars.

Blocky material is also strong, cemented, and possibly moderately
dense. Upondisruption, it forms centlmeter-size clods that are more coherent
than those of crusty to cloddy material [2]. The friction angles (30.8±2.4 ° )
are comparable to natural dry loess [201. Cohesions (5.1±2.7 kPa; range: 2.2-
10.6) are typically smaller than those of the loess ( > I0 kPa) but larger than
those of the lunar regolith simulants (40-100 Pa) for the samefriction
angles. The thermal inertia has been estimated to be about 8.2 to 9.3 X
10 cgs units [2,3]. The relative dielectric constant should be about 3.3
[3]. Color reflectances are similar to drift material [171. Thus, it appears
likely that soillike materials similar to blocky material are commonon Mars.

Surface and near-surface rocks are probably abundant. About 19%of the
surface at the Lander 2 site is covered by rocks (>0.04 m) [3]. Assumlqg
that entire rock populations have effective thermal inertias of 30 X I0-Jcgs
units, 20±10%and 15±5%of the Lander 2 and ! sites, respectively, are covered
by rocks; the modal coverage is 6%and the range from I to 30%[24]. 12.6-cm
depolarized echoes imply considerable variations in areal coverage by
wavelength-size (0.08-0.76 m) rocks and similar roughness elements at and near
the surface [13,14,25]; globally, the smallest area covered by rocks is about
3%, the greatest about 76%, and commonlyabout 4%[25]. Rocks on the surface
were never sampled by the landers [2], but they should be llke terrestrial
rocks with friction angles about 60°- cohesions measuring in MPa, thermal
Inertias ranging from 30 to 60 X 10-3 cgs units (depending chiefly on their
size), and relative dielectric constants ranging from about 8 to 9 [13].
Color reflectances of rock surfaces vary: someresemble telescopic dark
regions and unoxidized basaltic andesite coated with about 30_m of
palagonite, others telescopic bright regions and palagonite, and still others
local "soils" [17,18]. Rare rock fragments resemble maflc rocks [26].

The physical properties of martian surface materials vary with
location. Successful interpretations of these properties will require the
combineduse of as muchavailable information as possible such as lander,
thermal inertia, radar, albedo-color, and, especially, high-resolution imaging
data on Mars.
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MAGNETIC AND ELECTRICAL PROPERTIES OF MARTIAN PARTICLES

G. R. Olhoeft, U.S. Geological Survey, POB 25046 DFC MS964, Denver, CO 80225-0046

The only determinations of the magnetic properties of Martian materials come from
experiments on the two Viking landers (Hargraves et al., 1977, 1979). The results suggest
Martian soil containing 1 to 10% of a highly magnetic phase. Though the magnetic phase
mineral has not been conclusively identified, the predominate interpretation is that the magnetic
phase is probably maghemite (Hargraves et al., 1977, 1979; Moskowitz and Hargraves, 1982; Bell
et al., 1990; Coey et al., 1990, Morris et al., 1990).

The electrical properties of the surface of Mars have only been measured remotely by
observations with earth based radar (selected references: Tyler et al., 1976; Simpson et al., 1978;
Pettengill, 1978; Mouginis-Mark et al., 1980; Roth et al., 1985; Harmon, 1989; Moore et al.,
1987; Moore and Jakosky, 1989; Thompson, 1989), microwave radiometry (Cuzzi and
Muhleman, 1972; Epstein et al., 1983; Kuz'min and Losovskii, 1984), and inference from radio-
occultation of Mars orbiting spacecraft (Tang et al., 1977; Lindal et al., 1979; Simpson et al.,
1981, 1984). Such determinations are consistent with the electrical properties of lunar materials
(Olhoeft, 1990) and of dry or frozen terrestrial silicates (Olhoeft and Strangway, 1974; Olhoeft,
1978). Such materials have relative dielectric permittivity that is given by k' = 1.93 d, where d
is the dry bulk density in g/cm 3 (Olhoeft and Strangway, 1975), and the permittivity is
independent of frequency. Beyond this, little is known for certain -- no direct measurements
of electrical properties on Martian materials have been performed.

The volume electrical conductivity of such materials should be in the range of excellent
insulators, roughly 10 -9 to 10-14 Mhos/m. Such low electrical conductivity means the particles
will have very low electromagnetic losses, with the principle attenuation due to surface and
volume scattering mechanisms -- this means radiowaves will penetrate through Martian dust and
soil for great distances. However, in the absence of water, such highly insulating surface
materials will also result in problems for the grounding of electrical power systems and the
creation of radio antenna ground planes for communication and navigation.

Further, such highly insulating particles may exhibit high surface electrostating charging
and/or photoconduction effects as observed in lunar samples (Alvarez, 1975). The Apollo
astronauts reported and drew pictures of "streamers" and corona/zodiacal light extending several
kilometers above the lunar surface while approaching orbital sunrise. These are best explained
as electrostatic levitation of soil particles (see further discussion and references in Olhoeft,
1990). The Apollo 17 LEAM (Lunar Ejector and Meteorites) experiment (Berg et al., 1973)
found increased particle counts during passage of the terminator and:

"...all of the events recorded by the sensors during the terminator passages are essentially
surface microparticles carrying a high electrostatic charge." "The particle event rate increases
whenever the terminator passes over the instrument. This increase starts some 40 hours before
sunrise and ends about 30 hours after it." (Rhee et al., 1977).

As the electrical conductivity is lowest during lunar night, the soil will have the highest
electrostatic chargeability at night. It is possible that night-time activities which disturb the
soil, will create dust that will thickly coat surfaces during the night. Upon sunrise, the resultant
photo-induced increase in electrical conductivity will cause most of the coatings to discharge
and slough off, leaving only a thin residual coating behind. During night, the low conductivity
of the soil will also create significant electrical charging hazards between mobile objects on the
surface -- producing the well known winter-time "spark" electrical discharge when the charged
objects meet.

Similar electrostatic charging and coating effects may be found on the surface of Mars,
though no experiments have been performed or are planned to look for such effects. These
effects may be exacerbated by wind blown particle movement (which fosters charge separation
and accumulation, resulting in lightning discharges during terrestrial desert sandstorms) or
mitigated by the presence of water (Carr, 1986; Squyres, 1989) and millibar atmospheric
pressure (which tends to produce electrostatic glow discharge instead of spark discharge). The
effects of electrostatic charging and discharge on electronic equipment may also be a problem,
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and are determined by the type of metal being charged, atmospheric pressure and composition,

aerosol dust type and composition, incident radiation fields, and frequency. Some general
reading on the effects of electrostatic charging and electrical properlies of dust may be

found in: Cox and Pearce, 1948; Brown, 1966; Whitby and Liu, 1966; Withers, 1979; John, 1980;

Kunhardt and Luessen, 1983; Yeh et al., 1983).

The electrical properties of individual sand and dust particles will be dominantly those

of silicate insulators. However, surface coatings on particles are possible where the activity of

water has caused chemical alteration (such as clay or zeolite mineralization), desiccation (leaving
behind salt), or frost. Little is known about the occurrence of such coatings, their electrical

properties, or how they might modify the electrical properties of the particle substrate. In the

absence of photoconductive effects, small quantities of moisture could dramatically alter the

electrical behavior of Martian soil particles.
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REFLECTANCE SPECTROSCOPY OF PALAGONITE AND IRON-RICH MONTMORILLONITE

CLAY MIXTURES: IMPLICATIONS FOR THE SURFACE COMPOSITION OF MARS

J.B. Orenberg and J.Handy, San Francisco State University, San Francisco,

CA. 94132

Because of the power of remote sensing reflectance spectroscopy in

determining mineralogy, it has been used as the major method of identifying

possible mineral analogs of the martian surface. A summary of proposed mar-

tian surface compositions from reflectance spectroscopy before 1979 was

presented by Singer et al. (1979, 1985). Since that time, iron-rich montmo-

rillonite clay (Banin and Rishpon,1979; Banin et al., 1988), nanocrystalline

or nanophase hematite (Morris et ai.,1989), and palagonite (Evans and Adams,

1979; Allen et al., 1981; and Singer, 1982) have been suggested as Mars soil

analog materials.

Palagonite in petrological terms is best described, perhaps, as an amor-

phous, hydrated, ferric iron, silica gel. Montmorillonite is a member of the

smectite clay group and its structure is characterized by an octahedral

sheet in coordination with two tetrahedral sheets in which oxygen atoms are

shared. The crystallinity of montmorillonite is well defined in contrast to

palagonite where it is considered amorphous or poorly crystalline at best.

Because of the absence of the diagnostic, strong 2.2 #m reflectance band

characteristic of clays in the near infrared (NIR) spectrum of Mars and pala-

gonite, and based upon a consideration of wide wavelength coverage (0.3-50

_m), Roush et al. (1989) concluded that palagonite is a more likely Mars sur-

face analog. In spite of the spectral agreement of palagonite and the Mars

reflectance spectrum in the 2.2 _m region, palagonite shows poor correspon-

dence with the results of the Viking LR experiment (Banin et al., 1983, 1988).

In contrast, iron-rich montmorillonite clays show relatively good agreement

with the results of the Viking LR experiment (Banin et al., 1979, 1983, 1988).

This spectral study was undertaken to evaluate the spectral properties of

mixtures of palagonite and Mars analog iron-rich montmorillonite clay (16-18

wt % Fe as Fe2Oa) as a Mars surface mineralogical model. Mixtures of miner-

als as Mars surface analog materials have been studied before (Singer, 1982;

Singer et al., 1985), but the mixtures were restricted to crystalline clays

and iron oxides

Reflectance spectra from 0.3 to 2.5 _m were recorded on a Perkin Elmer

Lambda 9 spectrophotometer (Norwalk, CT) using a Labsphere DRTA-gA Diffuse

Reflectance and Transmittance Accessory (North Sutton, NH). Reflectance data

presented below thus represent hemispherical reflectance. The spectral

bandpass was set between 1/5 and I/I0 of the widths at half height of the

spectral features of interest by setting the slits to 2.0 nm in the UV/VIS.

This allowed for a constant spectral resolution (+10%) in the UV/VIS. In the

NIR , an automatic slit program was used to maintain a constant energy level

during spectral scanning (120 nm/min).

Mixtures (% by wt) of palagonite with the iron-rich Mars analog montmo-

rillonite (15.8 + 0.8 wt % Fe as Fe203 - a full Mars iron analog) are shown in

the figures. In the very important 2.2 _m region, the band due to clay lattice

structure becomes noticeable in mixtures at the I0 - 20 wt % Fe-montmoril-

lonite level. In order to evaluate this observation more quantitatively, a

rigorous band depth analysis was carried out (Clark and Roush, 1984). The

results indicated that band depth at 2.2 #m is insensitive to the presence of

up to 15 w t % Fe-montmorillonte. Above these concentrations, there is an in-

crease in band depth with increasing wt % Fe-montmorillonite (decreasing

palagonite) which is attributable to the 2.20 #m absorption feature charac-

teristic of smectite clays. If one accepts the premise that palagonite is a
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"good" spectral analog of the Mars surface material, up to 15 wt % of Fe-

montmorillonite can be present on the surface of Mars and remain undetected.

In spite of the fact that the most recent telescopic observations of Mars do

not show evidence of a 2.20 #m band (Clark et al., 1990), the absence of the

2.20 #m band cannot be used to eliminate less than 15 wt % iron enriched

montmorillonite. The conclusion follows that a Mars analog, iron rich, mont-

morillonite clay can be present on the surface of Mars as a major component

(up to 15wt % ) of the Mars soil even if the 2.20 _m band is absent from rem-

otely sensed spectra.
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uenin, R.L. 1979. J. Geophys Res., 84, 8415-8426;[2]Singer, R.B. 1982. J. Ceo-
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Coyne, L.M., Orenberg, J.B., and Scattergood, T.W. 1988. XIX Lunar and Plane-
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THERMAL AND ALBEDO MAPPING OF TttE NORTH AND SOUTH POLAR

REGIONS OF MARS; D. A. Paige and K. D. Keegan, Dept. of Earth and Space ScierJces: 1.'CI, A,

Los Angeles, CA 90024.

Here we present the first maps of the thermal properties of the north and south polar region of

Mars. The thermal properties of the midlatitude regions from -60 ° to +60 ° latitude have been mapped

in previous studies 1. The maps presented here complete the mapping of the entire planet.

The maps for the north polar region were derived from Viking Infrared Thermal Mapper (IRTM)

observations obtained between June 10, 1978 to Sept. 30, 1978 (Ls = 98.39 to 121.25, Julian Date =

2443670 to 2443720). This period corresponded to the early summer season in the north, when the north

residual water ice cap was exposed, and polar surface temperatures were near their maximum. The maps

in the south were derived from observations obtained between Aug. 24, 1977 to Sept. 23, 1977 (Ls

= 321.58 to 338.07, Julian Date=2443380 to 2443410). This period corresponded to the late summer

season in the south, when the seasonal polar cap had retreated to close to its residual configuration, awl

the second global dust storm of 1977 had largely subsided. Best fit thermal inertias were determined

by comparing the available IRTM 20/t channel brightness within a given region to surface temperatures

computed by a diurnal and seasonal thermal model. The model assumed no atmospheric contributions to

the surface heat balance. Standard deviations of the model fits were typically less than 3K. Figures lab

and 2ab show the resulting maps of apparent thermal inertia and average IRTM measured solar channel

lambert albedo for the north and south polar regions from the poles to -t-600 latitude.

Thus far, the major results of this work can be summarized as follows:

• Surface Water Ice: High albedo, high thermal inertia water ice deposits are widespread within the

north residual cap, and in outlying deposits at latitudes as low as +74 ° . The diurnal thermal inertias

derived here are consistent with seasonal thermal inertias derived from measurements of the polar heat

balance 2, which implies that these deposits are dense and coherent from the surface to great depths.

No surface water ice appears to be present in the southern hemisphere.

• Polar Dune Material: In the north, regions containing low albedo polar dune material can not be

distinguished from the surrounding polar planes units solely on the basis of thermal inertia. Regions

covered by dunes generally have intermediate thermal inertias, which is consistent with transportation

by the martian atmosphere under current climatic conditions. The inertias of the polar dune materials

are distinctly lower than the low albedo material that extends northward from the Acidalia region at

450 longitude. Large regions of exposed sand and rock are not present in the south polar region.

• Dust Deposits: The south polar region appears to be the site of a major new low thermal inertia region.

The apparent inertias near the south pole are similar to those in the Tharsis and Arabia regions in

the northern hemisphere, and are consistend with the presence of a dust layer that extends a depth

of at least one diurnal thermal skin depth. The unique location of this deposit may provide clues to

the processes responsible for tile formation of tile northern hemisphere low thermal inertia regions arid

the layered deposits at both poles. In sharp contrast to the south, there are no extensive regions of

contiguous exposed low thermal inertia materials in the north polar region. If the north polar region

is presently a major sink for material raised during global dust storms, then this material must be

incorporated into the residual water ice deposits.

1. Palluconi, F. D. and tI. H. Kieffer, Icarus 45,415 (1981).

2. Paige, D. A. and A. P. Ingersoll, Science 228, 1160 (1985).
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DERIVATION OF MID-INFRARED (5-25vm) OPTICAL CONSTANTS OF SOME SIL-

ICATES AND PALAGONITE

T.L. Roush !,2, J.B. Pollack a, and J.B. Orenberg l, ISan Francisco State University,

2NASA Ames Research Center

Recent reports concerning the mid-infrared reflectance properties of silicates [1,2,3]

coupled with recent observations of the Earth [4] and other planets [5,6,7,8,9,10] in the

mid-infrared and the planned Thermal Emission Spectrometer scheduled as an instrument

to be included on the Mars Observer all illustrate the increasing interest in the optical

properties of materials in the mid-infrared and their direct application to remote sensing

observations of other planetary surfaces. As the laboratory and observational data increase

they will ultimately be modeled to aid in the understanding of the composition mineralogy,

and distribution of the surface and atmospheric constituents on these bodies.

In order to facilitate such quantitative analyses, knowledge regarding the optical con-

stants (real (n) and imaginary (k) indicies of refraction) of a wide variety of pertinent

materials is required. Examples of the application of such quantitative analyses to the

interpretation of martian surface and atmospheric constituents, based on the optical con-

stants of minerals, are presented in [8,11,12].

Optical constants can be readily derived from polished surfaces of cohesive materi-

als using standard goological thin sectioning and polishing techniques. The mid-infrared

optical constants of only a few specific silicate minerals are available in the literature

[12,13,14,15]. Additionally, optical constants have been determined for a number of spe-

cific rock types including silicates [14,16] and limestone [17]. Recently optical constants

for palagonite, typically a poorly characterized mineralogical assemblage resulting from

the alteration of basaltic glass, were presented for a limited wavelength range [18].

This study was initially conceived in order to aid in the interpretation of martian

surface and atmospheric aerosol mineralogy. As a result, the minerals included are biased

toward samples which represent hydrated and hydroxylated silicates. These include: 1)the

A1 and Mg end members of the 1:1 layer lattice silicates, kaolinite and serpentine, respec-

tively; 2)an Al-bearing 2:1 layer lattice silicate, pyrophyllite; 3)the Mg and AI smectite

clays saponite and montmorillonite, respectively; and 4)a palagonite, typically a poorly

characterized alteration product of basaltic glass. Due to their physical particle size clays

and other materials, such as palagonite, can not be prepared using typical preparation

techniques. Yet in some cases, such as for Mars, these are the materials of perhaps the

greatest interest. In order to obtain a suitable sample of these tess cohesive materials for

the laboratory measurements a KBr pellet die was used and a pellet of the pure sample

was prepared. The powders were previously separated by dry sieving and roughly 200 mg

of the finest grain size fraction (_<38#m) placed in the KBr die. The die was placed in a

hydraulic press and the pressure increased to a maximum of roughly 0..5 to 7 Kbars on the

12mm die. depending upon the sample, and held at that pressure for five minutes. For all

clays and the palagonite this produced a pellet with highly reflective surfaces at visible

wavelengths.
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The reflectivities of all samples were determined by placing them at the focus of a

near-normal reflectance attachment located in a Fourier transform spectrometer. The data

from each sample was ratioed to the data obtained from a first surface aluminum mirror

which was conservatively assumed to have a reflectance of 0.96 at all wavelengths. Data

were collated from 4000 to 400 cm -I (2.5-25t, rn) with a constant spectral resolution of

4 cm -l however, due to an increase in multiple scattering optical constants were derived

only in the 2000-400 cm -l (5.0-2.5/Jm) region.

To derive the optical constants of a material as a function of wavelength we used the

cormnonly employed technique of dispersion analysis [13,14,15,16,17,19] which describes

n and k as the contributions due to a sum of classical oscillators and relates them via

Fresnel's equations for non-normal incidence, to the measured near-normal reflectivity.

Non-linear least squares techniques was used to minimize, the differences between the

observed and calculated reflectivities. In our analyses we varied both the total number of

oscillators and the high frequency dielectric constant (-z_) to most accurately describe the

measured reflectances. The final values determined represent averages of several model

fits to each data set using the same number of oscillators but varying g_. In all cases

we required oscillator central wavelengths to fall within the range of our observations.

and the oscillator strengths and widths to be non-negative. The kaolinite and serpentine

data were fit with 15 and 10 oscillators, respectively, while the pyrophyllite data required

17 oscillators. The saponite data needed 8 oscillators and the montmorilionite data 15

oscillators. The palagonite data were described by 7 oscillators. For those minerals which

contain abundant water, the smectites and palagonite, we were able to include an oscillator

for the _6.2.5/,m H-O-H bending mode.

Overall we found our results were extremely consistent with values previously deter-

mined for similar materials [12,15,18] but some discrepancies remain. These discrepancies

may be due to differences in analysis techniques, in one study [12] only qualitative as-

sessment of a best fit criteria was used, in another [18] transmission measurements were

used along with the assumption that the real index of refraction was constant, and in

another study [15] additional measurements at longer wavelengths were included. The

discrepancies may also arise from differences in sample composition between the various

studies.

References: [1]Salisbury et al., USGS Open-File Report 87-263, 1987; [2]Salisbury & Wal-

ter, JGR, 94, 9192, 1989; [3]Walter & Salisbury, JGR, 94, 9203, 1989; [4]Bartholomew

et al., J. Remote Sens., 10, 529, 1989; [5]Potter & Morgan, Proc. lYh Lunar Planet.

Sci., 703, 1981; [6]Tyter et al., GRL, 1,5, 808, 1988; [7]Roush et al.. Lunar Planet. Sci.

Conf. XX, 928, 1989; [8]Pollack et al., JGR, 95, 14,595, 1990; [9]Lucey et al., Bull. Am.

Astron. Soc., 21, 970, 1989; [10]Roush et al., .submitted to Lunar Planet. Sci. XXII.

1991; [11] Aronson & Emslie JGR, 80, 4925, 1975; [12]Toon et at., Icarus, 30, 663, 1977:

[13]Spitzer & Kleinman, Phys. Rev.. 121, 1324, 1961; [14]Aronson & Strong, Appl. Opt..

14, 2914, 1975; [15]Mooney & Knacke, Icarus, 64, 493, 1985; [16]Pollack et al.. Icarus.

19, 372, 1973: [17]Querry et al., Appl. Opt., 17, 353. 1978; [18]Crisp & Bartholomew.

Lunar Planet. Sci. XX, 201, 1989; [19]Toon et al., JGR, 81, 5733, 1976;
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ELECTROSTATIC FIELDS IN A DUSTY MARTIAN ENVIRONMENT

D.D. Sentman, Institute of Geophysics and Planetary Physics, University of California, Los

Angeles, CA 90024

While there have been several studies suggesting the possibility of electrical activity on

Mars, to date there have been no measurements to search for evidence of such activity. In

the absence of widespread water clouds and convective storm systems similar to those on the

earth and Jupiter, the most likely candidate for the creation of electrostatic charges and fields

is triboelectric charging of dust, i.e., the friction between blown dust and the ground, and of

dust particles with each other. Terrestrial experience demonstrates that electric fields 5-15 kV-

m q are not uncommon in dust storms and dust devils in desert regions, where the polarity

varies according to the chemical composition and grain size. Other familiar examples of dusty

environments where this charge-separation mechanism operates, sometimes with lethal effect, are

in grain elevators where grain-dust explosions occasionally occur, coal mines, factories where

metal dust is prevalent, e.g. ammunition factories, and in volcano plumes. Martian dust storms

seem unlikely to produce such extreme conditions as these, but simple laboratory experiments

have demonstrated that modest electrostatic fields of roughly 5,000 V-m q may be produced,

along with electrical spark discharges and glow discharges, in a simulation of a dusty, turbulent

Martian surface environment. While the Viking landers operated for several years with no

apparent deleterious effects from electrostatic charging, this may have been at least partly due

to good engineering design utilizing pre-1976 electronic circuitry to minimize the possibility

of differential charging among the various system components. However, free roaming rovers,

astronauts, and airborne probes (e.g. balloons) may conceivably encounter an environment where

electrostatic charging is a frequent occurrence, either by way of induction from a static electric

field or friction with the dusty surface and atmosphere. This raises the possibility of spark

discharges or current surges when subsequent contact is made with other pieces of electrical

equipment, and the possibility of damage to modern microelectronic circuitry. Measurements of

electrostatic fields on the surface of Mars could therefore be valuable for assessing this danger.

Electric field measurements could also be useful for detecting natural discharges that originate in

dust storms. This detection could be performed at distances ranging from 10s of km in the case

of J-change-like discharge signatures, to planetary distances if there exists a global electrical

circuit or Schumann resonance spectrum. Measurement of the horizontal electric (telluric) fields

may also yield information concerning the dayside ionospheric convection electric field produced

by the interaction of the solar wind with the Martian atmosphere.
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IMPACT OF MARS SAND ON DUST ON THE DESIGN OF SPACE SUITS AND LIFE
SUPPORT EQUIPMENT - A TECHNOLOGY ASSESSMENT

Charles H. Simonds, Lockheed Life Support Development Laboratory,
Mail Code A-23, 1150 Gemini Ave., Houston, Texas 77058-2742

Space suits and life support equipment will come in intimate contact with Martian soil as
aerosols, wind blown particles and material thrown up by men and equipment on the Martian
surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted
feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing
oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have
photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide.

Bearings and seals - The rotary joints used on state of the art Space Suit Assemblies such as the
Ames AX-5 or the JSC Mark III are ball bearing joints integrated with one or more pressure-
assisted lip seals. Both lubricated and dry bearing have been developed and either approach must
be considered in any potential Mars walking suit. These bearings and seals will have to be
protected with a dust restraining seal on both the inside and outside of the suit. The inside seal is
to prevent grit introduced during servicing from getting into the bearings. Designing these dust
inhibiting seals will be a design challenge because the total mass of the space suit must be strictly
controlled to remain within a human's carrying capacity.

Linear actuators, ball screws - Various kinds of linear actuators and ball screws are likely on Mars
equipment. Like the space suit bearings they must be designed so that any adhering dust is kept
away from any close tolerance meshing surfaces. The magnetic attraction of the soil will also be
considered in designing any device to wipe the soil off the meshing surfaces. Standard terrestrial
aircraft practice could provide a point of departure for such designs or the machine-tool practice of
covering linear actuators with elastomeric bellows could be followed.

Gas inlets to compressors or other devices - A wide variety of indigenous resource utilization
schemes using the Mars atmosphere have been proposed. A common feature of this equipment is a
mechanical or chemical compressor drawing in large volumes of the Mars atmosphere. Certainly
gas inlets will have to have dust filters just as they would on Earth. Designing such filters will not
be a major challenge.

Heat exchangers rejecting heat to the Martian atmosphere - The fine passages of compact heat
exchangers must be protected from a build up of dust and grit. The design of the filters for this
purpose will be more of a challenge than for the compressor inlets because the heat exchanger flow
rates will be orders or magnitude greater. The filters will have to be very efficient to minimize
pressure drop and unacceptably large power demands. Nonetheless the problem is a relatively
straight forward one.

Pressure seals - Space suits and other equipment will contain numerous pressure seals which are
repeatedly made up and disassembled on the Martian surface during the course of a mission.
These seals inevitably will become contaminated with some soil. Conventional elastomeric seals
such as O-rings are quite tolerant of such contamination unlike knife edge or other metal to metal
seals. The major impact of the dust will be operational rather than on design. Even the most dust
tolerant sealing system will demand that the seals and connections be wiped off each time they are
made up.

Thermal protection garments - Thermal protection on the Martian surface will be quite different
from the Moon during Apollo, because the Mars environment is cold and the atmosphere has a
significant gas thermal conductivity. However, during daylight EVA the convective and radiation
losses from a space suit will be significantly less than the the metabolic and electric heat generated
in the EMU. The design challenge will thus be to keep the astronaut's arms, legs, hands, and feet
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warm while still havinganetheatloss. Becausethecrew'sextremitiesmust bekept warm they
will beheavily insulated.UnlikeduringApollo lunarsurfaceEVA, theincreasein absorbanceof
visible and thermal i-r radiation due to an adhering soil coating will not adverselyaffect
performance.Insulationwill haveto besimilarto thatusedonearthwith numeroussmalltrapped
gasspaces.Despitethe low pressure,the thermalconductivityof the Mars atmosphereis large
enoughthat Multi-Layer Insulationwhich preventsradiativeheattransferwill not beeffective.
However,insulationapproachesusedin theArctic shouldbeeffective.

Optical surfaces,radiators,andhelmets- Optical surfaceswill becomecontaminatedwith dust,
whichwill haveto becarefullyremovedto preventscratching.Shouldradiatorsbeselectedaspart
of theheatrejectionscheme,someprovisionswill haveto bemadeto removeadheringdust. The
dustwill haveto removedcarefully, becausecurrentstate-of-the-artlow-solar-absorbancehigh-
thermali-r emissivity coatingsarea multi-layer laminateof coatedfilms which arenot scratch
resistant.

Materialsconstraintson pressurized volume coming in contact with the soil - The Mars astronauts
will inevitably track soil into the pressurized volume exposing the soil to warm moist air. Some
constituents of the soil are probably hygroscopic and any soil which comes in contact with moist
air at room temperature will yield a salt solution, probably with an acidic pH. Thus any equipment
which comes in contact with soil-contaminated moisture must be corrosion resistant. However

fairly straight forward material control can emphasize use of corrosion resistant alloys possibly at
the sacrifice of some strength, e.g. selection of 6061 aluminum alloy in preferences to the stronger
but less corrosion resistant 7075. If the soil has a high level of chemical activity, as suggested by
the biological experiments on Viking, it may attack some organic materials once it gets inside the
pressurized volume. The impact of that chemical activity is the one aspect of the soil which could
have the most significant impact on space suit and life support equipment design. However, if the
the activity can be modeled as that of a peroxide or superoxide. Thus a series of tests to determine
materials degradation and offgassing upon exposure to solid or liquid peroxides should define the
magnitude of any physical degradation or generation of toxic vapors. Even if traces amounts of
noxious gases should be generated, their significance may be quite small, the concentrations
should be those levels can be evaluated in terms of the Spacecraft Maximum Allowable
Concentration (SMAC) levels, and the performance of traces contaminant removal systems used on
the Shuttle Orbiter or proposed for Space Station Freedom.

Summary - The existing data about the Mars soil suggests that the dust and sand will require
designs analogous to those uses on equipment exposed to salt air and blowing sand and dust. The
major design challenges are in developing high performance radiators which can be cleaned after
each EVA without degradation, designing seals that are readily cleaned and possibly in selecting
materials which will not be degraded by any strong oxidants in the soil.

The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade
off between fine-particle dust filters with low pressure drop that are either physically large and
heavy, like filter "baghouses,", require frequent replacement of filter elements, of low volume high
pressure drop thus power consumption approaches, or washable filters. In the latter, filter
elements are be cleaned with water, as could the outsides of the space suits (properly designed, of
course) in the airlock.

55



N91-27080

SAND AND DUST ISSUES FOR THE MESUR MISSION

P. F. Wercinski and G. S. Hubbard, NASA Ames Research Center

The presence of particles in the Martian atmosphere increases the rate of

erosion of the heat shield during the entry phase of the MESUR mission. Preliminary

analysis has shown that under certain conditions particles will penetrate the bow

shock of the entry vehicle, impact and erode the heat shield, above the anticipated rate

from the ablation process. Knowledge of the distribution, sizes, and composition of

particles suspended in the atmosphere will permit the estimation of the heat shield
recession both for a nominal Mars atmosphere and in dust storm conditions. Some

key interests concerning sand and dust in the atmosphere can be summarized in the

following questions.

1) What is the variation of atmospheric dust distribution for nominal atmospheric
conditions as well as in dust storm conditions as a function of altitude, latitude &

longitude, and season?

2) What level of predictive capability exists i) at present, and ii) with MO, to forecast the
onset of a dust storm?

3) What is the ratio of dust to gas in the atmosphere?
4) What is the distribution of particle sizes?

5) What is the best estimate of the compositional nature of particles in the atmosphere,

i.e. what percentage of the particles are silicate and what fraction is ice? This is

important in estimating the fraction of particles that will impact the heat shield surface.
Knowledge of the composition of the dust particles is also needed to determine the

extent of their sublimation in the shock layer.

On the surface of Mars, sand and dust can effect of the operations and design of

the science instruments (i.e. imaging) and lander subsystems (i.e. solar arrays).
Distribution and deposition of sand and dust on the planet's surface will dictate the

feasibility of using solar arrays as a power source for the lander. Furthermore, the

potential abrasive nature of blowing particles must be understood in order to properly

select suitable materials for lander structure and any components exposed to the
environment. The selection of lander material may also be dictated by corrosive and

chemically active properties of particles at a potential landing site. Some key interests

concerning sand and dust on the surface can be summarized in the following
questions.

1) What factors determine the distribution and deposition of sand and dust on the
surface?

• winds

• local geography (for example, does landing on the leeward side of a mountain, hill,

or just a big rock, greatly effect the distribution of dust either by winds or the presence

of sand and dust sources)

• local geology (lava flows, craters, etc.)

• regions of active sand dunes

• other meteorological factors
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2) What is the current state of knowledge concerning deposition of sand and dust on
surface landers?

• electrostatic properties

• Viking design requirements
• deposition on solar arrays
• abrasion effects of blowing sand on s/c materials (design goal for up 8 earth-years on

surface)

3) How could the Mars wind tunnel at Ames be best used during FY91 for determining
answers to any of the above mentioned questions?
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MARTIAN DUST THRESHOLD MEASUREMENTS - SIMULATIONS UNDER
HEATED SURFACE CONDITIONS

Bruce R. White, Department of Mechanic_fl Engineering, University of California, Davis, CA
95616 and Ronald Greeley and Rodman N. Leach, Geology Department, Arizona State
University, Tempe, AZ 85201

Diurnal changes in solar radiation oil Mars set up a cycle of cooling and heating of the planetary
boundary layer, this effect strongly influences the wind field. The stratification of the air layer is
stable in early morning since the ground is cooler than the air above it. When the ground is heated
and becomes warmer than the air its heat is tr_msferred (by molecular conduction action - no flow at
the ground) to the air above it. The heated parcels of air near the surface will, in effect, increase
the near surface wind speed or increase the aeolian surface stress the wind has upon the surface
when compared to an unheated or cooled surface.

This means that for the same wind speed at a fixed height above the surface, ground-level shear
stress will be greater for the heated surface (unstable case) than an unheated surface. Thus, it is
possible to obtain saltation threshold conditions at lower mean wind speeds when the surface is
heated. Even though the mean wind speed is less when the surface is heated, the surface shear
stress required to initiate particle movement remains the same in both cases.

To investigate this phenomenon, low-density surface dust aeolian threshold measurements
have been made in the MARSWIT wind tunnel located at NASA Ames Research Center, Moffett

Field, California. The MARSWIT is an open circuit wind tunnel that is operated within a large

pressure chamber (4000 m 3) that allows a range in operating pressure from a few millibar to one
atmosphere of pressure (Greeley et al., 1977). The current experiments were carried out with both
heated and unheated surface temperature conditions. The heated surface condition represents or
models diurnal surface heating by radiation from the sun. The unheated surface represents a
neutrally stable condition. The heating of the floor primarily affects the vertical turbulent structure
of the boundary layer. The exact level of heating is unknown under Mars surface conditions;
however, it is expected to produce a maximum temperature difference of 25 K between the surface
and the atmosphere above it. (Hess et al. 1977; Ryan and Henry, 1979).

Limited vertical temperature profiles also were measured under several heating conditions
which enabled a determination of friction speed, u, as a function of freestream speed at a

specified heating condition. Additionally, the surface material temperature was measured with a
thermocouple from which the value of bulk Richardson number was determined.

On Mars, from the Viking Landers, there are no direct data available as to the mean wind speed
and surface temperature when the initial dust movement occurred. However, Arvidson, et al.
(1983) estimate that winds of 25 to 30 m/s would be needed to initiate particle motion of optimum
sized surface material (i.e., about 100 microns in mean diameter). Presumably this would occur at
Mars noon when the temperature difference between the surface and Lander was a maximum. For
the Lander case this corresponds to a bulk Richardson number of about -0.02 at threshold.

The experiments were carried out for two different sized particles, one having a mean diameter
of about 105 microns while the other sample material had a mean diameter of about 11 microns.
Threshold measurements were made under two surface temperature conditions: one where the
surface was not heated (i.e., uniform temperature throughout the boundary layer profile) and the
other where the surface was heated. The amount of surface heating was varied for each experiment
and approximately represents a value of bulk Richardson number from zero to -0.02 which is
believed to be in the range that exist on the surface of Mars near the Viking Lander sites.

The first series of tests examined threshold values of the 100 micron sand material. At 13 mb

surface pressure the unheated surface had a threshold friction speed of 2.93 m/s (and
approximately corresponded to a velocity of 41.4 m/s at a height of 1 meter) while the heated
surface, equivalent bulk Richardson number of -0.02, yielded a threshold friction speed of 2.67
m/s (and approximately corresponded to a velocity of 38.0 m/s at a height of 1 meter). This
change represents an 8.8% decrease in threshold conditions for the heated case. The values of
velocities are well within the threshold range as observed by Arvidson et al., 1983. Figure 1
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presents this data. As the surface was heated the threshold speed decreased. At a value of bulk
Richardson number equal to - 0.02 the threshold friction speed and threshold wind speed appeared
to level-off to a constant value.

This trend also was observed in the MARSWIT experiments involving the 11 micron sized-silt
material. Although we were not able to directly measure extensive numerical values to support this
trend, it was readily observed in the tunnel testing. Note, it is extremely difficult to maintain
constant ambient chamber pressure while continuously increasing the wind flow through the
tunnel. Figure 2 does, however, present the two data points that have been measured to date. The
threshold friction speed at 6.7 mb pressure of the 11 micron dust material was found to be 9.4 m/s
with the unheated surface. When the surface was heated to a value of bulk Richardson number

equal to -0.01, the friction threshold speed was reduced by 18% to a value of 7.7 m/s.
Unfortunately, this is the only ambient chamber pressure (6.7 mb) that the MARSWIT was able to
achieve threshold conditions.

The data results suggest that as the surface is heated the threshold wind speed will decrease.
The amount reduction in threshold wind speed appears to be a function of bulk Richardson number
as well as the mean size of the test material. The smaller sized materials will tend to experience
more of a reduction in threshold wind speed. It is anticipated that for larger size particles there will
be negligible difference between heated and unheated surfaces (larger than 1 mm in diameter) in
values of threshold wind speed.
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DUST IN THE MARS ATMOSPHERE

R. W. Zurek and R. M. Haberle, JPL/Caltech and NASA Ames Research Center

The amount of dust suspended in the Martian atmosphere is highly variable with
location and with time. The opacity of the sky is best known at the two Viking Lander
sites, where the visual, vertical-column optical depth never fell below a value of a few
tenths during the 1 and 1/4 Mars years of observations and yet exceeded 2-3 during two
great dust storms in 1977. Elsewhere on the planet, optical depths have been estimated
from orbiter visible imaging of surface contrasts and from mapping of infrared emission
from the surface and the overlying (dusty) atmosphere. In many cases these opacities (and
thus dust amounts) may be uncertain by as much as a factor of two.

Spacecraft and Earth-based observations have revealed local, regional and planet-
encircling dust storms. Local storms occur most frequently, are relatively short-lived, and

may occur in any season. The larger dust storms are relatively infrequent, are longer-lived,
and tend to originate during southern spring and summer. By no means do they occur in
every Mars year, and when they do occur, there are vast differences in their longevity and
areal coverage. The greatest dust storm observed on Mars began in 1971 before the arrival
of Mariner 9, obscured nearly all of the planet's surface for several months, and raised dust
up above 50 km in altitude.

Such storms have been observed to alter substantially the global fields of atmospheric
temperature, density and wind. General circulation modeling indicates that the rapid
development and the variability of these storms are due to a radiative-dynamic feedback in
which suspended dust absorbs solar radiation, heats the atmosphere and thereby alters

pressure gradients. This,in turn, modifies the winds raising dust into the atmosphere and
redistributing it across the planet.

Viking Lander observations of twilight indicate that the background dust haze is more or
less uniformly mixed with altitude in the lower atmosphere. Observations from spacecraft
indicate that there may be some seasonal variation to the height of these dust hazes, which
sometimes extend above 30 km. (Ice haze layers may occur as high as 80 km.) During
local dust storms, most of the suspended dust comprising the storm is confined below 20
km. During larger dust storms, however, micron-sized dust particles may be mixed to
higher altitudes.

The existing observations do not constrain the composition or the size distribution of the
suspended dust particles very well. Remote sensing observations depend principally upon
the product of the number of particles, the geometric cross-sections (and so particle size
and shape), and the extinction efficiency of the particles (and so the particle composition),
as integrated over the particle size distribution and along the line of sight. While the
observed variation of dust opacity with wavelength constrains these quantities, it does not
often permit the unique determination of the individual properties of the suspended dust.

A size distribution having a cross-section weighted mean particle radius of 2.5 _tm was
deduced from a synthesis of the IR thermal emission spectra observed in the southern
hemisphere by Mariner 9 during the 1971 global dust storm. Although the IR thermal
emission is relatively insensitive to the sub-micron sized particles which tend to dominate
visible opacity, this same size distribution was consistent with modeling of the sky
brightness variation near the sun, as seen through the background haze above the Viking
Lander sites, in the northern hemisphere.
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However, the ratio of infrared opacityinferred from the Viking Orbiter data to the
visibleopacityderivedby directimagingof thesunfrom theViking Landersdiffers by a
factorof two from that predicted using the canonical (Mariner 9) size distribution. Model
fits using smaller particles or particle aggregates have been proposed to resolve this
discrepancy, but remain to be tested fully. Furthermore, model simulations of the
evolution of the size distribution of dust particles suspended during a great dust storm
indicate that considerable spatial and temporal variability in that size distribution should
occur.

Observed thermal IR spectra indicate that dust suspended in the atmosphere is a mixture
dominated by igneous silicates containing mainly SiO2 (> 60%), or by weathering products
such as clay minerals, perhaps with some basalt also present. At visible wavelengths, the
optical depth of the suspended dust tends to be dominated by trace materials; analysis of the
Viking Lander images of sky brightness were consistent spectrally with particles having a
trace (-_1% by volume) of magnetite.

Future missions to Mars can greatly augment the global, seasonal and interannual
observational coverage of dust suspended in the Martian atmosphere. Starting near the end
of 1993, instruments onboard the Mar Observer spacecraft, orbiting Mars in a low, circular
and nearly polar orbit, will map the distribution of atmospheric dust, including its vertical
distribution, globally each day for one and perhaps two Mars years. A combination of IR
thermal emission and broadband visual observations, taken in both limb and on-planet
viewing modes, will be used. Constraints on particle size and bulk composition similar to
those derived from the Mariner 9 and Viking data will be provided, but with systematic
global coverage and higher spatial resolution. The MARS 94 mission will also provide
visual and thermal emission data and, in addition, is likely to acquire solar and stellar
occultation data which can be used to further constrain dust particle properties. Present
plans also include direct collection and optical characterization of suspended dust using the
other platforms (i.e., balloons, penetrators, mini-rovers) to be deployed as part of the
MARS 94 mission.

Monitoring of the sky brightness by surface instruments deployed as part of the
proposed MESUR mission could provide multi-year time series of precise overhead opacity
measurements and of general constraints on the microphysical properties of suspended dust
particles at several locations distributed over the globe, including southern hemisphere,
polar, and high altitude sites, all of which are likely to differ from the two low-lying Viking

Lander sites. Sampling of suspended dust during the entry of the MESUR landers could
also provide more definitive characterizations of the dust particle properties.
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