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I. SUMMARY

The researchactivity thus far has concentrated on looking at available methods for

predicting induced drag, and exploring how planform and non-planar geometries influence

these predictions. Thus far, only methods appficable to incompressible flow have been

investigated; however, since the ultimate goal of this research is to develop design method-

ologies suitable for compressible (transonic) flow, some consideration is being given to more

sophisicated methods. Calculations using llfting-fine theor3", Eppler's modified lifting-line

theory, vortex lattice methods, and panel methods have been made. For each of these

methods the influence of the freely deforming wake has been investigated. In considering

the trade-off between predictive capability and computational intensity, it appears likely

that the most suitable design methodology will be a hybrid method which initially uses

an incompressible flow method to get as close as possible to an optimum design, and then

shifts to an Euler equation solver to account t'or compressibility and to refine the design.

A significant obstacle in designing wings which take advantage of unconventional ge-

ometries for lowering the induced drag is that the gains expected are of the same magnitude

as the accuracy of the methods used to predict them. In add3tion to the errors introduced

by discretization, as well as the inherent difficulties due to the singular behavior at the

tips, a reai question exists with regard to the influence ot" the relaxed wake. Clearly, it is

the effect of the relaxed wake, neglected in classical finear methods, which is responsible

for much oI" the predicted reduction in induced drag for non-conventional wing geometries.

The computed wake shapes obtained by iterating to make the trailing filaments tangent

to the computed local streamlines, however, are not in close agreement with actual wake

shapes. Such non-physical wake shapes may or may not produce predictions which are

in better agreement with the actual induced drag than can be obtained with rigid wake

models. It remains to more fully explore this question.

As the goa] of this research is to provide methods for the design of optima] wing ge-



ometries, the current activity centers on evaluating the suitabifity of available design tools.

Given that the designer of the optima] wing must also consider profile drag, wave drag,

weight, bending moment, and so forth, it is planned to pursue optimal designs using avail-

able methods, and, by assessing the magnitude of the possible errors, determine whether

or not the expected induced drag reductions are real and large enough to justify additional

refinement of induced drag prediction techniques. Toward this end, the immediate direc-

tion of the research is to use available methods to predict the performance of the planar

wings used in the recent wind-tunnel tests at NASA LaRC. In addition to calibrating the

design methods, insight will be gained with regard to the errors which might be expect-

ed. Unfortunately, this effort will not be conclusive due to the difficulty in predicting the

contribution of the wing/body juncture. In any case, if the predictions are in reasonable

agreement with the experimental results, the design of the wind-tunnel experiment to ex-

plore the potential benefits of non-planar wing geometries will be undertaken. As a direct

comparison between a planar and a non-planar wing is not possible, it is planned to design

an optimum planar and an optimum non-planar wing for the same mission requirements.

In this way, it is hoped that a definitive answer wi].] be obtained to the question of whether

or not any significant benefits can be achieved with non-planar wing geometries.

If the low-speed results are promising, the research will next consider compressibility

effects. While it is not expected that compressibifity will directly influence the induced

drag results, it may do so indirectly, as do Reynolds number effects. For example, the

amount of area increase that can be used for a non-planar geometry before a reduction in

induced drag is offset by increased drag due to additional wetted area is strongly dependent

on the profile drag. If compressibility causes the profile drag to increase due to wave drag

or the loss of laminar flow, then the amount of area increase that can be tolerated will be

reduced.

2



II. INTRODUCTION

Improvement in the aerodynamicefficiency of commercial transport aircraft will re-

duce fuel usagewith subsequentreducedcost, both monetary and environmental. To this

end, the current researchis aimedat reducing the overall drag of these aircraft, with spe-

cific emphasison reducing the drag generatedby the lifting surfaces. The ultimate goal of

this program is to create a wing design methodology which will optimize the geometry of

the wing for lowest total drag within the contraints of a particular design specification. The

components of drag which must be considered include profile drag, induced drag, and wave

drag. Profile drag is dependent upon, among other things, the airfoil section and the total

wetted area. Induced drag, which is manifested as energy left in the wake by the trailing

vortex system, is mostly a function of wing span, but also depends on other geometric wing

parameters. _Zave drag of the wing, important in the transonic flight regime_ is largely

affected by the airfoil section, wing sweep, and so forth. The optimization problem is that

of assessing the various parameters which contribute to the different components of wing

drag, and determining the wing geometry which will generate the best overall performance

for a given aircraft mission.

The primary thrust of the research effort to date has been in the study of induced

drag. Recently reported finding have indicated that induced drag may be reduced by

utilizing unconventional] 3, shaped and/or non-planar wing planforms. 1-3 These findings

are being investigated and the effect on the overM] drag of these geometries, including

drag components other than induced drag, are being assessed. Other design considerations,

such as structural weight, total span, wing root bending moment, and so forth, will also be

evaluated. In assessing the cost/benefit of these wing designs, it is necessary to predict the

induced drag with a reasonable amount of reliability and precision. Work is being done to

create analysis tools which can perform this function.



III. BACKGROUND

In order to calculate the induced drag generated by a lifting surface i', is required

that all, or at least part, of the loca] velocity field be determined in the vicinity of the

wing. Potential flow methods generally solve for the velocity over only a small part of the

flow field and thus save a tremendous amount of computation time. The induced drag

is calculated in these methods by either applying the Kutta-3oukowski law to the bound

vorticity or by integrating the streamwise component of pressure on the surface of the

wing. In this way potential flow methods require solution of the velocity field only at

points defining the idealized lifting surface as opposed to points defining the entire flow

field. The potential flow methods which employ the Kutta-3oukowsld law determine the

downwash velocity at _he wing either by direct calcuation or by analyzing the flow in the

far-wake where the flow is assumed to be two-dimensional (i.e. in the Trefftz plane) and

relating that solution to the flow at the wing. The latter technique assumes the wake of

the wing to be rigid and aligned with the free-stream velocity. A more computationally

intensive approach to calculate the induced drag is to solve the governing equations over

the entire "region of influence" in the flow field. The induced drag is then determined by

integrating the resulting distrlbuted pressure force on the wing surface, or directly from

the cacluated vorticity shed into the wake. The amount of computer time required to solve

the governing equations makes this approach impractical as a preliminary design tool.

The following is a brief explanation of available methods for calculating induced drag

and a discussion of the strengths and weaknesses of the potential flow methods, as we]2 as

methods which numerically solve the Euler or Navier-Stokes equations.

Lifting-Line Theory (Prandtl-Lanchester)

The lifting-line theory of Prandt] analyzes the flow field as a potential field with the

wing modeled as a singularity in the form of a Line vortex of varying strength located at

the wing quarter-chord point. _ Helmholtz's theorem requires that the spanwise change in
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vorticity of the lifting Line be shed into a sheet of distributed trailing vortici'y. The trailing

vorticity is assumed to be aligned with the free-stream velocity and to extend downstream

to infinity. The strength of the trailing vortex sheet at any point is equai to the spanwise

change in vortex strength at the corresponding point on the lifting Line. In this model, the

sheet of trailing vorticity is assumed to not deform under its own induced velocity (i.e. a

rigid wake). The velocity that the trailing vortex sheet induces on the lifting fine is used

to calculate the induced drag of the wing. Munk used the lifting-line theory to calculate

the optimum spanwise lift distribution for minimum induced drag, within the context of

the given assumptions. 5 For minimum induced drag the induced velocity normal to the

lifting line must be proportional to the cosine of the local dihedral angle. For a straight

lifting Line (dihedral angle equal to zero everywhere along the span) the Lift distribution

that generates this induced vdocity distribution is elliptical. For a curved lifting Line,

which models a non-planar wing with spanwise varying dihedral angle, the optimum lift

distribution for minimum induced drag is well defined, again, within the Limits of the

modeling assumptions. 6 Several questions arise, however, regarding these assumptions.

The llfting-Line model ignores the effect of the chordwise distribution of vorticity on the

downwash distribution since it collapses all the vorticity generated at a given spanwise

location to a single point. Also, the effect that the deforming wake might have on wing

performance is neglected.

Vortex-Lattice Methods

The vortex-lattice method uses an array of horseshoe vortices with spanwise segments

bound to the wing and streamwise segments trailing downstream from the trailing edge

paral]el to the free-stream velocity. The strength of each vortex is determined by satisfying

the condition that the flow be tangent to the mean camber line of the wing at a number

of control points equal to the number of vortices used. This constraint defines a system of

simultaneous linear equations which can be solved for the vortex strengths. The strengths

of the streamwise traJllng vortex filaments are taken as the sum of the strengths of the



horseshoevortices distributed over the chord at a givenspanwiseposition.

Modeling the wing as a lattice of vorticesattempts to capture the effectof the chord-

wiseloadingon theoverallwingaerodynamics.The vortex-lattice method doesnot capture

any thicknesseffectsin that it modelsthe wing asa set of discreteline vortices located on

the mean camberline. The traditional vortex-lattice method also does not account for the

influence of the deformed wake (i.e. wake roll-up). Typically the wing wake is modeled as

straight non-deforming vortex filaments aligned with the free stream.

Induced drag is normally calculated in the vortex-lattice method by applying the

Kutta-Joukowski law on the spanwise bound vortex segments under the influence of the

local downwash. Some research has been done regarding the way in which the lattice is

constructed. _ For example, the question arises as to whether the spanwise vortex segments

should be aligned perpendicular to the free-stream velocity, aligned with the sweep angle

of the wing, or aligned with some other direction depending on the wing planform shape.

It is found that the choice of lattice shape can have a significant effect on the accuracy

and order of convergence of the model.

Some researchers have attempted to model the wake deformation by calculating the

local velocity at points in the wake, aligning the trailing vortex filaments with the local

velocity, then iterating until convergence to a steady state wake shape, s The resulting

computed wakes show some tendency towards a roiled-up wake shape, but fail to converge

to the two d_screte trai_ng vortices observed in experiment. More precise analysis of

deforming vortex sheets have been attempted recently by other researchers and it has

been noted that even for a simple two-dimensional vortex sheet problem "the calculation

of the self-induced motion of vortex sheets has proved quite intractable and has resisted the

best efforts of numerous investigators. "_ Consequently the results from a simple vortex-

lattice analysis of a deforming three-dimensional wake should be considered with some

skepticism. These models have shown that the deforming wake does have a significant

effect on the lift distribution of the generating wing which in turn effects the induced drag.
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So, it is reasonable to conclude that an error in the computed wake shape will indeed effect

the predicted performance of the wing.

Panel Methods

Panel methods discretize the wing upper and lower surfaces into source, doublet, or

vortex panels which induce a perturbation on the uniform (free-stream) velocity field. Low-

order panel methods assume the panels to be flat and have constant source, doublet, or

vortex strength over the entire panel. 1° Higher-order methods consider surface curvature

and source, doublet, or vortex strength derivative effects. The strength of each panel is

determined by satisfying the flow tangency condition at a number of control points equal to

the number of panels used. _ As in the vortex-lattice method, the flow tangency boundary

condition produces a system of linear simultaneous equations that can be solved for the

panel strengths. The shape of the freely deforming wake can also be computed in a way

similar to the vortex-lattice method. The wake is discretized into panels and the flow

velocity at each panel calculated. The wake is reoriented so that the panels are aligned

with the local velocity vector and the computation repeated until a steady-state wake

shape is converged upon.

Unlike the vortex-lattice method, panel methods take into account the effects of wing

thickness. This should have little effect on induced drag calculations, but may be important

in analyzing profile and wave drag.

For panel methods, induced drag can be calculated b3' taking the streamwise compo-

nent of the product of surface pressure and panel area summed over all the wing panels.

This method is extremely sensitive to errors in the calculated pressure distribution which

are most pronounced near the leading edges and wing tips, even in higher-order methods. _

Another means of calculating induced drag is to either assume a fixed (non-deforming)

wake or attempt to compute the deformed wake shape, then numerically integrate over

the velocity field far downstream where the riow is assumed to be two-dimensional. If a

fixed wake is assumed, this method does not account for the deforming wake's influence



on the Lift distribution and induceddrag. If a deformedwakeis computed, the part of the

wing which has the most profound influenceon the shapeof the deformed wake,namely,

the tip region, is exactly wherethe solution is known to be least accurate. This is the

fundamental problem in any free-wake analysis using the analytic or numerical methods

currently available.

Modified Lifting-Line Theory (Eppler)

Another potential flow method being considered is one developed by Eppler in which

the lifting line is located at the trailing edge of the planform instead of along the quarter-

chord line. 11 As in Prandtl's lifting-line model, the effects of chordwise loading are not

included; however, the influence of the trailing edge shape is taken into account. It is

assumed in this method that the bound vorticity does not influence the induced velocity

and is therefore not considered in the downwash calculations. Induced drag is calculated

in this method by applying the Kutta-3oukowski law to the bound vorticity at the trailing

edge. The Eppler method can be implemented with either fixed- or free-wake analysis,

and can consider planar and non-planar wing planforms. The free wake analysis will suffer

from the same inaccuracies discussed in regard to vortex-lattice and panel methods. The

advantage of the Eppler method is that is possesses the simplicity of the Prandtl lifting-llne

model but includes some planform effects in the form of the trailing-edge shape. Intuitively,

the Eppler model makes sense in that it places the bound vortex line where the vorticity

is actually shed into the flow.

As developed, this model predicts the induced drag given a specified lift distribution.

Using the method in the inverse problem of determining the optimum lift distribution,

trailing edge shape, and spanwise camber for minimum induced drag is currently being

explored. Some early results of this analysis have indicated that a nearly straight trailing

edge has some performance advantages.



Euler and Navier-StokesEquation Solvers

Potential flow methods do not include the effectsof compressibility and are therefore

inadequate for the transonic wing designproblem. To handle theseeffects and to attain

a higher level of accuracyin calculating induced drag, a numerical solution of at least the

Eu]er equations with appropriate boundary conditions is required. The solution must be

found over a large enough volume of the flow so as to capture the significant upstream

and downstreameffectson the wing performance. The effectsof the freely deforming wake

are captured in the solution, as long as the solution grid extends far enough downstream

to include the region of significant influence. Once the velocity distribution on the wing

is determined, the lift and drag on the wing can be found from a surface pressure inte-

gration similar to that used in panel methods. Determining lift and drag from a far-field

wake-integration scheme ha4. also been attempted 1_. Even though the Euler equations do

not contain any viscosity terms, the numerical solution shows some viscous-like behavior

because of the truncation error incurred in the finite-differencing process. By decreasing

the gradients in the solution, this artificial viscosity will drive the mathematical solution

in the same direction as, but at a different rate than, the real viscous effects.

In order to numerically solve the Euler equations over the number of grid points

needed for reasonable accuracy, CPU time in the range of 3 CPU hours on a Cray Y-MP is

required 12. This amount of CPU time would be prohibitive for an iterative design process.

To include the effect of viscosity as well as compressibility in the wing design problem,

the full Navier-Stokes equations must be used. Numerically solving these equations would

require an amount of CPU time larger than that required for solving the Euler equations,

and therefore would likewise make this approach impractical for a design procedure.



IV. RESULTS

,o

The initial phase of the research effort has concentrated on the use of potential flow

models for analysis of wing performance and the induced drag minimization problem. Even

though future efforts will include real fluid and compressibility effects, it is believed that

a firm grounding in the characteristics of the idealized flow is necessary before meaningful

results for the more complex problem can be pursued. As already discussed, the anaJysis

of the freely deforming wake is a difficult problem even for potential flow models. The

only reasonable course of action is to attain an understanding of this simplified case before

attempting to analyze the more difficult problem of transonic, viscous flow.

The types of wings being considered in the development of a wing design method in-

clude those with non-planar and unconventional planform geometries. The unconventional

geometries include highly swept tips, straight trailing edges, and spanwise varying sweep

angles. In analyzing these wings, the question of how the freely deforming wake effect-

s performance must be considered. If the wake is assumed to remain rigid and aligned

with the free-stream, there is no evidence that Munk's original solution with regard to

the optimal lift distribution is not correct. 5 Likewise, the "stagger theorem" asserts that

only the total circulation generated at a particular spanwise station is important to the in-

duced drag calculation and dismisses any effect from the streamwise location of the lifting

element (i.e. wing sweep). Also, the optimum lift distribution for non-planar geometries

is specified as thai which induces a velocity normal to the wing which is proportional to

the local dihedral angle. Both of these results appear to be correct if wake deformation is

ignored.

Recent studies 1-a examine the question of optimum lift distribution and maximum

wing efficiency. These studies use high- or low-order panel methods with various wake

iteration schemes to analyze planar wings. Initially, there were questions raised concerning

the validity of Munk's theory regarding optimum lift distribution and maximum attainable
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wing efficiency, but closer examination revealed that the wing planform which generates

the most nearly elliptic lift distribution does indeed generate the least induced drag. In

particular, the results show that an elliptic chord distribution does not necessarily generate

an elliptic lift distribution when the rifting-line model is not used and the effects of a freely

deforming wake included, The spanwise variation of sweep also affects the resulting lift

distribution.

Previous research 13 using a fixed-wake analysis considers the influence of spanwise

camber on the induced drag. Results from this study are presented in Figure 1. The fixed-

wake analysis shows no difference between positive and negative dihedral. In contrast,

the vortex-lattice and Eppler methods using a freely deforming wake show that positive

(tip up) dihedral has a favorable effect, while negative (tip down) dihedral increases the

induced drag. This result is presented in Figure 2. These methods predict approximately

a 1% decrease in induced drag with positive spanwise camber.

Finally, the results of a sample wing design problem which includes the trade-off

between induced and profile drag contributions in a non-planar wing are presented in

Table 1. This design employs the same airfoil section as used in the recent wind tunnel

tests at LaRC. As expected, the results show that a non-planar wing can be used to

reduce the total drag at high lift coefficients while not causing a drag penalty at lower lift

coefficients.

In conclusion, the results of the prefiminary analyses performed so far indicate that

the freely-deforming wake has only a smaJ.l direct effect on induced drag, but does have a

significant effect in modifying the rift distribution of the generating wing. In this way, the

freely deforming wake has a significant indirect effect on induced drag. A design method

optimizing planform and spanwise camber for maximum wing efficiency must therefore

include an accurate determination of the free wake effects. As previously discussed, the

current state-of-the-art in free wake analysis is of questionable accuracy. This is an area

that must be addressed for the methodology of wing design to progress further.
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Planar wing

Wing with winglet

Planar wing

Wing with winglet

C/.

0.4

0.4

0.9

0.9

CD_

.0125

.0131

.0145

.0149

CD_

.0072

.0065

.0362

.0328

CD

.0197

.0196

.0507

.0477

L/D

20.3

20.4

17.7

18.9

Taper Ratio = 1/2

Straight Trailing Edge

Root Chord Reynolds No. = 4 × 106

Tip Chord Reynolds No. = 2 × 10 G

Airfoil Section: NASA NLF 0416

Section data with forced transition (NASA TP-1861, 1981)

Optimum lift distribution for each CL

Table 1: Wing Design Trade-offs Using Fixed-Wake Analysis


