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Abstract

Emission spectroscopy measurements were made of the plasma flow inside the nozzle of

a 1 kW class arcjet thruster. The thruster propellant was a hydrogen-nitrogen mixture used to

simulate fully decomposed hydrazine. 0.25 mm diameter holes were drilled into the diverging

section of the tungsten thruster nozzle to provide optical access to the internal flow. Atomic

electron excitation, vibrational, and rotational temperatures were determined for the expanding

plasma using relative line intensity techniques. The atomic excitation temperature decreased from

18,000K at a location 3 mm downstream of the constrictor to 9,000K at a location 9 mm from

the constrictor, while the molecular vibrational and rotational temperatures decreased from

6,500K to 2,5,00K and from 8,000K to 3,000K, respectively, between the same locations. The

+electron density, measured using hydrogen H_ line Stark broadening, decreased from -10 is cm 3

to -2 x 10 TM cm 3 during the expansion. The results show that the plasma is highly

nonequilibrium throughout the nozzle, with most relaxation times equal or exceeding the particle
residence time.

Nomenclature

C .............. constant for calculating vibrational relaxation

cp............ ;specific heat capacity, J/kg/K
E .............. excited state energy, J

F__............. hydrogen ionization energy, 13.6 eV

f .............. oscillator strength

g .............. statistical weight

G .............. vibrational excitation energy level, J

G,ff ........... Gaunt factor used for calculating electron densities

H .............. neutral atomic hydrogen

I .............. intensities integrated over the complete spectral line or band
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k .............. Boltzmann constant, 1.38 x 10"2J/K

K2............. constant for calculating vibrational relaxation

_............... wavelength, nm
ln(A) .......... coulomb logarithm

m .............. particle mass, kg

M .............. panicle mass, ainu

NI, NII ........ neutral and singly ionized atomic nitrogen

r_ ............. electron density, cm 3

p .............. pressure (eqn. 6), atm
.............. cross section, cm'-

l".............. relaxation times for temperature relaxation, sec

T, ............. electron temperature, K

Tex............ atomic electron excitation temperature, K

Tr_ ........... rotational molecular temperature, K

T,_b........... vibrational molecular temperature, K

v .............. particle velocity, m/s

z .............. degree of ionization + 1

I. Introduction

Selection of 1 kW class arcjet thrusters for station keeping application on the Telstar IV

series satellites has dramatically increased interest in arcjet technology. The ability to achieve

specific impulses from 450 to 550 seconds with storable propellants, and the system simplicity

makes arcjets attractive for application to geosynchronous satellite station keeping. Furthermore,

modern satellite power busses have the capability to provide the required power/duty cycle

combination for these thrusters. While arcjets have been accepted by the satellite community for

geosynchronous stationkeeping, there is considerable room for improved thruster performance.

Current arcjets convert only 25-35% of the input power into thrust power, with the dominant

losses lying in unrecovered power deposited into the propellant. This paper describes an effort

to empirically study the nozzle plasma in the expectation that a detailed understanding of the

dominant physics will permit improvements of the arcjet.

In a typical arcjet, shown in Fig. 1, an arc is struck between the central, conical-tipped
cathode and the coaxial, nozzle shaped anode. Propellant, injected with high swirl near the

cathode tip, passes through the constrictor region (throat) and is ohmicaly heated by the arc.

Curran _, using an axially segmented arcjet anode, showed that the anode current attachment

extends all the way down the length of the nozzle. This result demonstrated that energy is

transferred to the gas throughout the entire flow passage, including subsonic, transition, and

supersonic flow regimes. The energy transfer to the gas is thought to result predominantly from
electron-ion or electron-neutral collisions as electrons are the dominant current carriers.

These collisions distribute the arc energy to several sinks, including random thermal



energyof thepropellant,dissociation,ionization,andexcitationof boundrotational,vibrational
andelectronicstates.Energydepositedinto thesemodeswhich is not convertedto directed
kinetic energyof the exhaustconstitutesthe majorlossmechanismfor arcjetthrusters.While
ananalyticalunderstandingof theseprocessesis clearlyrequired,thecomplexityof theflow field
andplasmaphysicspresentlyprecludesanabinitio approach.To provideimprovedinsightsinto
the internalarcjetflows,effortswereinitiatedto developthediagnostictechniquesrequiredto
directly measure several of the principal plasma parameters.

Most studies of arcjet plasmas have concentrated on the thruster plume. Studies utilizing

Langmuir probes _ and emission spectroscopy 4 have established electron density and temperature

profiles and identified the dominant species in the plume downstream of the exit plane. Janson,

et.al 5 found differences between the plume spectrum of an arcjet tested with ammonia and one

tested with a nitrogen-hydrogen mixture chosen to simulate ammonia. While this indicates that

the mixture used in this study to simulate hydrazine may not exactly represent a hydrazine arcjet,

it should be noted that in a flight-type system, hydrazine is decomposed in a catalyst bed before

being injected into the arcjet, and performance comparisons 6 indicate only small differences

between simulated and actual hydrazine propellants. The only previous study of the internal

arcjet plasma was performed on a low power helium arcjet with a 2ram diameter quartz
constrictor 7. However, due to the temperature restrictions of the quartz and the impact of the

window on the energy transfer processes in the constrictor, it would be unrealistic to relate their

results to flight-type arcjet thrusters.

This paper presents the results of an effort to non-intrusively measure the plasma

properties in an arcjet thruster similar to those planned for flight application. Following a

description of the experimental apparatus and thruster operating characteristics, the measurements

and their analysis are presented, including identification of the plasma constituents, atomic and

molecular temperatures, and the electron density. The results are then used to estimate various

plasma relaxation rates. Finally the implications of the results for energy transfer processes and

plasma models are discussed.

II. Experimental Apparatus

The thruster used in this experiment was a 1 kW class laboratory model device developed

at the NASA Lewis Research Center s. The thruster was similar to those planned for application

on geosynchronous communications satellites. The arcjet, shown in Fig. 1, consisted of a

conical-tipped, 2% thoriated tungsten cathode, a 0.064 cm diameter by 0.064 cm length

constrictor, and a conical nozzle/anode with an expansion angle of 20" and an area ratio of 225:1.

Additional testing was performed with a nozzle expanding to an area ratio of 400:1 (same

expansion angle). The anode material was 2% thoriated tungsten and all insulators were made
of boron nitride.

The thruster was operated in a 0.64m diameter by 0.64m length vacuum chamber



evacuatedusingamechanicalroughingpump.Thepropellantflow consisted of a mixture of 59

mg/s hydrogen and 41.6 mg/s nitrogen (to simulate fully decomposed hydrazine) and was kept
constant during all experiments. With this flow rate the pump maintained a back pressure of

about 120 Pa. This back pressure, while affecting the plume, changed the thruster performance

(thrust and voltage) by less than 5% 6. The power supply 9 delivered a stable current that was

varied between 9 and 12 A for the experiments. The thruster performance was measured on a

thrust balance in a separate separate facility with higher pumpi_ng speed described in Ref. 1.

Two optical diagnostic techniques, described in Ref. 10, were developed to measure the

emission spectra of the internal nozzle plasma. The more successful technique consisted of

drilling 0.25 mm diameter holes radially into the nozzle wall at desired axial and radial positions

to gain optical access to the plasma inside the nozzle. As described in the next section, these
holes had no measurable impact on the arcjet performance and there was no evidence of

preferential current attachment around the holes. The hole locations, shown in Fig. 2, were

chosen to provide measurements at three area ratios in the 225:1 nozzle and to obtain coarse

radial profiles in both the 225:1 and 400:1 nozzles. The radial profiles were obtained at only one
axial location with the 225:1 nozzle and two axial locations in the 400:1 nozzle. While a simple

Abel inversion could be applied to the radial measurements, the resolution was limited to 1/4 the

nozzle radius by the small nozzle size.

The optics required to image the individual holes onto the spectrometer entrance slit are

shown in Fig. 3. Two lenses were required to satisfy the spatial and magnification requirements

and an iris aperture was used to eliminate stray light emitted from the glowing nozzle wall. in

order to select an individual hole, the daruster was moved vertically inside the vacuum chamber

on a stepper motor driven rail table until the desired hole was at the image location of the light

path.

The 0.5 m Czerny-Turner spectrometer was equipped with a 2400 grooves/ram grating

and an intensified 1025 pixei diode array detector to measure line intensities. The spectral

resolution of the instrumentation was 0.016 to 0.019 nm per detector pixeI, depending on the

observed wavelength. Spectra were observed in real time to permit adjustment of the diode

array integration time before storing them for later analyses.

Ill. Experimental Results

The current - voltage characteristic of the arcjet was obtained at the beginning of each

measurement series to ensure the thruster was operating normally. Thrust measurements showed

that the presence of the 0.25 mm diameter holes in the nozzle wall had no measurable effect (<

2%) on the thruster performance. This was verified by testing the thruster with the nozzle wall

holes both sealed and open. These data, obtained with the 225:1 nozzle with axial holes, are

summarized in Table 1. Excellent agreement was obtained with the lifetest results reported by
Curran 8.

In addition to the optical system complexity and small nozzle size, the measurements were



hinderedby light reflectionfromthenozzle wall. This issue is distinct from that of the glowing

nozzle wall contributing continuum radiation, and is due to plasma luminosity reflecting of the

inner nozzle surface into the holes through which the measurements were made. This precluded

a precise determination of the region where the light originated. The magnitude and origin of

this light was determined by the nozzle geometry and surface reflectance. To establish the

importance of this effect a small LED was slowly inserted up into the nozzle with the axial holes

(geometry A in Fig. 2) and the light intensity emitting from the holes was measured as a function

of the LED location. For each hole there were two axial positions at which the LED provided

a measurable signal: the primary location when the LED was directly beneath the hole and the

secondary corresponding to the location that caused direct reflection into the hole. The secondary

peak was brightest for the hole closest to the exit plane, but never exceeded 30% of the intensity

of the direct illumination. It is important to note that this experiment utilized a constant intensity

source, whereas the plasma luminosity decreased rapidly in the downstream direction. While this

intensity reduction mitigated the importance of reflected light, it was not possible to exactly

quantify the impact of this problem.

Whenever possible the quantitative results were obtained from spectra separated by less

than 40 nm to avoid the difficulties associated with intensity calibrations. For all measurements

of steady-state conditions the thruster was turned on and allowed to stabilize for 15-20 minutes

before a final alignment check was made to account for thermal expansion of the nozzle and

arcjet components. Measurements were performed at least three times to ensure repeatability.

The uncertainties of the results were calculated by propagating the errors of the individual

parameters using standard algorithms 11.

Plasma Species

The plasma species identified from a spectrum recorded between 320 and 750 nm are

listed in Table 2. Ozfly species for which several lines were identified are reported. Observed

wavelenghts were compared with tabulations in Ref. 12, 13 and 14. In addition to the molecular

and atomic propellant species, tungsten impurity, NI-I, and NH, lines were observed. The high

NH intensities observed at all axial positions indicates that recombination was taking place

throughout the nozzle. Although the NH: and tungsten spectral lines were visible in most

experiments, their intensities were too low to use them for more detailed investigations.

Plasma Properties

The spectral data were used to determine several plasma temperatures and the electron

density. The temperatures included the atomic excitation temperature for NI, NII, and H, and

molecular vibrational and rotational temperatures for N:. All temperatures were calculated
assuming that the populations of the observed excited states followed a Boltzmann distribution

at the local temperature. The validity of this assumption was checked a posteriori.

Atomic Excitation and Free Electron Temperatures

The atomic excitation temperature Te, was determined from emission line intensity ratios.

This temperature can be calculated from two different lines (denoted _ and 2) of the same



species_5:

T,_- E_-E2 (I)

The spectral lines used for this measurement are listed in Table 3, along with their

oscillator strengths and the degeneracies of the upper excited states. A relative calibration was
needed for the hydrogen measurements due to the wide wavelength separation of the observed

transitions.

The axial excitation temperature distributions for HI, NII and H for thruster operation at

currents of 9 and 12 amps with the 225:1 nozzle are shown in Figures 4a - c. While the absolute

uncertainties are large, most of the error was due to the oscillator strengths, which does not affect

the validity of the observed trends. The excitation temperatures for the three species were

similar, dropping from ~ 18,000 K at an area ratio of 1:10 to ~ 10,000 K at an area ratio of

1:125. The excitation temperature increased slightly with arc current.

Radial electron excitation temperature profile measurements were hindered by the rapid

decrease in line intensities away from the nozzle axis. For this reason, only the hydrogen

excitation temperature could be measured. The measurement was made at four radial positions
in both the 225:1 and 400:1 area ratio nozzles. The radial holes divided the nozzle section into

four shells with an equal thickness of one fourth of the radius. The Abel inversion technique

used assumed a uniform intensity in each of the individual ring shells, and the intensity in a

radial ring was calculated from the geometric size of the observed shell portion 16. This simple

technique was used because the small nozzle dimensions precluded measurements at a large

number of radial locations. The measured spectra were inverted and the plasma properties were
determined from the inverted intensities. As shown in Fig. 5a and b the hydrogen excitation

temperature did not vary within the inner 87 % of the nozzle radius for either nozzle.

Background radiation from the glowing nozzle precluded direct measurement of the free

electron temperature from continuum radiation. However, several arguments can be introduced
to show that the electron temperature was near the atomic excitation temperature. First, there is

the close agreement of excitation measurements for HI, NII, and H. Given the different cross-
sections, radiative rates, and densities, it seems unlikely this agreement would occur unless the

upper excited state populations were controlled by the same mechanisms of electronic collisional
excitation and radiative decay. Second, the energy levels used for the measurements were close

to the ionization potentials for the atoms. For example, for HI the measured states were less than

0.6 eV from the continuum. Third, the electron densities measured using Stark broadening were

close to the threshold established by Griem t5 for partial local thermal equilibrium, a condition

for which T,x - T_. The latter result is further discussed in section IV.

Molecular Vibration Temperature

The nitrogen vibrational temperature was determined from the intensity ratio of two

transitions. According to Herzberg r- it can be calculated from two molecular bands (denoted



and2):

G_ - G2 (2)

Only two spectral bands, listed in Table 4 with the appropriate constants, were sufficiently

intense and free from overlapping Iines or bands to be used for the vibrational temperature

determination. While the oscillator strengths for atomic transitions are well known for most

species _3,only a few have been measured for molecular transitions and the uncertainty is larger.
Thus, the absolute uncertainty of the vibrational temperature determination is rather large (:k 25

%), though trends are accurate to within experimental error (:1: 10%).

Typical vibrational temperature measurements for the 225:1 nozzle at 9 and 12A are

shown in Fig. 6, where it is seen that the temperature decreased fi'om -6500 K near the

constrictor to -2500 K at an area ratio of 126:1. While there was a slight dependence on arc

current at the upstream end of the nozzle, this disappeared toward the exit plane. Radial prof'des

could not be measured due to the rapid decrease in spectral intensity at higher radii.

Rotational Temperature

The intensity ratio method could not be used to determine rotational temperatures because
the rotational lines were too close together and overlapped, precluding the separation of

individual lines within one band. To overcome this problem, the theoretical intensity distribution

for a band was calculated with an assumed rotational temperature and compared to the measured

spectrum. The rotational temperature was found iteratively by varying the temperature of the
theoretical distribution, a method used by several other authors 4'_7'_s. An examination of the

observed spectrum led to selection of the N: C3Hu -Bails transition band at 375.5 nm. The

equations governing the distributions the of P, Q and R rotational branches were taken from

Herzberg t:, and the appropriate wavelengths were obtained from Pearse and Gaydon 14. Fifty

transitions for each of the three branches were included for each vibrational band. A simple

inverted parabola line shape was used for each transition to reduce computional time. This

assumption had little effect where the lines were slightly separated, but introduced substantial

errors near the band heads where the lines nearly completely overlap.

Figure 7 shows measured and calculated molecular bands for N:. It is clear that the

distribution was well predicted away from the band head at 399.8 rim, but that the intensity of

the band head itself was underpredicted. The agreement between the measured and calculated

spectra, the latter based on a Boltzmann distribution, indicated that the rotational levels were not

far from an equilibrium state. The discrepancy at the band head may have been due either to the

assumed line profile or an overpopulation of the lower states. Figure 8 shows the rotational

temperatures for the 225:1 nozzle at currents of 9 and 12A determined with this technique. The

rotational temperature was found to be higher than the vibrational temperature, and the rotational

temperature decreased more rapidly than the vibrational temperature. Note that for Tr_ the

increase in temperature with current level was evident throughout the nozzle.

The temporal behavior of the three plasma temperatures was measured in an attempt to

7



establish the importance of wall heat transfer to the plasma characteristics. Shown in Fig. 9 are

the mean results from 100 spectra recorded every 0.5 to 3 seconds during the start-up phase of

an arcjet test. The recording of the spectra was started before thruster ignition to study the start

up phase. A curve of the form T-T0 (1-exp(-t/x )) was used to calculate the desired time

constant, a-, for each plasma temperature. The time constants for the various plasma properties,
listed in Table 5, were of the same order for all the plasma temperatures. The time constants

varied with axial position in the nozzle, ranging from -5 second near the constrictor, to -8.5

seconds near the exit plane. The time constant for the nozzle temperature was approximately 130

seconds, and the thrust time constant was -2 seconds. Given that the current and voltage rise

times were <-2 seconds, this result implies that wall heat transfer played only a small role in

plasma energy transfer for these operating conditions. It appears, however, that the observed

equilibration times result from either thermal or mechanical relaxation of the arcjet components,
since the rise times are much longer than acoustic or plasma relaxation rates.

Electron Density
The electron number density was determined from the Stark width of the hydrogen _ line

(486.1 nm) 19. After the full width at half maximum (FWHM) for the line had been determined

using a Lorentzian fit to the observed profile, the Doppler and Stark broadening contributions

were deconvoluted using the results presented in Ref. 19. This process required knowledge of

the hydrogen kinetic temperature, which was set equal to the electron temperature based on

relaxation rate calculations presented in Section IV.

Typical results, shown in Fig.10, show that the density decreased from -1015 cm 3 to

-2x1014 cm 3 from axial locations at area ratios of 10:1 to 126:1. While it is clear that the

upstream electron density increased with current level, the downstream density was not sensitive
to the arc current. This may be a reflection of the nozzle current distribution.

The radial electron density distribution was measured at an area ratio of 126:1 for both
the 225:1 and 400:1 area ratio nozzles. Measurements in the downstream holes for the longer

nozzle were precluded by the low electron density and low spectrometer resolution. Line profiles

were obtained at each radial station and the resulting profiles Abel inverted to obtain the FWHM

as a function of radius. The resulting electron density profiles, shown in Fig. 11, are fiat. This

result, in combination with the excitation temperature measurements, shows that there was a wide

central region with relatively uniform properties which was bounded by steep gradients near the

wall. The increased density observed with the longer nozzle may be due to the presence of

substantial current downstream of the measurement point. In other words, the arc current may

extend over most of anode length anode for both the 400:1 and 225:1 nozzles; since these

measurements were made at an area ratio of 126:1 with for both of the nozzles, a larger fraction

of the current may extend beyond the measurement point with the longer nozzle than with the

shorter one.

It is interesting that these measurements correlate well with measurements made in the

thruster plume. The plume measurements shown in Fig. 12 were made using Ht_ Stark

broadening (close to the nozzle) and Langmuir probes.



IV. Discussion

The large difference between the atomic excitation, vibrational and rotational temperatures

clearly shows the plasma to be in a nonequilibrium state throughout the nozzle. The excitation

temperature was more than twice as large as either molecular temperature throughout the

expansion, and the rotational temperature was higher than the vibrational temperature. Three

justifications were presented for equating the excitation temperature to the free electron

temperature. First, T_ was the same for the three species for which it was measured. Second,
the excited states used in the measurement were energetically close to the continuum. Third, the
states observed and the electron densities satisfied the partial local thermal equilibrium (PLTE)

criterion developed by Griem 15,and modified by Hey _° for nonhydrogenic systems. This criterion
is written as a lower electron density bound for which the excited state population is controlled

by the free electron temperature:

ne a 2'55xI017[ AEI-2]3.[ kT° (3)

G._ L E_ J N Zn

where the effective Gaunt factors, Ge,, were obtained from van Regemorter _'. This criterion

establishes a lower bound of lxl01Scm a for the 18,000K temperature near the constrictor and

8x1015cm 3 for the 7000K temperature near the exit plane. Thus, based on this PLTE criterion,

equating the excitation temperature to the free electron temperature is acceptable near the
constrictor but unjustified near the exit plane. However, Skorupski and Suckewe_, have shown

that heavy panicle elastic collisions can dramatically relieve the electron density requirements

for PLTE. This coupled with the first two arguments above indicate that setting Tex = T, was a

reasonable approximation.

Several plasma relaxation rates were evaluated to establish which processes played a
dominant role in the plasma expansion. These should be compared with the average particle

residence time in the nozzle, which was estimated to be ~ 5 x 10 .6 seconds by dividing the nozzle

length by one-half the exhaust velocity. The latter was estimated from the measured specific

impulses. The plasma relaxation times, summarized in Table 6, were calculated using the
temperature and density measurements presented above and relations from Vincenti and Kruger _

and Venugopalan :4. For example, the energy equilibration times between the observed

plasma species were used to establish the atomic hydrogen kinetic temperature. This relaxation

time, given b)_4

"_i-2 = 1 .3xlO -s (MI+M2) 2

(T2)>
(4)

where the subscripts refer to the species in question, was used to compare the H atom - N.
relaxation and the H atom - electron relaxation. In these estimates the N_ kinetic temperature

was assumed to be equal to the measured rotational temperature and the N: density was set to

~1016 cm 3 based on the propellant flow rate, nozzle area and exhaust velocity. The momentum

transfer cross-section for H - N 2 collisions is not known, so it was estimated from the geometric

particle radii _. The cross - section for electron - hydrogen collisions was obtained from Ref 26.
The results, a relaxation time of 10 .6 seconds for electron - hydrogen collisions, and 2 x lg 7



seconds for 1'4,.- H were inconclusive. However, when the relaxation times were calculated for

electron - proton and proton - atomic hydrogen collisions the results were more significant. The

large Coulomb cross - section for the electron - proton interaction gives a relaxation time relation
of 24

Tae/2

z_P = 2.5×10 2 npln(A) (5)

which, for the measured conditions, yields a relaxation time of 10" seconds. Equation 4 yields

a time of I0 "9 seconds for the H - P relaxation. Thus, the two-step process, consisting of an

electron - proton collision followed by a proton - neutral hydrogen collision, is two orders of

magnitude faster than the single step nitrogen molecule - hydrogen atom collision process. This
led to the use of the electron excitation temperature as an estimate for the kinetic hydrogen

temperature when the Doppler broadening was calculated in Section IIL Similar two-step

processes were investigated to check additional processes (electron - N'R, NII - H and 1'4, - N,

N - H), but they were found to be slower than the electron - IF, IT - H process described above.
This is a result of the large mass difference between hydrogen atoms and nitrogen molecules

(1:28) that slows this process and the fast relaxation between electrons and protons due to the

large Coulomb cross-section.

While the measured rotational and vibrational temperatures were the same near the exit

plane, the rotational temperature appeared to be slightly higher close to constrictor (Fig. 8). The
observed difference in the behavior of the two temperatures during the expansion may result from

the different relaxation times for the two processes. The rotational relaxation is somewhat slower

than the translational relaxation ". With equation 4 the translational relaxation was calculated to

be 107s, so the rotational relaxation should have a time constant of 10 .4 to 10TS. The vibrational

relaxation was calculated from "-3

C e (K2/T)_./3= ---- (6>
P

where the temperature T is in Kelvin and the pressure p in atm. The constants C and K,_ depend

on the gas, for nitrogen K, '- 1.91 x 106 K and C - 7.12 x 109s atm. The shortest possible time

constant results from using the propellant feed pressure in eqn. 6, which results in a time constant

of 10 .4 seconds. Of course, during the expansion this value will increase by over three orders-of

magnitude, so that the vibrational relaxation times are the longest time constants for the nozzle

plasma. The difference in the time constants for rotation and vibration would explain the

difference in the slope for these two temperatures.

V. Conclusion

The spectroscopic analysis of the light emitted from the plasma inside the nozzle of a 1

kW class arcjet thruster operated with a 2:1 hydrogen: nitrogen mixture showed the expected

atomic and molecular nitrogen and hydrogen spectral lines. In addition, considerable NH and

small traces of NH:, and tungsten, eroded from the electrodes, were found. Measurements of

10



excitation, vibrational, and rotational temperatures showed the plasma to be in a nonequilibrium

state throughout the nozzle. It appears that the upper atomic excited states can be described

using a PLTE model, though this should be investigated carefully for the plasma near the exit

plane. A collisional - radiative model, allowing for a minimum of two fluid temperatures, will

be needed to accurately model the arcjet plasma expansion. The atomic excitation temperature
was found to drop from 18,000 K to 9,000 K during the expansion, and the molectdar

temperatures were found to be lower than the atomic, ranging from 6,500 K to 3,000 K for the

vibrational and 8,000 K to 3,000 K for the rotational te_, respectively. The electron

density dropped from -lxl0 Is cm near the constrictor to 2x101( cut "3 near the exit, and was

sensitive to the arc current only near the constrictor. Radial profiles of the excitation temperature

and electron density showed that both were flat over the observed 87% of the nozzle radius. This

showed the presence of a broad central region with low gradients, surrounded by high gradients

at the walls. The relaxation times calculated for the plasma conditions qualitatively explain the

different temperature trends, and show that the free elec'_n temperature should be close to the

atomic hydrogen temperature. The latter could only be conclusively demonstrated using a two

collision process, involving a hydrogen ion - electron Coulomb collision followed by a hydrogen

ion - hydrogen neutral collision.
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Current Settings, A

Parameter 9 A 10 A 11 A

specific power (lO'/kg)
sealed holes 21 510 23 360 25 160

open holes 21 310 23 260 25 080

thrust (raN)
sealed holes 206 213 220

open holes 204 212 219

specific impulse (s)
sealed holes 422 436 451

open holes 419 435 449

thrust efficiency (%)
sealed holes 39.8 39.3 38.9

open holes 39.2 39.1 38.7

Table 1: Thruster performance with 225:1 expansion ratio nozzle with open and sealed holes

Identified

Species

Identified Wavelengths, nm

H .................... 656.3, 486.1,434.I

H: ................... 588.8, 587.9, 580.6, 577.5, 573.7, 572.9, 571.3, 565.6, 550.5

NI .................... 746.8, 744.2, 742.4, 584.1,583.0, 575.3

NII ................... 571.1,568.6, 566.7

N: ................... 585.4, 581.5, 575,5 559.9 larger bands at: 405.9, 399.8, 394.0

385.8, 380.5, 375.6, 389.4, 388.9

N_,". ................. 586.5, 585.3, 566.4, bands at: 391.4, 388.4, 385.8

NH ................... bands at 336.0, 337.1,450.1

NH: .................. 587.0,570.7

W ................... 584.5, 579.6, 579.3,569.8, 566.1,550.1,412.5

Table 2: Species Identified within the Arcjet Nozzle
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Species _k (rim) fik gi

NI

NII

583.0 0.00328 6

583.4 0.00390 2

585.0 0.00152 2

566.7 0.339 3

567.6 0.450 1

568.0 0.380 5

H 656.3 0.6407 2

486.1 0.1193 2

Table 3: Transitions used to measure atomic excitation temperature.

Band Head

?_ (nm) G (eV) f

380.5 7.24 0.76

375.5 11.52 0.52

Table 4: Bands used to measure N,_

vibrational temperature. Both are C3FIo -B3FIs transitions
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Axial position
from constrictor

(expansion ratio)

atomic excitation

temperature

molecular vibration

temperature

_ ro_tion

temperature

3 mm (13.9:1) 5.0 - 5.4s 5.1 - 5.6s 4.9 - 5.6s

6 mm (56.1:1) 6.9 - 7.6s 7.0 - 7.8s 7.1 - 7.7s

9 mm (126:1) 8.1 - 8.5s 8.2 - 9.7s 8.3 - 8.6s

Table 5: Approximate time constants for plasma temperature

to reach 63% of the final values after thruster ignition

tim_: (s) process

10H -10 1°............ electron self relaxation, Ref. 18
0"9,,, .... . ....

10 s ............

107 ............

10 .6 _ 10 "7............

10 .6 ............

_lO "6...........

10 .6 _ 10 .4............

hydrogen-hydrogen (or proton) kinetic relaxation, Ref. 18

electron - proton kinetic relaxation, Ref. 18

direct electron - hydrogen relaxation, Ref. 18

N: rotational relaxation, Ref. 17

hydrogen - N: kinetic relaxation, Ref. 18

average particle residence time in the nozzle

N 2 vibrational relaxation, Ref. 17

Table 6: Relaxation times in the arcjet nozzle plasma
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Ixopellant line

Figure I. Schematic of arcjet used for spectroscopic measurements.
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Figure 2. Schematics of three nozzles used in this study. Holes drilled in nozzle
wall are all 0.25mm in diameter. Not to scale. All dimensions in millimeters.

im mw1_

Figure 3. Optical arrangement used to image the holes in the arcjet nozzle

waLls onto the spectrometer entrance slit.
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