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sai V. Raj
Cleveland State University
Department of Chemical Engineering
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SUMMARY

The creep and fracture of dispersion-strengthened materials is reviewed.
A compilation of creep data on several alloys showed that the reported values
of the stress exponent for creep varied between 3.5 and 100. The activation
energy for creep exceeded that for lattice gself-diffusion in the matrix in the
case of some materials and a threshold stress behavior was generally reported
in these instances. The threshold stress is shown to be dependent on the
interparticle spacing and it is significantly affected by the initial micro-
structure. The effect of particle size and the nature of the dispersoid on
the threshold stress is not well understood at the present time. In general,
most investigations indicate that the microstructure after creep is similar to
that before testing and very few dislocations are usually observed.

It is shown that the stress acting on a dispersoid due to a rapidly
moving dislocation can exceed the particle yield strength of GP/IOOO, where
G, igs the shear modulus of the dispersoid. The case when the particle
deforms is examined and it is suggested that the dislocation creep threshold
stress of the alloy is equal to the yield strength of the dispersoid under
these conditions. These results indicate the possibility that the dislocation
creep threshold stress is determined by either the particle yield strength or
the stress required to detach a dislocation from the dispersoid-matrix
interface. The conditions under which the threshold stress is influenced by
one or the other mechanism are discussed and it is shown that the particle
yield strength is important until the extent of dislocation core relaxation at
the dispersoid-matrix interface exceeds about 25 percent depending on the
nature of the particle-matrix combination.

Finally, the effect of grain boundaries and grain morphology on the
creep and fracture behavior of dispersion-strengthened alloys is examined.

1.0 INTRODUCTION

It is now well recognized that the introduction of small amounts of fine
dispersoid particles in a crystalline matrix generally results in a consider-
ably stronger alloy. In contrast to precipitate-hardened alloys, which may
undergo microstructural changes when exposed to elevated temperatures during
the normal life time of a structural component, an ideal dispersion-
strengthened alloy exhibits microstructural stability even at temperatures

"This work will also be a chapter in the Handbook of Metallic Composites,
S. Ochiai, editor; Marcell Dekker, New York, New York.

""NASA Resident Research Associate at Lewis Research Center.



close to the melting point of the matrix material. These two features, namely
high temperature strength and microstructural stability, have been the primary
impetus in the development of numerous dispersion-strengthened alloys (see
Morral, 1977, for a review of the literature till 1977).

As a result of considerable amount of work done during the last four
decades, the factors which influence dispersion strengthening are better
understood today. These include the type of dispersoids used, particle size,
d , particle spacing,1 A, grain size, d, grain aspect ratio, GAR, and pro-
cessing techniques. In an earlier review, Grant (1966) outlined the desired
properties required of the dispersoid to ensure good dispersion strengthening.
These are a high melting point, high elastic moduli, and good chemical,
crystallographic, and microstructural stability in the matrix material. 1In
general, the properties of many oxides (e.g., A1203, Sioz, Thoz, and Y203)
fulfill these requirements, and a considerable amount of work has been done on
oxide dispersion-strengthened (ODS) alloys owing to their potential importance
in engineering applications (e.g., Hansen, 1967; Ault and Burte, 1968; and
Hansen, 1969).

The objective of the present paper is to review the creep and stress
rupture behavior of dispersion-strengthened alloys. A table of compiled creep
data on a wide variety of materials is also included as a source of ready
reference. It is intended that the present paper serve to compliment earlier
reviews (Guard, 1962; Ansell, 1968; Gibeling and Nix, 1980; Sellars and
Petkovic-Luton, 1980; fadek, 1981; Bilde-Sorensen, 1983; and Blum and Reppich,
1985) on particle-strengthened materials by updating the information in some
areas while providing new insights in others.

) The basic approach adopted in this paper is to examine the creep char-
acteristics of dispersion-strengthened alloys against the background of known
behavior of pure metals and solid solution alloys. Therefore, a summary of
the c;eep behavior of single phase materials in presented in Sec. 2.0. Next,
the creep behavior of single crystalline and coarse-grained dispersion-
strengthened materials are reviewed and discussed in Secs., 3.0 and 4.0. This
is followed by a consideration of the role of grain boundaries on the creep
and fracture behavior of these alloys in Sec. 5.0, while the areas requiring
further research are identified in Sec. 6.0.

2.0 CREEP BEHAVIOR OF SINGLE PHASE MATERIALS

The creep behavior of pure metals and solid solution alloys has been
reviewed extensively by a number of investigators (Sherby, 1962; McLean, 1966;
Sherby and Burke, 1967; Weertman, 1968; Mukherjee, Bird, and Dorn, 1969; Bird,
Mukherjee, and Dorn, 1969; Takeuchi and Argon, 1976; Blum, 1977; Nix and
Ilschner, 1980; Langdon, 1981, 1983; and Bendersky, Rosen, and Mukherjee,
1985). Therefore, only the salient features of the creep of single phase
materials are summarized in this section.

'In this paper, A, refers to the particle center-to-center distance, whereas
Xm represents the particle edge-to-edge distance.
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2.1 Power-law creep

The steady-state creep rate, é, of single phase materials at low and

intermediate stresses is generally well-represented by a power-law relation:

. n 1
e = A, (DGb/KT) (b/d)"(0/G) (1

here D is the appropriate diffusion coefficient, G is the shear modulus, b
is the Burgers vector, T 1is the absolute temperature, k 1is Boltzmann’s con-
stant, ¢ 1is the applied stress, and A1’ p, and n are dimensionless con-
stants. Table I lists the characteristics of several creep mechanisms which
are known to occur in metals and solid solution alloys, but it is noted that
while these serve as useful guidelines in understanding the creep behavior of
many materials, they may not always be applicable. For example, values of

Q. > Q, have been reported in some h.c.p. metals at very high temperatures
(Vagarali and Langdon, 1981), where QC is the true activation energy for
creep and Q, is the activation energy for lattice self-diffusion.

For a pure metal tested at intermediate stresses (typically,
5x107°% § g/c § leo'd), ns4.5 p=20, and D =D, where D, is the lattice
self-diffusion coefficient (i.e., D1 = D01 exp(—Ql/RT), where D01 is the
frequency factor, and R 1is the universal gas constant). Under these con-
ditions, dislocation climb is the rate-controlling mechanism sometimes
referred to as high temperature (H.T.) climb. This type of creep response is
now termed as metal type or class M behavior. It has also been observed in
many solid solution alloys when dislocation climb is slower than the viscous
glide motion of dislocations caused by the presence of a solute atmosphere.
However, under certain conditions, the creep behavior of some solid solution
alloys is dominated by viscous glide when the latter is slower than climb.
This is called alloy-type or class A behavior and it is characterized by
values of n =3, p=0, and D = D_ in equation (1), where 59 is the
diffusion coefficient for viscous glide-controlled behavior (Fuentes-Samaniego
and Nix, 1981).

At low stresses (typically, 0/G < 5x10'6), the rate-controlling mecha-
nisms are generally governed by the stress-directed flow of vacancies, either
through the lattice or along the grain boundaries, from grain boundaries under
relative tensile stresses to those under relative compression. These pro-
cesses collectively are termed diffusion creep, and they are characterized by
n=1, p=2o0r 3, and D = D1 or ng in equation (1), where ng is for
the grain boundary diffusion coefficient. The importance of these mechanisms
in dispersion-strengthened materials has been reviewed recently by
Whittenberger (1992), and the present review will not cover this area of
creep.



TABLE I. - CHARACTERISTICS OF CLASS A, CLASS M, DIFFUSION AND EXPONENTIAL
CREEP BEHAVIOR IN METALS AND SOLID SOLUTION ALLOYS
Low - 0/G= > High
Property Diffusion creep Class M Class A Exponential
creep
Power-law; Power-law; Power-law; Exponential;
c -0 nas=1.0; ps=s?2 n==4.5; p=0|ns3.0; p=0 |exp (B O0/G);
or 3 p =72
relation
Activation Q, or ng 0 (oré 1for T Less than
energy for 1 i g Q, and may
creep alloys) be stresss
dependent
Primary Normal Normal Short normal; Normal
creep curve linear;
sigmoidal;
or inverse
Substructure Essentially Well-formed, Essentially Elongated
similar to the equiaxed sub- random dislo- subgrains;
initial grains; cations; cells;
microstructure dislocation subgrain dislocation
networks formation tangles
possible
Transients - Normal Inverse Normal
after a
stress
increase
Dominant Vacancy Dislocation Viscous glide Probably
mechanism diffusion climb dislocation
intersection

*Q_, is the activation energy in the equation b, = D,, exp(-Q,,/RT), here

5c is the complex diffusion coefficient for a class M

a frequency factor.

alloy and D . is

**Qg is the activation energy in the equation ﬁg = 5ogexp(—ég/RT),where

D_ is the complex diffusion coefficient for a class A alloy and 509 is
frequency factor.




2.2 Exponential Creep

At high stresses, the power-law relation given by equation (1) breaks
down, and the data are better represented by an exponential relation:

e = A,(0)exp(-Q_/RT)exp(B0/G) (2)

where A_(0) is a parameter which incorporates the stress dependence of the
dislocation density, and B 1is a dimensionless constant. The mechanisms
governing deformation in this region is not well-understood, although recent
work on copper (Raj and Langdon, 1989, 1991(a) and (b)) suggests that the
rate-controlling process is nondiffusional in nature and involves the inter-
section of immobile "forest" dislocations as the probable dominant mechanism.

2.3 The Transition From Power-Law To Exponential Creep For Class M Behavior

A point that is not often recognized in the creep literature is the

importance of the ¢ - 0 relation used in the analysis of creep data.
Despite their somewhat empirical nature, the formulations represented by
equations (1) and (2) indicate the dominance of different rate-controlling
mechanisms. Although the power-law relation with a stress exponent of

n > 4.5 for class M behavior may often fit creep data quite well, such
representations may be physically meaningless if the mechanism governing creep
is nondiffusional in nature. Values of n > 4.5 have been reported in the
literature for pure metals (Bird, Mukherjee, and Dorn, 1969), and these have
been variously attributed to a number of factors: the importance of dis-
location core mechanisms (Robinson and Sherby, 1969; and Frost and Ashby,
©1982); the effect of stacking fault energy (Bird, Mukherjee, and Dorn, 1969);
statistical scatter (Mukherjee, Bird, and Porn, 1969); the influence of
internal stresses (Davies et al., 1973; Parker and Wilshire, 1975, 1978; and
Nelmes and Wilshire, 1976); and the advent of exponential creep (Blum and
Reppich, 1969; and Raj, 1986).

Unfortunately, owing to the scatter in the experimental data, it is
difficult to verify unambiguously whether the stress exponent for dislocatlion
climb-controlled power-law creep has a unique value. Despite this, certain
general comments can be made which indicate that some of the factors discussed
earlier may not be universally applicable. First, models involving dis-
location core diffusion are often inconsistent with the experimental data on
pure metals (Spingarn, Barnett, and Nix, 1979; and Raj and Langdon, 1989).
Second, values of n are remarkably constant and equal about 4.0 to 4.5 for
several single phase materials despite large differences in the stacking fault
energy (Blum and Reppich, 1969; Raj, 1986; and Raj and Pharr, 1989). Third,
the values of n > 4.5 are much too large to be entirely accounted for by
statistical scatter. Fourth, rationalizations based on the internal stress
approach may not be physically valid (Lin and Sherby, 1981).

An attractive interpretation of values of n > 4.5 is to attribute these
to the increasing dominance of exponential creep. The data compiled by Blum
and Reppich (1969) suggests that this may indeed be the case, since n was



observed to increase from n = 4.0 to much higher values with an increase in
the magnitude of ¢/T. A more recent analysis of the creep data on pure
f.c.c. metals also supports this viewpoint (Fig. 1) (Raj, 1986). 1In this

case, it was demonstrated that the normalized creep rates,(ékT/Dle)PLB, at

which the power-law relation breaks down decreased by about three orders of
magnitude for a decrease in [/Gb by about an order of magnitude, where r
is the stacking fault energy (Raj and Langdon, 1991(b)). Interestingly, the
breakdown in the power-law relation with n = 4.5 was observed to occur at an
average value of about (O/G)PLB = 5x107%, where (U/G)mm is the normalized
value of stress at which the power law breaks down. These results can be
rationalized on the basis that a decrease in the normalized stacking fault
energy results in a corresponding decrease in the rate of recovery by dis-
location climb, so that nondiffusional mechanisms dominant in the exponential
creep regime would tend to dominate at lower values of normalized creep rates

above(ékT/Dle)PLBas I'/Gb decreases and lead to the observance of n > 4.5

when 0¢/G > (U/G)pma'

2.4 The Effect of Microstructure on The Creep Rate

Although stress, temperature and grain size play an important role in
determining the nature of the dominant mechanism and its contribution to the
total creep rate, other factors can also influence the creep process (e.g.,
pressure, porosity, types of defects, and microstructural parameters other
than grain size). 1In most engineering applications involving metals and
alloys, the creep properties are significantly influenced by the substructure
since the constant, A, in equation (1) is a function of microstructural
parameters. However, owing to the inherent difficulties associated with a
complete quantification of the different microstructural parameters (e.g., the
subgrain size, ds, and the dislocation density, pg), as well as the complex-
ities which may arise because of the interdependent nature of some of these
varjiables, relatively few quantitative formulations exist in the literature
which specifically attempt to incorporate these parameters in the creep rate
equation.

Bafrett and Sherby (1965) and Mohamed and Langdon (1974a), observed that
A1 a I’° or (T/Gb)3, respectively. Sherby et al. (Robinson and Sherby,
1969; and Sherby, Klundt, and Miller, 1977) suggested that the creep rate at a
constant microstructure is dependent on the subgrain size through2
. 3 8 (3)
£ = A,(DGb/kT) (d_/b) (0/G)
where A, is a dimensionless congtant. Equation (3) predicts that subgrain

refinement can lead to substantial strengthening at high temperatures provided
a stable subgrain size can be achieved.

“The form of the original equation has been modified in order to be
consistent with equation (1).
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Although such direct relations between the creep rate and the micro-
structural parameters are useful, some elements of the substructure are also
related to the applied stress. For example, the equilibrium subgrain size
depends on the applied stress through

(d/b) = K(G/0)" (4)
where K and m are dimensionless constants which are inversely dependent on
each other (Raj and Pharr, 1986). Thus, for a value of m = 1, K assumes a

value of 23. Similarly, available evidence indicates that p « ot (Mukherijee,
Bird, and Dorn, 1969; Bird, Mukherjee, and Dorn, 1969; and Takeuchi and Argon,
1976).

3.0 DISLOCATION CREEP OF DISPERSION-STRENGTHENED MATERIALS

The creep of dispersion-strengthened alloys is often influenced by
intra- and intergranular mechanisms. Owing to the complex nature of these
processes, it is often simpler to study the two types of mechanisms separ-
ately. Therefore, in the present section it will be assumed that the role of
grain boundaries is negligible. This assumption is expected to be applicable
for single crystals or for materials with a very elongated, coarse-grained
microstructure in the testing direction.

3.1 The shape of the Transient Curves

Most high temperature experimental data on dispersion-strengthened
materials have been obtained either under constant stress (or load) or con-
stant strain rate (or crosshead velocity) conditions. The data obtained from
both types of tests are often compared with each other and it is useful to
document the nature of the creep curves or the constant strain rate stress-
strain plots typically observed in most investigations. The types of
experimental curves reported in the literature fall broadly into one of the
categories shown schematically in Fig. 2. It is emphasized that these serve
only as guidelines and other variations might have been reported in some
investigations.

Figure 2(a) shows three types of creep curves (N, R, T) obtained by
plotting strain, e, against time, t. Curve N, which is similar to that
usually observed in class M materials, consists of an instantaneous strain,
a primary stage in which the creep rate decreases with time, a secondary stage
with an approximately constant creep rate, and a tertiary region where the
creep rate increases continuously leading to fracture with the total fracture
strain being typically less than 3 percent. Curve R differs from curve N
in that the ¢ - t plot exhibits a number of primary stages separated by
instantaneous jumps in creep strain with no single and well-defined secondary
creep region. In extreme cases, no measurable creep may occur for long
periods between two consecutive primary regions (Ansell and Weertman, 1959).
Curve T and curve N differ primarily in the nature of the tertiary stage
that is observed. 1In contrast to curve N, where the advent of tertiary creep
is relatively gradual, curve T exhibits a sharp transition from the
secondary to the tertiary stage with the latter being almost parallel to the

8
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strain axis. 1In this case, the total fracture strain is usually about 5 to 20
times greater than the strain to the onset of tertiary creep. Therefore, a
consgiderable amount of strain accumulates before fracture in a relatively
short time, although the total strain before the commencement of the tertiary
stage can often be less than 1 percent. 1In practical situations, this
behavior can lead to unforeseen and potentially disastrous failures of
engineering structures. Although curves N and T are more commonly
reported, other types of creep curves are sometimes observed. For example,
dispersion-strengthened Al-5% Mg-0.3% Fe alloys exhibit inverse, linear and
sigmoidal creep curves (Horita, 1983).

Several different stress-strain curves are observed when dispersion-
strengthened alloys are tested under constant strain rate conditions, and
these are shown in Fig. 2(b). Curve A represents the normal type of
continuous hardening behavior exhibited by many pure metals, whereas curve B
shows a yield drop followed by extensive strain hardening. Curve C shows a
tendency towards softening after the yield point, whereas curve D shows
little or no strain hardening effects after yielding followed by continued
flow at approximately a constant stress. Curve E shows some work hardening
before the material undergoes necking.

Although it is difficult to correlate the constant stress and the con-
stant strain rate plots directly in any detailed manner, it is possible to
make certain general comparisons between the two results. Thus, for example,
the primary stage of curve N (Fig. 2(a)) and the strain hardening behavior
shown in curve A (Fig. 2(b)) can be attributed to changes in the substruc-
ture. Similarly, sigmoidal and inverse primary creep curves may be compared
with curves B and €, respectively, since the basic features of these plots
can be generally attributed to an increase in the density of mobile
dislocations.

3.2 The Stress Dependence of the Creep Rate

In general, the addition of small amounts of dispersoids to single phase
and precipitate-hardened materials decreases the creep rate considerably. For
example, considering the creep data for Al and Al-2 (vol. %) A1203 shown in
Fig. 3 (Oliver and Nix, 1982), it is seen that the creep rates for the
dispersion-strengthened alloy are lower than those for the pure metal by
several orders of magnitude. More importantly, the creep rates for the alloy
fall steeply when the stress decreases by small amounts below O/E = 10'%
where E 1is the Young’'s modulus. Presumably, this indicates the existence of
a threshold stress, O n’ below which the creep rate is zero or immeasurably
small in practice.3 This observation has great technological implications

’The definition of 0h used in this paper follows that of Gibeling and Nix
(1980), who have discussed the differences in terminology and the physical
origins of the terms "back stress," "friction stress,"” "internal stress," and
"threshold stress.” Accordingly, in the present paper, g, is identified with
the stress below which no creep occurs.
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since 0O defines the maximum design stress that an engineering component
can be subjected to without appreciable creep when the desired lifetime is
required to be very long.

Creep data obtained on dispersion-strengthened alloys can be represented
either by a power-law or an exponential creep relation. In most instances,
the former correlation has been the preferred form of representing the

¢ -0 data, and in these cases, the magnitude of n has been found to vary
between 3.5 (Durber and Davies, 1974) and 100 (Whittenberger, 1979). The
values of n reported for several materials are tabulated in Table A.1l in the
Appendix. In addition, the table includes information on the experimental
conditions used in each investigation and other reported results.

Referring to Table A.1l, some general observations may be made regarding
the stress dependence of the secondary creep rate. First, values of n
between 4.0 and 4.5 have been reported for several dispersion-strengthened
materials. Typically, this group consists of pure metals and solid solution
alloys as the matrix material which have been heat treated to give an equiaxed
recrystallized microstructure. Second, constant values of n, usually between
6.0 and 8.0, have been observed for some alloys. Third, values of n > 8 have
been reported for a large number of dispersion-strengthened alloys, where n
generally increases with decreasing stress and increasing temperature. In
this case, a threshold stress is often observed in these materials. A number
of factors appear to influence this type of creep behavior: processing
techniques, grain size, grain aspect ratio, volume fraction, Ver of the dis-
persoids, interparticle spacing, and the range of test stresses and tempera-
tures. It is therefore clear that the addition of dispersoids to a metallic
matrix does not necessarily lead to threshold stress behavior. Instead, as
shown in Table A.1l, only some matrix-dispersoid combinations, coupled with
variations in the microstructure and processing techniques, result in this
type of stress dependency of the creep rate. :

Unfortunately, in many instances the analysis of elevated temperature
data reported in the literature assumes the applicability of the power-law
creep relationship and no attempt is generally made to verify that the
exponential creep relation is actually unsuitable. Indeed the power-law
relation may not always be valid. For example, Fig. 4 shows that the creep
data obtained on an Al-4 wt. % Alzo3 alloy are well-represented by an expo-
nential relation (Mili¥ka, Cadek, Ry¥, 1970). In practice, the nature of the
stress dependence can vary with the processing technique used and the volume
fraction of the dispersoid. This is shown in Fig. 5 for dispersion-
strengthened lead, where it is observed that the data for the as-extruded
material appears to exhibit an exponential creep behavior while that for the
recrystallized alloy follows a power-law creep relation when ¢ < 16 MPa.
Interestingly, the as-extruded material is weaker than the recrystallized
alloy despite the fact that it contains a larger volume fraction of disper-
soids. This may be due to the fact that the extruded material had a smaller
grain size (Table A.1l) so that grain boundary sliding could have influenced
the creep rate significantly.

12
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Figure 5 demonstrates clearly that an increase in the volume fraction of
the dispersoid may not always lead to an increase in the creep strength of the
alloy. This situation would arise when the dominance of one mechanism is
enhanced in preference to another, and this appears to be the case with the
data shown in Fig. 5. Similarly, the presence of MgO dispersoids in an
Al-3.9% Mg solid solution alloy effectively increases the role of one mech-
anism while suppressing class A behavior and results in a weaker material
when 107 € 0/E § 3x107° (Fig. 6). The suppression of class A behavior has
also been observed in an Al-5% Mg-0.25% Fe commercial alloy containing about
16 to 17 vol. % of (FeMn)Al6 (Horita, 1983; and Horita and Langdon 1983).
These observations are important in the development and application of
dispersion~strengthened materials since they demonstrate the inherent dangers
associated with particle weakening: The suppression of one creep mechanism
can lead to the dominance of another, which could result in unforeseen
deformation and failure of an engineering component.

3.3 The Temperature Dependence of The Creep Rate

The apparent activation energy for creep, Q,, is given by

Q, = -R[01lne/d(1/T) ], (5)

In practice, Q. is generally determined from plots of the temperature
dependence of the creep rate at a constant value of stress or from temperature
change experiments, where the creep rate is measured before and after small
changes in temperature (typically, 5 % of the original temperature). The
values of Q reported for a number of dispersion-strengthened materials are
also tabulated in Table A.1l. 1In some investigations, the reported value of

Q, was partially corrected for the temperature dependence of the elastic
modulus in the manner propeosed by Barrett, Ardell, and Sherby (1964), and this
is indicated in the table. From Table A.l, it is clear that extremely large
values of QA have been reported in several investigations, and these may
exceed the activation energy for lattice self-diffusion in the matrix by a
factor of up to 25 in some cases. In most instances, the corresponding magni-
tudes of the stress exponent are also high.

Figure 7 shows the distribution of the reported values of Q. with
T/Tm for a number of dispersion-strengthened materials. 1In general, three
types of distribution functiong are observed. First, QA does not depend
significantly on stress and temperature when the materials are tested after
relatively little or no prior mechanical processing followed by an annealing
treatment. Typically, these materials contain equiaxed grains and a large
interparticle spacing, and the values of QA and n are comparable to those
for a pure metal. Second, high values of Q, much greater than Q1' but
relatively independent of stress and temperature, are observed in alloys sub-
jected to a complex thermomechanical processing history to produce recrys-
tallized grains with very large grain aspect ratios. Third, the magnitude of

15
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QA increases with temperature in some alloys,4 which were tested in the
mechanically-worked state (MiliZka, Cadek, and Ry, 1970) or which possessed a
large initial grain aspect ratio (Petrovic and Ebert, 1973). This observed
temperature dependence of the activation energy could result from its depend-
ence on the applied stress as shown in Fig. 8, where the true activation
energy evaluated from the data reported by Mili&ka, fadek, and Ry® (1970) on
Al-4% A1203 (Fig. 9), is plotted against the normalized applied stress. The
values of the activation energies for lattice self-diffusion in Al and A1203
tabulated by Frost and Ashby (1982) are also shown in Fig. 8. As shown in
Fig. 8, the magnitude of Q. increases gradually with a decrease in ¢/G
till about 10'3, below which the rate of change is much higher.

Lund and Nix (1975), and Malu and Tien (1975), attributed the high
values of QA >> Ql to the importance of the temperature dependence of the
elastic modulus which can be significant at high temperatures, especially if
n 1is high. However, only a partial correction incorporating the modulus-
compensated stress term in equation (1) was suggested, and the additional
contribution because of the term, G/T, in the equation was ignored. For a
power-law creep relation, such as equation (1), the true activation energy is
given by Langdon and Mohamed (1977)

Q. = Q, +RT + (n - 1) (RT*/G) (d6/9T), (6)

where (aG/aT)P is the rate of change in the shear modulus with temperature at
a constant pressure, P. Alternatively, the true activation energy for creep

may be obtained by plotting eT/G against 1/T semi-logarithmically for
different values of the normalized stress (Fig. 9). Using equation (6), and
the data for the shear modulus tabulated in Table A.2 in the Appendix, the
values of Qc were estimated for some of the materials listed in Table A.1l.
These are tabulated in Table A.3, along with the ratio, Qc/Ql, where the
magnitudes of Q, are given in Table A.2. Further details of the procedure
followed in deriving @ are given in Appendix A.2. It is evident from
Table A.3 that the magnitudea of the temperature-compensated activation
energies are still much larger than Q, in a number of instances. These
results suggest that additional correction terms may have to be included in
equation (6) in order to reduce Q. to a value equal to about Q,- This is
discussed in Sec. 3.4.

Although the incorporation of other terms into equation (6) can lead to
QA A Ql there is no a priori reason to assume that these corrections are
necessarily valid, since the inclusion of such correction factors implicitly
assumes that all deformation is restricted to the matrix. However, if the
particles deform during creep, then these high values of activation energy may
equal those associated with the creep of the dispersoids. If this be the
case, it is then instructive to compare the experimental activation energies

‘Relatively constant values of Q, have been reported for some Ni—Cr—ThOZ,
MA 754, and Ni—Cr—Al-—Y203 alloys (Table A.l1). However, for reasons of clarity,
no attempt has been made to identify these results in Fig. 7.

18



I I | l | I ]

800 [— Al-4Al 04 —

700 |— /042 = 635 xJ woL ! —
/

500 f— L0y #3 = 475 xd w7

@)= w3 kg mo T — —

05 (x10%)

FIGURE 8. - VARIATION OF TRUE ACTIVATION ENERGY FOR CREEP WITH NORMALIZED STRESS
FOR Al-4 (wT %) Ai,05 BASED ON THE DATA REPORTED BY MILICKA, CADEK, AND RYS,
(1970). THE BROKEN LINES REPRESENT THE VALUES OF THE ACTIVATION ENERGIES
FOR LATTICE SELF-DIFFUSION IN ALUMINUM (MOHAMED AND LANGDON. 197ub). AND
INTRINSIC DIFFUSION OF ANIONS AND CATIONS [N Al,03 (FROST AND ASHBY. 1982).

19



€ (1/29)(6pe/6p) (5™ 1)

-
(=1

1

-

—_

—_

-4

0‘5

o| ol
~ [+a}

ol
=]

—
O'
%+

-
<

-10

T M

1000 800 700 600 500 400 300 285
1 ’ 1 | T [ T
Al -4Al 505
— 0/6 Q. (xJ mo "1yl
O 6.6x10°7 630
— O 1.3x107>  265: 1075
A 3501073 215
- O 7.3 85 ]
E E-
| [ ] |
1.0 1.5 2.0 2.5 3.0 3.5
1000/T (K1

FIGURE 3. - TECHMIQUE FOR ESTIMATING THE TRUE ACTIVATION ENERGY FOR CREEP FOR
203 (MILICKA, CADEK. RYS, 1970) FROM A PLOT OF THE TEMPERATURE-
COMPENSATED CREEP RATE AGAINST THE [NVERSE OF THE ABSOLUTE TEMPERATURE FOR
DIFFERENT VALUES OF THE NORMALIZED STRESS.

Al-4 (W7 %) Al03

20



with those for intrinsic diffusion of the slowest species in the dispersoids
assuming that the deformation of the latter is controlled by a lattice dif-
fusion mechanism such as high temperature climb or Nabarro-Herring creep. The
latter possibility was considered by Oliver and Nix (1982) in their investi-
gation on oxide dispersion-strengthened Al and Al-Mg alloys.

Table II compares the apparent activation energies for several ODS
alloys for which Q >> Q, (Table A.1) with those for intrinsic lattice dif-
fusion of the slowest diffusing species or for high temperature climb. The
activation energies for intrinsic diffusion and creep are based on the tabu-
lated data reported by Frost and Ashby (1982), and Gaboriaud (1981). It
should be noted that the values of Q. given in Table A.3 were obtained after
correcting for the temperature dependence of the shear modulus of the matrix;
thus it would be inappropriate to comparé these with the activation energy
data reported for the particle. Therefore, these values are not included in
Table II. A more appropriate correction of the apparent activation energy
would involve the temperature dependence of the shear modulus of the dis-
persoid, if the latter deforms by a nondiffusion creep mechanism with n > 1.
However, the range of temperatures over which the data have been obtained
constitutes only a small fraction of the absolute melting point of the dis-
persoids, and consequently this correction factor is expected to be small.
Therefore, the data for the apparent activation energy included in Table II
would be approximately equal to that corrected for the temperature dependence
of the shear modulus of the particle.

As shown in Table II, the apparent activation energies compare reason-
ably well with those for cation and anion intrinsic diffusion in the
dispersoid only in some cases. For example, the agreement is extremely good
for the data reported by Oliver and Nix (1982) on ODS aluminum and Al-Mg but
very poor for the more complex nickel-base materials. Therefore, the present
evidence does not support the viewpoint that diffusional processes occurring
within the particle contribute to the creep of most dispersion-strengthened
materials. This does not however rule out the possibility that the dispersoid
may deform by a nondiffusional mechanism, and this idea is examined in
Sec. 4.2.

3.4 Phenomenological Equations for Creep

It was demonstrated in Secs. 3.2 and 3.3 that the stress exponents and
activation energies for creep of several dispersion-strengthened materials
tend to be much higher than those for the matrix material. One possible
rationalization was considered in Sec. 3.3, where the activation energies were
compared with those for intrinsic diffusion of the anion and cation in the
dispersoids, and it was concluded that the available evidence does not support
the hypothesis that the particle deforms by a diffusion-controlled process.

In this section, a second and more commonly accepted viewpoint is discussed
based on the existence of a threshold stress.

A common observation in many dispersion-strengthened materials is the
large increase in the magnitude of the stress exponent at high temperatures

and low stresses. This is shown in Fig. 10 for a Ni-20% Cr-2% ThO2 alloy
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TABLE II. - A COMPARISON OF THE APPARENT ACTIVATION ENERGIES, QA, FOR
CREEP OF OXIDE DISPERSION-STRENGTHENED MATERIALS WITH THOSE FOR ANION,
Q.. AND CATION, Qcat’ DIFFUSION IN THE OXIDES

. . 1 2 3
Matrix Dispersoid Qs » QA/Qan QA/Qcat References
kJ mol
Al Alzo3 540 0.9 1.1 Oliver and Nix
(1982)
Al-Mg MgO 500 1.1 - Oliver and Nix
(1982)
Ni Tho2 795 - 1.3 Wilcox and
Clauer (1966)
Ni-Cr ThO2 390 - 0.6 Lund and Mix
990 - 1.6 {(1976)
Ni-Cr Yzo3 505 - 1.3 Howson et al.
660 - 1.7 (1980a)
Ni-Cr Y0, 351 - 0.8 Stephens and Nix
400-670 - 1.0-1.7 (1984, 1985)
Ni-Cr-al Yzo3 525-660 - 1.4-1.7 McAlarney et al.
1530 - 3.9 (1982)
MA 6000 Yzo3 670 - 1.7 Kim and Merrick
(1979)
MA 6000 YZO3 620 - 1.6 Howson et al.
(1980b)
MA 6000 Yzoa 800 - 2.1 Wittenberger
(1984)

'For Ma 6000, the dispersoids probably consist of a mixture of yttrium

and aluminum oxides (Singer and Artz,
2Q is the activation energy of the anion in the oxide.

an

El
cat

values of Qc
Thoz, respectively (Frost and Ashby, 1982).
» 390 kJ mol™’ was assumed for YZO3 based on the creep data

Q

cat

reported by Gaboriaud (1981).
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1986).

The values of

Q,, were thained from Frost and Ashby (1982), and are about 635 and
460 kJ mol ~ for A1203 and MgO, respectively.

Q is the activation energy for cation diffusion in the oxide.

used were about 475 and 625 kJ mol™' for A1203 and

The

A value of
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(TD-Nichrome) based on the data reported by Lund and Nix (1976). In this
case, the stress exponent increased from n = 8.7 at 923 K to n = 75 at

1573 K. However, if these are replotted as é/Dl against ¢/G using the data

tabulated in Table A.2, then it is seen that the normalized creep rate
decreases sharply with a small decrease in the normalized stress (Fig. 11).
Two points may be noted about Fig. 11. First, at low temperatures and high

stresses é/D1 varies relatively gradually with ¢/G. Second, there is almost

a vertical drop in the é/Dl-o/G plot at high temperatures and low stresses

which suggests the existence of a critical stress below which the creep rate
is expected to be zero if there is no change in the deformation mechanism.

However, if the rate-controlling process changes, then é/chan decrease more
gradually at lower values of 0/G after the sharp drop in the é/Dl-U/G plot.

Similar observations relating to these two modes of behavior in the é/Dl-U/G

plot have been reported for dispersion-strengthened aluminum {(Fig. 3) and
Al-Mg (Fig. 6) alloys (Oliver and Nix, 1982). These results suggest the
occurrence of two deformation regions which act sequentially with each other.

The observation of an apparent threshold behavior during creep of
dispersion-strengthened alloys has led to the suggestion that it is the
effective stress, (0 - 0.,)+ and not the applied stress, that is the important
variable in the creep rate equation. Therefore, the power-law creep equation
may be represented by

. n (7)
e = A, (DGb/KT)[(0 - 0,)/G) "exp(-Q.,/RT)

where D, is a frequency factor, Q. is the activation energy for creep in
the modified equation, and n, and A4 are constants. Alternatively, the
exponential relation may be modified to include the threshold stress as

. (8)
¢ =A,(0 -0,)°exp[B' (0 - 0,,)/Glexp(-Q_,/RT)

where ch is the activation energy for creep, and A5 and B’ are
constants. The stress exponent of two incorporated in the pre-exponential
term is assumed to result from the dependence of the dislocation density on

the effective stress. Both equations (7) and (8) predict that e= O when
g = Uth.

Equations (7) and (8) are an attractive, although empiribal, represen-
tation of the creep rate equation for a dispersion-strengthened material since
they provide a rationale for the high values of the stress exponent and the
activation energies reported in the literature (table A.1). This arises as a
result of the relationship that exists between the measured stress exponent
given by equation (1) and that predicted by equation (7) (Purushotham and

Tien, 1978):
n = nl[{l - (Bath/ﬁo)w}/{l - acn/a}] (9)
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Similarly, a pseudo stress exponent can be calculated from the exponential
stress relation given by equation (8) as

n = (8lne/d1no), = [2 + B’(O’ - ath)] [{1 - (aath/ag)T} /{1 - ath/a}] (10)

Equations (9) and (10) predict high values of n when (¢ approaches
Uth. Purushotham and Tien (1978) suggested that the exact magnitude of n
would be determined by the stress dependence of ath. Therefore, when (¢
is independent of the applied stress, and 0 >> 0o equations (9) and (10)
lead to n =» n, and n = [2 + B'(0 - .1 respectively. Although similar
results are obtained when ¢ b is assumed to be linearly dependent on the
applied stress, thisg assumption is inconsistent with the definition of the
threshold stress which requires that the latter be stress independent.

The activation energy for creep can be expressed in terms of the
threshold stress utilizing either equations (7) or (8). Thus, eguation (7)
leads to

Q., = 9, *+RT + (n, - 1)(RT*/G) (3G/dT), + (n,RT*/(0 -0, ))(Bo,,/8T), (11}

and equation (8) gives

Q. =9, - (RTZ/AS)(aAS/aT) + (RTZ/G)(aG/aT)P[2 + B’ /G]

+ RT%(d0,,/9T),[2/(0 - 0,,) +B'/G] (12)

Equation (11) reduces to equation (6) when (aath/aT>P =0and n =n,. The
quantity (BO'th/aT)P is negative (Artz, 1992), so that the effect of the
fourth term in equation (11) or (12) leads to a significant decrease in the
magnitude of the apparent activation energy as ¢ approaches O This
correction is in addition to that incorporated in the third term in these
equations.

Although the incorporation of the threshold stress in the creep rate
equation provides an attractive rationale for the observed values of the
stress exponent and the activation energy for creep, Gibeling and Nix (1980)
have cautioned against an indiscriminate use of the effective stress approach
since there is a danger of overlooking a genuine deformation mechanism. For
example, the threshold stress approach is not always consistent as is evident
through a comparison of Figs. 11 and 12, where the experimental creep rates
shown in Fig. 10 for TD-nichrome (Lund and Nix, 1976) have been normalized by
two different procedures. 1In Fig. 11 the creep rates have been normalized by
the diffusion coefficient for lattice diffusion and an apparent threshold
stress behavior is observed. However, if the creep rates are normalized in
accordance with equation (1) as shown in Fig. 12, there is a gradual deviation
in the data from the apparent threshold effect observed in Fig. 11 at low
stresses and high temperatures owing to the additional influence of (T/G).
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This deviation is consistent with a value of n < 75 observed at 1573 K when
7 < 80 MPa (Fig. 10). These results cannot be easily rationalized using the

threshold stress approach since the latter should lead to ¢ = 0 when 0 = O

independent of the manner in which the data were normalized.

Three additional difficultiesg exist with the incorporation of a
threshold stress in the creep rate equation. First, there is no unique or
universally accepted technique for determining the magnitude of the threshold
stress, and the value of ath is dependent on the method employed. Second,
back stresses due to solid solution alloying, precipitates, and forest dis-
locations can complicate the measured value of Jth, and it is not always
possible in practice to correct for these effects. Third, a physical inter-
pretation of the origin of these threshold stresses and the microstructural
parameters which influence their magnitude is still poorly understood.

Despite these difficulties, the potential importance of the Or
concept lies in the fact that the high values of n and Q. can be easily
rationalized. Therefore, a considerable amount of effort has been expended in
evolving techniques for measuring the magnitude of the threshold stress and in
understanding the nature of the deformation mechanisms responsible for this
type of creep behavior. Some of these techniques used in the, estimation of
g are discussed in the next section while the possible origins of threshold
stress behavior are reviewed separately by Artz (1992).

3.5 Techniques For Determining The Threshold Stress

Although several procedures have been developed for measuring g, none
of these are entirely satisfactory or universally accepted. Wilshire and
co-workers (Davies et al., 1973; Williams and Wilshire, 1973; Threadgill and
Wilshire, 1974; Parker and Wilshire, 1975; Nelmes and Wilshire, 1976; Parker
and Wilshire, 1978; Burt et al., 1979; and Evans and Harrison, 1979), sug-
gested that equation (7) with n, =4 is valid for pure metals, sclid solu-
tions, precipitate-hardened alloys, and dispersion-strengthened materials and
that ath could be evaluated from stress reduction experiments. Typically,
these experiments are performed by decreasing the stress by small amounts in a
creep experiment and noting the length of the "incubation" period of zero
creep rate following the stress reduction before measurable creep occurs. The
threshold stress is then estimated from plots of cumulative incubation times
against the cumulative stress decrease. However, this technique is controver-
sial since the existence of an incubation period is in doubt (Blum, Hausselt,
and Kénig, 1976; and Gibeling and Nix, 1977) so that this, procedure is not
widely accepted. 1In addition, Lin and Sherby (1981) have pointed out that
o, as determined by this technique is empirical and cannot be correlated
independently with microstructural parameters, such as the interparticle
spacing.

An alternative procedure for evaluating the threshold stress was

suggested by Lin and Sherby (1981) based on the assumption that the subgrain
microstructure can be considered to be constant during creep of a dispersion-
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strengthened material. This condition would be fulfilled when the inter-
particle spacing is equal to or less than the equivalent subgrain size
predicted by equation (3). Therefore, equation (3) may be modified to include
the threshold stress

. 13
¢ = As(ds/b)a(DGb/kT){(U - ath)/c;}B (13

The magnitude of ds is determined by the initial subgrain size or the
interparticle spacing when the latter is smaller than the equivalent subgrain
size. This condition is expected to be satisfied at relatively low stresses
and equation (13) predicts a constant stress exponent of eight. However, if
the stress is sufficiently high so that the equivalent subgrain size is
smaller than the interparticle spacing, the stress dependence of the subgrain
gize becomes important, and equation (13) predicts a stress exponent of five,

if ds a (0 -0,.)
The threshold stress can be estimated from a graphical analysis of

equation (13) by extrapolating a linear plot of [éle:oz/(c:ls)z’DG]U8 against
0/G to zero. In this case, the magnitude of ds is obtained from
experimental measurements of the initial subgrain size or the interparticle

spacing.

The Lin-Sherby technique is attractive in that it permits the deter-
mination of 7. based on an estimate of a single microstructural parameter.
However, its applicability is dependent on the validity of equation (13), and
a uniform distribution of dispersoids which is seldom observed in practice.
In addition, an examination of Table A.1l shows that subgrains are not always
observed in dispersion-strengthened materials even when n = 4 and the
interparticle spacing is large (Reynolds, Lenel, and Ansell, 1971). The Lin
and Sherby hypothesis (1981) is also not supported by the observations of
Durber and Davies (1974) on several Ni—ThO2 alloys. A value of n = 3.5 was
obtained in this investigation although the interparticle spacing was smaller
than the subgrain size of about 20 gm estimated from equation (3).

A more direct technique for determining the threshold stress utilizes
the power-law creep relationship such as that given by equation (7). 1In this
. 1/ng
case, 0, can be determined by extrapolating a linear plot of (gkT/DGb)
against (0/G) to a zero value of the normalized creep rate. However, this
method requires some knowledge of the value of n, which 1g often assumed to
equal that for the matrix (Artz, 1992). This assumption is valid only when
the deformation of the matrix remains unchanged in the presence of the dis-
persoids which may not necessarily be valid. In addition, the choice of n,
is somewhat arbitrary since the stress exponent of the matrix material can
vary with stress and temperature. However, a major advantage of this tech-
nique is its relative simplicity.
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For the specific case when ath is equal to the Orowan stress, the
threshold stress can be identified with the magnitude of the yield stress
obtained at room temperature if this corresponds to the a thermal region of
the yield stress-temperature plot. Alternatively, the threshold stress can be
estimated theoretically if the particle size and spacing are known. Another
technique for estimating the threshold stress is based on the "additive rule"
proposed by Lund and Nix (1976), and later modified by Pharr and Nix (1976).
This procedure assumes that the high temperature strength of the alloy at a

constant value of e/D can be represented by

(U/G)alloy = (U/G)matrix + (ath/G) (14)
where (G/G)anﬂ~ is the measured normalized strength of the dispersion-
strengthened ailoy and ((J/G)mm__ix is the normalized strength of the matrix.
Therefore, g, may be estimated from equation (14) if the magnitudes of
(U/G)amp and (G/G)lnatrix are known. Lin and Sherby (1981) have raised two
objections to this concept. First, equation (14) assumes that the matrix and
the dispersion-strengthened material exhibit similar creep behavior. This may
not always be valid since the matrix material exhibits primary creep (e.qg.,
nichrome) whereas the dispersion-strengthened alloy may show very little
gtrain hardening (e.g., TD-nichrome) in some cases. Second, ath cannot be

correlated easily with the microstructural parameters.

To summarize, there is as yet no satisfactory technique for measuring
the threshold stress, although the extrapolation method utilizing equation (7)
appears to be the simplest and the most general procedure available at present
despite the inherent subjectiveness involved in the choice of the stress
exponent.

3.6 Characteristics of the Threshold Stress

The creep of dispersion-strengthened alloys is strongly influenced by
the initial microstructure. The addition of dispersoids to a metallic matrix
generally tends to reduce the creep rate although other effects, such as the
suppression of the dominant creep mechanism in the pure metal or solid solu-
tion alloy and the relative enhancement of another process, can lead to
dispersion weakening of the material (Figs. 5 and 6). Although it would be
useful to correlate this decrease in the creep rate directly with the micro-
structural parameters, such as the interparticle spacing, such relationships
are difficult to make in practice since other variables, such as the particle
size, can also vary. Therefore, there are very few investigations where such
correlations have been attempted. Durber and Davies (1974) observed that the
creep rate decreased with an increase in the volume fraction of 'I'ho2 in
recrystallized Ni—ThO2 alloys. No significant variation was observed in the
particle gize, so that the decrease in the creep rate can be correlated
directly with the interparticle spacing as shown in Fig. 13, where it is
evident that even small additions of Tho2 (s 0.01 vol %) to nickel reduce the
creep rate significantly.
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However, from engineering considerations, it is the threshold behavior
exhibited by some dispersion-strengthened alloys that is of primary interest.
It was mentioned earlier that the addition of dispersoids to a metallic matrix
does not necessarily result in threshold stress behavior, and alloys with
similar compositions may exhibit differences in creep behavior (Table A.1l).
Therefore, for dispersion-strengthened alloys to be useful in engineering
applications, it is important te understand the characteristics of threshold
stresses.

At low temperatures, the magnitude of the threshold stress compares
reasonably well with the calculated value of the Orowan stress, UOR. However,
at high temperatures, the magnitude of the threshold stress is often found to
be less than the experimental and the estimated values of the Orowan stress
(Shewfelt and Brown, 1974; Pharr and Nix, 1976; Hausselt and Nix, 1977(a) and
(b); Petkovic-Luton, Srolovitz, and Luton, 1983; and Clauer and Hansen, 1984).
An example of this behavior is shown in Fig. 14 for a number of Cu-SiO2 alloys
(Shewfelt and Brown, 1974), where the ratio of the shear modulus-corrected
values of the yield stress, UT, to the Orowan stress decreases with temper-
ature above about 300 °C. At 1050 °C, the temperature-compensated yield
stress, which is about 0.6 Ton? is only weakly dependent on the volume frac-
tion and size of the particles. Similarly, the estimated values of ath have
been found to be about half the Orowan stress for many other materials (Artz
and Ashby, 1982; and Artz, 1992). Shewfelt and Brown (1974) also concluded
that the threshold stress was not strongly influenced by the type or shape of
the disperscids used in copper-based alloys. Although this conclusion was
based on a comparison of their data with those obtained on Cu—A1203 and Cu-BeO
(Humphreys, Hirsch, and Gould, 1970), it is noted that this rationale may be
erroneous owing to the large scatter in the data.

The simple interrelation that exists between the threshold and the
Orowan stress (Artz, 1992) suggests that they are affected in a similar manner
by the same microstructural parameters. Most calculations for the Orowan
stress suggest that:

O,z = C(Gb/A)1n(d,/b) (15)

OR
where C 1is a geometrical constant. Alternatively, A may be replaced by
km = (A - dp) as suggested by Lund and Nix (1976). 1In the present paper, C
was estimated to be about 0.5 using the egquation given by Artz (1992).

Equation (15) predicts that UOR and Uth are inversely related to the
interparticle spacing, and this is shown in Fig. 15 for a number of materials
tested in the power-law and diffusion creep regimes (Sautter and Chen, 1968;
Burton, 1971; Moon, 1972; Pugh, 1973; Blickensderfer, 1974; Shewfelt and
Brown, 1974; Lund and Nix, 1976;5 Hausselt and Nix, 1977; Sinha and Blachere,

SThe threshold stress estimated from the data of Lund and Nix (1976) may not
be valid in view of the results shown in Fig. 12. However, this data point is
shown in figure 15 for the sake of completeness.
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1979; Lin and Sherby, 1981;6 Oliver and Nix, 1982; Petkovic-Luton,
Srolovitz,and Luton, 1983; Clauer and Hansen, 1984; Whittenberger, 1984; and
Stephens and Nix, 1985). The threshold stress data for most of the materials
tested in the power-law creep region are those tabulated by Artz (1992).
However, the data on Cu-SiO_ and the 218 tungsten alloy are based on the
investigations of Artz and Ashby (1982), and Pugh (1973), respectively. The
threshold stresses corresponding to the diffusion creep regime were obtained
from the original references and these are included only for the sake of
comparison. Alternatively, the normalized threshold stress can be plotted
against the normalized effective interparticle spacing, (A - dp)/b as shown
in Fig. 16.

Assuming dp/b » 100, the Orowan stress was calculated from equa-
tion (15), and the predicted values are compared with the threshold stress
data in Fig. 15. Some general conclusions can be made based on Figs. 15 and
16. First, these plots demonstrate that OEh/G is inversely dependent on the
interparticle or the effective interparticle spacing; thus the form of equa-
tion (15) is satisfied. Second, the estimated values of the Orowan stress are
nearly equal to or higher than the experimental values of the threshold stress
for most of the materials. However, it should be noted that the calculated
values of ¢ are gensitive to the choice of the constant, C, in equa-
tion (15). Third, the normalized values of diffusion creep threshold stress
generally tend to be much smaller than those for dislocation creep, and they
are essentially independent of the interparticle spacing.

Figure 17 shows the variation of (Uth/G)(k/b) with (dp/b) plotted semi-
logarithmically in accordance with equation (15). The slope of the linear
regression line shown in the figure is about 1.0.7 1In comparison to the
effect of the interparticle spacing, Fig. 17 suggests that the threshold
stress is only weakly dependent on the particle size. There is very little
direct experimental evidence on the effect of particle size on the creep rate
and on the magnitude of the threshold stress. However, the observations of
NcNelley, Edwards, and Sherby (1977) on digpersion-strengthened zinc con-
taining a high volume fraction of Alzo3 dispersoids suggests that the
threshold stress decreases with an increase in the particle size. This is
shown in Fig. 18 where the data have been replotted by Blum and Reppich
(1985). It is seen that the threshold stress decreases as the particle size
increases in the Zn-30% A1203 alloys. These results appear to contradict the
predictions of recent theoretical models on the origin of the creep threshold
stress, which suggest that the threshold stress is not influenced by the size
of the dispersoids (Artz and Schrdder, 1986; and Artz and Wilkinson, 1986).
One possible explanation of these observations is to attribute them to a

The interparticle spacing reported by Lin and Sherby {(1981) corresponds to
coarse particle only. This may account for the relatively large deviation of
this datum point from the mean line shown in Fig. 15.

"The data of Lin and Sherby (1981) were not considered in the regression
analysis for reasons stated earlier.
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variation in the interparticle spacing. This is an area where more research
is required to establish the exact nature of this dependence on particle size.

Interestingly, Fig. 18 also shows that the Zn-W alloys are considerably
weaker and exhibit a lower threshold stress than Zn-Alzo3 containing about the
same size and volume fraction of dispersoids. These observations do not agree
with the observations of Shewfelt and Brown (1974) on dispersion-strengthened
copper alloys that the type of dispersoids do not influence creep behavior.
Blum and Reppich (1985) attributed the observed differences in the creep
behavior of the dispersion-strengthened 2Zn alloys to the possible effect of
interfacial characteristics but there is insufficient evidence to verify this
suggestion. However, it is also possible that these observations can be
rationalized on the basis that the tungsten particles deform to a larger
extent than the relatively stronger Alzo3 disperoids during creep, thereby
resulting in a lower value of the threshold stress. The effect of particle
deformation on the threshold stress is discussed in Sec. 4.2.

3.7 Microstructural Observations

The type of microstructures reported in the literature are also noted in
Table A.1. In general, the nature and morphology of the substructure in
Al-Al O, Ni-ThOz, and NiCr-ThO2 after creep remains unchanged from the
initial microstructure, and large areas with little or no dislocations are
often seen (Wilcox and Clauer, 1966(a) and (b), MiliZa, Cadek, and Ry¥, 1970;
and Reynolds, Lenel, and Ansell, 1971). This is true even in those cases
where class M behavior was observed (Reynolds, Lenel, and Ansell, 1971).
These observations indicate that dislocation creep probably occurs rather
heterogeneously in dispersion-strengthened materials.

Only limited observations of subgrains have been reported in dispersion-
strengthened alloys deformed at elevated temperatures. This may be due to the
fact that the total strain in the secondary creep region is usually less than
3%. However, subgrains have been observed in specimens deformed to strains
greater than 10%. For example, in an investigation on a Ni-20% Cr-2% ThO
alloy, Hausselt and Nix (1977a) observed that the subgrain size decreased with
an increase in stress in accordance with equation (3) with a stress exponent
of about 1.0. Even in this instance, subgrains were found to be distributed
inhomogeneously. The subgrain size also decreased with increasing strain and
correlated extremely well with the dislocation density. These investigators
concluded that the subgrain size was determined only by the applied stress and
not by the interparticle spacing.

In those areas of the specimens where dislocations are observed, it is
often observed that they are pinned down by the particles. An example of this
is shown in Fig. 19 for a Ni-1 vol % ThO2 alloy creep tested at 1073 K (Wilcox
and Clauer, 1968). Two points may be noted. First, there is no evidence of
dislocation loops around the particles as would be expected from the Orowan
mechaniem. Second, the dislocations appear to be joined to the particle-
matrix interfaces (Fig. 19(a)) or to directly emanate from them (Fig. 19(b)).
Similar microstructural observations have also been reported more recently on
MA 754 (Nardone and Tien, 1983; Cooper, Nardone, and Tien, 1984), MA 956
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FIGURE 19. - MICROSTRUCTURC OF A Ni-1 voL X ThO, ALLOY TESTED AT 1073 K UNDLR A STRESS OF 27.6 MPa 10 A SIRAIN OF ABOUT

IX. THE DISLOCATIONS ARE ETTHER (2) ATTACHED TO THE DISPERSDIDS OR (b) APPEAR 10 LMANATE FROM THLM (WILCOX AND CLAUER.
1968) (COURTESY GORDON AND BREACH, SCIENCE PUBLISHERS),
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(Petkovic-Luton and Luton, 1985), and MA 6000 (Schrdder and Artz, 1985).
Examples of these are shown in Figs. 20 and 21 for MA 754 (Nardone, Matejczyk,
and Tien, 1984) and MA 6000 (Schr&der and Artz, 1985), respectively. These
figures suggest that the dislocation-particle interaction is attractive in
nature despite the fact that these dispersoids are harder than the matrix. It
was concluded from observations of bowed dislocation segments between
particles that the attractive interaction existed on the "departure,"” side of
the dispersoid (Nardone and Tien, 1983; and Cooper, Nardone, and Tien, 1984).
These observations are discussed by Artz (1992) as to their influence on the
threshold stress behavior below the Orowan stress, and form the basis of
recent models for dislocation creep in dispersion-strengthened materials
(Srolovitz, Petkovic-Luton, and Luton, 1982; Srolovits, Petkovic-Luton, and
Luton, 1983; Srolovitz et al., 1984; Nardone, Matejcsyk, and Tien, 1984; and
Artz and Wilkinson, 1986).

Srolovitz et al. (1982, 1983, 1984) suggested that the occurrence of
slip and diffusion at the particle-matrix interface at elevated temperatures
results in an attractive dispersoid-dislocation interaction, which permits the
dislocation core to delocalize completely and relax into the interface. Under
these conditions, the threshold stress is determined by the magnitude of this
attractive interaction, and dislocation detachment from the dispersocid becomes
the strength-determining factor. However, microstructural observations by
Nardone, Matejczyk, and Tien (1984), and Schrdder and Artz (1985, 1986),
indicate that the dislocation does not lose its identity completely in the
vicinity of the dispersoid (Fig. 21(b)). As a result, Nardone, Matejczyk, and
Tien (1984), and Artz and Wilkinson (1986), proposed alternative derivations
of the threshold stress based on the assumption that the dislocation core
undergoes only a partial relaxation in the vicinity of a particle. The dis-
location detachment theories are attractive from the point of view of the
initial microstructures which often show dislocations attached to dispersoids
in the as-received material (Fig. 22).

To summarize, the microstructure after creep is generally similar to
that observed in undeformed samples where very few dislocations are normally
seen. However, in those instances where dislocations have been observed,
particle pinning of the dislocations are commonly observed. Even in these
cases, the dislocation density is usually low (Schrbder and Artz, 1985) often
resulting in a single dislocation lying between two or more particles
(Figs. 20 and 21) thereby suggesting the possibility of a localized inter-
action between the dislocation and the individual particles, especially at
stresses close to the threshold stress.

4.0 THEORETICAL CONSIDERATIONS IN THE CREEP OF SINGLE CRYSTALLINE
AND COARSE-GRAINED DISPERSION-STRENGTHENED MATERIALS
‘4.1 Discrepancies Between Theory and Experimental Observations
Current theories relating to the creep of dispersion-strengthened
materials have been reviewed by Bilde-Sorensen (1983), and Blum and Reppich

{1985), and no detailed discussion of these will be presented here. In
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FIGURE 20. - MICROSTRUCTURES OBSERVED IN A MA 754
ALLOY CREPT TO A STRAIN OF 2X AT 1033 K AND 721
MPa SHOWING EVIDENCE OF AN ATTRACTIVE DISIOCATION-
PARTICLE INTERACTION AT THE POINTS INDICATED RY
THE ARROWS (NARDONC, MATEJCIYK. AND TIFN. 1984)
(REPRINTED WITH PERMISSTON, PERGARON JOURNALS LTD.).
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FIGURE 21. - () BRIGHT-FIELD AND (D) WEAK-BEAM IMAGES SHOWING DISLOCATION PARTICLE
INTERACTION IN CREPT MA 6000 (SCHRODER AND ARTZ, 1985) (REPRINTED WITH PERMISSION.
PERGAMON JOURNALS LTD.).
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FIGURE 22. - MICROSTRUCTURE OF AN AS-RECEIVED Ni-1 vou % ThO, ALLOY SHOWING DIStOCATION
PINNING BY 1K DISPERSOIDS (WILCOX AND CLAUER, 1966b).
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general, these models predict that the threshold stress is less than or equal
to the Orowan stress with 0 = inversely proportional to A or (A - d,). In
particular, the particle-dislocation interaction models proposed by Srolovitz
et al., (1982, 1983, 1984), Nardone, Matejczyk, and Tien (1984), and Artz and
Wilkinson (1986), predict that the threshold stress is independent of the size
and shape of the particle. In addition, the partial dislocation core relax-
ation models proposed by Nardone, Matejczyk, and Tien (1984), and Artz and
Wilkinson (1986), suggest that 0, can depend on the nature of the dis-
persold matrix interface through the core relaxation parameter, kr.

Despite the fact that the interparticle spacing is expected to influence
the creep of dispersion-strengthened materials through its effect on the
threshold stress, an examination of Table A.l1 shows that this is not always
the case even when the interparticle spacing is about the same for two mate-
rials. For example, it is seen that dispersion-strengthened silver alloys
containing MgO dispersoids did not show a threshold stress behavior (Leverant,
Lenel, and Ansell, 1966; and Nieh and Nix, 1979) despite the fact that the
interparticle spacings in these materials were comparable or smaller than
those reported in investigations where a threshold stress behavior was
observed (Oliver and Nix, 1982; Lund and Nix, 1976; and Hausselt and Nix,
1977a). The reason for these variations is not understood at present, but
could arise from a number of factors: processing techniques which result in
differences in the uniformity of particle distribution and the degree of
elongated grain morphology, differences in the dislocation-particle inter-
action brought about by the presence of different dispersoids or differences
in the yield strength of the dispersoids. Nevertheless, these results appear
to indicate that the threshold stress behavior is not solely dependent on the
interparticle spacing.

Even in those instances where similar processing techniques have been
employed and the interparticle spacing is more or less the same, differences
in creep behavior have been observed. For example, considering the data on .
the 218 potassium-doped tungsten alloy strengthened by the presence of
bubbles, two types of creep behavior have been reported (Table A.1). Pugh
(1973) observed a threshold stress of about 69.0 MPa in a wire-drawn 218 alloy
with an interparticle spacing of about 0.3 pma and tested at 3000 K. Similar
observations have been reported by Wright (1978), who suggested that the
interaction between the dislocations and the bubbles is significant only when
the grain aspect ratio is high (typically, GAR > 11) owing to the relative
unimportance of grain boundary sliding in these microstructures. In com-
parison, Gaal, Harmat, and File (1983) did not observe any threshold stress
behavior in this alloy under similar testing conditions despite a grain aspect
ratio of about 15, and a similar interparticle spacing. Clearly, these
observations cannot be rationalized entirely on the basis of an attractive
interaction between the voids and dislocations in this material or due to
differences in the amount of grain boundary sliding.

Finally, as shown in Fig. 18, the magnitude of the threshold stress for
Zn-W alloy is less than that for the ZnA1203 material although the volume

®Estimated from the published micrograph.
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fraction and the size of the dispersoids were quite similar for both alloys.
As mentioned in Sec. 3.6, this observation may be attributed to differences in
the deformation behavior of the disperscids during creep. The possibility
that dispersocids may deform by a nondiffusional mechanism during creep is
examined in the next section.

4.2 Deformation of the Dispersoids During Creep

Modern theories of creep of dispersion-strengthened materials can be
classified into (a) those involving local climb of portions of dislocation
segments in close proximity to the particle-matrix interface (Brown and Ham,
1971; and Shewfelt and Brown, 1977); (b) those involving general climb of
additional segments of the dislocation out of the glide plane (Lagneborg,
1973; and Hausselt and Nix, 1977 (b); and (c) those involving dislocation core
relaxation at the dispersoid-matrix interface (Srolovitz et al., 1982, 1983,
1984; Nardone, Matejczyk, and Tien, 1984; and Artz and Wilkinson, 1986). The
climb models assume that the particle exerts a repulsive force on the dis-
location so that the latter can only overcome the barrier by climbing over it.
Typically, these models attribute the origin of the threshold stress to an
increase in the dislocation line energy. On the other hand, the models
involving dislocation core relaxation attribute the origin of the threshold
stress to the attractive nature of the dislocation-particle interaction on the
"departure" side of the disperscid. Artz and Wilkinson (1986) examined the
case when the dislocation core undergoes only partial relaxation at the
interface, and showed that only a modest relaxation of about 6 percent is
sufficient to ensure that dislocation detachment from the interface is more
important than processes involving local climb.

A major assumption incorporated in these models is that the dispersoid
does not deform during creep. Instead, the dislocation is assumed to be
stationary or move slowly in the lmmediate vicinity of the particle, so that
diffusional mechanisms become significant enough to permit dislocation climb
over these obstacles with partial or total relaxation of the dislocation core
at the dispersoid-matrix interface. Srolovitz et al. (1984) showed that the
typical relaxation times, T, associated with interfacial and volume diffusion
are extremely small in comparison to the usual duration of a creep experiment,
80 that the stress concentration at the particle-matrix interface can relax by
a diffusion-controlled process. This results in an attractive interaction
between the particle and the dislocation if the glide plane intersects the
digspersoid thereby resulting in a complete delocalization of the dislocation
core.

Although the diffusional relaxation times are shorter than the total
duration of a creep experiment, this comparison may not be valid since it is
the time required for the dislocation to traverse from particle, A, to
another, B, that is important (Fig. 23). In many instances the dislocation
velocity can be quite high and limited only by phonon damping in the matrix.
These situations arise when a dislocation escapes from a solute atmosphere, a
pinning particle, dislocation tangles or has been newly created (Srolovitz
et al., 1984). For the specific case of a dislocation escaping from a pinning
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dispersoid, A, under the action of a shear stress, T (= 0/2), the glide time,
t , for the dislocation to traverse a certain distance, X, where O £ x ¢

(i - dp) (Fig. 23), would be insufficient to allow diffusional relaxation to
occur. Thig ig demonstrated in Fig. 24 for the specific geometrical con-
figuration shown in Fig. 23, where the relaxation times for interfacial and
volume diffusion in TD-Nichrome at 1200 K are compared with the times required
for phonon drag-limited dislocation glide through two distances, and at two
different stresses. The relaxation times associlated with the reduction of the
stress concentration at the particle-matrix interface by volume and inter-
facial diffusion were estimated for spherical particles from the equations
given in the paper by Srolovitz et al., (1984), and these estimates are based
on the data tabulated by Frost and Ashby (1982).9 The time for dislocation
glide was estimated from

ty = (X/vy) (16)

where the glide velocity, vg, is by (Frost and Ashby, 1982)10

vy = (ab/zag('r)) (17)

The drag coefficient, B (T), was estimated to be about 4x10‘4 Nt 8 m’ at

1200 K. Typically, A = 10 dP for nickel base alloys, so that a value of

X =25 dP is equal to about half the effective spacing between the particles.
As shown in Fig. 24, the relaxation times for volume and interfacial diffusion
are much larger than t_  when dP > 0.02 pm. The relaxation time for
interfacial diffusion is comparable to tq only for dispersoids smaller than
0.02 4m when 0 = 10 MPa.

The above discussion assumes that the dislocation is not slowed down by
interaction with other dislocations as it traverses from one particle to the
next. This appears to be a reasonable assumption for dispersion-strengthened
materials since the initial and the final microstructures generally contain
little or no dislocations (Sec. 3.7). For example, Figs. 20 and 21 show that
there is generally one dislocation visible between two adjacent dispersoids
while in most other instances the interparticle spacing appears to be free of
dislocations. The observations of Schrdder and Artz (1985) also confirm this
viewpoint. 1In this investigation, it was found that the dislocation density
was sufficiently low to permit the interaction of single dislocations with the
incoherent dispersoids in a MA 6000 alloy. However, the presence of immobile
dislocations between adjacent particles can interact with a fast moving dis-
location and slow it down sufficiently to permit processes, such as

®The interfacial diffusion coefficient was assumed to be equal to that for
grain boundary diffusion.

rhe back stress on the dislocation due to the particle has been ignored
but this is expected to be significant only when the dislocation is at a distance
of about dP from the dispersoid.
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dislocation climb and dislocation core relaxation mechanisms to become impor-
tant. 1In the following, the discussion is limited to the case where the fast
moving dislocation is not slowed down.

In most investigations on NiCr-ThoO, alloys, the experimental values of
the average particle size and the applied stress were usually greater than
0.015 pm and 10.0 MPa, respectively, (Table A.1l), so that Fig. 24 suggests
that there is insufficient time to allow any diffusional relaxation of the
stresses at the particle-matrix interface. In the absence of diffusional
relaxation, interfacial slip would be insignificant, and the stress concentra-
tion on the dispersoid owing to the combined effects of the applied stress and
the dislocation would increase as the latter approaches the particle. Under
these conditions, the stresses at the particle-matrix interface could be
sufficiently high to deform the particle. This would occur when the stress
acting on the dispersold exceeds its microscopic yield stress, 0, which would
be determined by the defect concentration in the particle and at its surface
in the interface.

It is expected that the dislocation structure inside extremely small
dispersoids would anneal out so that the yield strength of such particles
should approach the theoretical limit. This would be the case when the
particle surface at its interface with the matrix is defect free so that the
stress required to deform the dispersoid would be about GP/BO, where G, is
the shear modulus of the dispersoid. However, it is more likely that the
complex techniques used in processing these alloys introduce defects at the
particle surface so that the stress required to deform it would be less than
G /30. In addition, larger particles could also contain defects in the
interior which would also reduce their microscopic yield strength below the
theoretical value. Therefore, in any attempt to establish whether the
particles deform during creep of dispersion-strengthened materials, it is
necessary to estimate the magnitude of UY and to characterize the micro-
structure of the dispersocids after deformation. One approach is to assume
that g, equals about 0.5 GPb(ps)Uz, where IR is the average density of
dislocation sources in a dispersoid, but since measurements of pB in
particles with a diameter of about 0.02 gm are difficult to make in practice,
there is a large uncertainty with this method. A second approach is to simply
assume that g, = GP/1000 (Ansell, 1968) although there is no certainty that
this assumption is valid in practice as it requires that the yield strength of
the dispersoid be equal to its bulk properties. However, in the absence of a
more reliable method of assessing the magnitude of the microscopic yield
strength of the particle, the following discussion is based on the assumption
that o = G,/1000.
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The maximum normal stress, UP, acting on the particle due to a
dislocation is given by Oliver and Nix (1982)“

O, = (26, /M) [1 +(G, = G,)/ (G, + Gp) {1/ (2R, - dy)] (18)

where G is the shear modulus of the matrix, and 2Rs is the distance of

interaction between the center of the dispersoid, B, and the approaching dis-

location (Fig. 23). The variation of O,s normalized by [(2GMb/ﬂdP){1 +

(G, - GM)/(GP + G,)}), is plotted against 2R /dP in Fig. 25. The particle

yleld stresses were assumed to be about GP/IOOO, and these are indicated by

the horizontal broken line in the figure. The normalized values of g, shown

in Fig. 25 were calculated for dP = 0.015, 0.02, and 0.02 jm for Al-A1203,

Ni-ThOz, and Ni—Y203, respectively, and using GAl = 1.6x104 MPa, GA% 034
5 4 4

1.5x10° MPa, GNi = 5,5%x10° MPa, GThoz = 9,2x10" MPa, and GY2 o, = 5.8x10" MPa.

Figure 25 indicates that the Al O, particles in aluminum can deform only when
2Rs/dP € 3. similarly, particlé deformation in Ni—ThO2 and Ni—Y203 alloys can

occur when 2Rs/dp is less than about 7 and 9, respectively. It is
appropriate at this stage to pose two questions: Are these values of 2Rs/dP
achieved in practice which would indicate that particle deformation is a
genuine possibility? Does the threshold stress associated with a dispersion-
strengthened alloy represent the average microscopic yield strength of the
particles?

Two factors suggest that these questions may be important in understand-
ing the creep behavior of dispersion-strengthened materials. First, noting
that the maximum value of 2R5 represents the interparticle spacing, an
examination of the experimental data on aluminum and nickel-base alloys, which
exhibited a threshold stress, suggests that the magnitudes of )\/dP are gen-
erally comparable with the critical values of 2Re/dP required for particle
deformation. For example, Oliver and Nix (1982) observed a threshold stress
behavior in an Al-Al O, alloy with a (2Rs)mx/dP ~ )\/dP s 4. Similarly, thre-
shold stresses are generally observed in nickel-based alloys with )\/dP = 10.
It is noted that these values of )\/dP are greater than the critical values
of 2Rs/dP discusged above so that it can be concluded that the dispersoid,

B, in Fig. 23 begins to deform when the dislocation is more than half the
interparticle spacing from it. Second, the magnitudes of (€ and Uth are
comparable for aluminum and nickel base dispersion-strengthened alloys. This
is shown in Figs. 26 and 27, where the magnitudes of UP/GM calculated from
equation (18) are shown as a function of (2R5 - dp), while the experimental
values of ath/GM are plotted against (A - d,). As shown in Figs. 26 and 27,
JP/GM and Uu/GM are in agreement with each other to within a factor of
three. Therefore, it is concluded that particle deformation remains a genuine
possibility in these alloys. It is now instructive to examine the case when

11Equation (18) represents a modified form of the original expression given
by Oliver and Nix (1982). The elastic modulii terms have been interchanged to
reflect the fact that G, > G for a hard particle. It is also assumed that
g, = 27}, and it is noted that G, is used instead of G in the normalization
of the experimental data.
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particle deformation governs the creep behavior of these materials and its
contribution to the creep threshold stress.

Oliver and Nix (1982) assumed that the oxide particle deforms by
Nabarro-Herring creep owing to a low oxygen partial pressure at the
dispersoid-matrix interface and a correspondingly high defect concentration in
the oxide. This rationalization appears to be improbable owing to the higher
stresses acting on the dispersoids. This viewpoint is supported by the lack
of complete agreement between the apparent activation energies for creep of
the dispersion-strengthened alloys and those for intrinsic diffusion of the
slowest moving species in the dispersoids (Table II).

The above comparison between the activation energies for creep and dif-
fusion also suggests that the deformation of the dispersoids is not controlled
by dislocation climb. In the absence of these diffusion-controlled mecha-
nismg, it follows that the deformation of the particles must involve some
other dislocation mechanism such as dislocation generation from sources
surfaces of the dispersoids. The threshold stress can then be identified with
g, so that the additive rule given by equation (14) can be expressed as

[(9/6) asies] 20 = [/ macers] w0 + [0/ 0 pacescra ] o o

Equation (19) represents a "composite" approach in describing the creep
behavior of dispersion-strengthened alloys. The physical significance of
equation (19) lies in the fact that the deformation of the matrix and the dis-
persoids are coupled, so that as the dislocaticn approaches the dispersoid, B,
in Fig. 23, the load is increasingly taken up by the particle. Assuming that
the stress due to the dislocation is taken up entirely by the matrix when
g >0, and by the particles whenlza < O equation (19) can be represented
schematically as shown in Fig. 28. The deformation of the particle and
the matrix occurs sequentially, and exponential creep is expected to be dom-
inant when o0 > GPB. Below the Orowan stress, the deformation of the
dispersion-strengthened material will be determined by the creep of the dis-
persoid, while above the Orowan stress, the deformation of the matrix would
determine the creep behavior of the alloy. 1In the absence of other creep
mechanisms (e.g., grain boundary sliding and diffusion creep), Fig. 28 sug-
gests that the threshold stress would lie between 0§LB and Or' S° that
these define the limits of ¢ for dislocation creep. The average value of
Umﬁ/G for pure f.c.c. metals is about 5x107¢ (Fig. 1) (Raj, 1986), and the
experimental magnitudes of a'h/G exceed this value for most dispersion-
strengthened materials (Fig. 15). Thus, the maximum allowable interparticle
spacing for observing threshold stress behavior can be estimated from

A =ab(G/0),, (20)

where a 1is a constant varying between 0.5 and 1.0. Therefore, the critical
interparticle spacing would vary between about 0.3 and 0.5 fm corresponding to

“the values of the normalized creep rates given in the figure have no
special significance.
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A/b = 1000 and 2000, respectively. 1If the particle spacing exceeds these
values, the threshold stress behavior due to particle deformation would not be
observed, and the coupling of the matrix and particle deformation processes
would not be applicable. As shown in Fig. 15, A/b is less than 2000 for most
engineering alloys which exhibit dislocation threshold stress behavior.

4.3 Contribution to the Threshold Stress from Different Mechanisms

At a distance of about dP from the particle-matrix interface when the
back stress due to the dispersoid is significant, the dislocation can slow
down considerably to allow climb and detachment-controlled mechanisms to
become important. Two types of detachment-controlled mechanisms have been
proposed. Srolovitz et al. (1982, 1983, and 1984) considered the case where
the dislocation core relaxes completely into the interface as a result of
interfacial slip so that a particle essentially behaves as a void. On the
other hand, Nardone, Matejczyk and Tien (1984), and Artz and Wilkinson (1986),
suggested the possibility of a partial relaxation of the dislocation core at
the interface as local segments climb around the dispersoid. The stress
required to detach the dislocation from the interface at the "departure" side
of the dispersoid can be calculated for the latter conditions based on the
assumption that the dislocation line energy decreases by a factor of kr at
the particle-matrix interface over that in the matrix. 1In comparison, the
classical local climb-controlled mechanisms do not account for the reduction
in the line energy.

It is now instructive to examine the extent to which local climb,
detachment-controlled, and the particle deformation mechanisms contribute to
the threshold stress. In the absence of particle deformation, Artz and
Wilkinson (1986), and Artz (1991), showed that the dislocation core need only
relax by about 6 percent for the detachment-controlled process to become
important. However, when particle deformation occurs, the difference in the
shear moduli of the dispersoid and the matrix must also be considered.

This is shown in Fig. 29, where UP, estimated from equation (18) for
2Rs >> dP and normalized by (GMb/2Rs), is plotted against the relaxation
parameter, kr, employed in the Artz-Wilkinson model (Artz and Wilkinson, 1986;
and Artz, 1991). These normalized values of 0_, which were calculated for
three matrix-dispersoid combinations, reflect the fact that differences in the
shear moduli between the particle and the matrix would play an important role
in determining the creep behavior of these alloys. A value of k_= 1 signi-
fies complete repulsion, while kr = 0 indicates complete attraction between
the particle and the dislocation. The predicted values of the threshold
stresses, normalized by (G b/\A), for detachment- and local climb-controlled
mechanisms are also plotted against kr in Fig. 29 using the relations used
by Artz and Wilkinson (1986). The conditions for which one of these mecha-
nisms would be important can be identified through a comparison of the pre-
dicted threshold strengths assuming that g, =0, with the threshold stress
for the dominant mechanism being the largest.

Figure 29 shows that local climb of dislocation segments does not con-
tribute significantly to the threshold stress in comparison to the particle
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yield- and the detachment-controlled mechanisms. The threshold stress behav-
ior of the Al—A1203 alloys 1s expected to be determined entirely by the yield
properties of alumina. On the other hand, the threshold properties of nickel-
based alloys containing ThO_ or YZO3 is determined by the particle yield
strength only if the dislocation core relaxation at the interface is less than
about 40 and 25 percent, respectively. The extent of dislocation core relax-
ation must exceed these values for the detachment mechanism to control the
threshold stress. This requirement is larger than that suggested by Artz and
Wilkinson (1986) but it is still smaller than that predicted by the model pro-
posed by Srolovitz et al. (1982, 1983, 1984). Figure 29 predicts that the
critical value of the relaxation parameter governing the transition from the
particle yield-controlled to the detachment-dominated mechanism is dependent
on the relative magnitudes of G, and G_. The importance of the particle
yield mechanism increases with GP/GM’ and this can have important implica-
tions in the design of new dispersion-strengthened alloys. For example, the
threshold stress is expected to be determined mainly by the detachment-
controlled mechanism in bubble-strengthened materials since G, = 0 and

g, = 0 in equation (18).

Therefore, based on the discussion in this section, three parameters are
identified which are expected to determine the strength of dispersion-
strengthened alloys. First, materials contalning dispersoids with GP >> GM
are expected to have a high threshold stress determined by the yield strength
of the dispersoid, e.g., Al-—A1203 alloys. Therefore, the strength of the
dispersion-strengthened material would depend on the relative strengths of the
matrix and the dispersoid. Second, the threshold stress appears to be gov-
erned by the particle yield strength in alloys with )\/dP € 10 in the absence
of considerable dislocation core relaxation. Third, the deformation processes
occurring in the matrix and the particle can be coupled only when A/b £ 2000.

5.0 THE EFFECT OF GRAIN BOUNDARIES ON THE CREEP AND FRACTURE OF DISPERSION-
STRENGTHENED MATERIALS

In the previous sections, the role of grain boundaries on the creep
behavior of dispersion-strengthened materials was ignored. However, it is now
fairly well-established that the grain size and the grain aspect ratio can
have a considerable influence on the threshold stress and the fracture
behavior of these materials. This is demonstrated in Fig. 30 for TD-Nichrome
{Lin and sherby, 1981), where the creep rate for the coarse-grained alloy
decreases more sharply than for the fine-grained material when O/E < 107°,
This indicates that single crystals and coarse-grained materials are stronger
than those with a smaller grain size, and this conclusion is confirmed by the
observations of Kane and Ebert (1976) shown in Fig. 31. This decrease in
creep strength with decreasing grain size can be attributed to the increasing
importance of grain boundary sliding.

Wilcox and Clauer (1966a) first suggested that grain boundary sliding
contributes significantly to the deformation of TD-Nickel. 1In a later invest-
igation, they (Wilcox and Clauer, 1972} demonstrated that the yield, creep,
and rupture strengths of several dispersion-strengthened alloys increased with
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an increase in the grain aspect ratio (Fig. 32). These results were attri-
buted to a lower tendency for sliding in microstructures containing elongated
grains than in those where the grains were relatively equiaxed.

In an important observation, Whittenberger (1977) reported that the
experimental threshold stresses correlated extremely well with the grain
aspect ratio' for several dispersion-strengthened nickel base alloys
(Fig. 33). The increase in 0 n with the grain aspect ratio (Fig. 33) can be
also attributed to a decrease in the amount of grain boundary sliding. Sim-
ilar observations were also reported by Lin and Sherby (1981). This observed
variation of 7. with the grain aspect ratio is relevant in the thermo-
mechanical processing of complex alloys, such as MA 754 and MA 6000, which
result in the development of long, elongated, and recrystallized grains
several millimeters in length. Interestingly, recrystallization does not
always lead to the observation of a threshold stress behavior, especially in
the simpler alloy systems (Table A.1). This may be due to the presence of an
equiaxed recrystallized mlcrostructure which does not slow down the rate of
grain boundary sliding in these materials. Additionally, as discussed in
Sec. 4.1, discrepancies also exist in the observations of Pugh (1973), and
Gaal, Harmat, and Fiile (1983), on potassium-doped, void-strengthened 218
tungsten alloy. The grain aspect ratios in these two investigations were 10
and 15, respectively, and the observed differences in the creep behavior of
this alloy cannot be rationalized on the basis of the decreasing importance of
grain boundary sliding with aﬁ_increase in the grain aspect ratio as suggested
by Wright (1978). -

The decrease in the rate of grain boundary sliding with an increase in
the grain aspect ratio, and the corresponding increase in the magnitude of the
threshold stress, results in an improvement in the rupture life owing to a
change in the fracture path from intergranular to transgranular fracture
(Fig. 34). Similar observations have been also reported by Artz and Singer
(1984) on a MA 6000 alloy, and they rationalized their observations on the
basis of a grain boundary sliding-controlled cavitation model.

The Artz-Singer model (Artz and Singer, 1984) assumes that cavity growth
on grain boundaries transverse to the stress axis leads to grain separation
along the longitudinal direction and develops local incompatibilities between
neighboring grains (Fig. 35). These incompatibilities are assumed to be
accommodated by grain boundary sliding along the longitudinal grain bound-
aries. Thus, the predicted strain rate associated with cavity growth coupled
with grain boundary sliding is given by

(21)

e = ﬂ5ngn/kTh2Ll)[(0 - 0, - 0,,GAR) /( {170} + 2 GAR)

where f 1is a constant equal to about 10, § 1is the grain boundary width, Dy,
is the grain boundary diffusion coefficient, fl is the atomic volume, h is
the average height of grain boundary steps or serrations, L1 is the grain

Brhe grain aspect ratio was defined with respect to the testing direction
in this investigation.
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FIGURE 35. - SCHEMATIC REPRESENTATION OF THE ARTI-SINGER
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LEADS TO INCOMPATIBILITY BETWEEN NEIGHBORING GRAINS.

AND THESE ARE ELIMINATED BY GRAIN BOUNDARY SLIDING ALONG
THE LONGITUDINAL GRAIN BOUNDARIES (ARTZ AND SINGER. 1384)

(REPRINTED WITH PERMISSION FROM THE METALLURGICAL SOCIETY.
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diameter in the longitudinal direction, g,

and 0 are the threshold

stresses for cavity growth and grain boundary sllding, respectively, and 1

is the planar spacing of the cavities in the transverse grain boundaries.

The

grain aspect ratio used in equation (21) is similar to the definition given in

appendlx A.l.0.
(1, /h)? >> 2 GAR

Artz and Singer (1984) suggested that the condition
corresponds to an equiaxed grain morphology, few cavity

nuclei, and smooth grain boundaries, and cavity growth would not be affected

by grain boundary sliding.

However, when (1_ /h)

<< 2 GAR, correspcnding to

elongated grains, many cavities, and serrated grain boundaries, the cavity

growth would be controlled by accommodated grain boundary sliding.
given by equation (22)

dition predicts a fracture life, tf,

2
t, = [kTh 1CGAR/6ng

This con-

(22)

Qw -0, - 0,,GAR) ]

The Artz-Singer model (Artz and Singer, 1984) specifically assumed that
the applied stress is distributed between that required for continued cavity

growth and that causing grain boundary

sliding. Two alternative models pro-

posed by Stephens and Nix (1986) consider the cases when cavity growth can be

accommodated by power-law creep of the

adjoining grains or by grain boundary

sliding owing to the presence of fine grains interspersed along the longitudi-

nal boundaries of coarser, elongated grains.

This approach is more realistic

than the simpler model proposed by Artz and Singer (1984) partly because it

considers a duplex microstructure, and

partly because it recognizes the dif-

ficulties associated with sliding along the grain boundaries of elongated

grains.

In this case, the Stephens-Nix model (Stephens and Nix, 1986)

requires that the applied stress be distributed equally between the grain
interior and the transverse grain boundaries.

For the case when the dispersion-gtrengthened alloy has a duplex micro-
structure of fine, equiaxed grains, which permit grain boundary sliding to
occur easily, and coarse, elongated grains which do not slide past each other,

the predicted creep rate is

ecc>upled
where w
of size, 4, £
[+ c
ated, 0 1s the cavity sintering stress, hc

of the cavity, and

K, = [In(1/f.) - 0.5(3 - £)(1 - £)]

Equation (23) must be considered as an
that all longitudinal grain boundaries

An examination of equations (21)
ing the accommodation of cavity growth
stress exponent of unity, although the
energy for creep depends on the nature

= (80 DwA/kT(d,)’L,] x (0 - (1 - f,:)th/{107”'lc‘“’fkf/(df)}2 + GAR]

(23)

is the width of the equiaxed fine grain pockets comprised of grains
the a real fraction of the grain boundaries that are cavit-

is the volumetric aspect ratio

(25)

upper bound since the model assumes
contain pockets of fine grains.

and (23) shows that mechanisms involv-
by grain boundary sliding result in a
predicted values of the activation

of the assumptions used in developing
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the models. Additionally, equation (21) predicts a much stronger dependence
of the creep rate on the grain aspect ratio than equation (23).

In the second model proposed by Stephens and Nix (1986), it was assumed
that the microstructure consisted uniformly of coarse and highly elongated
grains which cannot slide along the longitudinal boundaries. The basic
premise of this model is that a cavitating grain boundary transverse to the
applied stress sheds load to the adjacent grains. Using an iterative
technique, Stephens and Nix (1986) showed that the creep rate and rupture
strength were influenced significantly by the grain aspect ratio (Fig. 36).
The results of this investigation suggest that a microstructure consisting
solely of coarse, fibrous grains was more desirable when long term creep pro-
perties are important in comparison to a duplex microstructure consisting of
fine equiaxed and coarse elongated grains. Stephens and Nix (1986) pointed
out that although an increase in the volume fraction of particles could
improve the short term creep properties, it is more likely to result in the
formation of the duplex microstructure which would lead to poor long term
Creep properties. =

6.0 PRESENT OUTLOOK AND FUTURE RESEARCH

Perhaps, the single most important mechanical property of a dispersion-
strengthened alloy for commercial applications is the occurrence of a thresh-
old stress behavior. 1In principle, the material should never fracture by
creep when the design stress is less than the threshold limit. Thie appears
to be the case for MA 6000 which exhibits an almost stress independent rupture
life when the stress corresponds to values in Region II in Fig. 37 (Benn and
Kang, 1984). However, as discussed earlier, the nature of the threshold
stress is complex, and it can arlse as a result of particle-dislocation inter-
actions within the grain interior or owing to difficulties in grain boundary
sliding and cavitation due to a high grain aspect ratio. Additionally, the
presence of particles at the grain boundaries can also decrease the efficiency
of vacancy sources and sinks at these sites, which would result in the occur-
rence of a threshold stress behavior in the diffusion creep region (Burton,
1971; and Whittenberger, 1991). Figure 38 illustrates how each of these
processes can influence the creep behavior of dispersion-strengthened alloys.
It should be noted that the relative portions of each of these mechanisms can
be greatly influenced by the microstructure. For example, significant
diffusion creep nor grain boundary sliding cannot occur in materials with an
elongated and coarse-grained microstructure.

In commercial applications where the structural components are required
to have an almost infinite lifetime, the design stress should be less than the
threshold stress for diffusion creep. In principle, it is possible to sup-
press diffusion creep and grain boundary sliding by increasing the grain size
and the grain aspect ratio, respectively. This philosophy has led to the
development of complex thermomechanical procedures for processing alloys which
result in coarse and highly elongated grains. However, as pointed out by
Stephens and Nix (1986) this microstructure is favored with only smaller
volume fractions of the dispersoids, which result in the improvement of long
term creep properties at the expense of short term creep characteristics. The
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short term, low temperature creep properties can be improved by precipitate-
hardening, and this philosophy of dual particle strengthening because of the
presence of precipitates and dispersoids has been employed quite effectively
“in the development of dispersion-strengthened superalloys, such as MA 6000
(Singer and Artz, 1986).

However, several problems still remain which restrict the use of
dispersion-strengthened alloys in commercial applications. Whittenberger
(1973) observed dispersoid-free zones at the grain boundaries in a TD-NiCr
alloy because of conventional diffusion creep and suggested that these regions
led to a degradation in the mechanical properties owing to their decreased
registance to grain boundary cavitation. An alternative explanation has been
advanced by Stephens and Nix (1984, 1985), who suggest that the dispersoid-
free zones associated with cavities lying on transverse grain boundaries
result from localized diffusion involving atom plating in the adjacent
regions. Nevertheless, a change in the initial microstructure during creep,
either by the formation of cavity containing dispersoid-free zones at the
grain boundaries or by the coarsening of the large particles (Singer and Artz,
1986), can lead to a degradation of the long-term creep properties of the
alloy.

In comparison to some pure metals, many commercial ODS alloys possess
poor creep rupture ductility generally less than 3 percent. In the particular
case of an early heat of the b.c.c. iron-based MA 956 ODS alloy, the tensile
fracture strain was less than 1 percent at strain rates less than 107¢ g7!
{(Whittenberger, 1979), although the ultimate tensile strength was not strongly
dependent on the initial strain rate. In this case, the specimens tested at
low strain rates failed without warning. This behavior could be potentially
hazardous in an engineering application and there is considerable scope for
improving the ductility of these alloys.

On a more fundamental level, the mechanism responsible for the observed
threshold stress behavior in the dislocation creep region is still poorly
understood. Current theoretical models suggest that voids and hard particles
can attract dislocations, so that the nature of the dispersoids do not appear
to be important in determining the creep strength of a dispersion-strengthened
alloy for similar values of kr. These theories implicitly assume that par-
ticle deformation is unimportant during creep and no attempt has been made to
verify this assumption. However, as shown in Sec. 4.2, this assumption may
not be entirely justified and the stress acting on the particle can be suf-
ficiently high to exceed its yield strength. These results are however
limited by the definitlon of the particle yield stress and further research is
required to establish a better criteria for estimating the magnitude of q,.
The choice of the dispersoid-matrix combination would influence the magnitude
of the threshold stress when significant deformation of the particles occurs
(Fig. 29) and this could be important in the design of new dispersion-
strengthened alloys. As mentioned earlier, there are significant differences
in the creep behavior of some dispersion-strengthened materials which cannot
be attributed to variations in the interparticle spacing or processing vari-
ables. The solution of these problems would require a universal theoretical
approach applicable to all dispersion-strengthened alloys. Finally, the
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question remains: How genuine is the concept of a threshold stress and would
creep occur below the experimental values of aug

7.0 SUMMARY AND CONCLUSIONS

1. A compilation of the high temperature creep and constant strain rate
data is presented for several dispersion-strengthened alloys.

2. The reported values of the creep stress exponents vary between 3.5
(Durber and Davies, 1974) and 100 (Whittenberger, 1977), and the dispersion-
strengthened alloys fall into three categories depending on their stress
dependencies. The first group consists of alloys which exhibit class M
behavior with values of n = 4.5 and QC = Ql’ The second category includes
materials with values of n varying between 6.5 and 8.0, and Q. 2 Q- The
last class of alloys show extremely high values of n and Q. at low
stresses and high temperatures, and a tendency towards a threshold stress
behavior. In this case, the magnitude of Qc is usually greater than Ql.

3. The high values of the true activation energy for creep cannot be
rationalized on the basis of anion or cation diffusion in the dispersoid.

4. It is demonstrated that the local stress acting on the particle due
to a fast-moving dislocation can be very high since there is insufficient time
to relax it by diffusional mechanisms. If the particle yield strength is
about GP/lOOO, then this stress can exceed the yield strength of the dis-
persoid when the dislocation is within a distance of 5 dP from the particle.
The case when the deformation of the dispersoid is important is examined and
it is suggested that 7., in the additive rule proposed by Nix and coworkers
(Lund and Nix, 1976; and Pharr and Nix, 1976) represents the yield strength of
the particle. The present results suggest that three parameters are important
in determining the nature of the dislocation threshold stress in dispersion-
strengthened alloys. First, materials containing dispersoids with GP >> G,
are expected to have a high threshold stress determined by the yield strength
of the particle, e.g., Al—A1203. Second, the threshold stress appears to be
governed by the particle yield strength in alloys with )\/dP € 10. Third, the
deformation processes occurring in the matrix and the particle can be coupled
only when A/b £ 2000.

5. The effect of grain size and grain shape on the creep and fracture
behavior of dispersion-strengthened alloys is discussed. The creep rate
increases with a decrease in the grain size or in the grain aspect ratio owing
to the relative increase in the amount of grain boundary sliding. The magni-
tude of the threshold stress is similarly affected. The current models pro-
posed to account for these effects are examined.
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APPENDIX

A.1.0 A Compilation of the Creep Data for Several Dispersion-Strengthened
Alloys

A compilation of the reported experimental data on several dispersion-
strengthened materials is shown in Table A.l. The table also includes the
material composition, the experimental conditions under which these results
were obtained, and the reference sources. For convenience, the data are clas-
sified alphabetically according to the base metal composition, and the alloys
are arranged in each category according to the degree of complexity. The
commercial designations14 for the alloys are also included in some cases.

It should be noted that the experimental variables given in the table serve
only as a guide, and they do not necessarily mean that the actual experiments
were conducted over the entire range of stresses, temperatures, and micro-
structural and processing variables shown. The original references should be
consulted for the exact experimental conditions employed in each investi-
gation. 1In particular, a simple classification of the techniques used for
processing each alloy proved to be difficult owing to the complex nature of
these processes generally employed. Therefore, the information shown in the
table generally indicates the last processing step or a combination of those
which were likely to influence the mechanical properties. The codes used in
this and other columns are explained in Sec. A.1.1.

The grain aspect ratio was estimated using GAR = [Ll/(LzLa)*]' where
Ll, L,, and L are the intercept lengths along the longitudinal, long trans-
verse, and short transverse directions, respectively. 1In this case, d was
assumed to be given by: d = 0.85 (LszLz)%‘ Whenever possible, the volume
fractions of the dispersoids are those given in the original reference, but in
some cases, they have been estimated from the chemical composition of the
alloy. The center to center interparticle spacing and the particle diameter
are those reported in the original investigation.

The stress exponents and activation energies shown in the table are
those reported in the original investigation except for ZGS Pt (Selman, Day,
and Bourne, 1974), where these were estimated from the creep data presented by
the authors. 1In some instances, the reported values of the activation
energies include corrections for the temperature dependence of the elastic
modulus according to the methods suggested by Barrett, Ardell, and Sherby
(1964), Lund and Nix (1975), or Malu and Tien (1975), and these are indicated
in the table. Finally, information on the microstructure and other factors
reported in the original reference are included in the table for the sake of
completeness.

YThe designations MA 754, MA 956, and MA 6000 are the trademarks of the
INCO Alloy Products Limited.
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A.l.1 An Explanation of the Codes Used in Table A.1l

A number of techniques are generally used in the processing of
dispersion-strengthened alloys, and these can strongly influence the mechan-
ical properties. Therefore, as much information as possible is included in
Table A.l, especially since the microstructural characterization of the
as-processed alloy is not often reported. As far as possible, an attempt has
been made to indicate whether the final processing step consisted of a recrys-
tallization heat treatment, since a recrystallized microstructure can signifi-
cantly influence the creep properties of the alloy. Unfortunately, it was not
always evident if the annealing treatment resulted in a recrystallized micro-
structure. 1In these instances, the heat treatment procedure has been desig-
nated as 'A’. An explanation of the processing codes are given below:

A = Annealing; HE = Hot extrusion; IO = Internally oxidized; MA = Mechanically
alloyed; PM = Powder metallurgy; R = Recrystallization; RL = Rolled; SW =
Swaging; VHP = Vacuum hot pressing; WD = Wire drawing; ZAP = Direction
recrystallization.

The codes used to describe the testing procedure used are as follows:

CC = Constant stress compressive creep test; CL Constant load compressive
creep test; CSR = Constant strain rate test; HC Helical coils; TC = Constant
stress tensile creep test; TL = Constant load tensile creep test.

The shapes of the curves observed in a creep or a constant strain rate
experiment are illustrated schematically in Fig. 2. The codes used to
describe these are shown in the figure. Several types of microstructures have
been reported in the literature and these are indicated in the remarks column
in Table A.1. However, it should be noted that the deformation of these -
alloys is often localized and inhomogeneous. The codes used to describe these
microstructures are as follows:

CE = Cells; DF = Dislocation free; DL = Dislocation loops; DMP = Deformation
induced movement of particles; DP = Dislocation pinning; GS = Grain boundary
gsources; IS = Same as the initial microstructure; NE = Dislocation networks;
SG = Subgrains; TA = Dislocation tangles.

A.1.2 The Estimation of the True Activation Energies for Creep

The activation energy data given in Table A.1 were corrected according
to equation (6), and therefore the latter values may differ from those given
in the original references, where the correction term included only the tem-
perature dependence of the elastic modulus. The shear modulus at a particular
temperature was calculated from

G =G, - (Bc/0T),T (A1)

where G is the shear modulus at 0 K, and (BG/aT)P is the rate of change in
the shear modulus with temperature. The values of G, (5G/aT)P, and Q are
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tabulated in Table A.2 for the matrix material. The shear modulii data were
derived from the Young’s modulus using G = [E/2(1 + V)] for some materials,
where V is the Poisson’s ratio.

The corrected activation energies for creep are tabulated in table A.3
and the classification scheme employed is similar to that shown in table A.l.
Average values of n and T were used to make these corrections, and these
are indicated in the table.
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TABLE A.2. - THE VALUES OF GO' (aS/aT)P, AND Ql USED IN TABLE A.3 FOR SEVERAL MATERIALS
Base material Go(x10_4), (BG/BT)P, Reference Ql’ Reference
HPa MPa K| ks mot”!
Al 3.02 16.0 Mohamed and 143 Mohamed and Langdon
Al-Mg Langdon (1974b) (1974b)
Al-Cu a
Ag 3,64 818.0 Yoshihara and 183 Tomizuka and
McLellan (1981) Sonder (1956)
Ni 6. 41 3.0 INCO (1977) 279 Hoffman et al.
(1956)
Ni-Cr 210.34 331.6 Lund and Nix 285 Lund and Nix
including MA 754 a a (1976) b (1976)
Ni-Cr-Al 8.56 23.2 Millan and Mays 285 tund and Nix
including MA 6000 (1986) (1976)

3These data were obtained from linear regression analysis of the published data. The
Young's modulus, E, was converted to the shear modulus, G, using G = E/[2(7 + WG],
where the Poisson's ratio, v, was assumed to be 0.3,
The value of 9 for this alloy was assumed to be the same as that for Ni-Cr.

TABLE A.3. - TRUE ACTIVATION ENERGIES FOR CREEP OF SOME DISPERSION-STRENGTHENED ALLOYS

Alloy Q- n T, G(x10—4),a Q.- QC/Ql Reference
kd l'nol._1 K MPa kJ mol_1
Aluminum alloys
AL-AL203 - - 296-873 - b85—630 0.6-4.4 | Militka et al. (1970)
155 4.1 795 1.8 150 1.0 Reynolds et al. (1971)
540 25.0 665 2.0 475 3.3 oliver and Nix (1982)
AL—Mg-AL203 500 18.0 650 2.0 460 3.2 oliver and Nix (1982)
Nickel alloys
Ni-ThO2 795 40.0 1100 3.9 570 2.1 Wilcox and Clauer (1966)
Ni-20'/.Cr—Th02 2390 8.7 1000 7.2 370 1.3 Lund and Nix (1976)
990 46.0 1373 6.0 630 2.2
400 8.0 1273 2.5 290 1.0 Lin and Sherby (1981)
Ni-22.6%Cr-Th02 310 7.2 1230 6.5 280 1.0 Wilcox and Clauer (1969)
Ni-33.7%Cr-Th02 325 6.7 1225 6.5 300 1.1 Wilcox and Clauer (1969)
MA 754 505 29.0 1033 7.1 400 1.4 Howson et al. (1980a}
660 33.0 1255 6.4 460 1.6
315 43.0 1373 6.0 335 1.2 Stephens and Nix (1984, 1985)
400-670 33.0 1373 6.0 420-690 1.5-2.4
MA 6000 670 20.0 1060 6.1 610 2.1 Kim and Merrick (1979)
620 24.0 1033 6.2 550 1.9 Howson et al. (1980b)
800 16.6 1255 5.6 725 2.6 whittenberger (1984)
Silver alloys
Ag-Ga,0, | 920-1045 [12.6 | 1000 | 18 | 830-955 | 4.5-5.2 | Lenel et at. (197D

3these values were estimated from the data given in Table A.2.
These values are based on Fig. 9 and Q. decreased with increasing stress (Fig. 8).

“estimated from the creep data for o = 125 and 400 MPa, respectively.
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