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TRANSVERSE ELECTRIC SCATTERING WIDTHS FOR STRIPS - FOURIER
TRANSFORM TECHNIQUE

ABSTRACT

A technique which is based on Fourier transformations 1is
introduced for predicting scattering widths. For a strip it is
shown that explicit determination of the linear current density is
not necessary for both bistatic and monostatic scattering width
calculations. Comparisons of the predictions of the technique in
this paper are made with the integral equation (IE) technique
predictions, which do require explicit evaluations of 1linear
current densities.



INTRODUCTION

The most commonly used methods for predicting the scattering
widths (SW) of scattering objects are physical optics (PO),
integral equation (IE), and geometrical theory of diffraction
(GTD) [1-6]. The PO technique predicts the scattered fields quite
well for objects large in wavelengths, particularly in the
backscattered direction and for normally incident fields. The IE
technique requires the solution of an integral equation for the
induced current density on the scattering object. Numerical
techniques such as the method of moments (MOM) are used to solve
for the current density. The IE solution is usually referred to as
the exact solution. However, for bodies which are large in terms
of wavelengths, the solution can be quite time consuming, and
therefore, the IE technique is usually restricted to bodies a few
wavelengths in size. On the other hand, the GTD high frequency
technique is more applicable to scattering bodies which are large
in wavelengths. It is an extension of geometrical optics and
accounts for finite edge effects using diffraction theory.

In this paper a different approach for solving scattered
electromagnetic fields from flat strips is introduced. Even
though the strip model may be unrealistic, it provides a useful
geometry for verification of the technique since a wealth of
computational data is readily available for comparison [5]. The
technique is based on applications of the Fourier transform of the
tangential electric field in the plane containing the strip and
the current density on the strip. In general, once the current
density is determined, the far fields are found from the radiation
integral. The scattering width for a strip is then determined
from these scattered far fields. Also, only the case for which the
incident transverse electric field (TE to the infinite length of
the strip) illuminates the strip is investigated. The results
using this technique are then compared to results obtained by the
IE technique.
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TE FOURIER TRANSFORM TECHNIQUE FORMULATION
WITH PLANE WAVE INCIDENCE ON A STRIP

A plane wave with wave number k, polarized in the x-y plane,
and represented as E = [Qcosel- QSinGl]eJk[XS1n91+zcoseil is
assumed incident at an angle 6, on a perfecting conducting strip

of width a located in the z = 0 plane (see fig.l). The incident
electric field induces a linear electric current density Jx,

which in turn radiates the scattered fields. Once Jx is known,
the scattered field is readily found from the radiation integral.
Since only the x component of the electric field induces a

linear current density on the strip, the x component of the
magnetic vector potential is written as

e—ij
{[Jx(x’,y’) 7 dx’dy’ (1)

strip

Ax(x,z) =

=

where R = v/(x—x’)2+ (y—y’)2+ z® and u is the permeability of free
space. Performing the y’integration (assuming ins independent of

Y' )

A (%,2) (X )H‘z’[k (x-x’ )%+ z2]dx' (2)

[
|
de
T
Ny ——y
L4 (SR

where Hf’() is the zero-th order Hankel function of the second

kind. From one of Maxwell's curl equations, the y component of
the H field can be written as

2
H (x,2) = - J % [ J (x") 2ZH:”[k (x-x" )%+ ZZ]dX' (3)

a
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Also,since Hy satisfies the wave equation



Y+ — 2 + X°H =0 (4)
ax > az° y

it can be expressed in terms of spectrum solutions as

o)

. 1 [ . -jk x -jk z
Hy(x,z) . | G (kx) e e dkx , z > 0
o » (5)
) 1 [ ) —jkxx ik z
Hy(x,z) = 3o | G (kx) e e dk z <0
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where the G's are the spectrum functions and

k, = (6)

In equation (5), the superscripts + and - denote the regions z > 0
and z < 0, respectively.

Under the assumption that the strip is now replaced with a
linear 'current density J  the boundary conditions on the

tangential field components in the z = 0 plane are applied. The
tangential H field is discontinuous by the amount of linear
current density flowing on the region which was occupied by the
strip; that is,

J=-H;+H; (7)

X

Substituting equation (5) into equation (7) for z = 0, the linear
current density becomes

1 ) e ]S
Jx =ﬁJ [— G(kx) +G(kx)]e dkx (8)
- ™
The tangential electric field at z = 0 is continuous. Therefore,
from Maxwell's curl equation
E=3—:75VXH (9)

the continuity of Ex yields
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1 - —ijXI 1 + —jkxx,
S PL [G (k) (3k )e dk = Tx— JG (k) (-ik )e dk_ (10)

where € 1is the permittivity of free spaée. The solution of
equation (10) is

G(k) = - G'(k) (11)

Substituting equation (11) into equation (8), the linear current
density becomes

[+ ]

2 + _jkxx,
7 == -
Jx(x ) Vi G (kx) e dkx (12)
Its inverse Fourier transform is
. ® jk x’
-2G(k) = J J(x) e * dx’ (13)

- 00

with the understanding that Jx(x’) is zero outside the strip
width.

For the approach in this study, it is necessary to express
the magnetic vector potential component in terms of a Fourier
spectrum representation; therefore, let

Js(x) =1 8(x"-x" (14)

where I is a current and §(x’'-x") is a delta function located at a
general point x” on the strip [1]. The subscript 8 is used to
denote the solution for an impulsive linear current density. From
equation (3)

Hy = -3 -}[ I g—z H(()Z)[k\/(x - x")%+ 2° ] (15)

and from equation (13)

. jkxx”

- 2 Gg(k) =TIe (16)
Using equation (16), the first equation of equation (5) can be
written as

[ o)Wy mikx —ikz
Hy6=ﬁ{[—T—]e e dk (17)
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Equating equations (15) and (17)

%— Q’[kVQx - x") 2 22 ]

o]

® -jk (x-x") -jk z
J e ° e ©dk (18)
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The solution of equation (18) is found by integrating over z;
therefore,

o0

1 -jk (x-x") -jk. =z
[Ee ) e "dk (19)

-

m[k\/(x - x") %y 2? ] =

Al

The magnetic vector potential component from equation (2) becomes

" ik (x-x")  -jkz
(x’) J ke e dk dx’ (20)
Z
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A (x,2z) = - jI_ j

where the double prime on x has been changed to a single prime.
The tangential electric field in terms of A is [5]

2
E (x,2) = —jwﬂk(x,z) -3 G%E g—-A.(x z) (21)
X

With equation (20) substituted into equation (21), the tangential
electric field becomes

P ® . , .
1 —ka(x—x ) -]kzz
E (X:2) = -~ Tnoe J (x") kze e dk dx’ (22)
= -1 k=_m
2 x

Interchanging the order of integration, equation (22) becomes

k x’ -ikx -jk 2z
E (x,2) = J [ J x)e X dx’]e “ e Tdk o (23)

=—m
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After rewriting equation (23) as

a
L [ 1 2 ik x’ -jk x -k z
Ex(x,z) = w J [ T %oe kz J Jx(x’)e dx']e e dkx (24)
- ® - %
the term in square brackets is defined as Fx(kx). Therefore,



equation (24) becomes
1 [ -jkx -jkz
E (x,2) = 35 F (k) e e dk_ (25)

- o

At this point the problem is formulated as a scattering one;
that is, the total tangential electric field is written as

E (X,2) = E (x,2) + E (X,2) (26)

where Ei(x,z) is the incident field and E:(x,z) is the scattered

field which is assumed to be representable as equation (25).
Therefore,

00

T ! 1 -jkx -jk z
E (x,2) = E (X,2) + % J F (k) e * e Tdk (27)
where .
k = jk %’
F (k) = - ETZ' JJx(x’) e " dx’ (28)

a

2
Since the unknown function Jx(x') appears only under the integral

sign, equation (28) is an integral equation of the second kind.
Such equations are often solved approximately by the method of
moments where the unknown function is expressed as a sum of basis
functions with unknown constants. The constants are then found
through a point matching technique which requires a matrix
inversion. ’

An approximate solution for Jx(x’) is determined by a Fourier
transformation inversion. At z = 0 equation (27) becomes

: jkx’sine 1 ® -3k x’
Ex(x’,O) = cosé e + o5 { Fx(kx) e dkx (29)

- »
If the EI(x’,O) were known over the complete z = 0 plane, the true
E;(kx) can be found via the inverse Fourier transform. However,
the field Ez(x’,O) is known only over the strip (EI = 0) and not
outside. As an approximation the total E:(x’,O) field outside the

strip is assumed to be the tangential incident field. Written in
mathematical terms, the tangential electric field in the z = 0
plane is ' ' o B ' o



T jkx’sinel
Exa(x',O) # [1 - 8(x')] cosé e (30)

where the subscript a on E:(x’,O) denotes an approximation and

1 ro XIS S
s(x') = (31)
0 r otherwise
Substitution of equation (30) into equation (29) gives
1 ® -jkxx’ jkx'sinei
7 | Fualk,)e dkx = - 8(x’)cosé e (32)

- 00

The inverse Fourier transform yields

ain[kx + k sinel]g

an(kx) = - a cose, (33)

[k + Xk sine)
X i

a
2

An approximate solution for the linear current density in equation
(28) is found by a Fourier transformation of an approximate linear
current density Jo(X)i that is

o

jkxx’ 2

, ;- _ 2WE

J Jxa(x )e dx’ = —k—z— an(kx) (34)
- o

The inverse Fourier transform yields

1 ® Dwe sin{k + k sinel]%
o) =g | [ B a— .
z {kx + k sinel];

LT .

-jk x’

X

cosei] e dkx (35)

This inverse transformation produces linear current density inside
and outside the strip width. Since the linear current density
J (x') given in equation (24) flows only on the strip, it is set

equal to Jxa(x’) only over the strip width; that is,

J (X') 4 <
Jx(x,) = { X0 ’ x| =

(36)
0 , otherwis

D |

For normal incidence (6,= 0), -equation (35) is evaluated

numerically for a strip two-wavelengths wide. 1In figure 2, these
computations are compared with the linear current density obtained
by the integral equation technique which uses the method of
moments. Even though the two solutions do not agree in magnitude
over the complete strip, their shapes are very similar.
Techniques for improving the agreement between the solutions will
be investigated in future work.
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IE SCATTERING WIDTH QF A STRIP

The definition of the scattering width of a strip (object) is
given as [5]

r - - \

5,2
lim 2np IEIZ
p o | IE" | ]
GB-D = 4 ) ., . \ (37)
lim 2np 15712
PP e | IH ™ )

where p is the distance from the strip to the observation point,

ES,HS are the scattered fields, and EI,HI are the incident fields.
In this paper the second definition is used where the scattered H
field component is given by equation (3). Explicitly performing

the differentiation in equation (3), the scattered y-component H
field becomes

2
H(x,z) = J % JJx(x') —— u” [k/(x - x’)2+zz]dx’ (38)
(x - x’)2+ z2

i
a

2
where Hf)() is the first order Hankel function of the second

kind. Since scattering widths are based on far-field expressions,
the square root term in equation (38) can be approximated as

p - x’sineB , for phase terms
\/(x - x’)2+ z° = (39)
[ ; for amplitude terms

where 6_ is the scattered angle off the normal to the strip (see

fig.1l). For k(p - x’sines) large, the Hankel function can be

written as
b1

-jk(p - x’sines) 3
H?() = 3 /-ﬁk_zp e et (40)

Substituting equations (39) and (40) into equation (38) with
z = pcoseé_, the total scattered H far field becomes

. 5 e-jkp - 2 jkx’sine
H® = - — e cose | J (x')e ® dx’ (41)
ﬁ /‘—)—' SJV X

N

Instead of explicitly solving for the linear current density, the

9



integral representation given by equation (35) 1is substituted
directly into equation (41). The order of integration is then
interchanged, permitting the analytical integration over x‘. This
procedure greatly reduces the computational time since only a
single numerical integration is now required. The total H far
field is now written as

_jkp j%
5 Awe /k e
H = -y — -— e cos8 cosé
14 g-ﬁ ‘/5 8 i
" sin[k + k sine‘]g sin[k - k sine ]3
'JE a x a X S dk (42)
. [k + k sine ]5 [k - k sine ]i x
- e x i]J2 X s}2
for bistatic scattering and
-jkp L
H = - % %— / &= ]E e et cosze1
vp
0
dk (43)

X
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Ea

- o©

J 1 sin[k + k sing ]3 sin[k - k sine ]
b ¢ 1j2 a x i
[k + k sin6]3 (k - k sine ]
x 1j2 x i
for monostatic scattering. The scattering widths for the incident
H field
jkxsineé jkzcose
H = - 9 / % e 'e : (44)

are given as

3
o_(bistatic) = k- cos’e cos’e
2-D 2 5 i
in
w a a 2
1 sin[kx+ k sinel]E sin[kx- k sine ]5
. x| a a — z dk (45)
. (k + k siné ]3 [k - k sine ]i x
- » X ij2 X s)]2
and
k3
U‘gwonostatic) = — CO0S8 6
2 2
in
[+0] a a 2
1 sin{k + k sinel]g sin[k - k sino ]5
o 5l a - a X dk (46)
z [kx+ k sineng (kx— k sine }g x

Equations (45) and (46) are normalized with respect to
wavelength. These normalized equations are then evaluated
numerically and compared with MOM solutions. The 'bistatic
solutions for a two wavelength strip are shown in figures 3, 4,
and 5 for incidence angles of 0°,-30°, and -45" respectively.
Figures 6 and 7 compare the monostatlc solutions for two and three
wavelength strips, respectively. As evident from these figures,
the Fourier transform technique accurately predicts the null and

10
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peak locations in the scattering width patterns. The predicted
levels agree quite well with the MOM predictions in the specular
regions but tend to be lower than the MOM predictions for other
angles.

11



CONCLUDING REMARKS

This paper introduces a different approach for predicting the
scattering widths for strips. The technique is based on Fourier
transformations for determining the linear current density flowing
on the strip. However, it has been shown that there is no need to
solve for the linear current density explicitly, thus reducing the
computational time required to obtain scattering width patterns.
On the other hand, the MOM technique requires explicit solutions
for the linear current densities which can be time consuming,
particularly for monostatic scattering widths.

The technique presented in this paper predicts quite well the
shapes of the scattering widths but not their absolute levels for
all angles. Methods of improving the accuracy of this technique
will be investigated in future work.
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LINEAR CURRENT DENSITY

Perfectly conducting

strip

Figure 1. Strip geometry
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