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TRANSVERSE ELECTRIC SCATTERING WIDTHS FOR STRIPS - FOURIER

TRANSFORM TECHNIQUE

ABSTRACT

A technique which is based on Fourier transformations is

introduced for predicting scattering widths. For a strip it is

shown that explicit determination of the linear current density is

not necessary for both bistatic and monostatic scattering width

calculations. Comparisons of the predictions of the technique in

this paper are made with the integral equation (IE) technique

predictions, which do require explicit evaluations of linear

current densities.



_NTRQDUCTION

The most commonly used methods for predicting the scattering

widths (SW) of scattering objects are physical optics (PO),

integral equation (IE), and geometrical theory of diffraction

(GTD) [1-6]. The PO technique predicts the scattered fields quite

well for objects large in wavelengths, particularly in the

backscattered direction and for normally incident fields. The IE

technique requires the solution of an integral equation for the

induced current density on the scattering object. Numerical

techniques such as the method of moments (MOM) are used to solve

for the current density. The IE solution is usually referred to as

the exact solution. However, for bodies which are large in terms

of wavelengths, the solution can be quite time consuming, and

therefore, the IE technique is usually restricted to bodies a few

wavelengths in size. On the other hand, the GTD high frequency

technique is more applicable to scattering bodies which are large

in wavelengths. It is an extension of geometrical optics and

accounts for finite edge effects using diffraction theory.

In this paper a different approach for solving scattered

electromagnetic fields from flat strips is introduced. Even

though the strip model may be unrealistic, it provides a useful

geometry for verification of the technique since a wealth of

computational data is readily available for comparison [5]. The

technique is based on applications of the Fourier transform of the

tangential electric field in the plane containing the strip and

the current density on the strip. In general, once the current

density is determined, the far fields are found from the radiation

integral. The scattering width for a strip is then determined

from these scattered far fields. Also, only the case for which the

incident transverse electric field (TE to the infinite length of

the strip) illuminates the strip is investigated. The results

using this technique are then compared to results obtained by the

IE technique.
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TE FOURIER_ _ _ FQRMULATION

WIT_____H_ _ _ ON A

A plane wave with wave _umber k, polarized in the x-y plane,

^ _sin8 ]e jk[xsinel+zc°sSi] is
and represented as E = [xcos8 l- i

assumed incident at an angle e I on a perfecting conducting strip

of width a located in the z_ = 0 plane (see fig.l). The incident

electric field induces _a linear electric current density J×,

which in turn radiates the scattered fields. Once Jx is known,

the scattered field is readily found from the radiation integral.

Since only the x component of the electric field induces a

linear current density on the strip, the x component of the

magnetic vector potential is written as

y ejkRAx(x,z) = _-_ Jx (x'' ) R dx'dy' (i)

strip

where R = / (x-x') 2+ (y_y,)2+ z2 and _ is the permeability of free

space. Performing the y'integration (assuming J×is independent of

y'),

a

2

,z ) o k/(x-x' ) Z 2

a
m

2

(2)

where H (2)0 () is the zero-th order Hankel function of the second

kind. From one of Maxwell's curl equations, the y component of

the H field can be written as

2

H (x,z) = - j Jx (x') 0z 0
Y

m __

2

Also,since H satisfies the wave equation
Y



a2H a2H

Y + Y + k2H = 0
@x 2 az 2 Y

it can be expressed in terms of spectrum solutions as

H+(x,z) = 1 [ G,(y kx)

- I I ®Hy(X,Z) = _-_ G-(kx)

-JkxX -Jkzz
e e dk

x t Z > 0

-JkxX JkzZ
e e dk , z < 0

x

where the G's are the spectrum functions and

(4)

(5)

I /k 2 - k2 k2 k2 1

x ' x <

k - (6)
Z

- J /k 2 _ k 2 k2 > k 2
X f X

In equation (5), the superscripts + and - denote the regions z > 0
and z < 0, respectively.

Under the assumption that the strip is now replaced with a

linear current density J , the boundary conditions on the
x

tangential field components in the z = 0 plane are applied. The

tangential H field is discontinuous by the amount of linear

current density flowing on the region which was occupied by the
strip; that is,

J = - H + + H- (7)
x y y

Substituting equa{i0n (5) into equation (7) for z = O, the linear

cuTrent density becomes

- 1x _-_ - G÷(kx ) + G-(k ) e × dk
x x

The tangential electric field at z = 0 is continuous.

from Maxwell's curl equation

1

E = _V X H

(8)

Therefore,

(9)

the continuity of E yields
x



i jkx i- x 1 (kx) (jkz) e x dk x_2_e (kx)(Jkz)e dkx= _ G÷ -

-- DO -- DO

(I0)

where e is the permittivity of free space. The solution of

equation (i0) is

G_(kx) _G+(k×) (11)

Substituting equation (11) into equation (8), the linear current

density becomes

i° - ;_ 2 (kx) e k X (12)Jx (x' ) = _-_ G + Jkxx

Q0

Its inverse Fourier transform is

O0

- 2 G+(kx) = I Jx(X')

-- DO

jk x"

e x dx' (13)

with the understanding that Jx(X') is zero outside the strip

width.

For the approach in this study, it is necessary to express

the magnetic vector potential component in terms of a Fourier

spectrum representation; therefore, let

Jx6(X') = I 6(x'-x") (14)

where I is a current and 6(x'-x') is a delta function located at a

general point x" on the strip [i]. The subscript _ is used to

denote the solution for an impulsive linear current density. From

equation (3)

Hy 6 = - j I _-{ o

and from equation (13)

JkxX"

- 2 G6(kx) = I e (16)

Using equation (16), the first equation of equation (5) can be

written as

Do jk x"

x kzZdkx (17)1 ] e-Jk× x e -jHy6 = _-_ [ - Ie 2

-- CO
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Equating equations (15) and (17)

I_ "-- " X X u___ H(2) [k/(x _ x,,)2+ z2 } 1 -].x_- ) -jkzaz o = _ e e z dk x (18)

The solution of equation (18) is found by integrating over z;

therefore,

1 -Jkx( ) z[ _( __ =-- e
H (2) k x x")2+ z2 e dk (19)

0 _ z x

-- 00

The magnetic vector potential component from equation (2) becomes

a

2 i_ -jkI 1 e-Jkx (x-x") zAx(X'Z) = - J_ Jx(X') _z e z dkxd x, (20)

x'= a k =
2 x

where the double prime on x has been changed to a single prime.

The tangential electric field in terms of A x is [5]

Ex(X,Z ) = -j_Ax(x,z ) - J
1 02 A (x,z) (21)

_e aX 2 x

With equation (20) substituted into equation (21), the tangential

electric field becomes

a
m

I I- z1 x l dk dx'
Ex(X,Z ) _ _ _ jx ( ) kz e e x

x,- a k= -_
2 x

Interchanging the order of integration, equation (22) becomes
a

E(x,z) _ [ I _ eJkxX' ] -JkxX -JkzZdkx1 I kz= _ _ Jx(X') dx' e e

a

x 2

After rewriting equation (23) as

a

[ jk.]jk.1 I 1 x' e xEx(X,Z ) = _-_ _ _ kz J×( )e dx'

a

- 00
2

the term in square brackets is defined as Fx(k x).

(22)

(23)

-jk z
Z

e dk (24)
X

Therefore,
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w"

equation (24) becomes

JkzZdk
i [ -jkx -Ex(X,Z ) = _-_ Fx(k×) e e x (25)

J
-- 0D

At this point the problem is formulated as a scattering one;

that is, the total tangential electric field is written as

ET(x,z) = EZx(X,Z) + E:(X,Z) (26)
X

where EZ(x,z) is the incident field and E:(x,z) is the scattered
X

field which is assumed to be representable as equation (25).

Therefore,

ET(X,Z) = EIx(x,z) + _ Fx(kx)
X

-

-Jk x -jk z
X Z

e e dk (27)
X

where
a

Fx(kx) = - _ Jx (x')

a

2

jk x'
X

e dx' (28)

Since the unknown function Jx(X') appears only under the integral

sign, equation (28) is an integral equation of the second kind.

Such equations are often solved approximately by the method of

moments where the unknown function is expressed as a sum of basis

functions with unknown constants. The constants are then found

through a point matching technique which requires a matrix

inversion.

An approximate solution for Jx(x') is determined by a Fourier

transformation inversion. At z = 0 equation (27) becomes

Jkx'sinel 1 [ -jk x'

ET(x,,0) = cosBie + _-_ ] Fx(k ) e × dk X (29)X

If the ET(x ',0) were known over the complete z = 0 plane, the true
X

Fx(kx) can be found via the inverse Fourier transform. However,

the field ET(x',0) is known only over the strip (E: = 0) and not
X

outside. As an approximation the total ET(x''0)x field outside the

strip is assumed to be the tangential incident field. Written in
mathematical terms, the tangential electric field in the z = 0

plane is

7



ET x' jkx'sine
×a ( ,0) m [I - s(x')] cosele i

where the subscript a on ETx(X',0) denotes an approximation and

(30)

1 , ix'Is ±
s(x') - 2

0 , otherwise

Substitution of equation (30) into equation (29) gives

i ['F -JkxX' Jkx' sine_-_ xa(kx)e dk x = - s(x')cose e '
J

-

The inverse Fourier transform yields

(31)

(32)

FxG(kx) = - a
san + k sine

+ k sine i
cose i (33)

An approximate solution for the linear current density in equation

(28) is found by a Fourier transformation of an approximate linear

current density Jxa(X'); that is

I jkx'

x 2&>e

Jxa(x')e dx' = - -_z Fxa(kx) (34)

The inverse Fourier transform yields

° /i / 1Jxa(X') = _-_ _ a cose e x dk (35)
a i x

z k + k sinelJ _
- O0

This inverse transformation produces linear current density inside

and outside the strip width. Since the linear current density
Jx(X') given in equation (24) flows only on the strip, it is set

equal to Jxa(X') only over the strip width; that is,

Jxa (x') Ix'l s
Jx(x' ) = ' 2 (36)[ 0 , otherwise

For normal incidence (el= 0), equation (35) is evaluated

numerically for a strip two-wavelengths wide. In figure 2, these

computations are compared with the linear current density obtained
by the integral equation technique which uses the method of

moments. Even though the two solutions do not agree in magnitude

over the complete strip, their shapes are very similar.
Techniques for improving the agreement between the solutions will

be investigated in future work.



TE _WIDTH OFASTRIP

The definition of the scattering width of a strip (object) is
given as [5]

p -_ eo

lim

O"
2--D

lim [ 2_p IEs---!2]IEII2

(37)

[ 2.p IHS-_J.12 ]is I 12

where p is the distance from the strip to the observation point,

ES,H s are the scattered fields, and E* H*, are the incident fields.

In this paper the second definition is used where the scattered H

field component is given by equation (3). Explicitly performing

the differentiation in equation (3), the scattered y-component H
field becomes

&

2

H (x,z) = j J(x')_x -, (38)
a

2
(2)

where HI, () is the first order Hankel function of the second

kind. Since scattering widths are based on far-field expressions,

the square root term in equation (38) can be approximated as
\

p - x'sine s , for phase terms
V_(x - x')2+ z 2 _ (39)

p , for amplitude terms

where e is the scattered angle off the normal to the strip (see

fig.l). For k(p - x'sine ) large, the Hankel function can be

written as

-jk(p - x'sinSs) j_
He2)
, () _ J _--_p e e (40)

-jkp

.s e

Substituting equations (39) and (40) into equation (38) with
z = pcosO , the total scattered H far field becomes

S

a
w

j_ 12 jkx'sinOe cosO s Jx (x')e s dx' (41)

2

Instead of explicitly solving for the linear current density, the



integral representation given by equation (35) is substituted

directly into equation (41). The order of integration is then

interchanged, permitting the analytical integration over x'. This

procedure greatly reduces the computational time since only a

single numerical integration is now required. The total H far
field is now written as

H s _ _ _ _e _ e -jkp J_
--_ _p e cose cose i

[_ [ sinlkx+ k sin0111 J[ sin kx- k sin8)_

• a [ s

for bistatic scattering and

_e _ e -jkp J_HS _ - _ _-- e cos2e

s' Isinlk'ksinex l
• a

z k + k sine
x l

-- CO

A

(k x- k sine I

dk (42)
X

dk (43)
X

for monostatic scattering.
H field

are given as

_2[bistatic) -

-[

The scattering widths for the incident

/_ jkxsineHI = _ _ C e !

jkzcose i
e (44)

k 3
cos2e cos2e

4T[2 s !

I I.sin kx+ k sine i

a

kx+ k sine t _
sin[k - k sine la

x s 2
a ,

k x- k sine B

dk×

2

(45)

and

k 3
_2(_onostatic) - cos4e

• 4r[ 2 ]

] f _ (t sinel Ii

sin[k×+ k
• a

z kx+ k sine i
-- G0

a sinlkksineI kxksine
2

dkxl (46)

Equations (45) and (46) are normalized with respect to

wavelength. These normalized equations are then evaluated

numerically and compared with MOM solutions. The bistatic

solutions for a two wavelength strip are shown in figures 3, 4,

and 5 for incidence angles of 00,-30 ° , and -45 ° , respectively.

Figures 6 and 7 compare the monostatic solutions for two and three

wavelength strips, respectively. As evident from these figures,

the Fourier transform technique accurately predicts the null and

i0



peak locations in the scattering width patterns. The predicted

levels agree quite well with the MOM predictions in the specular

regions but tend to be lower than the MOM predictions for other
angles.
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CONCLUDING REMARKS

This paper introduces a different approach for predicting the

scattering widths for strips. The technique is based on Fourier

transformations for determining the linear current density flowing

on the strip. However, it has been shown that there is no need to

solve for the linear current density explicitly, thus reducing the

computational time required to obtain scattering width patterns.

On the other hand, the MOM technique requires explicit solutions

for the linear current densities which can be time consuming,

particularly for monostatic scattering widths.

The technique presented in this paper predicts quite well the

shapes of the scattering widths but not their absolute levels for

all angles. Methods of improving the accuracy of this technique

will be investigated in future work.
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Perfectly conducting
strip

a

Y

Figure 1. Strip geometry
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