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SUMMARY

A numerical method is developed for the minimization of deviations of real tooth surfaces from
the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of
machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined
by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the
proper correction of initially applied machine-tool settings.

The contents of accomplished research project cover the following topics:

(1) Description of the principle of coordinate measurements of gear tooth surfaces.

(ii) Derivation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and refer-

ences for spiral bevel gears).
(i) Determination of the reference point and the grid.
(iv) Determination of deviations of real tooth surfaces at the points of the grid.

(v) Determination of required corrections of machine-tool settings for minimization of deviations.

The procedure for minimization of deviations is based on numerical solution of an overdeter-
mined system of n linear equations in m unknowns (m < n), where n is the number of points of
measurements and m is the number of parameters of applied machine-tool settings to be corrected.

The developed approach is illustrated with numerical examples.



CHAPTER 1

INTRODUCTION

The development of computer controlled machines has opened new opportunities for high precision
generation of double-curvatured surfaces-gear tooth surfaces, surfaces of rotors, propellers, screws,
etc. However, these opportunities can only be realized if the surface generation is complemented

with coordinate measurements of the manufactured surfaces. Such measurements allow one to:

(i) Identify the real machine-tool settings and correct them if necessary (important for generation

of master gears of high precision);

(ii) Determine the deviations of the real surface from the theoretical one, and minimize the

deviations by correction of the initially applied machine-tool settings.

In the second case there are many factors that cause the deviations: (a) distortion of the surface
by heat-treatment, (b) errors caused by deflection in the process of manufacturing, (c) errors of
installment of machine-tool settings, etc. Measuring the prototype of the surface (for instance, the
first gear of the being manufactured set), we can determine the deviations at n measuring points
and then minimize the deviations by controlling m < n parameters of machine-tool settings.

The Gleason Works (USA), Oerlikon (Switzerland), Caterpillar (USA), and the Ingersoll Milling
Machine Company (USA), and other Companies are pioneers in the development of computer

controlled machine for the generation of spiral bevel gears, hypoid gears, spur gears, helical gears,



and other objects. The Gleason Works engineers have developed an automated system and the G-
AGE program for the automatic evaluation of real gear tooth surfaces that is based on measurements
taken by using the Zeiss machine (Gleason Works, 1987) but without presenting the mathematical
description of the procedure [1]. The Caterpillar engineers have developed their own machine for
coordinate measurements and have used it for the evaluation and correction of real gear tooth
surfaces (Chambers and Brown, 1987) but without presenting the algorithm and analytical method
that they used in the measurement procedure for spiral bevel gears [2]. It can be expected that
coordinate measurement of complicated surfaces will find wide application in industry.

The report covers the following topics:

(1) Determination of machine-tool settings for a real surface. Here it is assumed that the devia-
tions of the real surface form the theoretical one are caused only by the errors of machine-tool
settings. The proposed approach allows the required corrections of machine-tool setting to
be determined based on the data of coordinate measurements. The solution to this problem

is significant for generation of master-gears of high precision.

(2) Determination of corrections of machine-tool settings for a real surface with irregular devia-
tions. Such deviations can be caused by heat-treatment, deflection in the course of manufac-
turing, and other factors. The proposed approach assumes that the manufacturing process
provides repeatable surface deviations due to stable conditions of gear manufacturing and
heat treatment and allow the deviations to be minimized by appropriate corrections to the

machine-tool settings.

The proposed approaches cover the solutions to the above-mentioned problems and are illus-

trated by numerical examples for hypoid pinion and gear tooth surfaces.



The contents of the report is divided into two parts:

1. General Theory

In part I, the successful application of coordinate measurements needs the following proce-

dures :

(i) Analytical or numerical representation in the 3D space of the theoretical surface and the
equidistant surface where the center of the probe is located in the process of measure-

ments.
(ii) Determination of the grid where the center of the probe must be located.
(il) A certain point on the theoretical surface must be chosen as the reference point.

(iv) Determination of deviations of the real tooth surface from the theoretical one that are

measured along the common normal to both surfaces.

(v) Minimization of deviations of the real surface by correction of previously applied machine-

tool settings.

I1. Application to Coordinate Measurements of Hypoid Pinions and Gears.



Part 1

GENERAL THEORY



CHAPTER 2

REPRESENTATION OF A THEORETICAL SURFACES

Henceforth, we will consider four surfaces: (i) -the theoretical tooth surface, (ii) Z()-the surface
that is equidistant to ¥ and might be traced out by the probe center if the deviations are equal to
zero, (iii) £"~the real tooth surface, and (iv) E(e)—the surface that is traced out by the probe center
when the real surface is measured. The subscript for symbols X, ), L* and E(c) (for instance
Z(¢)m) indicates in which coordinate system (S,, for designation Z(,y,,) the surface is represented.

We comsider that a theoretical surface T, is represented analytically in a coordinate system Sy
that is rigidly connected to ;. Two types of representation arise:

(i) in two-parametric form by a vector function

re(u,8) (2.1)

and (ii) in three-parametric form with related parameters.

ry(u,8,9) (2.2)

f(u,0,6)=0 (2.3)



Equations (2.2) and (2.3) represent X, as the envelope to the family of tool surfaces, Y4, that
1s generated in coordinate system S; by the tool surface in its relative motion with respect to the
being-generated gear. Parameters (u,6) in expressions (2.2) and (2.3) are the Gaussian coordinates
(surface coordinates) of the tool; ¢ is the generalized parameter of motion. Equation (2.3) is the
equation of meshing (Litvin, 1989) [3]. In the case where the tool surface is a ruled developable
surface, for example a cylindrical involute surface, a screw involute surface, or a cone, the equation
of meshing is linear in one of the surface parameters and it is easy to represent the generated surface
di’rectly in a two-parametric form.

Henceforth, we will consider that the theoretical surface is represented in two-parametric form

as follows.

or, Or
. 2 . . . t t
ri(u,0,d;)eC* (j=1,...,m); u,0¢E; T #0 (2.4)

The designation C'* means that the vector function has continuous derivatives for all arguments
at least to the second order. The Gaussian coordinates are designated by u and 6, and E is the
area of u and §. The inequality in (2.4) indicates that T, is a regular surface. The designation
dj (j = 1,...,m) indicates constant parameters-the so-called machineé-tool settings.

To illustrate d; we consider the case of generation of a formate cut hypoid gear (Fig. 2.1). The
generating surface is a cone with Gaussian coordinates u and 6 (Fig. 2.2). The installation of
the cone with respect to the cradle is determined with two parameters, H, and V; (Fig. 2.3). The
installation of the gear in the plane y. = 0 is determined with the parameters AX,, and v,,. Here:

AXm represents the location of the crossing point, Oy, with respect to the machine center, O;
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Figure 2.2: Generating Cones



Figure 2.3: Machine-Tool Settings For Formate Cut Gear
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and 7, determines the orientation of gear axis z; in the process of generation. These parameters,
H,, Vo, AX,, and 4,,, are the machine-tool settings, d;. It is assumed that the parameters d; can
be varied to minimize the deviations of the real tooth surface to the theoretical one.

In addition to expression (2.4) we will also need a parametric representation of a surface ey

that is equidistant to the theoretical surface ¥,. Such a surface is represented by:

rt(u, 9) + )\nt(u, 0) (/\ # 0) (25)
Here:
Nt 8 t 6 t
m(w) = g Ne= a—‘; X 3—; # 0 (2.6)

where N, is the vector of surface normal; n, is the unit normal; and X is a scalar that determine
the distance between the two surfaces that is measured along the normal.
Examples of derivation of surfaces of spiral bevel gears have been represented in the works: F.L.

Litvin [3] F.L. Litvin and Y. Zhang [4], and R.F Handschuh and F.L. Litvin [5].

11



CHAPTER 3

PRINCIPLE OF COORDINATE MEASUREMENT

The machine for coordinate measurements (CMM) usually has four or more degrees of freedom. For
instance, the Zeiss machine used by the Gleason Works has four degrees of freedom, one rotational
and three translational motions [1]. The three computer controlled translational motions of the
probe are performed in three mutually-perpendicular directions during the process of measurements.
The probe tip is a changeable ball whose diameter can be chosen from a wide range, according to
the specifications of the surfaces to be measured. In the Zeiss machine, the rotational motion is
performed by a rotary table whose axis coincides with the axis of the workpiece and can be rotated
together with the workpiece being measured.

Henceforth, we will consider that a coordinate system Sm(Zm,Ym,zm) is rigidly connected to the
computer controlled 3-dimensional coordinate measuring machine (CMM) and 25, coincides with
the axis of the gear and pinion (Fig. 3.1). The axis of the probe may be installed parallel to zm
(Fig. 3.1.a) or perpendicular to zm (Fig. 3.1.b), depending on the design of the workpiece and the
surface (for instance, depending on the pitch cone angle of the gear or the pinion). The back face
of the workpiece, which is perpendicular to its axis and is finished to high precision, is installed
flush with the base plane of the CMM. The origin of the coordinate system Sp, can be located in
the base plane or is related with it.

A Coordinate system Se(@e, Y, 2t) 15 rigidly connected to the being measured gear. In some

iz
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Figure 3.1: Surface Measurement of a Gear and Pinion
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cases we may assume that the origin Oy coincide with 0,,. Thus, the two coordinate systems S,
and S, can be brought into alignment only by the rotation of the rotary table. In the most general
case, the orientation and location of S respect to Sy, are determined with two parameters ¢ and [
(Fig. 3.2). We will consider that parameter [ is known from the installments and parameter § is
determined by using the procedure of computation described below (in chapter 4).

In order to align the coordinate system of tooth surface §; with the CMM coordinate system S,

a reference point, say (zgg),y,(,?), zf,?)) on the theoretical tooth surface, say ¥,, , must be specified.

The coordinates (X,(,?), ’,Slo), Zf,?)) of the probe center, which correspond to (zSS), yg,?), zs,?)) can be
determined knowing the radius of the probe and the normal to the surface by using equation (2.5).
For the initial installment of the tooth surface, the probe center is placed at ( ,(,?),Y,SLO), ' ,(,?)), and
the tooth surface is brought into contact with the probe by turning the rotary table. Therefore,
the tooth surface is fixed in the process of measurements and the probe performs measurements by
translational motion. The displacement of the probe center in the ., ym and zm axis directions
represent its displacements from the initial position.

The measurement data provide the coordinates, (X*,Y*, Z*) of the probe center, which traces
out in reality an equidistant surface, say 2(6), to the real tooth surface, say ¥*, in the process of
measurement.

Knowing the initial and current positions of the probe center, we can determine the surface

deviations based on the change of position of the center of the probe in the process of measurements.

CMM Calibration:

Calibration of the CMM for a chosen probe ball can be accomplished using a calibration ring

(Fig. 3.3). The initial coordinates of the center of the ball are:

(X9, 70, 20] = [R + 4,0, ] (3.1)

14
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Ym

Calibration Ring

Figure 3.3: Calibration of CMM for Measurements Using a Calibration Ring
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Here R is the radius of the calibration ring and a is the radius of the ball. At the initial position,
the probe ball is in contact with the calibration ring. The y,, = 0 alignment can be achieved if the
same displacement Az, of the probe corresponds to £ Ayy, displacements. The value of f can be

obtained by independent measurement.
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CHAPTER 4

THE GRID AND REFERENCE POINT

4.1 The Grid

The grid (Fig. 4.1) is a set of points on the theoretical surface X, that are chosen as points of
contact between the tooth surface and the probe [6]. Figure 4.2 shows the grid on the surface of a
spiral bevel gear.

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the
measurements that are located in nine longitudinal cross-sections of the gear and pinion surface
with five points in each cross-section (Fig. 4.2).

(2). Consider that the theoretical surface I, is represented in two-parametric form by the vector
function ry(u,f). Then the Gaussian coordinates for the grid points can be determined based on
the following considerations.

Zf.(u, 9) =¢
zi(u,8) + yi(u,0) = P?j } (4.1)

Here: c; is the constant that determines the location of the chosen cross-section; p;; determines the

shortest distance of the chosen point of the surface from the axis of the gear.

18
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We can determine the Cartesian coordinates and curvilinear coordinates (u,d) for n = i X J
points of measurements.

(3). The theoretical coordinates of the probe center for each grid point is determined by
considering that the probe center will l;fe ona surfape ¥, that is equidistant from X;. The foﬂov;’ing

vector equation determines these coordinates in system S;.

p; = re(u,0) + ang(u, ) (4.2)

where a is the radius of the ball surface of the probe. Equations (4.2) represent in §; the surface

that might be traced out by the center of the probe if the surface deviations are equal to zero.

4.2 Reference Point

One of the grid points (usually the center one, i.e., mean point) is chosen as the reference point
(Fig. 4.3). This point is used to install the gear on the CMM and to obtain the value of é that is
needed to represent the coordinates of the grid points in S,;,. The CMM is provided with a rotary
table that allows the gear to be rotated to an initial position with respect to the probe.

We consider that the gear is installed with its back-face flush against the base plane of the
CMM such that the O, coincides with the O, and the parameter [ = 0 is known (Fig. 3.2). The
rotational alignment of the gear and the value of § can be obtained based on following two steps.
Step (i): the probe is brought into contact with the point on the real surface that is closest to the
chosen reference point.

Step (ii): the parameter & is determined based on coordinate measurements at this point.

We assume that the real surface deviations from the theoretical one and that we would like the

22



probe to contact with the real surface at the point closest to the chosen reference point. Assuming

that the variation in surface normal will be small, the measured coordinates (X,(,? ),nglo), 5 )) of

the probe center can represented by using the following matrix equation (Fig. 3.2).

RO = [Mn]p” (4.3)

m

cosd sind 0 O

—sinéd cosd 0 O
[Mmt] - 0 0 10 (4.4)

0 0 01

Then we obtain

XD = (X7 4 bnge)cos § + (V) + bny) sin 8 (45)
YO = (X 4 brge)sin s + (Y, + bny) cos § (4.6)
z9 = 24 bn, (+7)

Here: (pgo):[Xt(O),Yt(o), ZEO)]T) are coordinates of the point equidistant from the chosen reference
point as given by (4.2); (ng¢,nye, n,e) are the components of the theoretical surface normal in S; at
the chosen reference point; § is the parameter of orientation; and b is the normal-direction deviation

of the real surface from the theoretical surface at the chosen reference point.

23



Together, equations (4.5-4.7) represent a system of 3 equations in 5 unknowns, X(O) Y,(no), Z(o) 6
and b, that can not be solved uniquely. To obtain a solution we assume that at reference point
b = 0, and for convenience we choose YY) = 0. Then equation (4.7) can be solved for z0 = Zt(o)
and from equations (4.5) and (4.6) we can derive the following relation for X9 that does not

depend on 4.

X© = /(x4 (v,/0))2 (4.8)

After solving (4.8) for X,(,? ),6 can be determined from the following relation that can be derived

from equations (4.5) and (4.6) considering that W =b=0

5 (x?+ (v - 20%)

tan - = —
2

4.9
Y Ox© (49)

Based on the above considerations, rotational alignment of the gear can be obtained as follows:
(0) ,(0)

(i) install the probe with coordinates (X', Ym ", (0)) that have been determined as described

above;

(i) turn the rotary table until the probe contact the to-be measured surface. The value of § for

this installation is given by equation (4.9).

24



Process of Measurements

With the parameters ¢ and ! determined, matrix equation that is similar to (4.3) can be used to
find the Sp-system coordinates , X, Y, Zp, of the theoretical probe center for each grid point.

In the process of measurement, the probe center is controlled by the CMM to keep two measured
coordinates, say (X},,Y%) as close to the coordinates (X, Ys,) of the chosen grid point as possible.
The third measured coordinate Zj, will differ from Z,, if the real tooth surface deviates from

theoretical one.

25



CHAPTER 5

DETERMINATION OF REAL MACHINE-TOOL SETTINGS

5.1 Initial Considerations

The determination of real machine-tool settings is for the case when surface deviations are caused
only by errors in the installment of machine-tool settings. It is especially important for the gener-
ation of a master gear-a gear that is used as a model for the evaluation of manufactured gears. In
this section we use the deviations determined by coordinate measurements to determine the real
machine-tool settings and then to correct the installment of machine-tool settings.

In addition to the real machine-tool settings, we consider the parameters é and [ (Fig. 3.2) as

unknowns.

The imaginary surface X, that is equidistant to the theoretical surface ¥ is represented in S

by (see equations 4.2):
X = z4(u,0;d;) + angy(u,0;d;) = A(u,0;d;)

Y = yi(u, 8;d;) + any(u, 8;d;) = B(u,0;d;) (5.1)

Zy = z(u,0;d;) + ange(u, 0, d;) = C(u,8;d;)
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Here: a is the radius of the probe sphere; A, B and C represent the resulting functions; and
dj (j =1,...,m) are the to-be-determined real machine-tool settings that have been applied in
the process of generation.

Basic Equations

The determination of the real machine-tool settings is based on the following procedure.
Step 1. The coordinate transformation from S, to S,, which is rigidly connected to the coordinate

measuring machine is based on the matrix equation:

r(c)m = [Almt]r(c)t (52)

where [My,;] is represented by equation (4.4).
Considering that the measured coordinates of the probe center (X5, Yh, Z5) coincide with

m: - m>

coordinates (X,Ym, Zn,) on the theoretical equidistant surface Z(C)m represented in 5,,, we have

[Xm Yo Z‘m]T = [X*

m

Yo Zn)” (5.3)

Equations (5.1), (5.2) and (5.3) yield
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X = A(u,8;d;)cosé + B(u,0;d;)siné
Yy = —A(u,0;d;)siné + B(u,6;d;)cosé (5.4)

Zx = C(u,8;d;) +1

Step 2. Our goal is to derive equations that are invariant with respect to the parameters § and [.

Equation (5.4) yield

X:2 4 Y2 = A%u,8;d;) + B* (v, 0;d;) (5.5)
§  AA-X)+ B(B-Y})
tan 5 = BX: — AYz (5.6)
I: is also evident that
l = Z:n —C(U,G;dj) (57)

Step 3. Henceforth we will drop the subscript m indicating that the coordinates of a point are

esented in coordinate system S,,. We will designate with g the number of measurement points

), (5.6) and (5.7), we

repr
and with subscript p the index of a measured point. Based on equations (5.5

obtain the following system of equations that is used for determination of the real machine-tool
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settings.

X2+ Y2 = ANup, 0p;d5) + B3 (up, 0p;d5)  (p=1,. . 9) (5.8)

Ap(Ap - X;) + Bp(Bp - Y;) _ Ap+1(Ap+1 - X§+1) + Bp+1(Bp+1 - Y;+1)

‘e - 7 % 7% 5.9

B,,A; - A,,Yp* B,,+1Ap+1 - Ap+1lp+1 (59)
(1<p<g-1)

Zpi1 = Z; = C(upt1,0pr1;d;) - Cup, Op; d;) (1<p<g-1) (5.10)

Using the results of measurements for g points on the surface we obtain (3¢ — 2) equations (5.8),
(5.9) and (5.10) in: (i) 2¢ unknown surface coordinates (u,,8,); and (ii) m unknown machine-tool

settings d; (j = 1,...,m). Thus, to determine m unknown machine-tool settings we need:

g=m+2; k=3¢g-2=3m+4 (5.11)

where g is the number of surface measurements and k is the number of nonlinear equations that
have to be solved. Parameters § and [ of orientation and location of coordinate system S; with
respect to Sy, (Fig. 3.2). can be determined from equations (5.6) and (5.7).

In the case when the gear and the pinion are installed flush against the base plane of the CMM

we can take ! = 0 (the origin O, coincides with O,,), and use the equation:
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Zy = C(up, by d;) (5.12)

in place of equation (5.10). For this case, the coordinate measurements of g points on the real
surface, results in (3g — 1) equation (5.8), (5.9) and (5.12), in 2g unknown surface coordinates
(up,8p), and m unknown machine-tool settings d; (j = 1,...,m). To determine the m unknown

machine-tool settings we need

g=m+1 k=3¢g-1=3m+2 (5.13)

5.2 Computational Procedure

The numerical solution of a large system of nonlinear equations is a complicated problem. For the
case where [ # 0 and m = 4, the number of equations to be solved is k = 16. The system of
nonlinear equations can be solved using computer software such as the IMSL subroutine DNEQNF
[7]. However, the successful application of this program requires a good first guess— an initial set of
unknowns that is used for the first iteration. We propose a solution procedure that begins with a
system of four éqﬁatiqns using the meééurements fqrr only two poinfs on the surface. The number
of equations, k = 4,7and, the number of meésuremengs, g = 2, can be obtained from equation (5.11)
considering that m = 0. This means that for the first step, errors in the machine-tool settings are

neglected — the machine-tool variables dy,dz, ..., dm in equation (5.8), (5.9) and (5.10) are set to
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the nominal values dgo), dgo)’ e (2).

Step 1. An initial guess for the system of 4 equations is obtained as follows: (i) an approximate

value for [ is determined by measurements, then (ii) neglecting the errors of machine-tool settings,

approximate values for the surface coordinates of two measured points are determined using the

following equations.

Clup,bp) = Z; -1 (p=1,2)

A*(up,6;) + B*(up,0p) = X;:Z + Y;;Z (p=1,2)

(5.14)

(5.15)

Step 2. Knowing the approximate values of (u,H) for the two points of measurement, we then

obtain more precise solutions for surface coordinates using th system of four equations:

A2(u1,01) + Bz(ul,ﬂl) = X;:) + }/1*2
A2(U2,02) + BZ(UQ, 92) = X;z + yr;z

Cz(uz,oz) - Cl(ulwol) = Z; - Zf
Ai(Ar - X7) + Bi(By = Y7) _ As(Az - X3) + By(Ba - Y5)

B, X7 — AYy B, X3} — ApYy

(5.16)
(5.17)
(5.18)

(5.19)

obtained from equation (5.8), (5.9) and (5.10) considering that g = 2, and neglecting errors in the

machine-tool settings.
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Step 3. The solution obtained for the previous step is then used as the initial guess for a larger
system of k = 7 equations (5.8), (5.9) and (5.10), obtained by considering that one machine-tool
setting is a variable, and using ¢ = 3 measurement points.
Step 4. G-ra,dua.lly the number of machine-tool settings that are considered as variables are in-
creased until eventually the exact values for the whole set of j = 1,...,m unknowns machine-tool
settings are determined using a system of k = 3m + 4 equations (5.8), (5.9) and (5.10). Knowing
the real values of the machine-tool settings we may correct the settings and eliminate the deviations
of the real surface from the theoretical one.

We can expect that in some cases the real tooth surface will be substantially distorted due to
errors other than errors in the applied machine-tool settings. For these cases, we use the procedure

described in chapter 6 and 7 to improve the precision of the generated surface.
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CHAPTER 6

DETERMINATION OF DEVIATIONS OF REAL TOOTH SURFACE

Let us consider in coordinate system Sy, two surfaces: (i) X(¢)m that might be traced out in S5, by
the center of the probe if the gear tooth surface is an ideal surface, and (ii) surface I{,,, that is
traced out by the center of the probe in the case when the gear tooth surface is the real surfaces
(Fig. 6.1).

The position vector of the probe center for the theoretical equidistant surface X(.),, is deter-

mined in S, with the equation similar to (4.2), i.e,,

Prmp = Trp(Ups 05, &) + a0y, 05, ) (p=1,...,45 5 j=1,...,m)  (6.1)

where, subscript p is the index of a measured point.
By measurements of the real surface the position vector of the probe center may be represented

as

R}y = Tmp(tp 050 40) 4+ Mpliynp(up, 05, V) (p=1,...,45 ; j=1,...,m) (6.2)

Pz

where ), determines the real location of the probe center on surface Eloym and is considered along

the normal to the theoretical surface ¥,,.
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Y.~ Theoretical Surface
E(eym—Equidistant Surface to X,

X7 .. —Surface Traced Out By the Center of Probe

(e)m

Figure 6.1: Surface Notations
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Subscript “m” indicates that both surfaces are represented in Sp,; Ty is the position vector
of the theoretical tooth surface I,,; subscript “p” indicates that the current point of the grid is

considered; (u, and ,) are the theoretical surface Gaussian coordinates that are known for each

grid point; dgo) ( = 1,...,m) represent the initial theoretical machine-tool settings; n,,, is the
unit normal at the current grid point; R} = (X7p Yirps Z7p) is obtained from the measurements.

Henceforth, we will assume that both surfaces have the same direction of the normal.

Equations (6.1) and (6.2) yield

@ = (Pmp = Tmp) * Ny (6.3)

Ap = (R:n,p — Tmp) Nimp (6.4)

The deviation of the real tooth surface 7, from the theoretical surface ¥,, is measured along

the normal to the theoretical surface and can be represented as

Dby =Xy —a = (Riap = Pmp) " Dinp (6.5)

Taking into account equations (6.4) and (6.5) we obtain that

Db, = Ap—a = (X:‘np—me)mzmp—f-(Y,:p—Ymp)-nymp+(Z:np—Zmp)'nzmp (p=1,...,45) (6.6)

where, the subscript p is the index of a measured point; (Xmp» Yomps Zip) are the coordinates of

the center of the probe obtained by measurements; (Xinp(tp, 0p), Yimp(up, 0p), Zmp(up, 8,)) are the
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cartesian coordinates of the center of the probe for surface Xiem that is equidistant to the theo-

retical surface T, that are represented in Sm; Ngmp(Up, Op), Nymp(up, Op) and Nemp(Up, Op) are the

projections in Sy, of the unit theoretical surface normal. Surface parameters (up,6,) are considered

as known for each point of measurements.

36



CHAPTER 7

MATHEMATICAL ASPECTS OF MINIMIZATION

Basic considerations

We consider two steps for computerized minimization of deviations of real tooth surfaces [9]:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations.

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings
The gear and the pinion tooth surface in accordance to expressions (2.4) are represented in S,

as follows,

Iy =rm(u,0,d;) ; ny, = n,(u,d,d;) (7.1)

In equations (7.1), the tooth surface is represented in terms of surface coordinates u and 4. For
simplicity, the subscript “m” is dropped in the following derivations. The first order variations
of the surface that is caused by the change of machine-tool settings and surface coordinates is

represented as
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=, dr

2 6d;
2 8d;

ér = (—9369 + ﬁ¢5u +
Ju

o (7.2)

where, m is the number of machine-tool settings.
We multiply both sides of equation (7.2) by the surface unit normal n and take into account that

0 Or . or or .. . .
I n=.n=0since — and — lie in the plane that is tangent to the surface. The surface

a0 du Y, du

normal variations can be found as

ér-n= Z(;—dr -n)dd; (7.3)

j=1 =

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will obtain an overdetermined system of n linear equations in m unknowns ( m is equal to the

number of machine-tool settings) represented as

m m

Or
2(37:- ny)8d; = ) abd; = Aby (p=1.7) (74)

j=1 i=1

where, subscript p is the index of a measured point.

The number n of equations is equal to the number of points for measurements. In this report,

the number n is equal to 45 as mentioned in chapter 4
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We can now consider a system of n linear equations in m unknowns (m < n) of the following

structure
a118d1 + a128ds + ... + a1mbdm = Aby
a218dy + ageddy + ... + asmbdy, = Aby
......................................................... ' (7.5)
a,.n]&d} + an26d2 + ...+ a,,médm = Abn
Here:
Dby = (Rpyp = Prp) - Dmp (p=1,...,n) (7.6)
where subscript p is the index of a measured point; a,; (p=1,...,n;7 =1,...,m) represent the
dot product of partial derivatives % and unit normaln, (p=1,...,n ; j=1,...,m).

7

The system (7.5) of linear equations is overdetermined since m < n. The mathematical aspect of
the problem for the minimization of deviations is the determination of such unknowns éd; (j =
1,...,m) that will minimize the difference between the left and right sides of equations (7.5). One
of the widely used methods for the solution of the overdetermined system of linear equations is the
least-square method. In this work we have used a commercially available subroutine DLSQRR of

IMSL MATH/LIBRARY (7] for computerization of the procedure.
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Part 11

APPLICATIONS TO
COORDINATE MEASUREMENTS
~ OF HYPOID PINIONS AND
GEARS
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CHAPTER 8

Minimization Of Deviations of Face-Milled Hypoid Formate Gear

8.1 Equations of Theoretical Tooth Surface X,

The head-cutter is provided with inner and outer straight-lined blades as it is shown in Fig. 8.1.
The blades that are rotated about the axis of the head-cutter generate two cones. Each tooth side
of formate face-hobbed gear is generated by a cone and the gear tooth surface is the surface of
the generating cone. The angular velocity of rotation of blades is not related with the process of
surface generation but depends only on the desired velocity of cutting. Usually, the formate gear
of a hypoid drive is cut by the duplex method [8,9]. This means that both sides of the gear space
are generated simuli aneously by a head cutter and the machine tool settings are the same for both
sides.

Both generating cones (Fig. 8.2) can be represented by the same equation given as

— 8@ €os ag
r. = | (r¢ — sgsinag)sinfg | . (8.1)
(7'(; - 8G sin aG)COS 9(;

Here: r. is the position vector; r¢ = 'rg) is the cutter tip radius; sg = sg), ag = ag), (i=1,2); sg)

and a(G) are negative for concave side , and positive for convex side (¢ = 1,2 for concave and convex
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Figure 8.1: Head Cutter for Tooth Surface Generation
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Figure 8.2: Generating Cone Coordinate System
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side, respectively). Parameters sg and 6g represent the Gaussian coordinates of the generating

surface. The unit normal to the generating surface is represented by the equations

or, or. N, sin ag
= Te y Ze n, = = | -cosagsinfg (8.2)

Os 0b¢c ’
G ¢ — cos ag cos fg

[

Fig. 8.3 shows the installment of the head-cutter (generating cone) and the gear on the cutting
machine. Coordinate systems S,, Sc and S are rigidly connected to the cutting machine, the head-
cutter and the being generated gear, respectively. In the process of generation, all three coordinate
systems do not perform relative motions wit}} respect to each other since the gear is formate cut.
Thus we may consider that they are rigidly connected each to other. The generated gear tooth
surface is the same as the surface of the generating cone for this type of gear. The installment
of the head cutter is determined with machine-settings H2 and V2 that represent the location of
origin O, of coordinate system S in S,. The installment of the gear on the cutting machine is
represented by settings 7£3) and AX,,. The origin Oz of coordinate system Sy coincides with
the point of intersection of the shortest distance of the hypoid gear drive with the gear axis (i.e.,
crossing point). Parameter AX,, represents the location of O, with respect to Op -the origin of S,.
Parameter 75,?) represents the orientation of gear axis in plane y, = 0. The set of parameters Ho,
Vo, AXm, and 753) represents the set of the to-be corrected settings for minimization of deviations
of real gear tooth surfaces. The theoretical gear tooth surface X2 and the surface unit normal are

represented in S» by using the following matrix equations

rz(sG,GG,dj) = [Mzc]rc(sG,eg) = {MZO][MOC]X'C(SG,GG) (8.3)
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Figure 8.3: Installment of the Head Cutter with respect to Machine and Workpiece.
(For Formate Manufacture There Is No Rotation About Cradle Axis z, or Workpiece Axis z;)
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cos 7’53) 0 —sin 7,(3 ) 0
0 1 0 0
Mzo) = 8.4
(Meo] sin'y,(f) 0 cos‘y,(,f) LAY, (84)
0 0 0 1
100 O
010 -V
Moc) = 8.5
Mocl=149 0 1 m, (8.5)
0 00 1
y(66) = [Lacline] = (L]l Leclne(96) (56)
cos 'y,(,'f’ ) 0 -—sin 7£3 )
[L20] = o 1 0 (8.7)
sin7§3) 0 cos'yg)
1 00
0 01

Equations from (8.1) to (8.8) enable the determination of the theoretical gear tooth surface Xy

and its unit normal as (2.4),

r2(sc,9¢c; d;) € c? (j=1,...,4) ;s¢,0c €E ; n2(0c,7£,'f)) #0 (8.9)
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Here d; are the machine-tool settings AX,., Hy, Vo and 7,(3). The Gaussian surface coordinates
are designated by sg and 6¢.
We will also need the parametric representation of a surface X, that is equidistant to the

theoretical surface ¥,. Such a surface is represented as (4.2),

pr = I‘g(SG,eg) + ang(BG) (8.10)

where a is the radius of the ball surface of the probe.

8.2 Determination and Minimization of Deviations

After the theoretical tooth surface ¥, of hypoid gear are obtained, the deviations of the real
surface from the theoretical one and minimized the deviations by corrections of the previous applied
machine-tool settings can be determined in chapter 6 and 7. Both sides of a formate cut gear tooth
are generated simultaneously (by duplex method), and the machine-tool settings are the same for
both sides. Therefore the minimization of deviations for both side surfaces of the tooth must be

obtained by the appropriate change of the same machine-tool settings.

Computational Procedure

The computational procedure is similar to that we discussed in Part I as follows:
Step 1. Create grid points on the to-be measured surface that are chosen as points of contact
between the tooth surface and the probe (in chapter 4).
Step 2. Determine the reference point in coordinate system S, (in chapter 4).

Step 3. Determine the deviations of real tooth surface from equation (6.6).
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Step 4. Minimize the deviations from equation (7.4).

8.3 Results of Coordinate Measurements and Minimization of Deviations

for Hypoid Gears

The numerical example is based on the experiment that has been performed at the Dana
Corporation (Fort Wayne, USA). The deviations of real gear tooth surfaces for both sides of the
gear tooth have been obtained by measurements on the Zeiss machine. The developed approach
has been used for minimization of obtained deviations. The number of measured points is p = 90
of both sides of the tooth (p = 1,...,45 for convex side ; p = 46,...,90 for concave side). Fig. 8.4
and Fig. 8.5 illustrate the deviations Ab, of the real surface from the theoretical one for the driving
side and coast side, respectively. The input data, original machine-tools settings, the corrections of
machine-tool settings and the corrected machine-tool settings are shown in Table A.1 in Appendix.
The experimental data include the coordinates of theoretical surface, the projections of surface unit
normal, and coordinates of the real surface (obtained by measurements) are represented in Table
A.2-A.7 in Appendix. Based on the corrected machine-tool settings, we can create a new surface
which will optimally fit the theoretical surface after the surface is distorted by heat-treatment during

manufacture. The minimized deviations between the new surface and the theoretical surface are

shown in Fig. 8.6.
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Figure 8.4: Deviations of Gear Real Tooth Surface (Driving Side)
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CHAPTER 9

Minimization Of Deviations of Face-Milled Hypoid Pinion

9.1 Generation of Pinion Theoretical Tooth Surface ¥,

The pinion tooth surface is generated as the envelope to the family of tool cone surfaces. The
derivation of the generated pinion tooth surface is based on ideas that have been represented in

reference [3,10].

Coordinate Systems

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, So/(zo’, Yo' Zo')
and Sy(z4, ¥q, Zg) that are rigidly connected to the cutting machine (Fig. 9.1 and Fig. 9.2}, and
(ii) the movable coordinate systems S. and §; that are rigidly connected to the cradle of cutting
machine and the pinion, respectively. The origin, O1, of coordinate system S; coincides with the
point of intersection of the shortest distance of the hypoid gear drive with the pinion axis (i.e.,
crossing point). In the process of generation the cradle with Su performs rotational motion about
the z,-axis with angular velocity w(®) and the pinion with 5; performs rotational motion about
the z,-axis with angular velocity wP) (Fig. 9.2).

The tool (the head-cutter) is mounted on the cradle and performs rotational motion with the

cradle. Coordinate system S is rigidly connected to the cradle. To describe the installment of the

tool with respect to the cradle we use coordinate system Sy (Fig. 9.1 and Fig. 9.3).
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Figure 9.1: Cutting Machine and Cradle Coordinate Systems
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Figure 9.2: Angular Velocities of Cradle and Pinion
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Figure 9.3: Pinion Head-Cutter Surface
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The required orientation of the head-cutter with respect to the cradle [4] is accomplished as

follows:

i) coordinate systems S, and S; are rigidly connected and then they are turned as one rigid
8 g

body about the z,-axis through the swivel angle j (Fig. 9.1);

(ii) then the head-cutter with coordinate system S is tilted about the y,-axis under the angle 7
(Fig. 9.3.b)). The head-cutter is rotated about its axis z; but the angular velocity in this
motion is not related with the generation process and depends only on the desired velocity

of cutting.

It will be shown below that the deviations of real pinion tooth surface can be minimized by
corrections of parameters of installment of the pinion and the head-cutter. These pinion setting
parameters are Ep,- the machine offset, ‘75,% )~ the machine-root angle, A B- the sliding base, AA-
the machine center to back (Fig. 9.2). The head-cutter settings parameters are: Sp- radial setting,

6.— initial value of cradle angle, j— the swivel angle (Fig. 9.1) , and i- the tilt angle (Fig. 9.3.b).

9.2 Equations of Theoretical Tooth Surface

Tool Surface Equations:

The head-cutter surface is a cone and is represented in S; (Fig. 9.3) as

(rr+ spsinar)cosfp
(rF + spsinap)sinfp (9.1)
—sFcosap
1

ri(sF,0F) =

Here: (sp,fF) are the Gaussian surface coordinates, ar is the blade angle and rp is the cutter
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point radius. Vector function (9.1) with ap positive and ar negative represents surfaces of two
head-cutter that are used to cut the pinion concave side and convex side, respectively (Fig. 9.4).

The unit normal to the head-cutter surface is represented in S; by the equations

—cosapcosfp
n, = | —cosarsinfg (9.2)
—sinag

Family of Tool Surfaces

The cradle with the mounted head-cutter and the pinion perform rotational motions about the
axes-z, and z, respectively. The angles of cradle and pinion rotation, ¢ and ¢, are related by the

equation

q= Hc + mcp¢1 (93)

w(©

Here: 4. is the initial value of cradle angle and m, = 5 is the gear cutting ratio.
, w
The family of tool surfaces is generated in S; and this family is represented by the matrix

equation

r1(sF, 07, 61) = [Mig(61)][Mon][ Mo |[Moter ][ Merp)[ MycJre(sF, 6F) (9.4)

Coordinate system S, is an auxiliary fixed coordinate system whose axes are parallel to axes of

Sy (Fig. 9.2). Matrices in equation (9.4) are represented as follows
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cost 0 sini 0
0 1 0 0
Mol = | _gini 0 cosi 0 (9:5)
0 0 0 1
—sinj —cosj 0 Sp
cosj —sinj 0 O
M ! = .
0 0 0 1
cosq sing 0 0
_ | —sing cosqg 0 O
[MO c’] - O 0 1 0 (97)
0 0 01
1 00 0
01 0 E,
Mwl= o o 1 _AB (9:8)
0 0 0 1
cos 7,(,} )0 sin 7,(,}) ~-AA
0 1 0 0
M,] = 9.9
[ q] —sin‘y,(,}) 0 cos7$,}) 0 ( )
0 0 0 1
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0 0
cos¢; singy
—sing; cos ¢y
0 0

[Mig] = (9.10)

QO OO e
—- O O O

Matrix equation (9.4) and tool surface equation (9.1) represent in S; the family of tool surfaces

in the form

r, = ri(sF,0F, 1) (9.11)

Equation of Meshing

The pinion tooth surface generated in S; is the envelope to the family of tool surfaces. To

determine such an envelope we have to derive the equation of meshing [3] by using the equation

n® . v(®) = N®) . v(P) = f(sp,0p,¢1) =0 (9.12)

where n® and N(P) are the unit normal and the normal to the tool surface, and v{P) is the velocity
in relative motion.

Equation (9.12) is invariant with respect to the coordinate system where the vectors of the
scalar product are represented. Representing those vectors in Sy, we can derive the equation of
meshing using the fo]lowiﬁg procedure

Step 1.: Vector n, can be represented as



n, = [Lo'c'}[Lc'bHth]nt (913)

(p)

where [L] is the 3 x 3 submatrix of [M]. The superscript in n’ is dropped for simplification of

designations.

Step 2.: The sliding velocity v{" (see [3]) is represented by (Fig. 9.2):

O'

Vi) = (@ = w®)) x 1] + (Oga x w®) (9.14)
Here:
Yo = [Morer)[ Men][ Myt ]re : (9.15)
O'A=[0 -E, ABY (9.16)
wP = —fcosyt) 0 siny)T 5 (|w®)=1) (9.17)
W =0 0 mgy) (9.18)

Equations (9.12), (9.13) and (9.14) yield the equation of meshing in form

f(sF,0p,¢1) =0 (9.19)
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Pinion Tooth Surface Equations

The pinion tooth surface equations are represented in three-parametric form by the equations

r1(s1,0F,¢1) = [My]re(sF, 0F) f(sF.0F,¢1)=0 (9.20)

However, since equations (9.20) are linear with respect to the Gaussian coordinate sp we can

eliminate sp and represent the pinion tooth surface in two-parametric form as

I'l(gF,QS},dj)GCz (0F,¢1)6E (921)

Here: d; (j = 1,...,8) designate the installment parameters; Em,'y,(,}),AB,AA,SR,@c,j and ¢ ;
C? designates that the vector function has derivatives on arguments fF and ¢; at least of the first
and second order.

The normal to the pinion tooth surface is represented as

nl(9F1¢ladk ,,//- - (922)
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where dj, (k = 1,2,3,4) designate the installment parameters 75,1),96,_1' and 1.

9.3 The Grid

We recall that the grid (Fig. 4.1) is a set of points on the theoretical surface T that are chosen as
points of contact betweeﬁ the tooth surface and the probe.

The development of the grid is based on the following considerations (see chapter 4):

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the
measurements that are located in nine longitudinal sections of the pinion surface with five points
in each section (Fig. 4.3).

(2). Mean point M (Fig. 4.3 and Fig. 9.5) of the theoretical surface X is usually chosen as the
reference point, that is necessary for the initial installment of the probe on the coordinate mea-
surement machine. Obviously, the real tooth surface £* does not pass through M and the surface
normal at M intersects the real surface at A/*. We can consider that an imaginary theoretical
surface ) that is equidistant to ¥ passes through M* and the deviations of the real surface are
determined with respect to X(.).

As shown in Fig. 9.5 the position of the mean point M can be represented in §; by XL and

RL, which are determined by the following equations

hon o .
XL = AcosTy + (bg — —)sinT
32 (9.23)
RL = AsinTy — (bg - —2’9-)cosl"1
Here, A is the mean cone distance; T is the pinion pitch angle; bg is the mean dedendum and h,,

is the mean whole depth; XL and RL are measured along the pinion axis and perpendicular to

this axis, respectively.

63



O1p: Pitch Cone Apex
O.r: Root Cone Apex
O,fr: Face Cone Apex

Figure 9.5: Mean Point



Combining equation (9.23) with surface equation (9.21), we may obtain two nonlinear equations

in terms of ( g"’, 9;?)),

z1(69,6 = XL + 2,
(9.24)
vi(617,68) + (617, 6%)) = RL?
Here, Z, is the pitch cone apex beyond the crossing point O;.
Solving equation system (9.24), we may determine surface coordinates (qb(lo),ﬂg,?)) for the refer-
ence point and also its Cartesian coordinate (zgo), ygn), z§°)).
(3). After the reference point is located, the rest of grid points can be chosen with the consid-
eration that the grid points must be located uniformly on the working part of the tooth surface.

(4). Points on surface Xy that is equidistant to theoretical surface I; can be determined in

S, with the vector equation

p1 = r1(¢1,0F) + ani(¢1,6F) (9.25)

where a is the radius of the ball surface of the probe. Equations (9.24) and (9.25) are represented
in the terms of the Gaussian surface coordinates. Equations (9.25) represent in S; the surface that

might be traced out by the center of the probe if the surface deviations are equal to zero.

9.4 Determination of Reference Point in Coordinate System S,

We recall that coordinate systermn Sy, is rigidly connected to the coordinate measurement machine
and our purpose is to determine the initial installments of the pinion on the machine to provide
the contact of the probe with the pinion mean surface point.

We consider that the pinion .is installed with its back-face flush against the base plane of the

CMM such that the origin of coordinate system Sm, Om, coincides with 0. and thus parameter [
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is equal to zero (Fig. 9.6). Usually, the measurement process is performed in a coordinate system
Sm where the y,,, coordinate of the mean point is zero.
According to drawings of Fig. 9.7, the coordinate transformation from $; to S, with . = 0 is

as follows,

[rm] = [Mma]lr1] = [Mmy][Min][m] (9.26)
0 —siné —cosé 0
0 —coséd siné O
(M) = [Mpy)[Myn] = _1 0 0 0 (9.27)
0 0 0 1
Then we obtain for the reference point
Ty, = —y15iné — zycosé
Ym = —Y1¢086 + z15ind (9.28)

Zm = —21

We consider that in equations (9.28) coordinates :cgo),ygo) and =\” for the reference point are

known and the equation system must be solved for three unknowns. Taking ygf) = 0, we may

represent the solution for the unknowns ;cg,‘;), zg,(f) and 6 as follows

e 0 1
20 = [(4\)? + (=) (9.29)

tan & = @+ (&) 44722

17 (9.30)
2 Y12

2 = —:cgo) (9.31)
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After obtaining the angle of §, the theoretical pinion tooth surface ¥; can be represented in S,
by using equation (9.26). Similarly, the unit normal to the theoretical pinion tooth surface can be

represented in S, as

[nm] = [Lma][ni] (9.32)
where,
0 -—siné -—cosé
[Lmi]=] 0 —cosd siné (9.33)
-1 0 0

The coordinates of probe center ps,'i) = [X,(,f), ,Elo), Z,(,f)]T on surface X(.),, that correspond to

reference point (zgo),ygo),zgo)) on theoretical surface ¥, can be determined in S, with equation
similar to (9.25). For the initial installment the pinion tooth surface must be brought into contact
with the probe while the probe center is at (X,(,f),Y,Slo),Zf,f)). Then, the pinion tooth surface is
fixed in the rest of measurement process, while the probe performs the translational motions.

Based on the above considerations, the procedure of initial installment can be obtained as

follows:

(i) Install the probe with coordinates (X,(,?), Y,&O), Z,(,?)) that are represented as follows:

x9 = 20+ anld)
Y1$10) = yﬁ,?) + angﬁ,)l (9.34)
© 0yl

Here: n(me,)l, n,(,?,)l and nﬁ‘i,l are the components of the theoretical surface normal at the reference

point; a is the radius of the ball surface of the probe.

(i1) Turn the rotary table until the probe contacts the to-be-measured surface. The value of 4 for

this installation is given by equation (9.30).
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9.5 Determination of Deviations of Real Tooth Surface

We consider in coordinate system S,, two surfaces: (i) Tem that might be traced out in Sy, by
the center of the probe if the pinion tooth surface is an ideal surface, and (ii) surface Zze)m that is

traced out in reality by the center of the probe in the case when the pinion tooth surface is a real

surface.

The position vector of the probe center for the theoretical equidistant surface (.., is deter-

mined in S,, with the equation similar to (9.25), i.e.,

pri = mi(616,0Fi, d5) + anmi(b14,0Fi,d)  (i=1,...,45) (9.35)

By measurements of the real surface the position vector of the probe center may be represented

as

Roni = i $14, 0Fi, d;) + Ainmi(1s, 0Fi, di) (i=1,...,45) (9.36)

where ); determines the real location of the probe center on surface Ez‘e) and is considered along
the normal to the theoretical surface.

Subscript “m” indicates that both surfaces are represented in S,,; subscript “i” indicates the
current point of the grid; (¢1; and 0F;) are Gaussian coordinates of the theoretical tooth surface T
that are known for each grid point; d; (j = 1,...,8) represent the linear and angular machine tool
settings designated by En,,AB,AA, SR, 0c,7,1,Ym (Fig. 9.1,9.2,93); de (k= 1,... ,4) represent
the angular machine-tool settings designated by 6.,7,%,Ym-

Equations (9.35) and (9.36) yield
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@ = (Pmi = Tmi) i (9.37)

Ai = (Roi = Trni) B (9.38)

The deviation of the real tooth surface £* from the theoretical surface ¥ is measured along the

normal to the theoretical surface and can be represented as

Ob; =X — a = (Roypi = Prmi) “ Pmi (9.39)

Taking into account equations (9.39) and (9.38) we obtain that

Dby =N —a= (X5 — Xoni) Mami + (Yo = Ymi) - nymi + (Z0i = Zmi) * Mami (9.40)

™mi

where (X*., Y., Z%.) are the coordinates of the center of the probe obtained by measurements;

(Xmi, Ymi, Zmi) are the coordinates of the center of the probe for surface Xy that is equidistant

to the theoretical surface X,,.
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9.6 Mathematical Aspects of Minimization

We consider two steps for computerized minimization of deviations of real tooth surfaces:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations (see chapter 7).

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The pinion tooth surface in accordance to expressions (9.21) and (9.22) is represented in 5,, as

follows

Tm = Imi(61i,0Fi, 4;) 3 Ny = Ny (d1i, OFi, di) (9.41)

For simplicity, the subscript “m” is dropped in the following derivations. The first order varia-

tions of the surface that is caused by the change of machine-tool settings and surface coordinates

is represented as

or or 2. Or;
Ar; = —AD —A —tA\d; 42
r 69}:‘ F+ a¢1 ¢1+j=1 ad] 2 (9 )
The normal deviation of the surface at grid point ¢ can be represented by
A‘I‘m' = Ar,» . (nf) (943)
where n} = 2123

Here: An; is the variation of surface unit normal ; [nf| = 1.

Since we consider the first order deviations, we can represent the deviations Ar,; by
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8
Or;

Argi = Or-my = 5 Ddj) -y -
r r;,-n Z:(adj Adj) -n (9.44)
7=1

. ‘o . . ’ Or Or
While deriving equation (9.44) we have taken into account that 50. M= ErS -n = 0 because
F 1

or or .. . .
vectors —— and — lie in the plane that is tangent to the surface.

08r O

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will obtain an overdetermined system of n linear equations in eight unknowns represented as

8

Or;
D (57-0d;) mi = Db (9.45)
e od; "’

The number of equations, n, ié equal to the number of measurements (the number of grid
points). In this example, 8 machine-tool settings are considered. The mathematical aspect of the
problem is the determination of such eight unknowns of Ad; that will minimize the difference of
the right and left sides of equation system (9.45). One of the widely used methods for the solution
of the overdetermined system of linear equations is the least-square method. In this work we have
used the subroutine DLSQRR of IMSL MATH/LIBRARY [7] for the numerical solution.

9.3 Results of Coordinate Measurements and Minimization of Deviations

for hypoid pinions

The numerical example is based on the experiment that has been performed at the Dana
Corporation (Fort Wayne, USA). The deviations of real pinion tooth surfaces for both sides of the
pinion tooth have been obtained by measurements on the Zeiss machine. The developed approach
has been used for minimization of obtained deviations. Fig. 9.8 and Fig. 9.9 illustrate the deviations
Ab; of the real surface from the fheoretical one, that have been obtained by measurements and

calculations for the concave side and convex side, respectively. Based on the corrected machine-
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tool settings, we can manufacture a new surface that will optimally fit the theoretical surface after
the surface is distorted by heat-treatment and manufacturing process, etc. The results of performed
experiment for minimized deviations between the new surface and the theoretical surface are very
favorable, that is illustrated with drawings in Fig. 9.10 and Fig. 9.11 for concave side and convex
side, respectively.

Experimental Data

The experimental data are represented in tables in Appendix (Table B.1-B.7 for concave s'ide,

Table C.1-C.7 for convex side)
(1) Blank data of hypoid pinion
(2) Initial basic machine-tool settings
(3) Coordinates of theoretical surface X
(4) Projections of surface unit normal
(5) Coordinates of real surface * (obtained by measurements)
(6) Corrected machine-tool settings

(7) Corrections of machine-tool settings
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Appendix A

Table A.1: RESULTS OF MINIMIZATION FOR DANA HYPOID GEAR

INPUT DATA :

Pressure Angle ag 21.25°
Cutter diameter 228.6mm
Point Width of Cutter 2.032mm

BASIC MACHINE-TOOL SETTINGS :

Va(Vertical Setting) 103.25255mm
H,(Horizontal Setting) 27.4666mm
753)(Machine Root Angle) 60.723°
AX,,(Machine Center to Back) 0.009677mm

CORRECTIONS OF MACHINE-TOOL SETTINGS REQUIRED :

Va(Vertical Setting) —0.000361mm

H,(Horizontal Setting) —0.250553mm

+9(Machine Root Angle) 0.260867°

AX(Machine Center To Back) —0.543113mm

CORRECTED MACHINE-TOOL SETTINGS:

Vo(Vertical Setting) 103.2522mm

H,(Horizontal Setting) 27.21603mm

49 (Machine Root Angle) 60.98391°

A Xm(Machine Center to Back) —0.53343mm
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Table A.2 Coordinates of Theoretical Surface (Convex Side)
(represented in Sm (Fig. 3.2))
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XT (inch)

3.128970
3.149190
3.169320
3.189390
3.209370

3.247090
3.267980
3.288790
3.309520
3.330190

3.364070
3.385620
3.407080
3.428470
3.449790

3.479810
3.501990
3.524090
3.546120
3.568090

3.594170
3.616970
3.639700
3.662360
3.684950

3.707040
3.730450
3.753790
3.777060
3.800270

3.818290
3.842300
3.866230
3.890110
3.913920

3.927780

YT (inch)

0.2903200
0.2766600
0.2630300
0.2494500
0.2358900

0.2322700
0.2179600
0.2036900
0.1894600
0.1752700

0.1699200
0.1549900
0.1401000
0.1252500
0.1104400

0.1032600

0.8771000E-01
0.7221000E-01
0.5676000E-01
0.4134000E-01

0.3223000E-01
0.1609000E-01
0.0000000E+00
-0.1605000E-01
~0.3206000E-01

-0.4318000E-01
~0.5990000E-01
-0.7658000E-01
-0.9322000E-01
-0.1098100

-0.1230000
-0.1403100
~-0.1575700
-0.1747800
-0.1919500

-0.2072700
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2T (inch)

-1.660430
-1.612140
-1.563840
-1.515550
-1.467260

-1,715660
-1.664110
-1.612550
-1.561000
-1.509450

-1.770890
-1.716080
-1.661260
-1.606450
-1.551640

-1.826120
-1.768050
-1.709970
-1.651900
-1.593830

-1.881350
-1.820020
-1.758680
-1.697350
-1.636020

-1.936580
-1.871980
-1.807390
-1.742800
-1.678210

-1.991800
-1.923950
-1.856100
-1.788260
-1.720410

-2.047030
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3.952370
3.976900
4,001360
4,025760

.035380
.060540
.085640
.110680
.135660
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-0.2251500
-0.2429900
-0.2607900
-0.2785400

-0.2960100
-0.3144800
-0.3329100
-0.3512%00
-0.3696300

81

-1.975920
-1.904810
-1.833710
-1.762600

-2.102260
-2.027890
-1.953520
-1.879160
-1.804790
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Table A.3 Coordinates of Theoretical Surface (Concave Side)
(represented in Sm (Fig. 3.2))
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XT (inch)

3.133200
3.150790
3.168110
3.185160
3.201940

3.249620
3.268670
3.287400
3.305810
3.323910

3.364720
3.385350
3.405610
3.425490
3.445010

3.478340

3.500690
3.522590
3.544070
3.565120

3.590310
3.614510
3.638210
3.661400
3.684110

3.700440
3.726650
3.752280
3.777330
3.801830

3.808520
3.836920
3.864640
3.891700
3.918130

3.914360

YT (inch)

[e= I = Y e I B e (= R e B e I

QOO OQ

0
0
0
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. 1974800
.2285300
.2595400
.2904800
.3213800

. 1343800
.1681800
.2019200
.2356100
.2692400

.6628000E-01
. 1029300
.1395300
. 1760700
.2125400

.6930000E-02
.3269000E-01
.7226000E-01
.1117600
.1511900

.8535000E-01
.4265000E-01
.0000000E+00
.4258000E-01
.8508000E-01

.1691000
.1232100
. 7736000E-0!
.3159000E-01}
.1411000E-01

.2583200
.2091100
.1599500
.1108600
.6185000E-01

.3531200
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-1
-1
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(inch)

.666550
.616730
.566910
.517080
. 467260

.721780
.668700
.615620
.562530
.509450

.777010
.720670
.664330
.607980
.551640

.832240
. 772640
. 713040
.653440
.593830

.887470
.B24610
.761750
.698890
.636020

.942700
.876580
.810460
. 744340
.678210

.997930
.928550
.859170
. 789790
.720410

.053160



17
17
17
17

18
18
18
18
18

N wN

wm LW N =

F - VL N ]

PR P S
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.975100
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.032850

.017700
.051000
.083450
.115050
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-0.3004800
-0.2478%900
-0.1953600
-0.1429100

-0.4536600
-0.3974800
-0.3413300
-0.2852300
-0.2292100

-1.980520
-1.907880
-1.835240
-1.762600

-2.108390
-2.032490
-1.956590
-1.880690
-1.804790
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Table A.4 Projections of Surface Unit Normal (Convex Side)

(represented in Sm (Fig. 3.2))
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XN (inch) YN (inech) ZN (inch)
1 1 0. 4496000 0.8910000 0.6380000E-01
1 2 0.4500000 0.8908000 0.6360000E-01
1 3 0.4504000 0.8906000 0.6350000E-01
1 4 0.4508000 0.8904000 0.6330000E-01
I 5 0.4512000 0.8902000 0.6310000E-01
2 1 0.4743000 0.8789000 0.5180000E-01
2 2 0.4747000 0.8786000 0.5150000E-01
2 3 0.4751000 0.8784000 0.5130000E-01
2 4 0.4755000 0.8782000 0.5110000E-01
2 5 0.4759000 0.8780000 0.5090000E-01
3 1 0.4988000 0.8658000 0.3990000E-01
3 2 0.4992000 0.8656000 0.3960000E-01
3 3 0.4997000 0.8653000 0.3940000E-01
3 4 0.5001000 0.8651000 0.3920000£E-01
3 5 0.5006000 0.8648000 0.3900000E-01
4 1 0.5231000 0.8518000 0.2820000€-01
4 2 0.5236000 0.8515000 0.2790000E-01
4 3 0.5241000 0.8512000 0.2770000E-01
4 4 0.5246000 0.8509000 0.2750000E-01
4 35 0.5251000 0.8506000 0.2720000E-01
5 1 0.5472000 0.8368000 0.1670000E-01
5 2 0.5478000 0.8365000 0.1650000E-01
5 3 0.5483000 0.8361000 0.1620000E-01
5 4 0.5489000 0.8358000 0.1600000E-01
5 5 0.5494000 0.8354000 0.1570000E-01
6 1 0.5711000 0.8208000 0.5500000E-02
6 2 0.5717000 0.8204000 0.5200000E-02
6 3 0.5723000 0.8200000 0.5000000E-02
6 4 0.5729000 0.8196000 0.4700000E-02
6 5 0.5735000 0.8192000 0.4400000E-02
7 1 0.5947000 0.803%9000 -0.5400000E-02
7 2 0.5954000 0.8034000 ~0.5700000E-02
7 3 0.5961000 0.8029000 -0.6000000E-02
7 4 0.5967000 0.8024000 -0.6300000E-02
7 5 0.5974000 0.8019000 -0.6700000E-02
8 1 0.6180000 0.7860000 -0.1610000E-01
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.6188000
.6195000
.6203000
.6210000

.6410000
.6419000
.6427000
.6435000
.6444000
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. 7854000
. 7848000
. 7842000
.7836000

. 7671000
. 7664000
. 7656000
. 7649000
. 7642000

-0.1640000E-01
-0.1680000E-01
-0.1710000E-01
-0.1740000E-01

-0.2640000E-01
~0.2680000E-01
-0.2720000E-01
-0.2760000E-01
-0.2790000E-01
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Table A.5 Projections of Surface Unit Normal (Concave Side)

(represented in Sm (Fig. 3.2))
**********************************************************************

XN {(inch) YN (inch) ZN (inch)
10 1 -0.1557000 -0.8123000 0.5620000
10 2 -0.1524000 -0.8141000 0.5604000
10 3 -0.1492000 -0.8159000 0.5587000
10 4 -0.1459000 -0.8176000 0.5570000
10 5 -0.1426000 -0.8193000 0.5553000
11 1 -0.1789000 -0.7991000 0.5740000
11 2 -0.1753000 -0.8012000 0.5721000
11 3 ~0.1718000 -0.8033000 0.5703000
11 4 -0.1682000 -0.8053000 0.5685000
11 5 -0.1646000 -0.8073000 0.5667000
12 1 -0.2019000 -0.7850000 0.5857000
12 2 -0.1981000 -0.7874000 0.5838000
12 3 -0.1943000 -0.7898000 0.5818000
12 4 ~-0.1904000 -0.7922000 0.5799000
12 5 -0.1865000 -0.7945000 0.5779000
13 1 -0.2248000 -0.7699000 0.5973000
13 2 -0.2207000 -0.7727000 0.5952000
13 3 -0.2166000 -0.7754000 0.5931000
13 4 -0.2124000 -0.7782000 0.5911000
13 5 -0.2083000 -0.7809000 0.5889000
14 1 -0.2475000 -0.7538000 0.6087000
14 2 -0.2431000 -0.7570000 0.6065000
14 3 -0.2387000 -0.7602000 0.6043000
14 4 ~-0.2343000 -0.7633000 0.6021000
14 5 -0.2298000 -0.7664000 0.5999000
15 1 -0.2699000 -0.7367000 0.6200000
15 2 -0.2653000 -0.7404000 0.6176000
15 3 -0.2606000 -0.7440000 0.6153000
15 4 -0.2559000 -0.7475000 0.6130000
15 5 -0.2512000 -0.7510000 0.6106000
16 1 -0.2922000 -0.7187000 0.6310000
16 2 -0.2872000 -0.7228000 0.6285000
16 3 -0.2823000 -0.7268000 0.6261000
16 4 -0.2773000 -0.7309000 0.6236000
16 5 -0.2724000 -0,7348000 0.6216000
17 1 -0.3141000 -0.6996000 0.6418000
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.3090000
.3038000
.2986000
.2933000

.3359000
.3304000
.3250000
.3195000
.3140000

~

-0.7042000
-0.7088000
-0.7133000
-0.7177000

-0.6794000
-0.6846000
-0.6897000
-0.6947000
-0.6997000
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.6393000
.6367000
.6341000
.6315000

.6524000
.6497000
.6471000
.6444000
.6417000
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Table A.6 Coordinates of Real Tooth Surface (Convex Side)
(represented in Sm (Fig. 3.2))

***************************k******************************************
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XM (inch)

3.129490
3.149700
3.169750
3.189690
3.209520

3.247520
3.268290
3.289010
3.309610
3.330130

3.364450
3.385850
3.407190
3.428470
3.449590

3.480060
3.502140
3.524200
3.546040
3.567790

3.594330
3.617010
3.639690
3.662250
3.684770

3.707180
3.730500
3.753810
3.777040
3.800210

3.818310
3.842330
3.866260
3.890240
3.914230

3.927840
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.2913500
.2776800
.2638600
.2500400
.2361800

.2330600
.2185300
.2041000
. 1896300
.1751800

. 1705700
.1553900
. 1402900
.1252400
.1101000

. 1036700

.8796000E-01
. 7239000E-01
.5661000E-01
.4086000E-01

.3248000E-01
.1615000E-01
. 2000000E-04
.1622000E-01
.3233000E-01

.4297000E-01
.5983000E-01
.7655000E-01
.9324000€-01
.1098800

. 1229700
. 1402600
.1575300
. 1746000
.1915300

.2071900

ZK (inch)

.660350
.612060
.563780
.515510
. 467240

.715610
.664070
.612530
.560990
.509460

.770860
.716060
.661260
.606450
.551660

.826100
. 768040
.709970
.651910
.593850

.881340
.820010
. 758680
.697360
.636030

.936570
.871980
.807390
. 742800
.678210

.991800
.923950
.856100
.788260
.720410

.047030
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.952510
.977000
.001410
.025690

.035370
.060560
.085710
.110690
.135620

89

-0
-0
-0
-0

-0
-0
-0
-0
-0

.2249800
.2428600
.2607300
.2786400

.2960200
.3144600
.3328300
.3512800
.3696800

.975930
.904820
.833710
.762590

.102260
.027890
.953530
.879160
.804780
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Table A.7 Coordinates of Real Tooth Surface (Concave Side)

(represented in Sm (Fig. 3.2))
ot Je e e 3 F e T o o v o Je v v e Fe e s ofe o o e e F T v e e e P Fe e S o o 3 e gl e e e dle e o e ofe de T e e de e e e S e S e e e e ke e ek e

XM (inch) YM (inch) ZM (inch)
10 1 3.132990 0.1964100 -1.665810
10 2 3.150610 0.2275400 -1.616050
10 3 3.167920 0.2585200 -1.566210
10 4 3.184990 0.2895700 -1.516460
10 5 3.201810 0.3206400 -1.466760
11 1 3.249400 0.1334300 -1.721100
11 2 3.268500 0.1673900 -1.668130
i1 3 3.287250 0.2012300 -1.615120
11 4 3.305660 0.2349100 -1.562040
11 5 3.323800 0.2687000 -1.509070
12 1 3.364540 0.6559000E-01 -1.776500
12 2 3.385210 0.1023500 -1.720240
12 3 3.405490 0.1390500 -1.663970
12 4 3.425410 0.1757200 -1.607730
12 5 3.444970 0.2123700 -1.551520
13 1 3.478190 -0.7460000E-02 -1.831830
13 2 3.500600 0.3238000E-01 -1.772390
13 3 3.522530 0.7202000E-01 -1.712860
13 4 3.544050 0.1116800 -1.653370
13 5 3.565170 0.1513600 -1.593960
14 1 3.590180 -0.8574000E-01 -1.887160
14 2 3.614450 -0.4283000E-01 -1.824460
14 3 3.638200 -0.1000000E-04 -1.761740
14 4 3.661460 0.4279000E-01 -1.699050
14 5 3.684250 0.8554000E-01 -1.636390
15 1 3.700360 -0.1693200 -1.942510
15 2 3.726640 -0.1232300 -1.876550
15 3 3.752350 -0.7716000E-01 -1.810620
15 4 3.777450 -0.3124000E-01 -1.744620
15 5 3.802060 0.1480000E-01 -1.678780
16 1 3.808470 -0.2584400 -1.997820
16 2 3.836960 -0.2090000 -1.928640
16 3 3.864780 -0.1596000 -1.859460
16 4 3.891920 -0.1102900 -1.790270
16 5 3.918530 -0.6077000E-01 ~1.721310
17 1 3.914340 -0.3531600 -2.053120
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3.945230
3.975310
4,004620
4,033320

4.017820
4.051260
4,083780
4.115450
4,146320
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.3002000
.2474000
. 1946900
.1417500

.4534000
.3969500
.3406200
.2843600
.2280800

~1.980770
-1.908320
-1.835830
-1.763610

-2.108630
-2.032980
-1.957250
-1.881500
-1.805820
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* TABLE B.l. BLANK DATA OF HYPOID PINION *
ok S e ak e e ke e e de e e e e e e Sk ek e e e de e sk de e e e ke e e ek e e ok

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians
PITCH DIAMETER: 88.22 mm
OUTSIDE DIAMETER: 103.96 mm
PITCH ANGLE: 0.32055 radians
FACE ANGLE: 0.41480 radians
ROOT ANGLE: 0.30136 radians
MEAN SPIRAL ANGLE: 0.84677 radians
FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.
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*TABLE B.2 BASIC PINION MACHINE-TOOL SETTINGS (CONCAVE SIDE)*
e ¢ e Yo e Je e Je e ¢ Je I e ve ofe e o e 2 e e e e T e e o Yo e I Yo 7 e v o oo 3 Je e e o o I 3 e e e e e ofe S e dle sl e de e e e et

BASIC TILT ANGLE : CI = 0.4104054 radians
SWIVEL ANGLE : CJ = 6.000656 radians
MACHINE ROOT ANGLE : RGMAIM = 6.229372 radians
CRADLE ANGLE : ) QC = 1.566173 radians
RADIAL SETTING : SR = 109.6660 mm
SLIDING BASE : DELTB = 14.82000 mm
MACHINE CENTER TO BACK:DELTA = -3.100000 mm
BLANK OFFSET : EM = -34.58000 mm
CUTTING RATIO : FM1 = 0.3230215

CUTTER POINT RADIUS : RCF
CUTTER BLADE ANGLE : PHIVIC

113.0300 mm
0.244346]1 radians
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Table B.3 Coordinates of Theoretical Surface (Concave Side)

(represented in Sm (Fig. 3.2))
Je Je ve v 3 o Fe o e v T 3% v v Fe 3¢ T e I e T % v e Je v e e gl v e e e o Sk e e Fe e ok e o Fe e e o Feok e ok e dle e de sk e e dede de e e de e e

XT (inch) YT (inch) ZT (inch)
1 1 1.182150 0.5780900 -2.843880
1 2 1.209360 0.6126500 -2.830410
1 3 1.234970 0.6497300 -2.816930
1 4 1.258970 0.6891100 -2.803460
1 5 1.281330 0.7306100 -2.789990
2 1 1.288970 0.4359300 -2.987910
2 2 1.323870 0.4692300 -2.973160
2 3 1.357280 0.5057100 -2.958410
2 4 1.3891990 0.5450800 -2.943660
2 5 1.419540 0.5871400 -2.928910
3 1 1.376770 0.2825600 -3.131950
3 2 1.419280 0.3132400 -3.115920
3 3 1.460570 0.3477800 -3.099890
3 4 1.500570 0.3858300 -3.083860
3 5 1.539180 0.4271500 -3.067830
4 1 1.445230 0.1203900 -3.275980
4 2 1.495080 0.1471400 -3.258680
4 3 1.544110 0.1784300 -3.241370
4 4 1.592160 0.2138500 -3.224060
4 5 1.639110 0.2531100 -3.206760
5 1 1.494220 -0.4833000E-01 -3.420020
5 2 1.550950 -0.2678000E-01 -3.401440
5 3 1.607360 0.0000000E+00 -3.382850
5 4 1.663240 0.3151000E-01 -3.364260
5 5 1.718400 0.6741000E-01 -3.345680
6 1 1.523750 -0.2215400 -3.564050
6 2 1.586690 -0.2063300 -3.544190
6 3 1.649960 -0.1852600 -3.524330
6 4 1.713260 -0.1589100 -3.504460
[ 5 1.776320 -0.1276300 -3.484600
7 1 1.533930 -0.3972700 -3.708090
7 2 1.602270 -0.3894600 -3.686950
7 3 1.671710 -0.3752200 -3.665810
7 4 1.741850 -0.3551800 -3.644660
7 5 1.812330 -0.3297300 -3.623520
8 1 1.524960 -0.5736900 ~-3.852120
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.597730
.672520
. 748770
.826030

.497150
.573260
.652420
.733910
.817170
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.5742300
.5678200
.5551500
.5366800

. 7490500
.7587500
.7610400
. 7567400
. 7462900

.829700
.807290
. 784870
. 762440

.996160
.972460
.948760
.925070
.901370
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Table B.4 Projections of Surface Unit Normal (Concave Side)

(represented in Sm (Fig. 3.2))
*************k********************************************************

XN (inch) YN (inch) ZIN (inch)
1 1 0.2974000 -0.5635000 0.7707000
1 2 0.3205000 -0.5308000 0.7846000
1 3 0.3390000 -0.5003000 0.7967000
1 4 0.3540000 -0.4716000 0.8076000
1 5 0.3662000 -0. 4445000 0.8175000
2 1 0.2173000 -0.6032000 0.7674000
2 2 0.2467000 -0.5716000 0.7826000
2 3 0.2704000 -0.5419000 0.7958000
2 4 0.2899000 -0.5138000 0.8074000
2 5 0.3061000 -0.4871000 0.8180000
3 1 0.1340000 -0.6303000 0.7647000
3 2 0.1696000 -0.6008000 0.7812000
3 3 0.1984000 -0.5728000 0.7953000
3 4 0.2223000 -0.5460000 0.8077000
3 5 0.2424000 -0.5203000 0.8189000
4 1 0.4920000E-01 -0.6450000 0.7626000
4 2 0.9090000E-01 -0.6187000 0.7804000
4 3 0.1246000 -0.5932000 0.7954000
4 4 0.1527000 -0.5684000 0.8085000
5§ 5 0.1764000 -0.5443000 0.8202000
5 1 -0.3530000E-01 -0.6479000 0.7609000
5 2 0.1210000E-01 -0.6257000 0.7800000
5 3 0.5030000E-01 -0.6033000 0.7959000
5 4 0.8220000E-01 -0.5811000 0.8096000
5 5 0.1093000 -0.5592000 0.8218000
6 1 -0.1182000 -0.6395000 0.7597000
6 2 -0.6550000E-01 -0.6222000 0.7801000
6 3 -0.2320000E-01 -0.6038000 0.7968000
6 4 0.1210000E-01 -0.5847000 0.8112000
6 5 0.4220000E-01 -0.5653000 0.8238000
7 1 -0.1983000 -0.6203000 0.7589000
7 2 -0.1408000 -0.6090000 0.7806000
7 3 ~0.9480000E-01 ~0.5949000 0.7982000
7 4 -0.5650000E-01 ~0,5794000 0.8131000
7 5 -0.2380000E-01 -0.5630000 0.8261000
8 1 -0.2742000 -0.5913000 0.7584000
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.3452000
. 2800000
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. 1859000
. 1492000

97

.5865000
.5774000
.5659000
.5528000

.5531000
.5557000
.5520000
.5447000
.5352000
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.7815000
. 7999000
.8153000
.8287000

. 7582000
.7828000
.8019000
.8178000
.8315000
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Table B.5 Coordinates of Real Tooth Surface (Concave Side)
{(represented in Sm (Fig. 3.2))

o 3 3% e ofe e S o e 3l e e e g ol de e e ool T e de S e de e de e de ke e e de Sk e e dle e e sl b de ek e e e e R e ek ek e ke e e e ek e
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XM (inch)

1.182490
1.209710
1.235370
1.259370
1.281660

.289150
.324080
.357500
.389440
.419790

e e

.376840
.419380
. 460680
.500700
.539330

P et b ek

.445240
.495120
.544150
.592220
.639160

b h Jmk pd

.494220
.550940
.607360
.663250
. 718400

1.523800
1.586700
1.649970
1.713260
1.776310

.534060
.602350
.671760
.741880
.812340

el el

1.525250

YM (inch)

0.5774400
0.6120800
0.6491400
0.6885800
0.7302100

0.4354400
0.4687300
0.5052700
0.5446400
0.5867400

0.2822200
0.3129000
0.3474600
0.3855100
0.4268400

0.1202400
0.1468700
0.1782300
0.2136500
0.2529300

-0.4821000E-01
-0.2677000E-01
-0.3000000E~-04
0.3146000E-01
0.6741000E-01

-0.2212400
-0.2061600
-0.1850500
-0.1587900
-0.1274600

-0.3968400
-0.3891100
-0.3749500
-0.3548900
-0.3294500

-0.5730800
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-3
-3
-3
-3
-3

(inch)

.843000
.829570
.816000
.802550
. 789240

.987290
.972470
.957760
.942970
.928240

.131530
.115470
.099450
.083390
.067350

.275810
.258340
.241110
.223780
. 206490

.420160
.401440
.382810
.364200
.345680

.564410
.544400
.524610
.504630
. 484840

.708610
.687400
.666170
.645060
.623940

.852910
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.597910
.672650
. 748860
.826090

. 497600
.573590
.652680
. 734090
.817310

-0.5737500
-0.5673700
-0.5547300
-0.5362900

~-0.7483300
-0.7580900
-0.7604100
-0.7562000
-0.7457900
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.830330
.807900
. 785470
.763030

.997150
.973390
.949680
.925870
.902150



************************************************************

% TABLE B.6 CORRECTED MACHINE-TOOL SETTINGS (CONCAVE SIDE) *

*k**********************************************************

BASIC TILT ANGLE : CI = 0.4360375 radians
SWIVEL ANGLE : CJ = 6.042021 radians
MACHINE ROOT ANGLE : RGMAIM = 6.202894 radians
CRADLE ANGLE : QC = 1.573228 radians
RADIAL SETTING : SR = 110.4463 mm
SLIDING BASE : DELTB = 14.82000 mm
MACHINE CENTER TO BACK:DELTA = -3.970493 mm
BLANK OFFSET : EM = -35.45049 mm
CUTTING RATIO : FM1 = 0.3230215

CUTTER POINT RADIUS : RCF = 113.0300 mm
CUTTER BLADE ANGLE : PHIVIC 0.2443461 radians

*****************************************k***********************

% TABLE B.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONCAVE SIDE) *

*****************************************************************

BLANK OFFSET: EM =-0.8704924 mm
MACHINE CENTER TO BACK:DELTA =-0.5540259 mm
SLIDING BASE : DELTB = 0.0000000E+00 mm
MACHINE ROOT ANGLE : RGMAIM =-0.2647799E-01 radians
RADIAL SETTING : SR = 0.7803197 mm
CRADLE ANGLE : QC = 0.7054806E-02 radians
SWIVEL ANGLE : CJ = 0.4136530E-01 radians

TILT ANGLE : CI = 0.2563208E-01 radians
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* TABLE C.1. BLANK DATA OF HYPOID PINION *

Yededededededededededededodede e e e de e e e e e ek e e e e e e e e e e ek

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians
PITCH DIAMETER: 88.22 mm
OUTSIDE DIAMETER: 103.96 mm
PITCH ANGLE: 0.32055 radians
FACE ANGLE: 0.41480 radians
ROOT ANGLE: 0.30136 radians
MEAN SPIRAL ANGLE: 0.84677 radians
FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.

Yoo vl e de dede dode et e de e de e de o e dedt de e ve e de v e dede e e e e Se e e e de e de e ke de e de e e e e de e de ek ek e e

*TABLE C.2 BASIC PINION MACHINE-TOOL SETTINGS (CONVEX SIDE)*

Fe v de de e de e e v e e S dede Fede s dede e e de e e e e e de e e e dede e ek e e e de e de e e e e e e e e e e e e

BASIC TILT ANGLE : CI = 0.3761899 radians
SWIVEL ANGLE : Cl = 5.766247 radians
MACHINE ROOT ANGLE : RGMAIM = 6.233736 radians
CRADLE ANGLE : QC = 1.436986 radians
RADIAL SETTING : SR = 114.0236 mm
SLIDING BASE : DELTB = 23.87000 mm
MACHINE CENTER TO BACK:DELTA = 3,280000 mm
BLANK OFFSET : EM = -40.12000 mm
CUTTING RATIO : FM1 = 0.3020446

CUTTER POINT RADIUS : RCF 114,9350 mm
CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians
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Table C.3 Coordinates of Theoretical Surface (Convex Side)

(represented in Sm (Fig. 3.2))
e Y e e Yo e Te ot Yo ok o o Yo e M o Te Fe oo e Fe Fedk Fe e v e e e ek T Fe e ok e ok dodt de e dle e de e e de e e de e dede e e e e e e e de e e e e ot

XT (inch) YT (inch) 2T (inch)
1 1 1.135060 0.6650000 -2.844010
1 2 1.185910 0.6562700 -2.830500
1 3 1.238650 0.6422500 -2.817000
1 4 1.292890 0.6229000 -2.803490
1 5 1.348280 0.5981000 -2.789990
2 1 1.247700 0.5418800 -2.988040
2 2 1.302600 0.5245800 -2.973260
2 3 1.358830 0.5009600 -2.958480
2 4 1.415930 0.4709600 -2.943690
2 5 1.473440 0.4345000 -2.928910
3 1 1.345050 0.4062200 -3.132080
3 2 1.402710 0.3794500 -3.116020
3 3 1.460940 0.3453500 -3.099950
3 4 1.519180 0.3039000 -3.083890
3 5 1.576860 0.2550400 -3.067830
4 1 1.426350 0.2598200 -3.276110
4 2 1.485380 0.2228700 -3.258770
4 3 1.543990 0.1776600 -3.241430
4 4 1.601550 0.1242000 -3.224090
4 5 1.657360 0.6251000E-01 -3.206760
5 1 1.490940 0.1043900 -3.420150
5 2 1.549840 0.5674000E-01 -3.401530
5 3 1.607160 0.0000000E+00 -3.382910
5 4 1.662140 -0.6574000E-01 ~-3.364290
5 5 1.713980 -0.1403800 -3.345680
6 1 1.538250 -0.5840000E-01 -3.564180
6 2 1.595460 -0.1170800 -3.544290
6 3 1.649730 -0.1855400 -3.524390
6 4 1.700200 -0.2635800 -3.504500
6 5 1.745960 -0.3510200 -3.484600
7 1 1.567790 -0.2269300 -3.708220
7 2 1.621680 -0,2967900 -3.687040
7 3 1.671120 -0.3769300 -3.665870
7 4 1.715140 -0.4670500 -3.644700
7 5 1.752700 -0.5668300 ~-3.623520
8 1 1.579130 -0.3995700 -3.852250
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-0.6738600
-0.7852500

-0.5747300
-0.6666000
-0.7691300
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-1.003710
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-3
-3
-3

-3
-3
-3
-3
-3

.829800
.807350
. 784900
.762440

.996290
.972560
.948830
.925100
.901380



e e v e e % o I e v v P e e 3 e e oo ok e o de e e vl e o ol e g e e e o S o e ofe e ofe e e e e e o e e e de e e sl e o e e e e de Sk e dede Fede e de e

Table C.4 Projections of Surface Unit Normal (Convex Side)

(represented in Sm (Fig. 3.2))
e ¢ Jo Je e e % oo 3 e e e oo Je oo e o P e e e dedle e do s ok Fe e de de e et e d e e e doo dede e de e e ekt e ke e de e e e ke dede e e Se e ke ke

XN (inch) YN (inch) ZN (inch)
1 1 0.2346000 0.8427000 -0.4846000
1 2 0.3030000 0.8339000 -0.4614000
1 3 0.3662000 0.8201000 -0.4397000
1 4 0.4255000 0.8021000 -0.4190000
1 5 0.4816000 0.7803000 -0.3990000
2 1 0.3421000 0.8087000 -0.4785000
2 2 0.4113000 0.7899000 -0.4549000
2 3 0.4747000 0.7664000 -0.4327000
2 4 0.5336000 0.7389000 -0.4114000
2 5 0.5887000 0,7076000 -0.3908000
3 1 0.4408000 0.7622000 -0.4741000
3 2 0.5093000 0.7335000 -0.4502000
3 3 0.5714000 0.7005000 -0.4276000
3 4 0.6283000 0.6636000 -0.4059000
3 5 0.6809000 0.6232000 -0.3848000
4 1 0.5301000 0.7050000 -0.4712000
4 2 0.5964000 0.6666000 -0.4471000
4 3 0.6558000 0.6245000 -0.4243000
4 4 0.7094000 0.5788000 -0.4022000
4 5 0.7580000 0.5297000 -0.3807000
5 1 0.6097000 0.6386000 -0.4695000
5 2 0.6725000 0.5911000 -0.4454000
5 3 0.7278000 0.5403000 -0.4224000
5 4 0.7768000 0.4864000 -0.4001000
5 5 0.8200000 0.4294000 -0.3783000
6 1 0.6792000 0.5646000 -0.4689000
6 2 0.7372000 0.5086000 -0.4448000
6 3 0.7873000 0.4498000 -0.4217000
6 4 0.8305000 0.3884000 -0.3993000
6 5 0.8674000 0.3244000 -0.3774000
7 1 0.7386000 0.4842000 -0.4692000
7 2 0.7906000 0.4203000 -0.4453000
7 3 0.8343000 0.3543000 -0.4223000
7 4 0.8707000 0.2863000 -0.3999000
7 5 0.9003000 0.2163000 -0.3779000
8 1 0.7874000 0.3985000 -0.4703000
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0.3276000
0.2554000
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0.2317000
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Table C.5 Coordinates of Real Tooth Surface (Convex Side)
(represented in Sm (Fig. 3.2))

Fele ke de etk dedede e e S de e ke ke Sk ek ded kS RSN h TRtk SRSk dehThhdkhk

XM (inch) YM (inch) ZM (inch)
1 1 1.134810 0.6641100 -2.843490
1 2 1.185630 0.6554900 -2.830070
1 3 1.238350 0.6416000 -2.816650
1 4 1.292550 0.6222500 -2.803160
1 5 1.347930 0.5975300 -2.789700
2 1 1.247430 0.5412600 -2.987670
2 2 1.302300 0.5240200 -2.972940
2 3 1.358550 0.5005100 -2.958230
2 4 1.415620 0.4705300 -2.943460
2 5 1.473150 0.4341400 -2.928720
3 1 1.344770 0.4057300 -3.131770
3 2 1.402440 0.3790600 -3.115780
3 3 1.460690 0.3450500 -3.099770
3 4 1.518920 0.3036200 -3.083730
3 5 1.576620 0.2548100 -3.067690
4 1 1.426120 0.2595100 -3.275900
4 2 1.485140 0.2226000 -3.258590
4 3 1.543780 0.1774500 -3.241290
4 4 1.601460 0.1241300 -3.224050
4 5 1.657190 0.6240000E-01 -3.206670
5 1 1.490820 0.1042600 -3.420050
5 2 1.549730 0.5665000E-01 -3.401460
5 3 1.607140 -0.1000000E-04 -3.382900
5 4 1.662070 -0.6578000E-01 -3.364260
5 5 1.713940 -0.1404000 -3.345660
6 1 1.538180 ~0.5846000E-01 -3.564130
6 2 1.595550 -0.1170200 -3.544340
6 3 1.649770 -0.1855100 -3.524410
6 4 1.700370 ~-0.2635000 -3.504580
6 5 1.746120 -0.3509600 -3.484670
7 1 1.567970 -0.2268100 -3.708330
7 2 1.621870 -0.2966800 ~3.687150
7 3 1.671390 -0.3768100 -3.666010
7 4 1.715480 -0.4669400 -3.644850
7 5 1.753020 -0.5667500 -3.623650
8 1 1.579410 -0.3994300 -3.852420
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-3.830030
-3.807550
-3.785100
-3.762670

~-3.996570
~-3.972860
=-3.949120
-3.925370
-3.901660



************************************************************

% TABLE C.6 CORRECTED MACHINE-TOOL SETTINGS (CONVEX SIDE) *

**k*********************************************************

BASIC TILT ANGLE : CI = 0.3712125 radians
SWIVEL ANGLE : CJ] = 5.768892 radians
MACHINE ROOT ANGLE : RGMAIM = 6.236861 radians
CRADLE ANGLE : QC = 1.436096 radians
RADIAL SETTING : SR = 113.6455 mm
SLIDING BASE : DELTB = 23.87000 mm
MACHINE CENTER TO BACK:DELTA = 3.767510 mm
BLANK OFFSET : EM = -39.63248 mm
CUTTING RATIO : FM1 = 0.3020446

1l

CUTTER POINT RADIUS : RCF 114.9350 mm
CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians

*****************************************************************

% TABLE C.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONVEX SIDE) *

*****************************************************************

BLANK OFFSET: EM = 0.4875103 mm
MACHINE CENTER TO BACK:DELTA = 0.5769074E-01 mm
SLIDING BASE : DELTB = 0.0000000E+00 mm
MACHINE ROOT ANGLE : RGMAIM = 0.3125239E-02 radians
RADIAL SETTING : SR =-0.3780939 mm
CRADLE ANGLE : QC =-0.8908187E-03 radians
SWIVEL ANGLE : CJ = 0.2644968E-02 radians
TILT ANGLE : CI =-0.4977365E-02 radians
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