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1.0 INTRODUCTION

The purpose of this, report is to propose test procedures for the NASA DTF (Development
Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique
problems associated with the DTF-1 mission are discussed, standard robot performance
tests and terminology are reviewed and a very detailed description of flight-like testing and
analysis is presented

The major technical problem associated with DTF-1 is that only one position sensor can be
used, which will be fixed at one location, with a working volume which is probably
smaller than some of the robot errors to be measured. Radiation heating of the arm and the
sensor could also cause distortions that would interfere with the test.

Two robot performance testing committees have established standard testing procedures
relevant to the DTF-1. Due to the technical problems associated with DTF-1 these
procedures cannot be applied directly. These standard tests call for the use of several test
positions at specific locations. Only one position, that of the position sensor, can be used
by DTF-1. Off-line programming accuracy might be impossible to measure and in that case
it will have to be replaced by forward kinematics accuracy.

The following flight-like tests were simulated: 	 w
1. Teach Mode Control Tests. The accuracy and repeatability of the robot was measured
when it moved to a commanded position under teach mode control.
21. Coordinates Transformation Test. The objective of this test was to determine whether
the transformation relationship between the sensor coordinate frame and the robot
baseframe can be determined with sufficient accuracy despite the sensor small working
volume. This test is necessary for any off-line programing and perhaps for the non
destructive evaluation of FTS.
3 Off-Line Programming Tests. The accuracy and repeatability of the robot was
measured when it moved to a commanded position under off-line programming.
4 Robot Position Resolution Tests.
The data from these tests were analyzed and the results and conclusions are reported. A
Forward Kinematics Error Analysis of some of these data was also performed.
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2.0 STATEMENT OF THE PROBLEM

The purpose of this report is to standardize definitions and propose test procedures for the
DTF- (Development Test Flight)-1 positioning tests.

The DTF-1 mission poses a number of technical problems never encountered during earth
based robot performance measurements. First, although the design the DTF-1 calibration
position sensor has not been decided yet it is expected that it will have a working volume
smaller than the off-line programming accuracy of the :robot. Second, thermal shifts during
the test will cause distortions of the manipulator and sensor, possibly disturbing the tests.
Regardless of the technical difficulties, the DTF-1 mission offers opportunities to
understand the positioning capabilities of robots in the environment of space.

This report provides the framework about which the DTF-1 flight procedures can be
developed to conduct the required fine positioning tests. First, there will be a discussion of
the unique problems associated with the DTF-1 mission. This will include a
standardization of terminology. Next, a very detailed description of flight-like testing,
conducted at NIST, will be presented. Although the experiments conducted were
performed on a robot of different design than the DTF-1, the results and techniques used
can be extended to the mission. Finally, conclusions and possible future work will be
presented.

3.0 DEFINITIONS AND DISCUSSION

In order to avoid confusion, the terminology and definitions for the fine positioning test
must be standardized. Terminology and test procedures which were established by the
ANSI/RIA (American National Standards Institute / Robotic Industries Association)
R15.05 Robot Performance Subcommittee [RIA 90], and/or the ISO (International
Organization for Standardization ) Industrial Automation Systems Technical Committee
ISO/TC 184 [ISO 901 will be maintained throughout this report whenever it is possible.
This terminology differs from that in the NASA Requirements Document (SS-GSFC-0043)
in the following general ways:

2.



SS -GSFC-0043:

Accuracy - The difference between the actual position of the tool plate and the commanded

position in Cartesian space.

Repeatability - The difference between the actual position of the tool plate and the
commanded, previously taught position.

ISO:

Unidirectional pose accuracy expresses the deviation between a command pose and the
mean of the an,ained poses when approaching the command pose from the same direction.

Unidirectional pose repeatability expresses the closeness of agreement between the
positions and orientations of the attained poses after n repeated visits to the same command

pose.

ANSWIA:

Static position gccurggy is a statistical measure of the spatial deviation between commanded
and achieved robot positions.

Positional repeatabilitytability is the measure of deviations between achieved robot positions and
the mean of those positions after ordering the robot to the same pose N times from the same
direction.

The term "pose", used in the above definitions, stands for position and orientation. The
terms "attained" and "achieved" also used w,-e equivalent. The term "tool plate" stands for
the end of the robot arm tool mounting plate. The position or pose of the robot could be
commanded by either off-line programming or teach mode control, depending on the needs
of the application. Each of these modes of operation results in significantly different
accuracy and repeatability errors.

The physical meaning of these definitions can be explained by using the demonstration plot
of Figure 3.1. In this figure it is assumed that the test specifies that the robot moves to a
single commanded position represented by point C. In the interest of simplicity we assume

3
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Figure 3 . 1	 Test results demonstration plot.
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here that the robot makes only two attempts to reach that point. During its first attempt to
reach that point the robot goes to point A and during its second attempt goes to point B.
The mean of those two achieved positions lies at the middle of the AB vector designated by
point M in the figure. The positioning accuracy as defined by ISO, for this example, is the
magnitude of the vector C(ZW given by equations 4.5 and 4.9 in the next section. The

positioning accuracy as defined by ANSI/RIA, for this example, is the mean of the

magnitudes of the vectors (QW and (C_B) given by equations 4.2 and 4.3 in the next
section. The positioning repeatability as defined by ISO, for this example, is the radius of
a sphere with center M given by equations 4.13 and 4.12 in the next section, which bounds
points A and B. The positioning repeatability as defined by ANSI/RIA, for this example,
is the mean of the magnitudes of the vectors (MW and (MW given by equations 4.10 and
4.11 in the next section.

The SS-GSFC-0043 definition of accuracy matches the generalized ISO/RIA definition of
accuracy under off-line programming and the SS-GSFC-0043 definition of repeatability
matches the generalized ISO/RIA definition of accuracy under teach-mode control.
Additionally, the generalized ISO/RIA repeatability provides information regarding the
statistical behavior of the data gathered during the test.

The objective of the ISO and the ANSI/RIA proposed tests is to cover as much of the robot
workspace used during common industrial applications as possible. ISO proposes to fit a
cube in the workspace of the robot which is to be tested and then use five points located on
one of the diagonal planes of that cube as the test commanded positions. ANSI/RIA
proposes the use of the vertices of a standard test path, which is defined by the standard, as
the test commanded positions. The test results from all of these commanded positions
should be averaged to obtain more representative values of accuracy and repeatability. In
the case of DTF-1 only one test commanded position can be used, that of the sensor nest
position, and its location is dictated by considerations other than those of these standards.

The ANSI/RIA test specifications require that off-line programming is used to match the
test equipment (metrology instrument) coordinate system with the robot base coordinate
system for the measurement of accuracy. The ISO test specifications do not have this
requirement. Ideally the accuracy capability of a robot under either off-tine programming
or teach mode control should be measured and be known for the portion of its workspace
with the greatest anticipated use. Due to the nature of the sensors to be used during the
mission to measure the fine positioning characteristic of the DTF-1 robot, a modified
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definition of off-line programming accuracy is required. This is due to the fact that the
working volume of the sensor nest is smaller than the volume of the cluster of points and
the commanded point which would result from a standard off-line accuracy test. In other

words, if the robot is commanded to a Cartesian position inside the nest it could arrive
outside the working volume of the sensor and, therefore, the position would not be
measurable. Because of this, a modified definition of off-line programming accuracy,
forward kinematics accuracy, is required. Additionally, the operator will have to initially
guide the manipulator into the sensor working volume since a computer command to the
location will not necessarily deliver the tool plate to the sensor working volume.

Typically, off-line programming accuracy is measured by commanding the robot to a
position and measuring the difference between that command and the actual position
measured by some sensor. This technique could be thought of as measuring the inverse
kinematic accuracy.

GSFC (Goddard Space Flight Center) and NISI (National Institude of Standards and
Technology) have developed another technique by which the same basic information can be
gathered. The technique is to send the robot to a position within the working volume of the
sensor to measure the tool plates actual position and simultaneously query the robot
regarding its perceived position. We call this the forward kinematic accuracy. If there is
good agreement between the forward and inverse kinematic solutions, the off-line accuracy
using this technique should be approximately the same as the standard, inverse kinematic
technique. The result will be approximate since the standard test combines the two sources
of error, errors due to inaccurately modeled kinematics and errors due to servo control
inaccuracies. The forward kinematic, off-line programming accuracy includes only
kinematic modelling errors, which should dominate the DTF-1 errors. The two techniques
should agree everywhere within the workspace except near singularities where inverse
kinematic equations are not well behaved. Because of the limited range of the sensor, the
forward kinematic approach will be taken during the DTF-1 mission.

In addition to what SS-GSFC-0043 refers to as accuracy and repeatability, the document
specifies incremental motion requirements. Incremental motion is not defined by either ISO
or RIA but is commonly referred to as resolution. For the purposes of this report
incremental motion shall be defined as the smallest controllable Cartesian displacement and
orientation change of the manipulator tool plate coordinate frame with respect to the
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manipulator base coordinate frame. Incremental motion shall be calculated using th y; same

set of equations specifying accuracy.

4.0 EQUIPMENT SET-UP, TEST PROCEDURES, ANALYSIS AND
RESULTS

4.1 Introduction

The objectives of the experimental work were to simulate the FTS performance test
procedure and to develop analysis and display software. Since neither the FTS robotic arm
nor the sensor nest are curren tly available, it was decided to use robot equipment with
performance characteristics similar to those specified for FTS.

A variety of test procedures were simulated and a large number of data were collected.
Based on the results of the analysis several of these tests were repeated and test conditions
were modified in order to clarify questions which were raised by the analysis of the data.

For the analysis of the data and display of the results a NIST robot testing and calibration
workstation was used. The workstation was interfaced with the controllers of the robot
arm and the metrology instrument used in order to facilitate the collection and exchange of
data.. New software had to be written and old robot performance analysis programs had to
be modified in order to satisfy the peculiarities of the FTS tests.

This section is organized as follows. First, the experimental equipment used to conduct the
simulated performance tests is described. This is followed by a discussion of some general
procedural aspects which were common to all tests. Next, details of individual test
procedures, results, and analyses are presented.

4.2 Equipment Set -Up

The simulated FTS performance tests were performed in the lab of the Intelligent Controls
Group (ICG) at NIST. The following equipment was used to perform the tests:

W -
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Robotics Research Corp. (RRC) K-1607 1 dextrous manipulator and controller
NIST robot control system target hardware (VME backplane and boards)
NIST control system software development and user interface workstations (Sun

3/160's)

Automated Precision, Inc. (API) Smart 310 laser tracker metrology system
Robot testing and calibration workstation (Macintosh II)

The equipment and system interconnections are shown in Figure 4.1. Each piece of
equipment is discussed in detail below.

The RRC K-1607 is a 7 degree-of-freedom kinematically redundant manipulator. The
manipulator base is mounted at 45-degrees to the floor, as shown in Figure 4.1. The K-
1607 drive system consists of permanent-magnet do motors with harmonic drive gear
reduction. Position and velocity feedback are provided by brushless resolvers driven by
anti-backlash gearing. The resolvers measure the joint output position, rather than the
motor shaft position. An integral torque sensor on each joint provides output torque
information which is used in a feedback loop to minimize the effects of drive nonlinearities
(friction and compliance in particular). A Servo Level Interface is provided by RRC which
allows an external computer system to issue joint torque, position, velocity, or motor
current commands to the manipulator every 2.5 ms [Eissmann 89]. position, velocity, and
torque feedback values updated at this rate are also available. Servo Level Interface
variables may be accessed via common memory locations on the Multibus backplane which
resides in the RRC controller.

All motions performed during the tests were generated and'controlled by the NASREM
(NASA/NBS Standard Reference Model for Telerobot Control) control system being
developed by the Intelligent Controls Group (ICG) at NIST [Albus 87, Fiala 89a]. This
control system is being implemented in Ada, and is based on the concept of a hierarchical
organization of redistributable cyclically-executing processes which communicate via
common memory buffers. The system runs on (currently) five Motorola 68020-based
single-board computers which reside in a VME backplane. A high-speed (225 kbaud)
serial link is used to transfer command and feedback information between the ICG control

I "Certain commercial equipment, instruments or materials are identified in this paper in order to
adequately specify the experimental procedure. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose".
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system and the RRC backplane on a 5 ins basis (ie, every other RRC cycle) [Fiala 89b].
Sun 3 workstations are used for software development and for user interaction with the
system during runtime. Communication between the Sun(s) and the target boards for
keyboard and file i/o takes place over 9600 baud serial lines.

The current implementation of the NASREM hierarchy consists of Primitive (trajectory
generation) and Servo levels. Detailed information about the design of these levels may be
found in [Wavering 88, Fiala 88]. These levels provide a number of different algorithms
for trajectory generation and manipulator servoing. Two different trajectory generation
algorithms are used for metrology test motions; one for joint space motions, and one for
Cartesian straight line motions. For motions to goal poses specified in terms of desired
joint positions, joint-interpolated quintic polynomial trajectories are used [Craig 86]. Joint
space trajectory functions are evaluated every 5 ms. For Cartesian goal poses (represented
as a 3 dimensional position vector and a quaternion rotation), quintic polynomial functions
of the Cartesian variables are used. Cartesian trajectory functions are evaluated every 25
ms. The Cartesian trajectory points are transformed into joint space before commanding
them to the Servo level. An inverse kinematics algorithm based on the augmented Jacobian
[Seraji 89, Kreutz 891 is used to perform this transformation.

Although other algorithms are available, a high-gain individual joint PID servo was used
for all of the metrology tests. This algorithm was used because of the high stiffness and
disturbance rejection it provides. Gravity compensation torques are added to the error-
based torques to counteract the effects of link masses in a 1-g environment. The following
control equation is computed for each joint, each cycle of Servo
execution:

T = Kp(od-o)-K„ o+Ki( seer,)+Tg,,., . (4.1)

where ti = torque commanded to robot, Kp, K, Ki = position, velocity, and integral gains,

od = desired joint position, o = actual position, o = actual joint velocity, joy integral of

position error, tigra, = gravity compensation torque.

There is no deadband in the algorithm; that is, every error, no matter how small, is
multiplied by the appropriate gain to determine a correcting torque. However, residual .
Coulombic friction outside the torque loop (bearing and seal friction) prevents very small

l
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torques from causing arm motion. Except where otherwise noted, the following gains

were used for all metrology tests:

Kp = diag[30000 3000016000 12500 1700 2000 500] N-m/rad

K„ = diag[800 800 350 250 70 80 50] N-m-s/rad

K; = diag[1000 1000 500 500 170 200 50] N-m/rad-s

These gains were determined experimentally. The around-the-loop time for this algorithm,
including communication time, is 10 ms (although commands and feedback are updated
every 5 ms).

The system has a simple user interface which allows motion commands to be specified
from the keyboard or from a data file. The command information for the metrology test
motions includes the following:

Command parameter	 Comments on use for metrology tests

Trajectory algorithm	 joint quintic or Cartesian quintic
Goal pose

	

	 desired joint positions or end plate Cartesian position
and orientation with respect to base coordinates

Redundancy resolution

	

	 Cartesian_quintic only; specifies to use the
augmented Jacobian-based inverse kinematics along
with the desired elbow plane angle

Traversal time	 desired duration of motion

For each motion, the user can also indicate whether or not position information is to be
recorded when the motion is complete. If the final position is to be recorded, the user
interface process delays for 1 s, reads the joint and Cartesian feedback buffers, stores this
information, signals the laser tracker system to record data for the point, and delays for 2 s
before continuing to the next command.

The position of the origin of the robot arm mechanical interface coordinate system, located
on the end-of-arm mounting plate, was monitored with a laser tracker metrology system
[K. Lau 85, API 901. This system can direct a laser beam to a retroreflector target and
determine its three dimensional space spherical coordinates, using an interferometer and

9
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precision encoders. As the target is moving, the laser tracker servoes the mirror which
reflects the laser beam to keep it pointing on the target all the time. As long as the beam
stays within the acceptance angle of the target, and the speed and acceleration of the target
do not exceed certain limits set by the laser tracker servo-drive system and controller, the
target is continuously tracked. The controller of the laser tracker can be directed to
continuously sample and save the position coordinates of the retroreflector target at a

frequency of up to 450 Hz, or sample only when directed to do so. The sample command
signal can come from the keyboard or from a direct connection to an external controller.

A hollow cornercube retroreflector target was used for all the tests. A special fixture was
built in order to mount the target to the interface plate of the robot arm (end-of-arm plate).
The fixture had a weight of 1.715 Kg (3.773 lb), an axial offset of approximately 25 mm
(1 in) and a radial offset which was essentially 0 mm (0 in). A 90-degree angle bracket
was also built and used for the dimensional calibration of the target mounting fixture. An
aluminum calibration bar was used for the initialization of the laser tracking system. Two
target mounting locations were machined on the bar and their distance was measured with a
coordinate measurement machine. The bar was clamped in a fixed location close to where
measurements would be made.

A newly-developed robot testing and calibration workstation was used to analyze the data.
The workstation has several basic communication programs and two ports, which allow it
to exchange commands and data with robot and the laser tracker controllers. Ordinarily the
workstation is connected to the communication ports of the robot and laser tracker
controllers and coordinates the test activities. This is usually done by commanding the
robot to execute the command programs required at each stage of the test and then waiting
until the robot controller acknowledges the completion of the execution of these commands.
The workstation either collects continuously sampled position data from the laser tracker
controller or comwnd to sample and store such data. Once that is completed any
necessary-processing of the data is done and the next step of the test is initiated. The robot

" command programs usually reside in the robot controller, so that the workstation action
only involves their activation, thus minimizing the possibility of unpredictable robot
behavior due to bad communications.

In the present set-up, however, it was decided to have the robot control system initiate all
data collection actions via a direct connection to to metrology instrument controller.
Although this means that the software used to conduct the test and record points is very

10



robot specific, it was felt that it would more accurately simulate the way the FTS control
system will perform these tests in space. In addition, the time delay between the end of the
robot arm motion and the measurement of the position of the target is somewhat reduced
with this approach. As mentioned in the discussion of the robot control system, each time
the laser tracker controller was signalled to store a point, the robot control system also

stored joint position and target Cartesian position information computed using forward
kinematics. This robot control system position data was sent to the robot testing and
calibration workstation after test completion via a serial line connected between the
Macintosh 11 and the Sun 3 workstations.

4.3 Test Procedures

In designing the FTS performance test procedures it was desired to follow those
recommended by the ANSI/RIA (American National Standards Institute / Robotic
Industries Association) R15.05 Performance Subcommittee [RIA 90], and/or the ISO
(International Organization for Standardization) Industrial Automation Systems Technical
Committee ISO/TC 184 [ISO 90]. Unfortunately this was not possible because of the
constraints of the present FTS environment, particularly the requirement that the position
and orientation (pose) of the end-effector is measured at only one or two specific locations
in the robot workspace where sensor nests will be located. Thus, only basic ideas from the
two standard tests were used. Both the RIA and the ISO static PTP (Point-to-Point)
accuracy and repeatability tests require the robot to move to various measurement positions,
which are specified for the workspace of each robot, and the achieved poses are measured
by appropriate robot metrology instruments. Each committee has selected a different set of
points. The standard path between those points is also different, and the orientation can be
random or fixed depending on the type of the test.

In the present test study only one measurement position was used, instead of the several
positions specified by [RIA and/or ISO 90], because of the sensor nest limitations
mentioned previously. The coordinates of the sensor nest location used for the current
tests, with respect to the baseframe of the FTS arm, were provided by the FTS contractor
and are shown in Figure 4.2. Although there was no actual sensor nest, all measurements
were taken with the manipulator in the vicinity of the location where a sensor nest would be
if the RRC robot were mounted horizontally (instead of at 45 degrees) as the right arm of
the FTS. This position will be referred to as the simulated sensor nest or S2 in the

11

_. y



Not to scale

roach position

S2 location (with respect to X I Y 1 Z 1 ): (14.0, 28.0,-43.5,+180.0,0.0,+180.0) (in, deg)

Figure 4.2. Location of sensor nest #2.
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descriptions of the tests. Another position used for many of the tests is an approach point
for the simulated sensor nest. At this point the robot arm interface plate has the same
orientation as at S2, and is displaced about 0.46 m (18 in) along the -Z axis of the S2
coordinate frame. At the time these tests were performed, the design of the sensor nest
dictated that such an approach point be used in moving into and out of the nest. The S2
approach position will be referred to as S2,Pp.

Although the RIA. and ISO standard test positions were not used as measurement locations,
they were used in many of the accuracy and repeatability tests as starting positions for
motions that ended at the simulated sensor nest. These initial positions were used to assess
how well the robot could move to a particular location from different areas of the
workspace. The arm was commanded to move sequentially from each one of the vertices
of the RIA standard path to the approach point, and from there to the measurement
position. The RIA measurement positions were chosen instead of the ISO measurement
positions as more representative of the positions where FTS will perform most of its work.
The coordinates of the vertices of the RIA standard path were calculated based on a simple
robot workspace size measurement test and the specifications provided by [RIA 90]. As
with S2 and S2,pp, these positions were transformed to account for the 45-degree

mounting of the robot. Only eight of the standard test positions, out of twelve, fell within
the workspace of the robot used and were used for the tests. The same end plate
orientation was used at each of the standard positions.

A variation of this procedure was used for some tests, in which the robot was commanded
to move directly from S2app to S2 and back for each of eight repetitions, without using the

RIA positions as starting locations. This alternative was examined out of concern that the
test which uses the, standard test positions would take more time than is available.

The laser tracker was placed at a distance of approximately 2000 mm from the simulated
sensor nest location. Figure 4.3 shows the relationship between the reference coordinate
systems of the robot and the laser tracker. Although the Z axis of both coordinate systems
is in the same direction, the X-Y plane of the laser tracker coordinate frame is about 450
mm above the robot base coordinate frame. Also shown is the relative X-Y location of the
simulated sensor nest, S2. The Z position of the laser tracker target at S2 is about 620 mm
below the X-Y plane of the robot base coordinate frame. During the tests the distance
between the target, which was mounted on a fixture attached to the robot arm interface
plate, and the laser tracker head varied from approximately 1500 mm to 3500 mm.

12
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The laser tracker was initialized, before its use, with the help of the calibration bar. This

was done in the following way. The laser beam was first locked on the target, then the
target was moved from one of the bar target mounting locations to the other and the known
distance was communicated to the laser tracker controller. Based on that information the
controller calculated the radial distance to the two bar target mounting locations. The target

could then be moved to its mount at the end of the arm for the performance test. As long as
the laser beam was not broken or tracking was not lost the tracker would provide the three
dimensional coordinates of the target at a maximum sampling frequency of 450 Hz.
Throughout the tests the calibration bar was fixed and the laser tracker was not moved. To
reinitialize, therefore, it was only necessary to provide the laser tracker controller with the
previously-determined radial distance and check that the azimuth and elevation angles were
the same as those measured during the first initialization.

The accuracy of the operation of the laser tracker was checked from time to time with the
following tests:

1. Lock the beam on the target and record the azimuth and elevation angles. Without
.moving the target rotate the head of the laser tracker by 180 degrees (rotation about the
azimuth axis) and the reflecting mirror by 180 degrees (rotation about the elevation axis)
lock on the target and record the azimuth and elevation angles. The difference in the values
of the angles before and after the rotation should be 180 degrees plus or minus an error.
2. Lock the beam on the target, switch to spherical coordinates and observe the
fluctuations in the values of the radial distance, the azimuth and elevation angles. As long
as there are no significant air flow velocity and temperature changes and the target remains
fixed the fluctuations should be random and no systematic drift should be observed.
3. Initialize the laser tracker and then move the calibration bar to a new location. Move the
target from one of the bar target mounting locations to the other and record the coordinates
of the two locations. Calculate the distance between the two mounting locations and
compare it to the previously measured distance, during its manufacturing, with high
precision metrology instruments.
4. Initialize the laser tracker and record the coordinates of one of the two bar target
mounting locations. Move the target away from that location and then return and put it
back in the same location. Compare the coordinates measured before and after the move.

13



Due to small amplitude oscillations of most robot arms, even under steady state static
conditions, the laser tracker is usually programmed to sample several times the position of
the target and then average to obtain the coordinates for a single position observation. An
experiment was performed and it was found that the robot used for the tests had no
measurable amplitude oscillations, under steady state static conditions, at the simulated

location of the sensor nest. It was then decided not to average the target position samples

for all the tests reported here. This has the advantage of reducing the duration of the tests

and of revealing the effects of any motion overshoots or undershoots.

The metrology tests described here were performed on April 10-May 14, 1990. The power
to the laser was turned on and kept on for the entire duration of the tests. The robot was
warmed up by running an exercise program for at least an hour prior to test execution. The
only payload attached to the arm for all of the tests was the laser tracker tarpe and its
mounting bracket. The ambient temperature was 22-24 degrees C, and relative humidity
was in the range of 45-55%.

1 In the following sections, the coordinates X, Y, and Z referred to in the
analysis of the data refer to laser tracker coordinates, unless otherwise
noted.

4.3.1 Teach Mode Control Tests

The teach programming control mode is the predominant robot arm programming mole
used today. It involves moving the robot arm to the desired locations, manually, through a
teach pendant, or the keyboard. Once the robot arm is at a desired location the joint angles
corresponding to that location are recorded. In the majority of the cases when the program
is played back the robot arm is commanded to go back to the prerecorded joint angles,
although sometimes it might be more convenient to use the calculated Cartesian
coordinates, which correspond to those joint angles.

The main part of the FTS performance test will consist of teach mode control moves, in
which the robot arm will be commanded to move from one or more initial positions to one
or more previously-taught sensor nest locations. The objective of the tests was to measure
the accuracy and repeatability errors of a robot arm when it is trying to reach the simulated
FTS sensor nest location under teach mode control from the simulated initial positions. It

14



was also desired to investigate the error variation as a function of the number of the test
cycles, as well as the variation and drift of the achieved position.

The taught position used for the teach mode tests was S2. The eight RIA initial positions
are used so that the robot moves through a large portion of the useful workspace during the
test. The overall procedure of the tests is as follows:

Move to initial position
Move to S2app

Move to S2
Record position data
Move to S2 app
Repeat above sequence for each different initial position

The completion of the above sequence for all initial positions constitutes performance of
one test cycle. The duration of the S2 app-to-S2 motions was 15 seconds, resulting in an

approximate average Cartesian velocity of 30 mm/s (1.2 in/s). This is quite slow, although
it is probably representative of how fast the arm will move to the sensor nest position on
DTF-1. Each repetition of this sequence takes about 6 min.

The Static Position (PTP motion) Accuracy, "is a statistical measure of the spatial deviation
between commander A achieved robot positions", [RIA 90]. The testing and calibration
workstation calculates and prints the accuracy errors as defined by both [RIA 90] and [ISO
901. The formulas used are the following:

[N^

dPA = N Lodi . (4.2)

=1

	

,, r	 12	 2	 2
d i = Y (x ai X) +(Yai Yd +(Zai Zd . (4.3)

Y(d j-dPA)

	

SPA=	 i
=t 

N-1	
(4.4)
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DelML X = x-xC . (4.6)

DeltaLy = y-y, . (4.7)

DeltaLZ = z-zC . (4.8)

X = N ^x ai + Y = N 7, ai + z = N jz,; . (4.9)

	

i=1	 i=1	 i=1

Where:

dPA, is the Positional Accuracy as defined by RIA, except that in this case only one
measurement (commanded) position was used, the simulated sensor nest location..
N, is the number of measurement test cycles used.
d;, is the magnitude of the accuracy error deviation at the ith measurement.
x,i, y,;, za;, are the coordinates of the ith measured (achieved) position.
xC, yC, z, are the coordinates of the commanded position, in this case the simulated sensor

nest location.

SPA, is the standard deviation of dPA.
DeltaL, is the Unidirectional Positioning Accuracy as defined by ISO, except that in this
case only one measurement (commanded) position was used, the simulated sensor nest
location. It should be called unidirectional because the final approach to the commanded
position is always from the same direction.
x, y, z, are the coordinates of the mean of the N measured (achieved) positions.

The Positional Repeatability, "is the measure of deviations between achieved robot
positions and the mean of those positions after ordering the robot to the same pose N
times", [RIA 90]. The testing and calibration workstation calculates and prints the accuracy
errors as defined by both [RIA 90] and [ISO 90]. The formulas used are the following:

N

rREP N Ym; . (4.10)
i=1
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m i =	 (x ai X) 2+(Yai Y)2^'(Zai Z) 2 . (4.11)

N

^(m; rREP)2

SREP =	
^ i N-1
	

. (4.12)

r = rREP + 3 SREP . (4.13)

Where:
rREP, is the Repeatability as defined by RIA, except that in this case only one measurement
(commanded) position was used, the simulated sensor nest location.
mi, is the magnitude of the deviation at the ith measurement from the mean of the N

measured (achieved) positions.
SREP, is the standard deviation of rREP.
r, is the Unidirectional Repeatability as defined by ISO, except that in this case only one
measurement (commanded) position was used, the simulated sensor nest location. It
should be called unidirectional because the final approach to the commanded position is
always from the same direction.

The orientation accuracy and repeatability errors of the interface plate of the robot arm could
not be measured with the laser tracker available at the present time.

4.3.1.1 .a Teach mode joint angles kinematics control

For this version of the accuracy and repeatability tests, joint interpolated motion was used
to move to all positions. The RRC controller was used to obtain equivalent joint positions
for S2, S2,PP, and the initial positions. The test was repeated seven times, resulting in 56

recorded points. Before running the tests, the robot was moved to the nominal S2
position, and the robot joint angle positions and laser tracker readings for this position
were recorded to use this as the taught point. The actual joint values which were recorded
for this point were then used as command angles for S2 for executing the tests.
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4.3.1.1.b Analysis and Conclusions

The laser tracker coordinates of the 56 measured positions were divided into 7 analysis
groups. The first group contained the coordinates of the first 8 measured positions, which
correspond to the first 8 cycles (8 vertices of the RIA standard path) of the test. The
second group contained the coordinates of the first 16 measured positions. The third group
contained the coordinates of the first 24 measured positions, etc., so each subsequent
group contained the coordinates of the previous group plus the coordinates of the next 8
positions until all 56 were included. The data contained in each group were analyzed
separately and the results of the analysis were used to determine the effect of the number of
measured positions on the results.

Table 4.1 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. First, the laser tracker measured coordinates of the
commanded, previously taught, position are printed. The dimension of the coordinates are
in mm as are all the dimensions in all the tables and plots reported here. Then the
coordinates of the laser tracker-measured achieved positions are printed. Finally the ISO
and RIA defined accuracies and repeatabilities are calculated and printed.

Figure 4.4 is a three dimensional plot of the measured achieved positions (triangular
marks), their mean position (cross mark), and the commanded position (square mark). The
coordinate frame in that figure is that of the laser tracker after it was translated to the
centroid of those positions.

Figure 4.5 is a plot of the same positions as they are projected on a plane defined by the X
and Z coordinate axes. As can be seen the cluster of points forms a "galactic cloud" with
an orientation which is approximately orthogonal to the orientation of the axis of the first
joint of the robot arm. Because of that, it is suspected, although it has not been verified,
that positioning errors from the first joint drive are mostly responsible for the measured
repeatability errors. To reach the simulated sensor nest position the arm has to extend itself
significantly thus making it sensitive to angular errors from the first joint drive. The points
also seem to be oriented in neat rows and columns. This is because their distances are very
small and they have been positioned at the resolution-limited positions of the laser tracker
instrument.

-;Ezz_
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Figure 4.6 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.7 is a plot of the ISO defined repeatability error
versus the number of cycles contained in each analysis group. As can be seen from these
plots the errors seem to follow an exponential decay curve reaching an asymptote after 24

to 32 cycles. The small rise in the accuracy error after 40 cycles is not considered
significant although it needs to be investigated.

To better understand the nature of this exponential decay of the accuracy and repeatability

errors the X, Y, and Z axes, laser tracker coordinates of the 56 measured positions were
plotted as a function of the number of cycles and are shown in Figures 4.8, 4.9, 4.10
respectively. These plots show a periodicity with a fundamental frequency of 8 cycles and
a few smaller amplitude higher frequency oscillations. There is an obvious drift during the
first 8 cycles, which corresponds to the first group of analysis data, and a less pronounced
drift during the next 8 cycles. After the first 16 cycles the coordinates seem to follow a
relatively stable periodic oscillation with a peak-to-peak amplitude of approximately 0.3
mm for the X-axis coordinates, 0.5 mm for the Y-axis coordinates, and 0.23 mm for the Z-
axis coordinates. The 8 cycles periodicity is expected as a result of using the 8 vertices of
the RIA standard path as different initial positions. The drift during the first 8 to 16 cycles
probably comes from thermal drift (the robot arm was exercised for a reasonable amount of
time and cycles before each test), and dynamic motion transients which include friction.
The errors measured during the first 8 to 16 cycles are probably representative of those
which occur during all intermittent robot operations.

The variation in the measured achieved position was previously characterized by the
repeatability error. From Fig. 4.5 it appears that the asymptotic value of the ISO defined
repeatability error is approximately 0.44 mm, which is larger than the peak-to-peak
amplitude of the X and Z-axes steady state oscillation, but not of the one along the Y- axis.
This indicates that if a robot behaves like the one used for these tests the peak-to-peak
amplitude of its steady state oscillation would be a more appropriate measure of the
variation of its achieved position rather than the repeatability error. The ISO repeatability
error measured after the first 8 cycles (0.482 mm) is closer to predicting the peak-to-peak
amplitude of the achieved position oscillation. In the case of the RIA defined repeatability
(given by eq. 4.10) the value of 3 x standard deviation should be added to the repeatability

error in order to come close to the true achieved position variation.
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As can be seen from Figures 4.8, 4.9, 4.10 the measured achieved position is not really
very random. For the same initial position of the RIA standard path approximately the
same measured achieved position is obtained with a small amount of random displacement
superimposed. Is that the result of the robot position control algorithm used, which does
not stop servoing for as long as there is a joint angle position error? This of course raises
the question, what would happen if only one initial position was used, would the random
component dominate the achieved position? Another test which will be reported later will
try to answer that question.

4.3.1.2.a Teach mode inverse kinematics control

This test is identical to the previous one, with the exception that S2 was recorded as a
Cartesian position, and the Cartesian quintic polynomial trajectory algorithm was used to
move between Stapp and S2 resulting in an approximately straight line motion. This

motion would be necessary if the design of the sensor nest is such that a straight approach
is required. The Cartesian quintic polynomial trajectory algorithm gives a better
approximation of that type of trajectory than the joint interpolation algorithm. The inverse
kinematics algorithm was therefore used for each trajectory point in these motions. The
duration of the motions was the same as in the previous test, and joint interpolated motion
was used to move between the initial positions and Stapp.

4.3.1.2.b Analysis and Conclusions

The laser tracker coordinates of the 56 measured positions were again divided into 7
analysis groups. The data contained in each group were analyzed separately and the results
of the analysis were used to determine the effect of the number of measured positions on
the results.

Table 4.2 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. Figure 4.11 is a three dimensional plot of the measured
achieved positions (triangular marks), their mean position (cross mark), and the
commanded position (square mark). The coordinate frame in that figure is that of the laser
tracker after it was translated to the centroid of those positions.
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Plot of the PT? Test Achieved Positions

e Each triangle is located at an achieved position
The square marks the commanded position

The cross marks the meat of the achieved positions

Figure 4.12 Teach mode inverse kinematics control positions plot.
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Figure 4.12 is a plot of the same positions as they are projected on a plane defined by the X

and Z coordinate axes. As can be seen, the cluster of points again forms a galactic cloud
with an orientation which is approximately orthogonal to the orientation of the axis of the
first joint of the robot arm.

Figure 4.13 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.14 is a plot of the ISO defined repeatability
error versus the number of cycles contained in each analysis group. As can be seen from
these plots the errors seem to decrease reaching an asymptote after 24 to 32 cycles.

To better understand the nature of this decrease of the accuracy and repeatability errors the
X, Y, and Z axes, laser tracker coordinates of the 56 measured positions were plotted as a
function of the number of cycles and are shown in Figures 4.15, 4.16, 4.17 respectively.
These plots show again a periodicity with a fundamental frequency of 8 cycles and a few
smaller amplitude higher frequency oscillations. There is an obvious drift during the first 8
cycles, which correspond to the first group of analysis data, and a less pronounced drift
during the next 8 cycles. After the first 16 cycles the coordinates seem to follow a
relatively stable periodic oscillation with a peak-to-peak amplitude of approximately 0.5

t mm for the X-axis coordinates, 0.55 mm for the Y-axis coordinates, and 0.45 mm for the
Z-axis coordinates. The 8 cycles periodicity is expected as a result of using the 8 vertices
of the RIA standard path as different initial positions. The drift during the first 8 to 16
cycles probably comes from thermal drift (the robot arm was exercised for a reasonable
amount of time and cycles before each test), and dynamic motion transients which include
friction. The errors measured during the first 8 to 16 cycles are probably representative of
those which occur during all intermittent robot operations.

The variation in the measured achieved position was previously characterized by the
repeatability error. From Fig. 4.14 it appears that the asymptotic value of the ISO defined
repeatability error is approximately 0.67 mm, which is larger than the peak-to-peak
amplitude of the X, Y and Z-axes steady state oscillation. The ISO repeatability error
measured after the first 8 cycles (0.86 mm) is large and reflects the large amplitude of the
drift of the achieved position in the Z and X-axes directions. In the case of the RIA
defined repeatability (given by eq. 4.10) the value of 3 x standard deviation should again

be added to the repeatability error in order to come close to the true achieved position
variation.
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As can be seen from Figures 4.15, 4.16, 4.17 the measured achieved position is again not
really very random. For the same initial position of the RIA standard path approximately
the same measured achieved position is obtained with a small amount of random
displacement superimposed.

Comparing the errors measured with joint interpolated motion with those obtained for
Cartesian interpolated motion, it car. be  seen that in the second case they are larger for both
accuracy and repeatability, and the peak-to-peak amplitudes of the coordinate oscillations.
This makes sense since in the case of Cartesian interpolated motion the errors due to the
inverse kinematics algorithms are also included.

4.3.2 Coordinates Transformation Test

The coordinates transformation is a mathematical relationship which relates the baseframe
of the robot arm with the coordinate frame of the robot metrology instrument, for this work
the laser tracker instrument. It allows the transformation of any metrology instrument
measured coordinates to robot baseframe coordinates or the reverse, thus allowing all
position and orientation information to be referred to a common frame of reference. The
purpose of including the coordinates-transformation determination was to support the off-
line programming test and the forward kinematics error analysis, another possible use is the
non-destructive evaluation for the detection of any possible deformation of the FTS robotic
arm and sensor nest, and their common foundation.

4.3.2.a Test

The purpose of this test is to determine the relative transformation between the base
coordinate systems of the robot and the laser tracker. To make this determination, a
number of points must be recorded in both robot and laser tracker coordinates. The
procedure for this test is:

Move to S2
Record position data
Move to S2 + 3 mm in the world X direction
Record position data
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Move to S2
Record position data
Move to S2 + 3 mm in the world Y direction
Record position data
Move to S2
Record position data
Move to S2 + 3 mm in world Z direction
Record position data
Move to S2
Record position data

The duration of each of the small motions was 3 s. The time required for the entire
sequence is about 0.5 min. The position of the target was recorded by both the robot
control system and by the laser tracker at the end of each motion. The sequence of motions
was repeated twice, for a total of 14 data points.

4.3.2.b Analysis and Conclusions

The transformation is presented here as a translation vector and as a rotation matrix. If the.
translation vector is used to translate the robot base coordinate frame, its origin will
coincide with the origin of the laser tracker coordinate frame. The rotation matrix consists
of the directional cosines of the laser tracker coordinate frame axes unit vectors, with
respect to the robot baseframe coordinate axes. If x t, yt, zt, are the coordinates of the target
with respect to the laser tracker coordinate frame and x r, yr, zi, are the coordinates of the
same target position with respect to the robot base coordinate frame then

Xr	 u xx u yx uzx x t	 x0

Y = u xy uyy uzy Yt + Yo . (4.14)
Zr	u xz uyz uzz zt	 zo

where xo, yo, zo, are the coordinates of the translation vector, and

uxx uyx uzx

uXYuYYUzY

u xz uyz uzz
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is the rotation matrix.

To determine the coordinates transformation the robot arm was moved to several positions
inside the simulated sensor nest allowable workspace and the coordinates of the target were
measured by the laser tracker and the robot controller. The best translation vector and
rotation matrix to fit these data was determined by a double least squares optimization

algorithm.

Table 4.3 in the Appendix gives the results of the coordinates transformation analysis for
14 target positions. First the coordinates of . the target as measured by the laser tracker
controller are given, then the coordinates of the same target positions as measured by the
robot controller are given. Next, the coordinates of the target as measured by the laser
tracker controller after they have been converted to robot control system coordinates using
equation 4.14 are given. These coordinates should be very close to the robot control
system measured coordinates printed above them; otherwise the transformation is not
successful. Finally, the calculated transformation translation vector and rotation matrix are
given. Figure 4.18 is a plot of the robot control system-measured target positions and the
laser tracker controller-measured positions after they have been converted to robot control
system coordinates. Ideally the corresponding points from those two sets should coincide
with each other. In practice there will always be small differences due to numerical errors,
errors in the kinematic models and motions of the robot and laser tracker controllers, and
curve fitting errors of the transformation optimization algorithm.

Table 4.4 in the Appendix gives the results of the coordinates transformation analysis for
the first 7 target positions out of the group of 14 used in the previous analysis and Figure
4.19 is the plot of those points. To evaluate the effectiveness of the transformation the
differences between the robot controller-measured target positions and the laser tracker
controller-measured coordinates of the same positions after they have been converted to
robot controller coordinates was calculated and the root mean square error was evaluated.
In the case of the group of the 14 data positions that was found to be 0.0544 mm, while in
the case of the group of the 7 data positions it was found to be 0.0585 mm. Thus there is a
slight improvement in the accuracy of the transformation when more data points are used.
The difference is very small, though, which can be seen by examining the converted
coordinates from the two tables.
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To use the coordinates transformation test for non-destructive evaluation to detect any
possible deformation of the FTS robotic arm and sensor nest, or their common foundation,
the transformation vector would be compared with previous results to identify pronounced
differences (a few millimeters or more). For this type of application a more thorough study
of the effect of the number of data positions to errors in the calculation of the translation

vector and rotation matrix should be performed,

4.3.3 Off-Line Programming Tests

In the off-line programming mode of operation, the robot position commands are
generated by a computer and no teaching is involved during the generation of the
commands. This of course requires the computer to have an accurate knowledge of the
current robot arm model and its environment. This would be a preferable mode of
operation for the FTS arm when it is working in the automatic mode, since it would be very
difficult to teach it all the functions it is supposed to perform in space. Furthermore, since
the dimensions of the arm and its surrounding objects might change due to heating,
vibration or other reasons, teach control programming might not be very practical.

The objectives of the tests performed were to measure the accuracy and repeatability errors
of a robot arm when it is trying to reach the simulated FTS sensor nest location under off-
Iine programming control. It was also desired to investigate the variation in the values of
those errors as a function of the number of the test cycles and also the variation and drift of
the achieved position. The simulated FTS sensor nest location was specified with respect
to the laser tracker coordinate frame and then its coordinates were converted to robot
controller Cartesian coordinates, which then became the new commanded position
coordinates. The laser tracker coordinate frame coordinates were converted using the
coordinates transformation determined by the group of the 14 data positions mentioned
previously. In order to move to that commanded position the robot controller had to use
the inverse kinematics algorithm to determine the corresponding joint angles.

Two different types of off-line programming tests were performed. In the first case the
path of the arm was similar to that described in the "Teach Mode Control Tests" section and
included the 8 positions of the RIA standard path. In the second case those positions were
dropped and all motions initiated from the approach point and followed a straight line path
motion to the commanded position. The reason this second path was used was to reduce
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the duration of the test, since this simple back and forth motion takes less time than the
motion to the standard path positions. If the test results from these two cases are
comparable then the second path would be preferable.

The testing and calibration workstation calculates and prints the accuracy and repeatability
errors as defined by both [RIA 90] and [ISO 90]. The formulas used are those given by
equations 4.2 to 4.13.

4.3.3.1.a	 Standard initial positions off-line programming

The procedure for this test is very similar to the teach mode accuracy and repeatability test.
The only difference is in how the goal position at S2 is determined. For the off-line
programming test, instead of moving the robot to S2 and using the recorded data as the
goal position, the goal position is determined by transforming the position recorded by the
laser tracker into robot coordinates. Since this position is a Cartesian position, the
Cartesian trajectory algorithm and inverse kinematics algorithm are used to move between
S2, P and S2. The time required for this test is the same as for the teach mode tests (about

6 min per 8-position test).

4.3.3.1.b Analysis and Conclusions

The laser tracker coordinates of the 56 measured positions were again divided into 7
analysis groups. The data contained in each group were analyzed separately and the results
of the analysis were used to determine the effect of the number of measured positions on
the results.

Table 4.5 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. Figure 4.20 is a three dimensional plot of the measured
achieved positions (triangular masks), their mean position (cross mark), and the
commanded position (square mark). The coordinate frame in that figure is that of the laser
tracker after it was translated to the centroid of those positions.

Figure 4.21 is a plot of the same positions as they are projected on a plane defined by the X
and Z coordinate axes. As with previous tests, the cluster of points forms a galactic cloud
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Plot of the P`7P Test Achieved Positions
Each triangle is located at an achieved position

The square marks the commanded position
The cross marks the mean of the achieved positions

Figure 4.20 Standard initial positions off-line programming positions PIOL
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7

with an orientation which is approximately orthogonal to the orientation of the axis of the
first joint of the robot arm.

Figure 4.22 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.23 is a plot of the ISO defined repeatability
error versus the number of cycles contained in each analysis group. As can be seen from
these plots the errors seem to decrease exponentially reaching an asymptote after 24 to 32
cycles.

To better understand the nature of this decrease of the accuracy and repeatability errors the

X, Y, and Z axes, laser tracker coordinates of the 56 measured positions were plotted as a
function of the number of cycles and are shown in Figures 4.24, 4.25, 4.26 respectively.
These plots show again a periodicity with a fundamental frequency of 8 cycles and a few
smaller amplitude higher frequency oscillations. There is an obvious drift during the first 8
cycles, which correspond to the first group of analysis data. After the first 8 cycles the
coordinates seem to follow a relatively stable periodic oscillation with a peak-to-peak
amplitude of approximately 0.45 mm for the X-axis coordinates, 0.55 mm for the Y-axis
coordinates, and 0.43 mm for the Z-axis coordinates. The 8 cycles periodicity is again
expected, because of the different starting positions. The drift during the first 8 cycles
probably comes from thermal drift (the robot arm was exercised for a reasonable amount of
time and cycles before each test), and dynamic motion transients which include friction.
Again, the errors during the first 8 to 16 cycles are probably characteristic of those which
may be expected during intermittent operation.

The variation in the measured achieved position was previously characterized by the
repeatability error. From Fig. 4.21 it appears that the asymptotic value of the ISO defined
repeatability error is approximately 0.56 mm, which is larger than the peak-to-peak
amplitude of the X, Y and Z-axes steady state oscillation. The ISO repeatability error
measured after the first 8 cycles (0.664 mm) is large and reflects the large amplitude of the
drift of the achieved position in the Y-axis direction. In the case of the RIA defined
repeatability (given by eq. 4.10) the value of 3 x standard deviation should be added to the

repeatability error in order to come close to the true achieved position variation.

As can be Teen from Figures 4.24, 4.25, 4.26 the measured achieved position is not really
very random. For the same initial position of the RIA standard path approximately the
same measured achieved position is obtained with a small amount of random displacement
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superimposed. Is that the result of the robot position control algorithm used, which does
not stop servoing for as long as there is a joint angle position error? This of course raises
the question, what would happen if only one initial position was used, would the random
component dominate the achieved position? The test which will be reported in the next

section will try to answer that question.

Comparing the errors, which are measured when the teach mode joint angles kinematics
control is used and when off-line programming control is used, it can be seen that in the
second case they are larger for both accuracy and repeatability, and the peak-to-peak
amplitudes of the coordinates oscillations. This makes sense since in that case the errors

due to the inverse kinematics algorithms are also included.

4.3.3.2.a Limited motion off-line programming

The off-line programming tests were repeated, eliminating the motions to and from the
different initial positions. By comparing the results of this test with those of the previous
test the effect of moving from different initial positions can be determined. For each
repetition of this test, the robot moved between Stapp and S2 eight times, using Cartesian-

inierpolated motion. Again, the position data was recorded each time the robot reached S2
and the test was repeated seven times, resulting in 56 data points. The motion time
between S2 appand S2 was the same as that used for the previous tests. Each repetition of

the sequence of eight points took just over 3 min for this test.

4.3.3.2.b Analysis and Conclusions

The laser tracker coordinates of the 56 measured positions were again divided into 7
analysis groups. The data contained in each group were analyzed separately and the results
of the analysis were used to determine the effect of the number of measured positions on
the results.

Table 4.6 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. Figure 4.27 is a three dimensional plot of the measured
achieved positions (triangular marks), their mean position (cross mark), and the
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commanded position (square mark). The coordinate frame in that figure is that of the laser
tracker after it was translated to the centroid of those positions. 	 I

1

Figure 4.28 is a plot of the same positions as they are projected on a plane defined by the X
and Z coordinate axes. As can be seen the cluster of points forms again a galactic cloud
with an orientation which is approximately orthogonal to the orientation of the axis of the

first joint of the robot arm. In this case, though, the first two points in that plot can be seen

to be located away from the rest, which cluster together in a tight group. The coordinates
of those points correspond to the first two cycles of the test and the corresponding achieved
positions. From Table 4.6 it can be seen that the first achieved position is approximately
1.0 mm away from the rest along both the Z and X axes. It is higher than the rest along the
Z-axis direction, and forward along the X-axis direction.

Figure 4.29 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.30 is a plot of the ISO defined repeatability
error versus the number of cycles contained in each analysis group. As can be seen from
these plots the errors seem to decrease exponentially reaching an asymptote after 40 to 56
cycles. The values of these errors start from rather high values as compared to those from
the previous section (Figures 4.22, 4.23), probably because of the difference in the
coordinates of the achieved positions of the first two cycles as compared to the rest. The
level of the asymptotes is higher too.

To better understand the nature of this decrease of the accuracy and repeatability errors the
X, Y, and Z axes, laser tracker coordinates of the 56 measured positions were plotted as a
function of the number of cycles and are shown in Figures 4.31, 4.32, 4.33 respectively.
These plots show again a periodicity with a fundamental frequency of 8 cycles and a few
smaller amplitude higher frequency oscillations. There is a significant drift during the first
8 cycles, which corresponds to the first group of analysis data. After the first 8 cycles the
coordinates seem to follow a relatively stable periodic oscillation. This significant drift at
the beginning of the test is due mainly to the achieved positions during the first two cycles
which are far away (especially the first one) from the rest. The periodic oscillations of the
achieved positions are unexpected in this case, since all moves initiate ' prom the same
position (the approach position).

The off-line programming limited motion test was repeated four more times under various
operating conditions to determine the source of the periodic oscillations and whether the
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large position error during the first few cycles is accidental or not. In each test 120 cycles

of motion were recorded. In the first case (test #2), the test conditions were the same as
those used in the previous tests. In the second case (test #3), a time delay between every 8
cycles, of approximately 10 seconds was eliminated, because it was thought that it might be
responsible for the periodic oscillations. In the third case (test #4), in addition to the time
delay between every 8 cycles being eliminated, the integral gain of the joint servo control

was reduced to zero. In the fourth case (test #5), an additional delay of less than 100
mseconds, for resetting the command file every 8 cycles was also eliminated.

As can be seen from these plots, as soon as the integral controller gain was set to zero both
the periodic oscillations and the large position error during the first few cycles disappears,
while a position drift has now been added. Figures 4.34, 4.35, 4.36, show the laser
tracker X, Y, Z, coordinates for the #4 test (no large time delay, no integral control).
Ignoring the drift, the measured achieved positions seem to be distributed rather randomly.

Comparing the results of the off-line programming test for motions from the standard RIA
path positions (see Figures 4.22, 4.23) with those for limited motions (see Figures 4.29,
430), it can be seen that the errors measured for the limited motion case are larger for both
accuracy and repeatability. The peak-to-peak amplitudes of the coordinates oscillations
probably cannot be compared because of the large position error during the first few cycles
of the limited motion off-line programming control case. From the test data discussed so
far it appears that the limited motion off-line programming test cannot be used as a
substitute of the standard RIA path positions off-line programming test, because the
behavior of the robot arm seems to be quite different for these two cases. The effect of the
integral gain, time delays and travel distance on performance has to be studied more
carefully. Preliminary results from tests with shorter travel distances and no integral
control show a significant drift over the duration of the tests..

4.3.4 Robot Position Resolution Tests

The objectives of the resolution tests were to observe and measure the ability of a robot arm
to move its end-effector by small increments in specific directions and the effect of the
number of measured increments on the results. Since, to the best of our knowledge, no
established robot position resolution tests exist, a simple test and metric were established
for the work reported here. Three orthogonal directions of motion, parallel to the robot arm
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baseframe coordinate axes, with the simulated sensor nest location as the nominal position,
were selected for the resolution test incremental moves. Increments of various lengths
were tested. Due to the small size of the allowable workspace a forward and backward
incremental motion had to be used

4.3.4.a Tests

The purpose of this test is to determine how well the robot can move very small distances.

The procedure for this testis as follows:

Move to S2
Record position data
Move to S2 + 0.150 mm in the world X direction
Record position data
Move to S2 + 0.300 mm in the world X direction
Record position data
Move to S2 + 0.450 mm in the world X direction
Record position data
Move to S2 + 0.600 mm in the world X direction
Record position data
Move to S2 + 0.450 mm in the world X direction
Record position data
Move to S2 + 0.300 mm in the world X direction
Record position data
Move to S2 + 0.150 mm in the world X direction
Record position data

A motion time of 5 s was specified for each of these incremental motions. This sequence
was repeated seven times, and then the same test was performed for incremental motions in
the world Y and Z directions. Each sequence for each direction requires just over 1 min to
perform. Total time for seven repetitions for all directions (168 points) is approximately 23
min. Cartesian trajectories were used for all motions.
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4.3.4.1b Analysis and Conclusions

The laser tracker coordinates of the 56 measured positions in each orthogonal direction of
movement were again divided into 7 analysis groups. The data contained in each group
were analyzed separately and the results of the analysis were used to determine the effect of
the number of measured positions on the results.

The mean and the standard deviation of the magnitudes of the increments in each direction
and for each analysis group were calculated. Table 4.7 in the Appendix shows the results
of the analysis of the last group of data which contains all 56 measured positions in each
orthogonal direction of movement, for commanded incremental moves of 0.15 mm.

Figure 4.37 is a three dimensional plot of the measured achieved positions (cross marks for
the X-direction moves, square marks for the Y-direction moves and triangle marks for the
Z-direction moves). The coordinate frame in that figure is that of the laser tracker after it
was translated to the centroid of those positions. As can be seen from that figure the
incremental moves in each direction are not of equal length or direction.

i`	 Figures 4.38, 4.39, 4.40 are plots of the mean values of the measured magnitudes of the
increments in the three directions of motion, versus the number of cycles contained in each
analysis group. As can be seen from these plots, the mean values seem to decrease and

japproach an asymptote after 24 to 32 cycles for the data coming from the X and Z-axes

a	 directions of movement, but not for the Y-axis direction of movement.

The 0.15 mm incremental motion tests gave very questionable results, raising doubts
whether this robot arm and controller can move in increments that small in specific
directions. To check whether the situation improves with larger size increments the test
was repeated with increments of 0.5 mm length. Table 4.8 in the Appendix shows the
results of the analysis of the last group of data which contains all 56 measured positions in
each orthogonal direction of movement, for commanded incremental moves of 0.5 mm.
Figure 4.41 is a three dimensional plot of the measured achieved positions.

Comparing the plots from Figures 4.37 and 4.41 it can be seen that no significant
improvement in the regularity of the magnitude and straightness of the incremental moves
has been achieved. This of course raises the question of whether the mean value of the
magnitudes of the increments is a sufficient measure for characterizing robot arm

32



Z

-1071.926 trim

(769.583, 1552.614, -1072.417)

1553.106 mm
Y

X ?70.075 mm

The cross marks the X-direction move

The square marks the Y-direction move

The triangle marks the Z-direction move

Figure 4.37	 Robot resolution test positions.
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Figure 4.41	 Robot resolution test positions.
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resolution. Perhaps if the mean value of the orientation error, with respect to the
commanded direction of move is included, a more complete description of the measured
achieved move will be provided. Another more compact way of characterizing robot arm
resolution would be to provide the mean value of the projection of the measured achieved
motion along the direction of commanded move.

In general, very small motions along orthogonal baseframe coordinate axes will be difficult
for a serial revolute arm to perform. This is because in most cases the motion of the arm
joints contribute in a complex way to Cartesian motion of the end effector, and joint-related
disturbances, such as stiction, become significant. Due to the smallness of the motion the
torque commands are initially not sufficient to overcome stiction. If an integral control term

is used, it will sense the error and build up the torque until motion initiates, then the arm
will probably overshoot the commanded position and the whole process will be repeated
again. Some possibilities for improving the incremental positioning resolution include
modifying the servo gains, and adding dither or other friction compensation torques to the
control. A more detailed study of this small torque-small displacement interaction would
have to be performed on the robot arm being tested to better understand the resolution error
problem.

4.4 Forward Kinematics Error Analysis

Under joint interpolated teach mode control the robot control system servo algorithm,
combined with the torque loop control, motor amplifiers, joint drives, and joint position

r and torque sensors, causes the robot to move the joints to prerecorded angles. Therefore
the teach mode control performance tests may reveal defects of any of the above
components. Under off-line programming the robot control system must also use the
inverse kinematics algorithms to determine the joint angles which correspond to the
commanded Cartesian coordinates. These angles then become the commands which are
sent to the servo level. Therefore the off-line programming performance tests may reveal
defects of the inverse kinematics algorithms as well as the servo algorithm, the mechanical
part of the robot arm, and other servo components. The objective of the analysis described
in this section was to test the performance of the forward kinematics model and algorithms.
Forward, kinematics algorithms are used by many new sophisticated robot controllers for
compliance control, precision move control, calibration, etc.
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No new tests had to be performed for the forward kinematics analysis work; any test data
which included target position information measured by the laser tracker and the robot
controller could be used for the purposes of this analysis. The idea behind this analysis is
to use the coordinates transformation to convert the laser tracker measured coordinates to
robot controller coordinates, then compare these converted coordinates to the robot
controller calculated coordinates for the same target positions. The differences in the two
sets of coordinates are due to errors in the forward kinematics algorithms of the robot .
controller and the laser tracker controller, since they are the ones used by the controllers to
convert from joint positions to target Cartesian coordinates. Equations 4.2 to 4.13 are then
used to calculate the accuracy and repeatability errors, where in this case the coordinates of
the achieved positions are the coordinates of the calculated errors and the coordinates of the
commanded position are all zeroes, which are the desired values of the errors.

One of the major sources of robot kinematic modelling errors is the joint position
initialization error. When the robot power is turned on its controller has to find the precise
location of its joints. Every time it does that a small bias error is added to the joint position
estimate. The combination of these errors results in a small translation and rotation of the
robot baseframe every time the power is turned off and on. The forward kinematics error
analysis can be used to estimate the contribution of this initialization error to the position
accuracy and repeatability errors. If the position data used to estimate the coordinates
transformation and the forward kinematics errors are collected before the robot power is
turned off, there will be no contribution from the joint position initialization offset error.
This is true because the coordinates transformation includes the translation and rotation of
the robot baseframe due to that error. If, on the other hand, the target positions are
collected after the power is turned off and on, any difference in the joint position
initialization will contribute to the measured performance errors.

To determine an estimate of the initialization error, two sets of data were analyzed. The
first was collected at about the same time the coordinates transformation data were collected
(with no reinitialization), while the second was collected the next day after the robot arm
power was turned off and on a couple of times. Of course, every effort was made to keep
all the other conditions of the experiment approximately the same, like the room
temperature, the amount of robot arm exercise, etc. The analysis of these two sets of data
are presented in the following sections.
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4.4.1 Continuous operation error analysis and Conclusions

The test data used for this analysis are those of the teach mode inverse kinematics test listed
in Table 4.2. At the end of that test and before the robot arm power was turned off data
from 14 positions were collected in order to determine the mathematical transformation
between the coordinate frame of the laser tracker and the robot baseframe. It is this
transformation listed in Table 4.3 that was used to convert the data used for this analysis.

The laser tracker coordinates of the 56 measured positions were again divided into 7
analysis groups. The data contained in each group were analyzed separately and the results
of the analysis were used to determine the effect of the number of measured positions on
the results.

Table 4.9 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. Figure 4.42 is a three dimensional plot of the
calculated forward kinematics errors (triangular marks), and their mean (cross mark).

Figure 4.43 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.44 is a plot of the ISO defined repeatability
error versus the number of cycles contained in each analysis group. As can be seen from
these plots the values of both of these errors are small compared to the errors measured
from all the previous tests. The variation in their values as a function of the number of
cycles is very small too.

4.4.2 Interrupted operation error analysis and Conclusions

The test data used for this analysis are those of the teach mode joint angles kinematics test
listed in Table 4.1. The same transformation used to convert the data of the continuous
operation forward kinematics error analysis was used for these data too. This is the
transformation listed in Table 4.3.

The laser tracker coordinates of the 56 measured positions were again divided into 7
analysis groups. The data contained in each group were analyzed separately and the results
of the analysis were used to determine the effect of the number of measured positions on
the results.
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Figure 4.42 Forward kinematics (continuous operation).

35a



f^
f

00

0
us

0a
o	 ►.
v

u

v ^
is U

o U ^
0 0

Z ao

u

0
eo

' w

0

0
d

t;



00

V

4
V

F

V ^

o c
.o

Z° a

0N

Cq
w"

D
r

O
s
O

i

s

00



Table 4. 10 in the Appendix shows the results of the analysis of the last group of data which
contains all 56 measured positions. Figure 4.45 is a three dimensional plot of the
calculated forward kinematics errors (triangular marks), and their mean (cross mark).

Figure 4.46 is a plot of the ISO defined accuracy error versus the number of cycles
contained in each analysis group. Figure 4.47 is a plot of the ISO defined repeatability
error versus the number of cycles contained in each analysis group. The variation in the
values of these errors as a function of the number of cycles is rather small.

Comparing Figure 4.43 with 4.46 shows that the level of the accuracy error in the case of
the interrupted operation is approximately 0.49 mm higher than that of the continuous
operation. Comparing Figure 4.44 with 4.47 shows that the level of the repeatability error
is approximately the same. This significant increase in the value of the accuracy error is
probably coming mostly from the joint position initialization error. The main source of the
forward kinematics errors are computer numerical algorithm errors. The random
component of these type of errors has usually a very small amplitude and that explains the
small variation of these errors as a function of the number of cycles.

5.0 CONCLUSIONS

From the variety of performance tests studied in this work it is evident that such tests can
be developed for most robot operations, from conventional Point-to-Point and Continuous
Path to less conventional tests like Impedance Control, etc. These performance tests can
evaluate general operating modes, like off-line programming and teach mode control or be
specific to a particular type of operation like assembly of truss structures, etc. Existing or
proposed standard tests can be used, or new ones car, be devised based on the application
and the knowledge of the control procedures used. The nature of the FTS sensor nest is a
significant constraint in developing and conducting these tests; still, a substantial amount of
data can be gathered and significant robot performance information can be obtained from
them.

The teach mode joint angles kinematics control performance test is a rather simple test to
perform and still can give significant information about the quality of the position servoing
capability of the robot. This mode of operation gave the lowest accuracy and repeatability
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Figure 4.45 Forward kinematics (interrupted operation).
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errors. The teach mode inverse kinematics control errors are higher than those of the teach
mode joint angles kinematics control, Thus, Cartesian interpolated motion should only be
used where the requirement for a straight line path outweighs the negative affect of
additional errors. Of course, the additional errors incurred with Cartesian interpolated
motion are highly dependent on the particular inverse kinematics algorithm used.

Despite the small workspace available, a coordinates transformation can be determined to

convert metrology instrument measured position data to robot baseframe coordinates with

reasonable accuracy. Seven data positions are sufficient to estimate the parameters of the
transformation, unless the transformation will be used for non-destructive testing.

The off-line programming errors are much larger than those of the teach mode operation.

Since the difference is mainly due to kinematic modelling errors special care should be
given to the accuracy of kinematic calibration.

Very small incremental moves along orthogonal baseframe directions seem to be difficult to
perform for the RRC K-1607 robot with the control system used. This will probably be
true of most serial revolute arms. In order to characterize the robot resolution performance
both the magnitude and direction of the moves should be measured.

Forward kinematics error analysis is a simple and easy to perform analysis which does not
require additional testing. If possible, this analysis should be applied to position data
collected before and after turning the robot power off and on in order to estafnate the offset
error.

All the performance plots seem to be divided into two sections depending on the number of
test cycles. The first section with a number of cycles less than 8 to 16 shows high values
of errors, probably due to random errors, thermal drift and dynamic motion transients. The
second section with a number of cycles greater than 16 to 32 shows that the errors reach
asymptotic values. Although more study is needed, it is felt that the first section
characterizes robot intermittent operation, while the second is representative of prolonged
continuous operation. Thus the number of test cycles used for performance testing should
be decided based on the type of the robot use. In the case of the FTS this will be
intermittent operations.
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Individual X, Y, ana Z-axis plots of measured achieved positions versus the number of
cycles or time may reveal cyclic positioning variation. The presence of any cyclicity should
be examined carefully and the peak-to-peak amplitude measured. In several instances it
was observed that this amplitude was larger than the value of the ISO-defined repeatability
error. Similarly any large position differences among the first few points should be

measured and studied. Although further investigation would be desirable, at this time it

appears that a limited motion test should not be used as a substitute for the more complex
standard path positions test. As with the intermittent versus continuous operation tests

above, however, the appropriateness of the limited motion test may depend on the type of

robot operation being performed.

6.0 RECOMMENDATIONS FOR FURTHER INVESTIGATION

The prototype tests presented here have provided insight as to the suitability of a number of
different metrology tests for FTS performance verification. They have also provided an
estimate of the positioning performance which may reasonably be expected from the current
ICG lab manipulator/control system combination. In addition, they have indicated the
relative importance of several factors which affect the test results. The test results also raise
new questions, however, which would require further investigation to answer
satisfactorily.

Questions regarding the performance of intermittent versus continuous operation have to be
investigated further. During the first few test cycles the performance errors seem to
increase significantly, probably because of thermal drift and dynamic motion transients. If
a small number of cycles is used for the evaluation of these errors then random
measurement errors could further increase the values of the performance errors. Two
questions that need to be answered, then, are: 1) How many cycles does it take until
transients and thermal drift have no effect on performance? 2) For a given number of test
cycles, what percent of the measurement error is due to random measurement error?

The mechanism which results in large initial errors and cyclic variation position should be
better understood. Is the integral control action associated with a time delay responsible for
this type of behavior? Could the controller be modified to eliminate this problem without
sacrificing the integrator? As part of this work the effect of time delays and distance of
travel should be studied too.
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The sources of the distortion during small incremental moves in specific directions should
be further investigated. Precision positioning requires this type of small corrective moves,
What is the primary source of the error? How can the situation be improved?

The accuracy error plot of the teach mode joint angles kinematics control tests (Fig. 4.6)

shows a small rise after 40 cycles. The rise is very small but perhaps it should be
investigated more thoroughly. Similarly the accuracy error plot of the teach mode inverse
kinematics control tests (Fig. 4.13) is different than the rest of the accuracy error plots,
which resemble a simple exponential decay and perhaps should be investigated further.
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Table 4.1	 Teach mode joint angles kinematics control analysis results.
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Teach mode inverse kinematics control analysis results.
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Teach mode inverse kinematics control analysis results.
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Table 4.3
	

Coordinates transformation analysis results ( 14 positions).
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Table 4.3	 Coordinates transformation analysis results (14 positions).
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Coordinates transformation analysis results (7 positions).
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Table 4.5	 Standard initial positions off-line programming analysis results.
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Standard initial positions off-line programming analysis r .cults.
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Table 4.6	 Limited motion off-line programming analysis results.
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ROBOT POSITION RESOLUTION ANALYSIS

No. of incremental moves = 55

MEASURED POSITIONS

X	 Y	 Z

Movement in the X-Axis direction

769.828688
770.012846
769.741931
769.609515
769.499419
769.482532
769.453115
769.439476
769.584114
769.533557
769.398620
769.304717
769.141093
769.186203
769.274922
769.373427
769.515844
769.514290
769.416616
769.291403
769.165273
769.186331
769.267106
769.343767
769.530598
769.487515
769.362265
769.268833
769.149583
769.192606
769.270564
769.380349
769.546438
769.514448
769.403209
769.3I7809
769.199455
769113539
769.291861
769.365641
769.526753
769.497855
769.402814
769299292

1552.123009 -1072.240768
1552.347347 -1072.017640
1552.670747 -1072.149516
1552.928975 -1072.218508
1552.956698 -1072.189112
1552.856120 -1072.160166
1552.796014 -1072.207286
1552.732104 -1072.234757
1552,651597 -1072.179883
1552.731483 -1072.230981
1552.860820 -1072.363012
1552.907489 -1072.436451
1552.921388 -1072.543312
1552.806332 -1072.479741
1552.668315 -1072.428045
1552.593812 -1072.371752
1552.587620 -1072.321519
1552.755287 -1072.381117
1552.899018 -1072.477586
1552.997660 -1072.573093
1553.046840 -1072.646451
1552.945844 -1072.618253
1552.860580 -1072.554508
1552.767194 -1072.489527
1552.677238 -1072.376896
1552.751413 -1072.410448
1552.920291 -1072.537185
1552.989916 -1072.600192
1553.019984 -1072.679752
1552.935061 -1072.641090
1552.842614 -1072.566315
1552.737912 -1072.487641
1552.648958 -1072.367089
1552.726733 -1072.417537
1552.873356 -1072.514440
1552.949127 -1072.568207
1552.982046 -1072.638194
1552.907020 -1072.615572
1552.817134 -1072.555462
1552.749103 -1072.489806
1552.663010 -1072.404463
1552.749564 -1072.438777
1552.867680 -1072.517230
1552.954236 -1072.584011

Table 4.7 Robot positron resolution
analysis results (commanded

incremental moves of 0.15 mm).

54



769.209451
769.246736
769.287038
769.368220
769.569030
769.5 69296
769.448119
769.379350
769.247404
769.245821
769.341893
769.411202

1552.946267
1552.875085
1552.810661
1552.722823
1552.670203
1552.725478
1552.875181
1552.954982
1552.974879
1552.920193
1552.813947
1552.725134

-1072.656674
-1072.603428
-1072.544846
-1072.483016
-1072.363411
-1072.384205
-1072.487997
-1072.541138
-1072.624706
-1072.596496
-1072.517878
-1072.462664

Movement in the X-Axis direction

769.606637 1552.786055 -1072.387552
769.777505 1552.652785 -1072.291611
769.882724 1552.530691 -1072.230492
769.921646 1552.461085 -1072.252513
769.997520 1552.423168 -1072.277282 Table 4.7 Robot position resolution
769.910480 1552.531586 -1072.399886
769.770853 1552.671252 -1072.520693 analysis results (commanded

769:603269 1552.860272 -1072.679352 incremental moves of 0.15 mm).
769.453743 1553.017973 -1072.817439
769552360 1552.897746 -1072.701608
769.678249 1552.759357 -1072.577447
769.809317 1552.595639 -1072.453135
769.949718 1552.422266 -1072.330650
769.875640 1552.489055 -1072.406199
769.761861 1552.623411 -1072.517640
769.621229 1552.775439 -1072.648589
769.440563 1552.961474 -1072.775819
769.544106 1552.851164 -1072.671856
769.689685 1552.702293 -1072.535210
769.843817 1552.559834 -1072.412861
770.000221 1552.497469 -1072.310282
769.925016 1552.592083 -1072.419420
769.785076 1552.757798 -1072.540917
769.646207 1552.907815 -1072.653669
769.478523 1553.091674 -1072.793672
769.551282 1553.010469 -1072.716252
769.708669 1552.835546 -1072.550536
769.889324 1557.45 1 6.55 -1072.413572
769.994249 1552.508125 -1072.338230
769.931215 1552.571180 -1072.403442
769.808169 1552.713770 -1072.497592
769.670361 1552.849155 -1072.630774
769546372 1552.987431 -1072.724870
769.606618 1552.926359 -1072.633883
769.736900 1552.780944 -1072.532363
769.883221 1552.612237 -1072.404313
770.026759 1552.456541 -1072.298467
769.942606 1552.535830 -1072.374886
769.813815 1552.666692 -1072.479321
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769.656425
769.479090
769.552307
769.658991
769.816772
769.909129
769.848400
769.731534
769.611098
769.445826
769532323
769.676123
769.797027
769.911406
769.865877
769.728256
769.591258

1552.762674
1552.907238
1552.830785
1552.692456
1552.526042
1552.416012
1552.474677
1552.586166
1552.721467
1552.903986
1552.833166
1552.663666
1552.493368
1552.374403
1552.434522
1552.576002
1552.718960

-1072.585300
-1072.727502
-1072.646475
-1072.530593
-1072.408142
-1072.333371
-1072.397265
-1072.501032
-1072.608937
-1072.758775
-1072.667886
-1072.524202
-1072.404380
-1072.309295
-1072.377612
-1072.474208
-1072.602752

Movement in the Z-Axis direction
Table 4.7 Robot position resolution

analysis results (commanded

incremental moves of 0.15 mm).769.464073
769.450420
769.408882
769.419722
769.416974
769.431527
769.464747
769.456738
769.532865
769.521339
769.463507
769.404349
769.423666
769.419958
769.461396
769.443185
769520245
769.505617
769.458865
769.411082
769.434586
769.457342
769.459966
769.489168
769.557342
769.546264
769.517216
769.444782
769.446615
769.460806
769.495995
769.541870
769.584177
769591928

1552.919976 -1072.694283
1552.912704 -1072.616605
1552.955548 -1072.573248
1552.973582 -1072.489754
1552.996548 -1072.382401
1552.941817 -1072.326139
1552.865209 -1072.331459
1552.829557 -1072.335314
1552.755819 -1072.356795
1552.759626 -1072.355645
1552.831741 -1072.389231
1552.902866 -1072.370476
1552.929203 -1072.296225
1552.904981 -1072.273227
1552.853113 -1072.283728
1552.838722 -1072.311924
1552.735936 -1072.339020
1552.766842 -1072.333026
1552.863041 -1072.358362
1552.933367 -1072.346732
1552.974137 -1072.299388
1552.950880 -1072.289078
1552.904166 -10,&.298920
1552.839364 -1072.292430
1552.758639 -1072.293954
1552.808036 -1072.326891
1552.879178 -1072.346342
1552.963723 -1072.357068
1552.990513 -1072.295905
1552.975444 -1072.284694
1552.910917 -1072.259680
1552.836604 -1072.245074
1552.767582 -1072.275575
1552.794329 1072.277584
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769.539407
769.478738
769.485672
769.484718
769.499071
769.544371
769.596184
769.584502
769.531099
769.489331
769.471603
769.476364
769.524465
769.537640
769.579964
769.592567
769.550440
769.496166
769.491034
769.491565
769.498711
769543929

1552.876441
1552.996060
1553.082875
1553.066398
1553.029320
1552.953509
1552.855515
1552.891079
1552.975657
1553.056010
1553.105682
1553.066330
1553.011374
1552.964339
1552.862863
1552.890475
1552.951797
1553.039819
1553.077694
1553.053668
1553.010178
1552.938461

-1072.318746
-1072.349014
-1072.310918
-1072.306300
-1072.315422
-1072.295583
-1072.318826
-1072.320811
-1072.356023
-1072.364341
-1072.315345
-1072.313296
-1072.293721
-1072.294652
-1072.312309
-1072.326722
-1072.343921
-1072.363942
-1072.301344
-1072.303886
-1072.297397
-1072.286121

V

Table 4.7 Robot position resolution
analysis results (commanded

incremental moves of 0.15 mm).

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE X-AXIS
DIRECTION

Resolution - 0.156625	 Sigma = 0.070600

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE Y-AXIS
DIRECTION

Resolution = 0.208025	 Sigma = 0.056606

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE 2t AXIS
DIRECTION

Resolution = 0.073010 Sigma = 0.031027
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ROBOT POSITION RESOLUTION ANALYSIS

No. of incremental moves = 55

MEASURED POSITIONS

X	 Y	 Z

Movement in the X-Axis direction

769.767736
769.959476
770A58953
770.941056
771AI2926
771.259507
770.719725
770.117304
769.538943
769.701115
770.214106
770.735293
771.147331
770.895156
770.470043
769.912160
769.375701
769.579580
770.138143
770.612609
771.120362
770.962985
770.593878
769.999646
769.548983
769.708927
770.249906
770.704245
771.245940
771.090819
770.692832
770.053177
769.474686
769.627103
770.120102
770.680202
771206906
770.983367
770.576256
769.924041
769.411359
769.571407
770.080213
770.549522

1552.677351 -1072.318677
1552.493000 -1072.404938
1553.186239 -1072.681214
1553.311439 -1072.497534
1553.387432 -1072.315250
1553.816508 -1072.530830
1553.808064 -1072.875978
1553.668466 -1073.128186
1552.967463 -1072.955386
1552.685883 -1072.768096
1552.822927 -1072.642508
1553.075107 -1072.576545
1553.165604 -1072.405544
1553.512859 -1072.674313
1553.702783 -1072.952.62
1553.453461 -1073.189525
1552.845273 -1072.976701
1552.468667 -1072.799365
1552.688213 -1072.582710
1553.034584 -1072.622331
1553.157121 -1072.412558
1553.466903 -1072.605501
1553.690057 -1072.841959
1553.425112 -1073.105567
1552.780151 -1072.885067
1552.445798 -1072.699086
1552.608840 -1072.465829
1552.995287 -1072.546031
1553.153799 -1072.290364
1553.452655 -1072.483109
1553.698073 -1072.758666
1553.447086 -1073.075927
1552.662117 -1072.887676
1552.365088 -1072.740549
1552.563536 -1072.523310
1552.876266 -1072.525446
1553.041724 -1072.263285
1553.426319 -1072.531727
1553.657190 -1072.822223
1553.365318 -1073.130337
1552.627876 -1072.920133
1552.344407 -1072.765352
1552.547627 -1072.551831
1552.903774 -1072.604166

Table 4.8 Robot position resolution
analysis results (commanded

incremental moves of 0.5 mm).
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771.151284 1553.042528
770.999096 1553.386752
770.622142 1553.617018
769.972138 1553.350320
769.453392 1552.678852
769.595449 1552.356478
770.120285 1552.518938
770.585367 1552.905407
771.157040 1553.053931
771.004052 1553.364396
770.633659 1553.624181
770.006714 1553.363175

Movement in the Y-Axis

769.382215 1552.382531
769.670122 1551.7 85465
769.985904 1551.085509
770.392957 1550-835708
770.616775 15 50.4 8 6085
770.137064 1550-840529
769.705 667 15 51.5 97002
769.667 907 1552.495141
769.620962 1552.899021
770.044574 1552.387264
770.426979 1551.897803
770.579473 1551.292038
770.790747 1550.625984
770.351972 1551.015693
769.938660 1551.604850
769.667537 1552.335897
769.559194 1552.717889
769.969812 1552.338095
770.353091 1551.801435
770.437077 1551.137935
770.748777 1550.433674
770.312096 1550.874401
769.799915 1551.473179
769.487891 1552.135257
769.477775 1551.697316
769.921150 1552.318997
770.342649 1551.788632
770.534507 1551.130885
770.871600 1550.643714
770.429076 1551.090447
769.914130 1551.635197
769.509611 1552.317202
769.518032 1552.877008
769.950891 1552.516358
770.371810 1551.988918
770.535588 1551.338018
770.829730 1550.657179
770.400691 1551.085855
769.904694 1551.653545

-1072.332503
-1072.491405
-1072.780980
-1073.099202
-1072.921105
-1072.770007
-1072.534224
-1072.586575
-1072.323580
-1072.491347
-1072.746394
-1073.073219

di=don

	-1072.837471	 Table 4.8 Robot position resolution
	-1072.520563	 analysis results (commanded
	-1072.308480	 incremental moves of 0.5 mm).-1072.275849

-1072.455935
-1072.919218
-1073.277772
-1073.231095
-1072.841426
-1072.355602
-1072.140927
-1072.308221
-1072.311913
-1072.745408
-1073.089681
-1073.233661
-1072.844626
-1072.426043
-1072.163639
-1072.381601
-1072.273395
•1072.694122
-1073.120961
-1073.315887
-1072.916869
-1072.448942
-1072.170431
-1072.273409
-1072.241673
-1072.676286
-1073.138502
-1073.371535
-1072.955832
-1072.466577
-1072.209229
-1072.368815
-1072.276041
1072.718035

-1073.134964



769.550576
769.528740
769.972289
770.356424
770.488519
770.788064
770.362193
769.859391
769.462330
769.511870
769.926480
770.361831
770.544471
770.847983
770.428509
769.921437
769.498539

1552.259359
1552.722984
1552.350940
1551.895099
1551102329
1550.513671
1550.933777
1551.511742
1552.121523
1552.669589
1552.354113
1551.851081
1551.204854
1550.519134
1550.916555
1551.474946
1552.111628

-1073.335997
-1072.849480
-1072.453771
-1072.203052
-1072.349169
-1072.253582
-1072.691269
-1073.091928
-1073.346262
-1072.897079
-1072.451404
-1072.192529
-1072.294493
-1072.190887
-1072.616864
-1073.050447
-1073.317790

Movement in the 2-Axis direction Table 4.8 Robot position resolution

analysis results (commanded

incremental moves of 0.5 mm).
769.433704
769.359997
769.355270
769.519639
769.572665
769.568668
769.571584
769.688959
769.906065
769.866167
769.782058
769.703893
769.465698
769.408818
769.474270
769.589189
769.637005
769.601692
769.508066
769.465451
769.317733
769.273778
769.273864
769.406282
769.709209
769.696715
769.579730
769.596191
769.557481
769.503762
769.497201
769.565165
769.840621
769.856038

1552.520788
1552.294272
1552.326698
1552.158798
1552.095362
1552.318161
1552.465165
1552.802102
1552.784124
1552.652340
1552.742035
1552.433098
1552.058782
1552.222223
1552.366504
1552.685837
1552.742075
1552.613512
1552.658902
1552.325754
1552.031860
1552.201392
1552.365666
1552.686632
1552.748934
1552.625483
1552.678687
1552.382512
1552.013377
1552.188945
1552.352689
1552.702092
1552.780586
1552.602015

-1073.001668
-1073.143947
-1073.624622
-1073.757073
-1074.193889
-1074.240185
-1073.921433
-1073.542023
-1072.685931
-1072.795295
-1073.351839
-1073.684952
-1074.272030
-1074.317985
-1073.957806
-1073.601756
-1072.878837
-1072.960084
-1073.521923
-1073.818527
-1074.350854
-1074.393450
-1074.107382
-1073.738304
-1072.872415
-1072.905854
-1073.478285
-1073.740383
-1074.186928
-1074.203798
-1073.946330
-1073.616496
-1072.753952
-1072.778013
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769.732632
769.653767
769.550292
769.460403
769.468064
769.570478
769.690804
769.636112
769.547664
769.548180
769.393213
769.344663
769.331633
769.413670
769.690657
769.698957
769.606612
769.628832
769.565476
769.546244
769.538448
769560115

1552.653199 -1073.382687
1552.364817 -1073.709379
1552.045477 -1074.180222
1552.222444 -1074.239289
1552.346013 -1073.972353
1552.649251 -1073.630228
1552.765159 -1072.884378
1552.675951 -1072.972767
1552.705261 -1073.479659
1552.354671 -1073.773899
1552.087881 -1074.310423
1552.273207 -1074.331390
1552.404125 -1074.07287:
1552.720594 -1073.734059
1552.811272 -1072.892284
1552.662814 -1072.908828
1552.703711 -1073.450457
1552.394758 -1073.741330
1552.085762 -1074.177185
1552.251706 -1074.199763
1552.367693 -1073.922414
1552.721383 -1073.646588

Table 4.8 Robot position resolution

analysis results (commanded

incremental moves of 0.5 mm).

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE X-AXIS
DIREMON

Resolution = 0.594424	 Sigma = 0.160903

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE Y-AXIS
DIREC'! ION

Resolution = 0.732857	 Sigma = 0.094315

MEAN VALUE AND STANDARD DEVIATION OF THE RESOLUTION IN THE Z-AXIS
DIREC11ON

Resolution = 0.440251	 Sigma = 0213103
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Table 4.9	 Forward kinematics error analysis results (continuous operation).
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Table 4.9	 Forward ldnemadcs error analysis results (continuous operation).
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Table 4.9	 Forward kinematics error  arWysis results (continuous operation).
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Table 4.9	 Forward kinemadcs error analysis results (continuous operation).
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Table 4.10	 Forward kinematics error analysis results (internvpted operation).
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Forward kinematics envy analysis results (interrupted operation).
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	 Forward kinematics error analysis results (interrupted operation).
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Table 4.10	 Forward kinematics error analysis results (interrupted operation).
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