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1. Introduction

An understanding of the structure and evolution of atmospheric
circulation is ultimately linked with knowledge of atmospheric heat sources
and sinks. Prior to the Global Weather Experiment (GWE), from December 1978
through November 1979, detailed global analyses of heating were lacking due to
the paucity of data over much of the earth. The enhanced observational system
of the GWE in combination with global data assimilation models developed for
the GWE has provided unprecedented global data sets for the study of the
planetary circulation (National Research Council, 1985). A determination of
the global distribution of heating during the annual cycle of the GWE is now
feasible.

The large-scale distributions of heating have been estimated by several
methods. In one method, net heating is determined from independent estimates
of the individual components associated with radiation, condensation and
sensible heating (e.g., Budyko, 1963: Newell et al., 1969, 1974; Otto-Bliesner
and Johnson, 1982; Zillman and Johnson, 1985). Net heating has also been
obtained from analysis of the energy balance required by the First Law of
Thermodynamics (e.g., Hantel and Baader, 1978; Geller and Avery, 1978; Lau,
1979) and from the quasi-geostrophic balance of vorticity and energy (e.g.,
Wiin-Nielsen and Brown, 1962; Brown, 1964).

Numerous investigations have estimated global heating distributions with
data from the GWE. Kasahara and Mizzi (1985), Masuda (1984), Sardeshmukh
(1984), Holopainen and Fortelius (1986), Chen and Baker (1986) and Kasahara,
Mizzi and Mohanty (1987) employed the First Law of Thermodynamics. Boer
(1986) and Johnson (1985) estimated vertically integrated heating from total
energy balance. Wei, Johnson and Townsend (1983), Johnson and Weil (1985),
Johnson, Yanai and Schaack (1987) and Schaack, Johnson and Wei (1990) computed
heating through vertical integration of the isentropic equation of mass
continuity. Although exact comparisons of heating distributions from the
above investigations have not been carried out, overall agreement is apparent
in the general features of the distributions calculated from GWE data sets.

The purpose of this atlas is to provide estimates of the global
distribution of atmospheric heating throughout the annual cycle of the Global
Weather Experiment. Heating rates are calculated through integration of the
isentropic mass continuity equation (Wei et al., 1983; Schaack et al., 1990)
utilizing the European Centre for Medium-range Weather Forecasts (ECMWF) Level
{IIb data set. Distributions of monthly, seasonally and annually averaged
heating are presented for isentropic and isobaric layers within the
troposphere and for the troposphere as a whole. The horizontal distributions
of heating identify planetary heat sources and sinks and their temporal
evolution. A systematic vertical variation of heating that is linked with the
distribution of continents and oceans is also evident (Schaack et al., 1990).
Meridional cross sections of temporally and zonally averaged heating are also
presented.



2. Data

The data used in the preparation of this atlas are from the ECMWF GWE
Main Level IIIb data set for the period December 1978 through November 1979.
Here "Main" denotes the original analysis of the GWE data. ECMWF has
subsequently produced a reanalyzed data set for a portion of the GWE. The
Level IIIb data, resulting from assimilation, represent a combination of
observed and model generated information. The characteristics of the ECMWF
data assimilation system utilized in processing the GWE data are discussed by
Bengtsson et al. (1982) and Bengtsson (1983). The characteristics of the
various assimilation systems employed in the preparation of GWE Level IIT data
sets are summarized in tabular form by Daley et al. (1985) and Daley (1987).

Global distributions of zonal and meridional wind components, temperature
and geopotential height were available for 0000, 0600, 1200 and 1800 GMT of
each day of the GWE year on a 1.875° latitude-longitude grid for 15 mandatory
pressure levels between 1000 and 10 mb. From these data, global isentropic
analyses were generated on a 3.75° latitude-longitude grid for 0000 and 1200
GMT of each day of the GWE year through linear interpolation of the relevant
meteorological variables with the R over cy power of pressure (R is the gas
constant for dry air and cj, the specific heat of dry air at constant
pressure). In employing tge Lorenz convention (Dutton and Johnson, 1967) on
underground isentropes (i.e., 8 < 0g; 6g is the surface potential
temperature), the pressure and wind components were set equal to their
respective surface values.

Information at the earth'’s surface was not provided in the ECMWF Main
Level IIIb analyses. Therefore, surface values of pressure, temperature and
zonal and meridional wind components were estimated from GWE Level III
isobaric data. Surface pressure was interpolated by assuming that
geopotential varies quadratically with the logarithm of pressure, In(p)
(Gerrity, 1977). Surface temperature and horizontal wind components were
assumed to vary linearly with ln(p) except when surface pressure was greater
than 1000 mb, in which case temperature was extrapolated downward from 1000 mb
using the standard atmosphere lapse rate of 6.5 K km™!.

The fields of zonal and meridional wind components and geopotential
height in the ECMWF GWE Main Level IIIb data set were archived before
initialization, while the temperature fields were archived after
initialization (Bengtsson, 1983). Because of a preference to use only
uninitialized information in the analyses, temperature was computed from
thickness and layer mean relative humidity. Due to the possibility of errors
in the height fields at 150 mb (Julian, 1983), the height information at this
level was not utilized in creation of the isentropic data set.

A varying vertical resolution in the isentropic domain was adopted; 10 K
between 220 K and 380 K, 20 K between 380 K and 500 K followed by 550 K and
650 K. After a preliminary study of the heating distributions for the months
of January and July 1979, the 400 K isentropic level was designated as the top
level (6T) for the analysis of heating. The global distributions of heating
for July calculated using 400 K and 650 K as the top of the isentropic data
are very similar. However, the inclusion of the data above 400 K appeared to
have a negative impact on the global distribution for January.



Distributions of heating in layers above 400 K in January (not shown),
which for the most part are located in the stratosphere, appear to contain
unrealistic features in some regions, particularly over eastern Asia. This
results from large values of divergence in stratospheric isentropic layers in
some regions which are thought to be unrepresentative (National Research
Council, 1985; Johnson, 1986). Several changes affecting stratospheric
analyses were made in the assimilation system at ECMWF during the analysis of
December and January of the GWE year which likely impacted the results for
isentropic layers above 400 K. The time-averaged pressure of the 400 K
isentropic level is less than 160 mb over the globe in each month of the GWE
year. In January the time-averaged pressure of the 400 K isentrope slopes
from near 85 mb in the tropics to 150 mb in extratropical latitudes.

3. Description of Analyses

The analyses of the annually, seasonally and monthly averaged heating and
pressure for the GWE year presented in this atlas consist of the following:

1. Global analyses of vertically averaged heating for the surface to
400 K isentropic layer.

2. Global analyses of isobaric layer-averaged heating;
(A) surface to 800 mb (C) 600 to 400 mb
(B) 800 to 600 mb (D) 400 to 200 mb
3. Global analyses of isentropic layer-averaged heating;
(A) surface to 290 K (C) 310 to 330 K
(B) 290 to 310 K (D) 330 to 400 K
4. Meridional cross sections of isentropically and isobarically zonally
averaged heating; meridional profile of zonally and vertically

averaged heating.

5. Global analyses of surface pressure and the pressure difference
between the earth'’s surface and the 400-K isentropic surface.

6. Global analyses of the pressure difference between the upper and
lower surfaces of the isentropic layers in (3).

The following points concerning the analyses are noted:

1. The heating distributions were calculated from time-averaged data
through vertical integration of the isentropic mass continuity
equation. See Appendix A for a detailed discussion of the method of
calculation and the following subsection for the definition of the
mass-weighted averages.



2. The,relation between the heating rate as presented in this atlas
by 6 and the rate of specific heat addition, Q, is given by

6=0Q/ (1)

where m, the Exner function, is equal to cp(p/poo)K with K—R/Cp.

3. All horizontal heating distributions have been filtered to emphasize
wavelengths greater than 4000 km. Details of the filtering employed
are discussed in a subsequent subsection along with smoothing of the
zonally averaged heating distributions.

4. In the analyses, contours are omitted where the atmospheric layer
does not exist (i.e., there is zero mass in the layer). The quasi-
horizontal line at the bottom of the analyses in the zonally averaged
1sentropic cross sections represents the coldest surface potential
temperature occurring along the latitude circle during the time
period considered.

Since the heating was calculated by integration of the isentropic mass
continuity equation, the most direct method to display the vertical
distribution from these results is in isentropic coordinates. However, for
utilization of the results in studies employing isobaric coordinates,
vertically averaged estimates are also presented for four isobaric layers.
These distributions were obtained by interpolating the time-averaged
isentropic profiles of heating to isobaric levels at 50-mb increments between
200 mb and the earth’s surface assuming a linear variation with respect to the
R over Cp power of the temporally averaged pressure. These interpolated
values were subsequently mass-weighted vertically averaged over the four
isobaric layers: surface-800 mb, 800-600 mb, 600-400 mb and 400-200 mb. The
global distributions are expressed as heating per unit mass in order to
properly account for the condition that the earth's surface bounds the lowest
layer, and also occasionally bounds the second lowest layer in regions of
elevated orography.

Along with the distributions of heating, several additional fields are
provided. These are the time-averaged surface pressure, the time-averaged
pressure difference between the surface and the 400-K isentropic surface and
the time-averaged pressure difference between the upper and lower surfaces of
the four isentropic layers. These analyses indicate the time-averaged mass
distribution within the various layers for which heating is estimated. The
time-averaged pressure of an isentropic surface bounding any of the layers may
be determined from the analyses by subtracting the sum of the pressure
differences of the individual isentropic layers up to the level of interest
from the time-averaged surface pressure.



3.1. Definition of Mass-weighted Averages

With the hydrostatic assumption, the mass within an isentropic layer is
determined by the pressure difference between the upper and lower isentropic
levels through integration of the hydrostatic relation

pJg = -g~' 8p/de, (2)

where p is density, Jg=|8z/36|, p is pressure, 6 is potential temperature, z
is geopotential height and g is the acceleration due to gravity. The mass-
weighted temporally and vertically averaged heating is defined by

"e,t

. ] to . 0 to
6 = [V [Pp1g0 dtde / [ ° [ “plg dtde . (3)
61, " t1 6 t1

The upper and lower isentropic surfaces bounding the isentropic layer are oy
and 8, while the ending and beginning of the time averaging period are t2 and
ty, respectively. 1In the vertical average over the entire extent of the
isentropic analyses, 6y = 6T = 400 K and 61, = 6g in (3).

The mass-weighted temporally and zonally averaged heating is defined by

ALt

2n t . 2n t
6 = [T pIge dtdr / [ [ ‘plg dtdr , (4)
0 "ty 0"ty

while the temporally, zonally and vertically averaged heating is defined by

*0,A,t

6T 2n tao . er 2n ta
- Ja6 dtdAdo Jg dtdAde . (5)
e TR

The contribution to the above integrals from underground isentropic layers
(i.e., where 6 < 6g) is identically zero due to the hydrostatic assumption and
the use of the Lorenz convention (Dutton and Johnson, 1967).

3.2. Filtering of Heating Distributions

All horizontal distributions of heating presented in this atlas have been
filtered in order to isolate large-scale features and suppress noise. First,
zonal harmonics with wavelengths less than 4000 km are removed through
truncation of one dimensional Fourier transforms (Wei et al., 1983).
Meridional smoothing is then applied through a combination of four passes of a
low pass (2,3,2) filter and one pass of an inverse (-1,5,-1) filter. The
frequency response of the meridional smoothing for selected wavelengths is
given in Table 1.



Table 1

Frequency Response of Meridional Filtering!

Wavelength (km) % of original amplitude retained
12,000 96
10,000 95
8,000 92
6,000 85
4,000 69
3,000 49
2,000 16

'Meridional spatial filter composed of four passes of a low pass (2,3,2)
filter and one pass of an inverse (-1,5,-1) filter.

The same meridional smoothing has been applied to the zonally averaged
distributions with the following exception. Mass-weighted zonal averaging
acts to smooth data in proportion to the meridional distribution of mass which
tends to vary proportionally to the cosine of latitude. Recognizing this
inherent smoothing, the application of the meridional smoothing was made
proportional to the absolute value of the sine of latitude thereby
complimenting the smoothing inherent in the mass-weighted average. The
weighting by the sine of latitude results in an increase of smoothing with
latitude, from zero at the equator to a maximum at the poles.

4. Uncertainties in Estimation of Heating

The accuracy of the heating estimates for the year of the GWE presented
in this atlas depends on many factors. The ECMWF Level III data are prepared
through use of an assimilation model. Therefore, the accuracy of the heating
distributions, being determined from a combination of observations and model
generated information, depends on the quality of the observations, the
assimilation model and the diagnostic method utilized. Since a detailed
analysis of the errors was not feasible, the following discussion is of a
general nature that aims simply to direct attention to potential sources of
errors in the analyses.

In estimating the four-dimensional distribution of heating within
isentropic coordinates, the interpolation of the Level III data to form an
isentropic data set and the creation of the surface data introduces
uncertainty. The lack of information concerning the diabatic mass flux at the
upper level of the analyses and the uncertainty regarding the adjustment
employed to remove the bias and insure mass balance are also potential sources
of errors in the computations.

In estimating the isobaric heating distributions in this atlas, the
interpolation of heating from isentropic to isobaric coordinates using time-
averaged data may not truly reflect the time-averaged isobaric profile of
heating in some regions due to the transient variation of pressure on
isentropic surfaces. In transient baroclinic disturbances, latent heating



likely occurs at higher pressure (i.e., warmer temperatures) than indicated by
the time-averaged pressure (i.e., a "mean" temperature) for the isentropic
level to which it is assigned.

1f the primary objective was to determine the structure of heating
relative to isobaric coordinates, optimum estimation suggests that the
interpolation of the distribution of heating from isentropic to isobaric
coordinates be carried out for each observational time (as in the more limited
study in time by Schaack et al. (1990)) rather than interpolating the time-
averaged isentropic distribution of heating to isobaric coordinates employing
the time-averaged pressure distribution (as in this atlas). Since the primary
focus of our research has been to determine the heating distribution relative
to isentropic coordinates no attempt was made to interpolate from isentropic
to isobaric coordinates for each time period of the GWE year; a step which
would have required an extensive reprocessing of the entire GWE data set.

The differences between results employing interpolation of heating from
isentropic to isobaric coordinates for each time period (Schaack et al., 1990)
versus interpolation of time-averaged structure lie within the realm of
uncertainty. Schaack et al. show results for corresponding isobaric layers
for January, April, July and October 1979. The most notable differences
between estimates occur in January over the oceanic storm tracks of the
Northern Hemisphere. These reglons are characterized by the combination of
sharp temperature gradients associated with land-ocean contrasts and the
passage of baroclinic disturbances. In these regions, the results of Schaack
et al. (1990) generally show stronger heating in the lower and middle
troposphere while the present results are generally stronger in the upper
troposphere.

Johnson et al. (1987) presented layer-averaged results for January and
July 1979 and zonally averaged results for January, April, July and October
1979 computed from the ECMWF GWE data set. In the free troposphere the
methods used in Johnson et al. and the present study are the same. However,
the present study uses a different method to estimate pJg (an inverse static
stability measure as shown in (2)) near the earth’'s surface. The effect of
this difference is confined to the low troposphere primarily in highly
baroclinic regions. The estimates of pJg in these regions in the present
study tend to be larger than those of Johnson et al. (1987), thereby reducing
the magnitude of heating (see Egs. 3 and 4). Comparison of corresponding
distributions shows the only notable differences between estimates in global
isobaric layers occur in the surface-to-800 mb layer of January over the
western North Atlantic where the results of Johnson et al. (1987) show
stronger heating. The largest differences between the two studies are in the
zonally averaged heating distributions where the results of Johnson et al.
have stronger low-level heating in middle latitudes, particularly in the
Northern Hemisphere in January.

While a number of uncertainties are involved, the apparent spatial and
temporal continuity of the analyses and their consistency with known features
of the large-scale circulation suggests that a realistic four-dimensional
structure of the global distribution of heating during the GWE emerges.
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Appendix A: Estimation of Heating

The time-averaged isentropic mass continuity equation is (Johnson, 1980)

) ] .
—(pJg) + Vg (pJgU) + —(pJgd) = 0 . (Al)
acg P8 o-(plol) + ——(pJe

With the hydrostatic relation
plg = -g~! 3p/ae (A2)
the mass distribution is determined by the pressure distribution.

The time-averaged diabatic mass flux through an isentropic surface
obtained by indefinite vertical integration of (Al) is

. (¢] a
pJgb = f T [———(pJe) + Ve'(pJeU)] de , (A3)
5] 3te ~

where the diabatic mass flux has been assumed to vanish at the top isentropic
level, 61. The boundary value for diabatic mass flux at the earth'’s surface,
obtained from a definite integration of (Al) from the earth’s surface at 64 to
the upper surface 67, is given by

. or @
pIg8| = [ T [=—(pJg) + v (pJgU)] db . (A4)
6g 8g Jdtg ~

The mass-weighted time-averaged heating is obtained from the diabatic mass
flux according to

A

t
6 = pJg0 / pJg . (AS)

The estimates of heating at lower levels calculated in this manner from
the assimilated data are unrealistic at some locations. This results
primarily from biases in the estimation of horizontal mass divergence from the
assimilated data. In analyses of fields, whether by subjective or objective
means, bias errors are readily introduced in estimation of divergence (Schmidt
and Johnson, 1972). These errors stem primarily from discrete irregularly



spaced observations which are sparse in relation to the horizontal variation
of the velocity and the mass pJg. While a bias error may only be a minor
fraction of the true horizontal divergence within a particular layer, such
errors are prevalent in the assimilated data and accumulate in vertical
integration. Consequently the integrated bias should be removed. For this
step, a mass-weighted adjustment is applied to the mass tendency and
divergence subject to the constraint that the sum of the vertically integrated
mass tendency and mass divergence must be equal to a particular boundary value
for diabatic mass flux at the earth’s surface. This particular boundary value
must be defined in order to allow the vertical movement of isentropic surfaces
relative to the earth’s surface in accord with changes of potential

temperature at the earth's surface.

An independent estimate of the boundary value of diabatic mass flux is
given by the temporal variation of surface potential temperature, GS(A,¢,t)
[equal to 8(A,¢,2zg,t)], from the chain rule

. ae
pJgBs(A,¢,t) = pJg [EZE + Ug*VgOs] (A6)
e ~ ‘

where A is longitude, ¢ is latitude and the subscript s denotes values at the
earth’'s surface. The accuracy of this estimate is dependent on the accuracy
of estimates of the tendency and advection of es(k,¢,t) at the earth's
surface. Biases will stem primarily from inadequate resolution of information
at the earth’'s surface. The largest biases will be found during winter
primarily in the regions of strong surface winds and gradients of 8¢, such as
over the Kuroshio Current and the Gulf Stream just off the east coasts of Asia
and North America, respectively. Analysis of estimates from this method,
however, establish that the global patterns of the surface distribution of
heating are much more realistic than those from (A4).

With the assumption that the lower boundary value of diabatic mass flux
by (A6) is an unbiased estimate of the "true" value

. * L]
pJee|e - pJgOg(A,,t) (A7)
S

an estimate of the vertically integrated bias error (8) from the difference
between (A4) and (A7) is given by

* L ] *
8(A,¢,t) = pJg8| - pJeb| . (A8)
05 G

The error per unit mass within the atmospheric column is then defined by

A e —_—
5=5/[" plgde
eS

- -g5 / [p(op) - p(8g)] . (A9)



Through subtraction of the bias error, the adjusted time-averaged diabatic
mass flux through an isentropic surface is expressed by

A

. ér d
(pJgB) " = fe ( EE_(pJe) + Ve(pJgU) | - pJgd do ,
6 ~

A
.

= pJg6 + 8[p(6) - p(8)] , (A10)

where the bias error is removed in proportion to the mass within an isentropic
layer.
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Fig. 1: Annual vertical-averaged heating (K day™!) for December 1978 to
November 1979; (A) global, (B) Northern Hemisphere and (C) Southern
Hemisphere. Contour interval is 0.5 K day™'.
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Fig. 2: Annual layer-averaged heating (K day™!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for December
1978 to November 1979. Contour interval is 0.5 K day™!.
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December — November
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Fig. 3:

(B) 290-310 K,
1978 to November 1979.

Annual layer-averaged heating (K day™!) for the (A) surface-290 K,
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(C) 310-330 K and (D) 330-400 K isentropic layers for December
Contour interval is 0.5 K day™!.
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Fig. 3: (Continued).
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December — November

POTENTIAL TEMPERATURE
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LATITUDE

Fig. 4: Meridional cross sections of annual (A) isentropically and (B)
isobarically zonally averaged heating (10°! K day™!), and (C) meridional
profile of zonally-vertically averaged heating for December 1978 to November
1979 (K day™!). Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 5: Global distributions of annual-averaged (A) surface pressure (10! mb)
and (B) pressure difference (10! mb) between the surface and the 400 K

isentropic level for December 1978 to November 1979. Contour interval is
30 mb.
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December — February
/\ SFC-400 K

Fig. 7: Seasonal vertical-averaged heating (K day !) for December 1978 to
February 1979; (A) global, (B) Northern and (C) Southern Hemisphere. Contour
interval is 0.5 K day™!.
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Fig. 8: Seasonal layer-averaged heating (K day™!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for December
1978 to February 1979. Contour interval is 0.5 K day!.
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December — February

DEC-FEB

90N
BONFY

30N

303

6035

905

aoN DEC-FEB 400-200 N?_

Fig. 8: (Continued).
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December - February
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3o ’ , : ‘
0 ‘4\,-1__,:;“ R
30S
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QE% DEC-FEB 290-310 K
BONP 1
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ok
308
60S
9080
Fig. 9: Seasonal layer-averaged heating (K day'l) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for December
Contour interval is 0.5 K day™!.

1978 to February 1979.
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Fig. 9: (Continued).
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Fig. 10: Meridional cross sections of seasonal (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional

profile of zonally-verticall
1979 (K day™!).
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y averaged heating for December 1978 to February
Contour interval in (A) and (B) is 0.25 K day~!.



December — February
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DEC-FEB SFC-400 K
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Fig. 11: Global distributions of seasonal-averaged (A) surface pressure
(10! mb) and (B) pressure difference (10' mb) between the surface and the
400 K isentropic level for December 1978 to February 1979. Contour interval
is 30 mb.

27



‘qu 0 ST TPAILa3UT INOJUOH

*6L61 Kienaqaj 03 g/61 I9quedaq

103 siafey o1doajusst Y 00%-0€€ (@) Pu® N 0£E-0T€ (D) ‘M 01€-062 (4) ‘M 06Z-20ejans (V) ®aya 3o

s19a9] o}doajuasy 1amo] pur iaddn sy3 usemjaq (qu ,0T) 20Ud1333Tp sanssaxd pafeiase-Teuoseag

06

InoE

*-IND9

834-2330

NO6

06

09

1]

NOE

—~Z7 ={NO9

¥ 01E-062

434-330

NO6

121 814

S06

09

SOt

2 _JInoE

e —

3nog

934-330

MOZ1 081 3021 309

NO6

062-74S 834-330

NOB6

28

Aleniqa{ - Jeaquadeg



March — May

90N QHR—MHY SFC-400 K
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B 180 C 180

Fig. 13: Seasonal vertical-averaged heating (K day !) for March 1979 to May
1979; (A) global, (B) Northern and (C) Southern Hemisphere. Contour interval
is 0.5 K day™!.

29



March - May

MARR-MAY ‘ SFC-800 MB
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5ONN

30N |

3038

605

QUSO

MAR-MAY 800-600 MB

90N

Fig. 14: Seasonal layer-averaged heating (K day™!) for the (A) surface-800
mb, (B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for
March 1979 to May 1979. Contour interval is 0.5 day™!.
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March — May
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Fig. 14: (Continued).
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March - May
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Fig. 15: Seasonal layer-averaged heating (K day™') for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for March
1979 to May 1979. Contour interval is 0.5 K day™!.
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Fig. 15: (Continued).
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March — May
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Fig. 16: Meridional cross sections of seasonal (A) isentropically and (B)
isobarically zonally averaged heating (10°! K day !), and (C) meridional
profile of zonally-vertically averaged heating for March 1979 to May 1979
(K day™!'). Contour interval in (A) and (B) is 0.25 K day~!.
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March — May

MAR-MAY SFC

MAR-MAY SFC-400 K

Fig. 17: Global distributions of seasonal-averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for March 1979 to May 1979. Contour interval is 30 mb.
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June — August

SFC-400 K

Fig. 19: Seasonal vertical-averaged heating (K day™!) for June 1979 to August
1979; (A) global, (B) Northern and (C) Southern Hemisphere. Contour interval

is 0.5 K day™!.
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Fig. 20:

Seasonal layer-averaged heating (K day !) for the (A) surface-800

mb, (B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for
June 1979 to August 1979. Contour interval is 0.5 K day™!.
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June — August
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Fig. 20: {Continued).

39



June - August
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Fig. 21: Seasonal layer-averaged heating (K day !) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for June 1979
to August 1979. Contour interval is 0.5 K day™!.
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June — August
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Fig. 21: (Continued).
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Fig. 22: Meridional cross sections of seasonal (A) isentropically and (B)
i1sobarically zonally averaged heating (107! K day™'), and (C) meridional
profile of zonally-vertically averaged heating for June 1979 to August 1979
(K day™'). Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 23: Global distributions of seasonal -averaged (A) surface pressure
(10! mb) and (B) pressure difference (10' mb) between the surface and the
400 K isentropic level for June 1979 to August 1979. Contour interval is
30 mb.
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90N

September — November

SEP-NOV SFC-40C K

P

Fig. 25: Seasonal vertical-averaged heating (K day !) for September 1979 to
November 1979; (A) global, (B) Northern and (C) Southern Hemisphere. Contour

interval is 0.5 K day’

1
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September - November
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Fig. 26: Seasonal layer-averaged heating (K day™!) for the (A) surface-800
mb, (B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for
September 1979 to November 1979. Contour interval is 0.5 K day~!.
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Fig. 26: (Continued).
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September — November
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Fig. 27: Seasonal layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for September

1979 to November 1979. Contour interval is 0.5 K day™!.
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Fig. 27: (Continued).
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September — November
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Fig. 29:

(10! mb) and (B) pressure difference (10! mb) between the surface and the

400 K isentropic level for September 1979 to November 1979. Contour
interval is 30 mb.

Global distributions of seasonal-averaged (A) surface pressure
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Fig. 31: Monthly vertical-averaged heating (K day'!) for December 1978;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval 1is
0.5 K day™!.
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Fig. 32
(B) 800
1978.

: Monthly layer-averaged heating
-600 mb, (C) 600-400 mb and (D) 40
Contour interval is 0.5 K day™?!,
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0-200 mb isobaric layers for December
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Fig. 32:

(Continued) .
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Fig. 33: Monthly layer-averaged heating (K day ') for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for December
1978. Contour interval is 0.5 K day™!.
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Fig. 33: (Continued).
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Fig. 34: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional
profile of zonally-vertically averaged heating for December 1978 (K day™!).
Contour interval in (A) and (B) is 0.25 K day !.
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Fig. 35: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for December 1978. Contour interval is 30 mb.
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January

SFC-400 K

-

90N JAN .

Fig. 37: Monthly vertical-averaged heating (K day™!) for January 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is
0.5 K day™*.
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Fig. 38: Monthly layer-averaged heating (K day ') for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for January
1979. Contour interval is 0.5 K day~!.
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Fig. 38: (Continued).
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Fig. 39: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for January
1979. Contour interval is 0.5 K day™!.
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(Continued)

Fig. 39
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January

POTENTIAL TEMPERATURE
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-z.04

LATITUDE

Fig. 40: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day’!), and (C) meridional
profile of zonally-vertically averaged heating for January 1979 (K day’!).
Contour interval in (A) and (B) is 0.25 K day~?!.
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ln\ SFC

SFC-400 K

Fig. 41: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for January 1979. Contour interval is 30 mb.
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February

FEB SFC-400 K

90N

Fig. 43: Monthly vertical-averaged heating (K day !) for Feburary 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™?!.
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Fig. 44: Monthly layer-averaged heating (K day ') for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for February
1979. Contour interval is 0.5 K day"!,
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Fig. 45: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for February
1979. Contour interval is 0.5 K day"!.
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Fig. 45: (Continued).
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Fig. 46: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™'), and (C) meridional
profile of zonally-vertically averaged heating for February 1979 (K day™!).
Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 47: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for February 1979. Contour interval is 30 mb.
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Fig. 49: Monthly vertical-averaged heating (K day ') for March 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is
0.5 K day™'.

77



800-600 MB

Fig. 50: Monthly layer-averaged heating (K day™!) for the (A) surface-800 mb

(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for March
1979. Contour interval is 0.5 K day™!.
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Fig. 50: (Continued).

79



March

90N MAR S5FC-290 K

Ny e
SON -“"‘-‘.-‘"\‘
L "\

IONE =

305k

605

80S

290-310 K

Fig. 51: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for March
1979. Contour interval is 0.5 K day™?!.
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(Continued).

Fig. 51
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Fig. 52: Meridional cross sections of monthly (A)
1sobarically zonally averaged heating (107! K day

isentropically and (B)
“!), and (C) meridional

profile of zonally-vertically averaged heating for March 1979 (K day’!).

Contour interval in (A) and (B) is 0.25 K day™!.
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SFC-400 K .

Fig. 53: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for March 1979. Contour interval is 30 mb.
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Fig. 55: Monthly vertical-averaged heating (K day™!) for April 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™!.
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Fig. 56: Monthly layer-averaged heating (K day'!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for April
1979. Contour interval is 0.5 K day~!.
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Fig. 56: (Continued).
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Fig. 57: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for April

1979. Contour interval is 0.5 K day™}.
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Fig. 57: (Continued).
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Fig. 58: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional

profile of zonally-vertically averaged heating for April 1979 (K day™!).

Contour interval in (A) and (B) is 0.25 K day!.
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Fig. 59: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for April 1979. Contour interval is 30 mb.
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Fig. 61:
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(A) global
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Fig. 62: Monthly layer-averaged heating (K day™!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for May
1979. Contour interval is 0.5 K day™?!.
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Fig. 62: (Continued).
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Fig. 63: Monthly layer-averaged heating (K day ') for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for May 1979.
Contcur interval is 0.5 K day~?!.
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Fig. 64: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day!), and (C) meridional
profile of zonally-vertically averaged heating for May 1979 (K day™!).
Contour interval in (A) and (B) is 0.25 K day’!.
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Fig. 65: Global distributions of monthly averaged (A) surface pressure
(10 mb) and (B) pressure difference (10 mb) between the surface and the
400 K isentropic level for May 1979. Contour interval is 30 mb.
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Fig. 67: Monthly vertical-averaged heating (K day™!) for June 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™!.
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Fig. 68: Monthly layer-averaged heating (K day'l) for the (A) surface-800 mb,
(B) 800-600 mb, {C) 600-400 mb and (D) 400-200 mb isobaric layers for June
1979. Contour interval is 0.5 K day™!.
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(Continued)
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Fig. 69: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for June
1979. Contour interval is 0.5 K day’!.
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Fig. 69: (Continued).
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Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional
ged heating for June 1979 (K day™!).

Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 71: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10 mb) between the surface and the
400 K isentropic level for June 1979. Contour interval is 30 mb.
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JUL SFC~400 K

Fig. 73: Monthly vertical-averaged heating (K day™!) for July 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is
0.5 K day™}.
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Fig. 74: Monthly layer-averaged heating (K day !) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for July
1979. Contour interval is 0.5 K day !.
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Fig. 74: (Continued).
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Fig. 75: Monthly layer-averaged heating (K day™!) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for July
1979. Contour interval is 0.5 K day!.
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Fig. 75: (Continued).
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Fig. 76: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (10°! K day '), and (C) meridional
profile of zonally-vertically averaged heating for July 1979 (K day™1).
Contour interval in (A) and (B) is 0.25 K day™?!.
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Fig. 77: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for July 1979. Contour interval is 30 mb .
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Fig. 79: Monthly vertical-averaged heating (K day™!) for August 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is
0.5 K day™!.
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Fig. 80: Monthly layer-averaged heating (K day !) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for August

1979. Contour interval is 0.5 K day"!.
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Fig. 80: (Continued).
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Fig. 81: Monthly layer-averaged heating (K day !) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K i1sentropic layers for August

1979. Contour interval is 0.5 K day™!.
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Fig. 81: (Continued).
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Meridional cross sections of monthly (A) isentropically and (B)

isobarically zonally averaged heating (10°! K day™!), and (C) meridional
profile of zonally-vertically averaged heating for August 1979 (K day™!).
Contour interval in (A) and (B) is 0.25 K day~?!.
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Fig. 83: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10 mb) between the surface and the
400 K isentropic level for August 1979. Contour interval is 30 mb.
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September

SEPT SFC-400 K o

Fig. 85: Monthly vertical-averaged heating (K day !) for September 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™!.
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Fig. 86: Monthly layer-averaged heating (K day™!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for
September 1979. Contour interval is 0.5 K day™!.
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Fig. 87: Monthly layer-averaged heating (K day ') for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for September

1979. Contour interval is 0.5 K day!.
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Fig. 87: (Continued).
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Fig. 88: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional
profile of zonally-vertically averaged heating for September 1979 (K day™!).
Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 89: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for September 1979. Contour interval is 30 mb.
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Fig. 91: Monthly vertical-averaged heating (K day™!) for October 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™!.
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Fig. 92: Monthly layer-averaged heating (K day!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for October
1979. Contour interval is 0.5 K day .

134



October

oCT 600-400 MB -

ey e A e TR R oy =
ST 2 ~a

90N

60N

30N

305

60S

0CT 400-200 MB

Fig. 92: (Continued).
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Fig. 93: Monthly layer-averaged heatin
(B) 290-310 K, (C) 310-330 K and (D) 33
1979. Contour interval is 0.5 K day~!.

g (K day™!) for the (A) surface-290 K,
0-400 K isentropic layers for October
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Fig. 94: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional
profile of zonally-vertically averaged heating for October 1979 (K day™1).
Contour interval in (A) and (B) is 0.25 K day~!.
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October

Fig. 95: Global distributions of monthly averaged (A) surface pressure
(10 mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for October 1979. Contour interval is 30 mb.
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November
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Fig. 97: Monthly vertical-averaged heating (K day’!) for November 1979;
(A) global, (B) Northern and (C) Southern Hemisphere. Contour interval is

0.5 K day™!.
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Fig. 98: Monthly layer-averaged heating (K day™!) for the (A) surface-800 mb,
(B) 800-600 mb, (C) 600-400 mb and (D) 400-200 mb isobaric layers for November
1979. Contour interval is 0.5 K day~!.
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Fig. 98: (Continued).
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Fig. 99: Monthly layer-averaged heating (K day !) for the (A) surface-290 K,
(B) 290-310 K, (C) 310-330 K and (D) 330-400 K isentropic layers for November
1979. Contour interval is 0.5 K day~!.
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Fig. 99
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Fig. 100: Meridional cross sections of monthly (A) isentropically and (B)
isobarically zonally averaged heating (107! K day™!), and (C) meridional

profile of zonally-vertically averaged heating for November 1979 (K day™1).
Contour interval in (A) and (B) is 0.25 K day™!.
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Fig. 101: Global distributions of monthly averaged (A) surface pressure
(10! mb) and (B) pressure difference (10! mb) between the surface and the
400 K isentropic level for November 1979. Contour interval is 30 mb.
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