
UAH Research Report Number 824

A Diagnostic Prototype of the

Potable Water Subsystem

of the Space Station Freedom ECLSS

__d/Tst -3 6 '7,(5- ,z2.d_.__-

Prepared for

Brandon S. Dewberry

Information and Electronic Systems Lab

Software and Data Management Division

Systems Software Branch

Marshall Space Flight Center

Prepared by

Brenda D, Lukefahr
Daniel M. Rochowiak

Brian L. Benson

John S. Rogers
James W. McKee

The Johnson Research Center

The University of Alabama in Huntsville
Huntsville, Alabama 35899

November 1989

https://ntrs.nasa.gov/search.jsp?R=19910018452 2020-03-19T16:46:33+00:00Z

UAH grants to the Government, and others acting on its behalf, a paid-up,

nonexclusive, inevocable, worldwide lisensce to reproduce, prepare

deriavative works, distribute copies to the public, and perform publicly

and display publicly by or on behalf of the Government.

Copyright © 1989 UAH

THIS WORK SPONSORED BY NASA/ MSFC UNDER CONTRACT NAS 8-

36955, DELIVERY ORDER 25

TABLE OF CONTENTS

Introduction .. 1

About the Demonstration Software ... 2 '

Installation ... 4

Operation .. 4

About the HyperCard Interface ... 8

About CLIPS Simulator .. 9

Simulator Considerations ... 1 0

About CLIPS Diagnostics ... 1 2

APPENDIX A ... :...1 7

APPENDIX B.. 3 3

APPENDIX C .. 3 8

I NTRODUCTI ON

This report is an addition to UAH Report No. 823 "ECLSS Advanced

Automatic Preliminary Requirement-Final Report", and is the

documentation for the demonstration software constructed for that

project All of the acronyms used in this paper are defined in UAH Report

No 823.

The purpose of the software is demonstrate how a rule based approach to

programming can be used for the purposes of simulation and diagnostics

within the general ECLSS environment. The specific domain for the

software is the potable water loop, but the general conception could be

applied to other ECLSS subsystems.

The demonstration software was constructed from the CLIPS inference

engine and the HyperCard TM hypertext software for the Macintosh TM

computer.

It should be noted that this demonstration software is a preliminary

prototype system. There are several reasons for this. First the domain is

in a state of flux. The actual configuration and components of the potable

water system have not been fixed. Thus, the system is about the intended

design of the potable water system as we understood it to be in the

middle of 1989. Second the general project of which this software is part

was an evaluation project. Thus, this effort is not intended to be a full

scale prototyping effort. Finally, the software is constructed from readily

available off the shelf software tools. A full prototype system may use

either more powerful tools or be constructed from scratch in Ada. The

first option was rejected since it was deemed desirable to use the NASA

developed CLIPS inference engine, and the latter was rejected owing to

time, money, and expertise constraints.

u

Demonstration of Rule Based Pro_lrammin_l for Potable Water Subsystem 2

ABOUT THE DEMONSTRATION SOFTWARE

The principles employed in construction this demonstration software are

rather simple. The HyperCard software was used to build the user

interface and interpretation functions for the system. In a rather coarse

analogy, this would correspond to the DISPLAY unit of the ECLSS Software

Support Package (now ECLSSMGR). As noted in Report No. 823, this is an

important site for a knowledge based system. The actual data generation

and diagnostics are implemented in the CLIPS system. Using the same

rather coarse analogy, this would correspond to either part of the

ECLSSERR (at a high level) or CHKSTA (at a low level). With this

construction it should be clear that each of the computational agents, the

interface and the inference engine, maintain a degree of autonomy. Thus

modifications to one of the agents need not demand any modifications of

the other agent.

As shown in Figure 1, the two components run in a serial fashion.

Information is transferred in ASCII files. Other schema are, of course,

possible given the general design. For example the display and the

inference engine could be located on physically distinct computers or

distinct processors in a single computer environment. Communications in

either of these cases could be arranged either through a network (distinct

computers) or a bus transfer (distinct processors). In a more well

developed system, it is likely that one of these options would be used.

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 3

PROBLEMS

INTERFACE
DISPLAY

SYST_A NODE

SIMULATOR
FACTS) (CUPS ENGINE)

CURRENT
STATUS

(DISPLAY
DL_GNOSTIC)

DIAGNOSIS

(CLIPS ENGINE)

SIMULATOR
(RULES)

ECLSS
DIAGNC6TICS

(RULES)

FIGURE 1 DATA FLOW DIAGRAM

Since we did not have direct access to a test platform, a simulation is

used to generate data for the demonstration. This requires that the user

enter faults and the simulation produce the state of the system that

would result from such faults. However, it should be noted that in a more

highly developed system the simulation might be used as a prediction

generator. If the diagnostics were running in real time the faults isolated

by the system could be used as input to the simulation. This would allow

the system to predict what would happen if the fault were really there.

Additionally, any changes brought about by the diagnostics could also be

entered into the simulation. If both of these avenues of opportunity are

taken, a new rule system could be used to compare and the projected

results to the actual results. This would allow for a greater amount of

validation of actions and greater control of the physical process that is

the domain for the software.

Further, it should be noted that the information used by each of the agents

is symbolic in form. In this sense the inputs for the system make no

special assumptions about how the information is generated. Thus, the

Demonstration of Rule Based Procjrammincj for Potable Water Subsystem 4

information could come directly from sensors, or from a database, or from

a suitably constructed neural net. Operating at a symbol level in this way

allows for maximum flexibility and growth.

In brief, the demonstration software attempts to demonstrate how the

recommendations in the UAH Report No. 823 could be implemented in a

specific domain.

I NSTALLATI ON

This section explains how to install the simulator program and diagnostic

program on a Macintosh. Create a folder and place all of the software on

the distribution disk into this folder. The folder should contain CLIPS, and

CLIPS files named:

Simulator

Diagnostics

Current Status

Problems

Diagnosis

The other file

"syseclss."

[Rules for simulator]

[Rules for diagnostics]

[State description from simulator]

[Problem definitions from syseclss]

[Results of diagnostics]

in the folder should be the HyperCard stack named

The HyperCard software can be in any folder.

OPERATI ON

To operate the software, open the folder in which the software is stored,

and double click on the "syseclss" stack icon.

Clicking anywhere on the opening screen will take the user to the selector

card.

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 5

I Simulation j

i

Running the simulation requlras several adoration. In order they are: Set I

Simulation, selection of faults, Run Simulator, Run Diagnostics, and Clear. IAdditional lnformaUon Is available in the text box below.

Set Simulation) I **Simulation" i

The sl muletlon compenet of thi_) Mock Illlr_eIthe mr 1o

C Run !;Imul afar) J exeml ne the varlow peril of the poflibll voter _tem end

let faulta as dl_Irad. The feultl era (brined bu ¢IIcldlR o

] button for the Itlm. TM3 meke the "Faults?" deflrdtlonbutton Ivallibla. Hold the moul_ button DOWN oltd relN$o it

C _) on the menu Item. Then lelect the d_ree of the fault t n the
same manner. Rimember to do the selecting v11h the mule
darn In these cllses. Ohce ell of the desired faults ere

The selector card (at left) is

the main card for the

software. None of the normal

HyperCard functions are

disabled so the user may

change the software as

desired. However, it is

recommended that at least one

use of the software should be

completed before any

alterations are made. The card contains some initial comments and the top

of the card, and help text in the box on the right. Standard navigation

arrows appear at the bottom of the card. At the far bottom left corner is

the status box. This box will display information about what the system is

doing. The main operational elements are the four buttons in the middle

right of the card. The first button to be used is the "Set Simulation"

button. This button initializes the cards used to enter faults and takes the

user to the first card of the sequence. There is some delay during this

process. When the first card in the series is presented to the user the

system is again ready for input. The second button is the "Run Simulator"

button. This button initiates several events. The faults input by the user

are collected from the various cards and are placed in a file that can be

used by CLIPS. Once this file is created, CLIPS is launched. The code for

the simulator rules will appear in the buffer window. Click on this

window to make it the active window. From the Buffer menu select the

Load Buffer item. This will compile the rules into CLIPS. Next select the

Reset Item from the Execution menu. Finally, select the Run item from the

Execution menu. When all of the rules have fired, select Quit from the file

menu. This will return control to HyperCard TM. The current status of the

system will the be interpreted and appropriate values will be placed in

the elements of the cards that depict the potable water system. The Run

Diagnostics button launches CLIPS with the current state of the system.

Repeat the steps with CLIPS as above. When control is returned to

HyperCard TM, the output of the rules will be examined and suitable texts

and graphics will be generated. The final button is the Clear button. This

w

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 6

button Clears all of the data items and prepares the software for another

use of Set Simulation.

After the Set Simulation

script has finished the user is

placed at the first card that

illustrates the components of

the potable water system,

Condensate storage. The card

is composed of several

elements that can be used to

enter a fault. Clicking on an

element, any of the boxes in s,muT,t,on

Condensate Storage I

FROM TOC C

TO

T _._ STORAG[__oJ " HEAT EXCHANGER

$TERILIZ[R
CO2 (HIS)

_AL

S"_ At'I

C_ICNS ATE

_teturn

this card will do, will begin the fault definition process. It should be

noted that the user can navigate through the cards using the navigation

buttons at the button of the stack. Navigation is restricted to those cards

available for fault definition. To return to the selector card, the user

should click the return button at the far right of the card.

I Condensate Storage I

FROM FRIC]N TOC C

tl ,o
- -- STERI LIZrR

C02 (HES)

REt'IOVAL

STEA_I

CONDENSATE

Slmulotlon

To define a fault, click on one

of the boxes. In the example at

the left the 'tocl' box has

been clicked on and the initial

part of the fault has been

defined. As the fault is being

built, it is displayed in the

text box at the lower left. The

Faults? button is now exposed.

Click on this button and keep

the mouse button down. This will reveal a pop-up menu of faults relevant

to the selection. When the cursor has highlighted the desired fault, release

the mouse button. Note that starting the definition of a fault before the

previous fault definition is complete can produce errors. To clean up the

errors simply use ordinary text editing procedures in the box where the

fault is being defined.

Demonstration of Rule Based Pro_]rammin 9 for Potable Water Subsystem

Once the button is released

the fault definition will be

expanded and a vertical gauge

will appear to the right of

where the Faults? button had

been. This gauge operates in

percentages and the range of

I Condensata Stors_o I

FROM FROM TOC C

TO

T __ STORAGE __j " HEAT EXCHANGER

STERILIZERC02 (HES)

REMOq/_L

STEAM

COM)i_ISATE

Ir_licote = percent_ _

Kproblem cs-toc I bod-queq.

the gauge is determined by

previous selections. To use the

gauge, click in the area and s,m,,.,,o,

hold the mouse button down. Moving the mouse up and down will set gauge

values. When these are as the user desires, release the mouse button. At

this point the fault definition is complete. The user may now add

additional faults to this gauge, to the elements of this card, or any other

card. When the process of entering faults is complete, use the return

button to go to the selector card.

i Heat Exchanger/Sterilizer i

I_"z_ II4s I
FROH

Sim claLa

Once the fault definition

process is completed use the

Run Simulator button to

generate results. The

instructions for the use of the

button are presented above.

When the simulator has

completed its work the values

generated will be inserted

into the appropriate places in

the cards. It should be noted that the values for levels and flow totalizers

will not be presented. The reason for this is that these are dynamic

elements and the simulation systems only addresses static features of

the potable water loop.

ORIP_INALPAGE IS
OF POOR QUALrrY

Demonstration of Rule Based Procjrammin 9 for Potable Water Subsystem

The final representations are

generated through the Run

Diagnostics button. The

instructions for this button

are presented above. This

button completes its operation

by generating text that

explains the fault and

produces a highlight area for

the place at which the fault
Sirn data

occurs or begins. When all of the diagnosed faults have been examined the

Clear button can be used to reset the system.

Since the screen dumps were constructed, a new feature has been added to

the demonstation interface. To the left of the Return button an

Information button has been added. This navigation button takes the user

to an information card. The card displays information about how to use the

software, the ranges and units for the sensors, and additional notes. The

Return button on this card is special. It returns the user to the card from

which the Information button was activated. This sort of addition is the

sort that the use of multiple agents with some degree of autonomy makes

possible.

ABOUT THE HYPERCARD INTERFACE

The Hypercard interface was constructed in an object oriented manner in

the HyperTalk language. The major functions of the scripts are to

initialize the system, call CLIPS, interpret CLIPS results, and construct

the actual displays. A complete listing of the HyperTalk script code can be

found in Appendix A.

The initialization of the system focuses on the display of active buttons

and their links to data fields. This allows new data elements to be added

freely. What is initially displayed to the user is the name of the data field

into which data will be placed, and the button that activates the fault

definition process overlays the field. Thus the name of the unit is

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 9

constant, is displayed to the user, and creates an economy of

representation.

All of the scripts used in fault definition are similar and all use the

underlying getData script. Once the button for fault definition is clicked,

the name of the element is placed in a global variable and a message is

sent to getData. This handler interprets the message and constructs the

first part of the fault definition. The handler then makes the Faults?

button available to the user. The script for this button constructs the

menu of relevant faults and constructs the second part of the query.

Finally the bar button for input is made available and the final part of the

fault definition is constructed. As the fault definition is constructed it is

displayed to the user.

Once the faults have been defined, the Run Simulation button's script

access the defined faults, .check for some, though not all, errors,

constructs the file to be passed to CLIPS, and launches CLIPS. On returning

from CLIPS, the a stack level script checks for the mode of the system and

takes action. In this case, it puts the current status file into the state

field, interprets it, and displays the results.

The Run Diagnostics button activates a similar collection of scripts and

objects. The major difference is that upon return from CLIPS the system

detects that it is in a different mode and uses the evaluate handler to

interpret the data.

The Clear button's script simply cleans up the data in the system and

prepares it for another usage.

ABOUT CLIPS SIMULATOR

The Simulator has been designed to create parameter readings that would

be representitive of the operational sensor gauge readings that would be

found under various degrees of system failure. A static approach was

taken that produces a time slice of these operational parameters. This

Demonstration of Rule Based Pro_rammin 9 for Potable Water Subsystem 10

limits the ability of the Diagnostic system to problems that demonstrate

a definite parameter anomaly pattern and elimanates some of the more

powerful diagnostic techniques such as trend analysis. Therefore, several

of the dynamic parameters (such as tank level gauge readings, flow

totalizers, etc...) are not modeled in this version of the Simulator. If the

evaluating engineer desires a more complete simulation of fault impact or

system fault tolerance, a real time dynamic simulator should be

developed. With this thought in mind the simulation rules that were

developed for this static parameter generator would be reasonably easy to

modify and expand to take real time system changes into account.

The Simulator uses rules defined in CLIPS and an ASCII file containing set

of system faults which were define in the HyperCard user interface. As

mentioned earlier, system control is maintained in the HyperCard user

interface. The clips environment is loaded and executed from HyperCard

and control automatically returned to HyperCard once the system has

completed firing all of its rules. Therefore, the user will not necessarily

be required know anythig about CLIPS or the rule set itself to operate the

system.

The rules, a complete listing of which can be found in Appendix B, have

been designed to enable the system component defintions to be

transparent These definitions are contained in a separate CLIPS file and

define the system totally. In theory this should allow the developer of the

system the flexiblity to revise the system's design without being

concerned about rule modifications. A simple change in the system

definitions file should suffice. However, it should be noted that due to

time limitations this rule abstraction has not been tested and the

introduction of totally new functional members to the system will require

modification.

SIMULATOR CONSIDERATIONS

There are two types of physical and chemical system definitions: those

which can be represented in at least a pseudo-linear form and those which

are totally non-linear. Therefore, the Simulator takes a hybrid approach

Demonstration of Rule Based Programming for Potable Water Subsystem 1 1

to process of developing the system defintions. For the linear

components, an additive superposition principal seems to work well and

thus allows independent treatment of these parameters. For the non-

linear terms, a multiple pass arrangement is used which allows anomaly

effects to propagate back and forth through the system until the system

becomes stable. Basically a original nominal system is generated first

and then the anomalies are allowed to perturb that system. Since a firing

sequence of the rules is required to allow a non-perturbed original

system, a salience was given to each of the rules to control the order of

the rule firings

Several simplifing assumptions were made which also allowed for a

faster and more stream-lined simulation prototype. Most of these

assumptions appear to provide results which will at least be good enough

for this prototypes needs. However, for a detailed study each of these

assumptions would need to be carefully reviewed to determine exactly

how much of an impact it will cause in the simulator's overall deviation

from reality. The assumptions are listed below:

1. First, after a careful evaluation of traditional methods of

calculating the pressure drop through a pipe, it was

determined that the flow rate was such that no appreciable

pressure drop would be seen from point to point in the system

due to skin friction.

2. Pressure was assumed to be a function of flowrate with non-

uniform increases found across check valves and pumps.

3. Again because of the time required for the fluid to travel from

component to component and the assumption of large volumes

of ventilation air blowing across the systems pipework, the

temperature of the fluid was assumed to return to ambient

almost immedialely after leaving a series of heating elements.

4. It was assumed that all of the chemical properties are

controlled by the performance of the unibeds and microbial

m

Demonstration of Rule Based Prosirammin 9 for Potable Water Subsystem 1 2

check valves. (This is obviously not true. The unibeds and

check valves are the first line of defense, but are by no means

the only line of defense. The sole apparent purpose of the

multiple heating components located throughout the system is

to keep down bacterial growth. This will directly influence

each of the parameters of a chemical analysis.)

5. The unibed performances were all gauged from a report

describing the performance of a single, clean unibed. The

initial attempt to modeling the multi-bed system on this data

resulted in water emerging from the series of unibeds far to

pure. A degrading scale was designed to cause the subsequent

performance of an additional unibed to be bounded to an upper

limit in the degree of purity that may be obtained.

The method of anomaly introduction was devised to allow easy

incorporation of its effects within the nominally operating system. Each

anomaly is introduced to the simulation rule base with an associated

location, problem type, and quantitative description. The quantitative

description descibes the magnitude of the problem in terms of a

percentage of the nominal or (in the case of multiple anomalies) current

parameter values. As an example, a leak in the system is defined as a

volumetric percentage of the flow entering the leak area. This causes no

need for things such as a hole or crack size to be needed.

ABOUT CLI PS DIAGNOSTICS

The Diagnostic System is a rule based system developed in CLIPS. This

system, like the Simulation System, is initiated from HyperCard and upon

compltion of its rule firings returns to HyperCard. This again will

abstract the CLIPS portion of the overall system and eliminate the

requirement of experience with clips for system usage. A complete listing

of the rules is found in Appendix C.

Demonstration of Rule Based Programmin_ for Potable Water Subsystem 13

Although this system does have some commonality with the Simulator

since they must both have the the same system definitions and operate on

the same basic assumptions, the Diagnostic System must take a entirely

different approach to complete its task. Instead of knowing the problems

and determing the state variable values, this system must work in the

opposite direction and attempt to determine what caused the current

state. This is particularly difficult since in many occasions the state of

the system may not be unique to a single set of faults. Therefore the

Diagnostic System attempts to determine as many of the fault

combinations that will cause the resulting system state as possible. As

can be imagined, this can generate a large number of possible solutions. A

simple approach was taken to associate a probability to each of the

solutions based on the number of hardware faults necessary for that

solution compared to the other candidates.

Two interrelated methods are used in the diagnostic systems approach in

isolating the cause of the current state. First, several of the state

variables values at specific locations within the system are dependent

upon the value at the preceding location. This suggests the use of a

relative or differential approach to these parameters. Most of the

chemical properties of the system can be evaluated in this manner.

Otherwise a technique that compares the actual parameter reading against

nominal values can be utilized to determine spatial trends in readings

resulting in probable fault group scenarios. The majority of the physical

parameters are analyzed using this second approach. Finally, as mention

above, the two methods are interrelated and a combined approach can tie

segments of the system that are separated by some form of parameter

discontinuity (such as two segments separated by a back pressure valve)

together.

An example of the analysis process for the chemical parameters is

included below. This should demonstrate some of the evaluation

considerations that must be made in order to arrive at a complete

solution. In the example, references are made to individual system

locations. These are defined by the sub-component of the system where

Demonstration of Rule Based Procjrammincj for Potable Water Subsystem 1 4

the item is located. For example, MF-C1 is the first conductivity meter

(C1) located in the multifiltration unit (MF).

DIAGNOSIS RULES FOR CHEMICAL PARAMETERS - TOC, C, pH, 12 conc.

Conductivity - C

(1) When delta C between MF-C1 & MF-C2 becomes too small (ie.

delta C< 50% MF-C1 value), then the first unibed needs

replacement.

(2) When delta C between MF-C2 & MF-C3 becomes small (I

suggest delta C < 80% MF-C2 value) this is a strong indication

that sorbants are becoming spent, especially if condition (1)

also applies.

(3) When delta C between MF-C1 & MF-C2 is good, bad delta C's

down line may indicate bad C sensor.

(4) When any C sensor reads significantly higher (eg. 2X) than

the preceeding sensor(s), and the preceeding sensor(s) are

NOTE:

ions.

probably correct, then that sensor is bad as there are no

significant sources of ions in the system.

This only applies to MF and WQM sensors.The MCV's add

(5) When delta C's are OK, but MF-C4 is >1.0 umho/cm, check CS-

C1 to verify that input load is within design limit.

The Unibed purification cartridges are the sole

physical/chemical means of reducing the conductivity and

TOC of potable loop process water to meet water quality

requirements. Test data available to this group on Unibed

performance was limited (principly Doc. #52) and specific

resins and sorbants for the unibeds are still under selection.

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 15

A simple linear approximation of removal rates and Ioadings

was used for this diagnostic application. With this

approximation the unibeds contaminant removal performance

is stable over its operating life and degrades rapidly as it is

saturated. Each bed removes an arbitrary fraction of the input

load it experiences. In some cases this results in levels

below the theoretical limit of purity for a properly operating

system, but a more sophisticated "curve fit" based on more

complete performance data would rectify this shortcoming.

TOTAL ORGANIC CARBON - TOC

(6) When WQM-TOC1 > 0.45 ppm, suspect that unibeds are

becoming saturated. Check delta C's in MF , if they are

mariginal recommend unibed change.

pH

(7) When WQM-TOC1 > 0.5 ppm , and MF delta C's & WQM pH are

good check TOC monitor calibration. If calibration is good,

Check CS-TOC1 to verify that input load is within design

limits. If input load is in limits and calibration is good

replace unibeds regardless of conductivity performance.

TOC removal is solely accomplished by the Unibeds in the

Multifiltration Subsystem. Problems with modeling the

removal performance for TOC is exactly analogous to the

conductivity case, and the same solution was employed.

(8) When WQM-pH1 is high or low, <6 or >8 , the unibeds may be

saturated. Check input loads, TOC, and conductivities to

determine probable condition of the unibeds, pH meters are

notorious for drift - recommend calibration check before

action when other parameter values are acceptable. The

limited test data available indicates that properly

functioning unibeds invariably moderate or "buffer" the

potable process water to within the specified water quality

limits.

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 1 6

12 CONCENTRATION

(9) When IM1 is low , check pH as pH out of range can cause low

12 concentration -If pH is bad check unibed condition as in (8)

- if pH is OK recommend MCV replacement.

(10) When IM1 is high, check Iodine Monitor calibration. If

calibration was OK then there is a source of excess 12,

suspect damaged MCV.

Calculation of Iodine species concentraion in aqueous

solutions is a very involved problem. Such an effort would

involve solving simultanious equalibria equations involving

teperature, pressure, pH , ionic strength, and equalibrium

constants Although aqueous halogen equalibrium has been

studied for years, this system is so intractable that

published equalibrium constants are questionable. Solving

this problem in a scientifically robust manner would require

a massive research effort.

For the purpose of this simulation/diagnostic effort it was

assumed that properly functioning MCV's would continuously

supply iodine at a 0.5 to 1.0 ppm equalibrium value. In other

words, any process water entering an MCV with less than

0.5-1.0 ppm iodine would leave with this level, and process

water which already contained this level would not receive

additional iodine. Data from MCV performance tests indicate

that MCV's do behave in this manner, imparting 0.5-1.0 ppm

residual iodine regardless of the number of "passes" through

the MCV.

We reasoned that if the iodine monitor is functioning and the

iodine level is below 0.5 ppm , the MCV is spent or defective.

Demonstration of Rule Based Pro_rammin_ for Potable Water Subsystem

APPENDIX A

17

HYPERTALK SCRI PTS CODE

HYPERCARD STACK FILE LAST MODIFIED 1 989 NOV 25 (SAT)13"51 "05

File name "syseclss"
The number of backgrounds is 1.
The number of cards is 11.

STACK SCRIPT

This script is executed when stack is opened. There
are three possible options. At the initial opening the
"lntro" card is used. If the simulator has just been
used, results is performed. If the diagnostics has

just been used r evaluate is performed.

on openStack
set visible of field state to false
set the userLevel to 5
get first word of line 1 of field "status" of card "selector"
if it is "Write" then

results
end if
if it is "Evaluate" then

evaluate
end if

end openStack

This script is used to set the values for the sensors
in each card based on the values in the current

status file.

on results

global g_select, g_statusMes
put "Get state" into field "status"
put empty into data
put "current status" into fileName
open file fileName
read from file fileName until numToChar(0)
put it into field "state"
show field "state"
put "data" into g_select
put 1 into count
repeat forever

get line count of field "state"

Demonstrationof RuleBased Pro_rammincj for Potable Water Subsystem 18

if it is empty then exit repeat
delete first char of it
delete last char of it
put it into message
if word 1 of it is "iml" then put "pdl-iml" into word 1 of it
put it into message
put offset("-", it) into pos
delete char pos of it
put after char pos-1 of it
if word 1 of it is "plsa" then put "pdl" into word 1 of it
put the length of word 3 of it into cSize
if cSize > 6 then

repeat cSize - 6 times
delete last char of it
end repeat

end if

put word 3 of it into card field word 2 of it of card word 1 of it
put count+l into count

end repeat
show field "state"
put "Sim data" into g_statusMes
put "Sim data" into field "status"
go to card 2

end results

This script is used to set the explanations of
diagnostic results found in the diagnosis file.

on evaluate

global g_select, g_statusMes
put "Get diags" into field "status"
put empty into data
put "diagnosis" into fileName
open file fileName
read from file fileName until numToChar(0)
put it into field "state"
show field "state"
put "diag" into g_select
close file fileName
put 1 into count
repeat forever

get line count of field "state"
if it is empty then exit repeat
delete first word of it
delete last char of it

if word 2 of it is "iml" then put "pdl-iml" into word 2 of it
put it && the number of words of it into message
put the number of words of it into faultList
put offset("-", word 2 of it) into pos
delete char pos of word 2 of it
put " " after char pos-1 of word 2 of it
if word 2 of it is "plsa" then put "pdl" into word 2 of it
go to card word 2 of it

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 19

put "The problem is" && word 1 of it & "." into line 1 of field 4
put "Range is" && faultList-1 & "." into line 2 of field 4 <cont>
put "The range is from" && word 2 of it & "-" & word 3 of it &&

"to" && last word of it & "." into line 3 of field 4
show card button word 3 of it
set highlight of card button word 3 of it to true
go to card "selector"
put count+l into count

end repeat
end evaluate

OBJECT TYPE BKGD I D

BUTTON NUM 1 I D NAME "NEXT"

SCRI PT

on mouseUp
push card
go to next card

end mouseUp

BUTTON NUM 2

SCRI PT

on mouseUp
go to prey card

end mouseUp

BUTTON NUM 3

SCRI PT

on mouseUp
go to card "selector"

end mouseUp

Button used to send the user to the next card.

NAME "PREV"

Button used to send the user to the previous card.

NAME"RETURN"

Button used to send the user to the "selector" card.

CARD SCRI PT

Demonstrationof RuleBasedProcjrammin9for PotableWaterSubsystem 20

A backgroundscriptthatis executedwheneveran
openCardmessageisgenerated.

on openCard
global g_select, g._statusMes
put g_statusMes into field "status"
if g_select is "Res" then

put the number of card fields into x
repeat with count = 1 to x

set the IockText of card field count to true
end repeat
put the number of card buttons into y
repeat with bcount = 1 to y

hide card button bcount

end repeat
end if
pass openCard

end openCard

This background script is used by all sensor
buttons to get data.

on getData
global g_butName
put empty into line 1 of field 4
put "Select a fault" & return into line 1 of field 4
if line 2 of field 4 is empty then delete line 2 of field 4
put word 3 of g_butname into temp2
delete first char of temp2
delete last char of temp2
put second word of the name of this card into templ
delete first char of templ
delete last char of templ
put "(problem" && templ & "-" & temp2 after last char of field 4
show card button "Faults?"
show card field "instruct"

put empty into card field "instruct"
put "Click on the 'Faults?' button" into first line of card field <cont>
"instruct"

end getData

OBJECT TYPE CARD I D 2865 CARD NAME IS "INTRO"

CARD SCRI PT

on openCard
hide background button 1

This script adjusts the graphics presentation of the
first card when then stack is first opened.

Demonstrationof Rule Based Procjrammin 9 for Potable Water Subsystem

hide background button 2
hide background button 3
hide background picture
hide background field 1
hide background field 2
hide background field 3
hide background field 4
show card field 1
show card field 2

pass openCard
end openCard

This script adjusts the graphics for when exiting
the card.

21

on mouseDown
show background picture
show
show
show
show
show
show

background button 1
background button 2
background button 3
background field 1
background field 3
background field 4

go to last card
end mouseDown

OBJECT TYPE CARD I D 361 1 CARD NAME IS "CS"

CARD SCRI PT

on openCard
hide background button 2
pass openCard

end openCard

on closeCard

show background button 2
end closeCard

These scripts adjust the visibility of the navigation
buttons.

SENSOR BUTTONS

BUTTON NUM 1 NAME "TOC1 "

BUTTON NUM 2 NAME "C1 "

BUTTON NUM 3 NAME "L1 "

SCRI PT<SEE BELOW>

OTHER BUTTONS

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 22

BUTTON NUM 4 HIDDEN NAME "FAULTS?"

BUTTON NUM 5 HIDDEN NAME "VALUE"

BUTTON NUM 6 NAME "INFORMATION"

SCRI PT<SEE BELOW>

OBJECT TYPE CARD ID 2202 CARD NAME IS "HES"
!

SENSOR BUTTONS

BUTTON NUM 1 NAME "P1 "

BUTTON NUM 2 NAME "F1 "

BUTTON NUM 3 NAME "T1 "

BUTTON NUM 4 NAME "HE1 "

BUTTON NUM 5 NAME "HT"

BUTTON NUM 6 NAME "T2"

BUTTON NUM 7 NAME "RV"

BUTTON NUM 8 NAME "F2"

BUTTON NUM 9 NAM E "T3 "

BUTTON NUM 1 0 NAME "P2"

BUTTON NUM 1 1 NAME "P3"

BUTTON NUM 1 2 NAME "F3"

BUTTON NUM 1 3 NAME "PMP"

BUTTON NUM 1 4 NAME "BPV"

SCRI PT<SEE BELOW>

OTHER BUTTONS

BUTTON NUM 1 5 HIDDEN NAME "FAULTS?"

BUTTON NUM 1 6 HIDDEN NAME "VALUE"

BUTTON NUM 1 7 NAME "INFORMATION"

SCRI PT<SEE BELOW>

OBJECT TYPE CARD ID 4642 CARD NAME IS "MF"

CARD SCRI PT

on openCard
set visible of card field "fil" to false
set visible of card field "ubl" to false
set visible of card field "ub2" to false
set visible of card field "ub3" to false

This script adjusts the visibility of various fields
on the card.

Demonstration of Rule Based Procjrammincj for Potable Water Subsystem

set visible of card field "ub4" to false
set visible of card field "ub5" to false
pass openCard
end openCard

SENSOR BUTTONS

BUTTON NUM 1 NAME "P1 "

BUTTON NUM 2 NAME "C1 "

BUTTON NUM 3 NAME "NEW BUTTON"

BUTTON NUM 4 NAME "C3"

BUTTON NUM 5 NAME "C4"

BUTTON NUM 6 NAME "P2"

BUTTON NUM 7 NAME "FT1 "

BUTTON NUM 8 NAME "FIL"

BUTTON NUM 9 NAME "UB1 "

BUTTON NUM 1 0 NAME "UB2"

BUTTON NUM 1 1 NAME "UB3"

BUTTON NUM 1 2 NAME "UB4"

BUTTON NUM 1 3 NAME "UB5"

SCRI PT<SEE BELOW>

OTHER BUTTONS

BUTTON NUM 14 HIDDEN NAME "FAULTS?"

BUTTON NUM 1 5 HIDDEN NAME "VALUE"

BUTTON NUM 1 6 NAME "INFORMATION"

SCRI PT<SEE BELOW>

23

OBJECT TYPE CARD ID 521 1 CARD NAME IS "WQM"

CARD SCRI PT

on openCard
set visible of card field "pmp" to false
set visible of card field "str" to false
pass openCard
end openCard

SENSOR BUTTONS

BUTTON NUM 1 NAME

BUTTON NUM 2 NAME

"P1 "

" P 2 "

This script adjusts the visibility of various fields
on the card.

m

Demonstration of Rule Based Procjrammin_ for Potable Water Subsystem 24

BUTTON NUM 3 NAME "PH1 "

BUTTON NUM 4 NAME "P3"

BUTTON NUM 5 NAME "T1 "

BUTTON NUM 6 NAME "C1 "

BUTTON NUM 7 NAME "TOC1 "

BUTTON NUM 8 NAME "PMP"

BUTTON NUM 9 NAME "STR"

SCRI PT<SEE BELOW>

OTHER BUTTONS

BUTTON NUM 1 0 HI DDEN NAM E " FAULTS? "

BUTTON NUM 1 1 HIDDEN NAME "VALUE"

BUTTON NUM 1 2 NAME "INFORMATION"

SCRI PT<SEE BELOW>

OBJECT TYPE CARD ID 5528 CARD NAME IS "MPSA"

CARD SCRI PT

on openCard
set visible of card field "he" to false
set visible of card field "htl" to false
set visible of card field "ht2" to false
set visible of card field "acc" to false

set visible of card field "bpv" to false
pass openCard
end openCard

SENSOR BUT

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

BUTTON NU

SCRI PT

TONS

M 1 NAME "T1 "

M 2 NAME "P1 "

M 3 NAME "T2"

M 4 NAME "BPV"

M 5 NAME "T3"

M 6 NAME "HE"

M 7 NAM E " HT1 "

M 8 NAME "ACC"

M 9 NAM E " HT2 "

<SEE BELOW>

This script adjusts the visibility of various fields
on the card.

w

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem 25

OTHER BUTTONS

BUTTON NUM 1 0 HIDDEN NAME "FAULTS?"

BUTTON NUM 11 HIDDEN NAME "VALUE"

BUTTON NUM 1 2 NAM E "1NFORMATI ON"

SCRI PT<SEE BELOW>

OBJECT TYPE CARD ID 6244 CARD NAME IS "PPS"

SENSOR

BUTTON

BUTTON

BUTTON

BUTTON

BUTTON

BUTTON

SCR

OTHER B

BUTTON

BUTTON

BUTTON

SCR

BUTTONS

NUM 1 NAME "P1 "

NUM 2 NAME "F1 "

NUM 3 NAME "L1 "

NUM 4 NAME "L2"

NUM 5 NAME "L3"

NUM 6 NAME "L4"

I PT<SEE BELOW>

UTTONS

NUM 7 HIDDEN NAME "FAULTS?"

NUM 8 HIDDEN NAME "VALUE"

NUM 9 NAME "1NFORMATION"

I PT<SEE BELOW>

OBJECT TYPE CARD ID 6825 CARD NAME IS "PDL"

CARD SCRI PT

on openCard
set visible of card field "pmp" to false
set visible of card field "he" to false
set visible of card field "htl" to false
set visible of card field "ht2" to false
set visible of card field "acc" to false
set visible of card field "bpv" to false
pass openCard
end openCard

SENSOR BUTTONS

BUTTON NUM 1 NAM E "1 1 "

This script adjusts the visibility of various fields
on the card.

Demonstrationof RuleBased Procjrammin_] for Potable Water Subsystem

BUTTON NUM 2 NAME "C1 "

BUTTON NUM 3 NAME "T2"

BUTTON NUM 4 NAME "T1 "

BUTTON NUM 5 NAME "P1 "

BUTTON NUM 6 NAME "T3"

BUTTON NUM 7 NAME "P2"

BUTTON NUM 8 NAME "F1 "

BUTTON NUM 9 NAME "HE"

BUTTON NUM 1 0 NAME "HT1 "

BUTTON NUM 1 1 NAME "HT2"

BUTTON NUM 1 2 NAME "ACC"

BUTTON NUM 1 3 NAME "PMP"

BUTTON NUM 14 NAME "BPV"

SCRI PT<SEE BELOW>

OTHER BUTTONS

BUTTON NUM 1 5 HI DDEN NAME " FAULTS? "

BUTTON NUM 1 6 HIDDEN NAME "VALUE"

BUTTON NUM 1 7 NAME "INFORMATION"

SCRI PT<SEE BELOW>

26

OBJECT TYPE CARD I D 4320 CARD NAME IS "PUS" I
CARD SCRI PT

on openCard
hide background button 1
pass openCard

end openCard

on closeCard
show background button 1

end closeCard

SENSOR BUTTONS

BUTTON NUM 1 NAME "FT1 "

BUTTON NUM 2 NAME "C1 "

BUTTON NUM 3 NAME "P1 "

SCRI PT<SEE BELOW>

These scripts adjust the visibility of the navigation
buttons.

Demonstration of Rute Based Procjrarnrnin9 for Potable Water Subsystem

OTHER BUTTONS

BUTTON NUM 4 HIDDEN NAME "FAULTS.'?"

BUTTON NUM 5 HIDDEN NAME "VALUE"

BUTTON NUM 6 NAME "INFORMATION"

SCRI PT<SEE BELOW>

27

SCRIPT FOR SENSOR BUTTONS

SCRI PT

on mouseUp
global g_butName
put the name of me into g_butName
getData

end mouseUp

This script is used by all sensors. It calls getData
background script to do the actual work.g_butName

is a global variable used in that script.

SCRIPTS FOR OTHER BUTTONS

HI DDEN

SCRI PT

NAME "FAULTS?"

This script actuates the appropriate menus for the
sensor or device identified and generates part of the

problem definition.

on mouseDown

global g_butName, lyst, g_range
put third word of g_butName into test
delete first char of test
delete
if last

end if
if test

end if
if test

test is "pmp"

end if

last char of test
char of test is in "1,2,3,4,5,6,7,8,9,0" then
delete last char of test

is "ub" then

put "leak,blockage,spent" into lyst

is "vlv" or test is "bpv" or test is "fil" or <cont>
then
put "leak,blockage" into lyst

test is "str" or

Demonstrationof RuleBasedProgrammin9for PotableWaterSubsystem 28

if test

end if
if test

test is "im" or

is "he" or test is "ht" then
put "leak,blockage,temperature" into lyst

is "1" or test is "p" or test is "c" or test is "f" or <cont> test is "t" or
test is "toc" or <cont> test is "ph" or test is "ft" then
put "leak,blockage,bad-gauage" into lyst

end if

put the mouseloc into myPlace
put item 1 of myPlace + 20 into horiz
put item 2 of myPlace + 120 into vert
get PopUpMenu(lyst, 6, vert, horiz)
if test is "ub" and it is 3 then

put " spent" after last character of last line of field 4
put 100 into g_range

else

if (test is "he" or test is "ht") and it is 3 then
put " temperature" after last character of last line <cont>

of field 4

put 100 into g_range
else

end if

if it is 3 then

put " bad-guage" after last character of last <cont>
line of field 4

put 200 into g_range
end if

1 then

put " leak" after last character of last line of field 4
put 100 into g_range

end if
if it is

end if
if it is 2 then

put " blockage" after last character of last line of field 4
put 100 into g_range

end if

put "Indicate a percentage" into line 1 of field 4
hide card button "Faults?"
show card button "value"
show card field "instruct"

end mouseDown

on mouseUp
put "Use guage for percent." into line 1 of card field "instruct"

end mouseUp

HIDDEN NAME "VALUE

SCRI PT

This script generates the values that complete the
fault definition for the selected sensor or device.

Demonstrationof Rule Based Procjrammincj for Potable Water Subsystem

on mouseDown

global g_range
set cursor to 2

get the rect of me
barbutton 3,g_range,0
put " " & (.01 * the result) & ")" & return after last char of field 4
hide card field "instruct"
hide card button "value"

end mouseDown

29

NAME "1 NFORMATI ON"

SCRI PT

This script directs the access to the information
card.

on mouseUp
push card
go to card "lnfo"

end mouseUp

OBJECT TYPE CARD ID 7761 CARD NAME IS "INFO"

CARD SCRI PT

on openCard
hide background button "return"
show card button "return"
pass openCard

end openCard

on closeCard
show background button "return"
pass closeCard

end closeCard

These scripts control the navigation buttons for
this card.

BUTTON

SCRI PT

NUM 1 I D NAME "RETURN"

This script sends the user back to the card from
which the info card was called.

w

Demonstration of Rule Based Procjrammincj for Potable Water Subsystem 30

on mouseUp
pop card

end mouseUp

IOBJECT TYPE CARD ID 7405 CARD NAME IS "SELECTOR"

CARD SCRI PT

This script arranges for the appropriate elements
to be made visible to the user.

on openCard
global g_statusMes
put the number of card buttons into butTotal
repeat with butNo = 1 to butTotal

show card button butNo

end repeat
hide background button "return"

end openCard

on closeCard
set visible of field "state" to false
show background button "return"
pass closeCard

end closeCard

BUTTON NUM 1 NAME "SET SIMULATION"

SCRI PT

This script initializes the fields and buttons of the
various cards so that the user may begin to define

faults.

on mouseUp
global g_select, g_statusMes
put "sim" into g_select
put "Simulation" into g_statusMes
put "Wait" into field status
set IockScreen to true
repeat with cardNo -- 2 to 9

go to card cardNo
put "Simulation" into field "status"
if g_select is "sim" then

put the number of card fields into x
repeat with count -- 1 to x

put empty into card field count

Demonstrationof Rule Based Programmin 9 for Potable Water Subsystem 31

set IockText of card field count to false
put the name of card field count into nameField
get third word of nameField
delete first char of it
delete last char of it
put it into card field count

end repeat
put the number of card buttons into y
repeat with bcount = 1 to y

show card button bcount
set highlight of card button bcount to false

end repeat '
end if
hide card button "Faults?"
hide card button "value"
hide card field "instruct"
put empty into background field 4

end repeat
put "Simulation" into field "status" of card "selector"
go to card 2
set IockScreen to false

end mouseUp

BUTTON NUM 2 NAME "RUN SIMULATOR"

SCRI PT

This script gathers the user defined faults, writes
them to a file and calls CLIPS with the appropriate

file.The openStack script will direct the application
of the results handler.

on mouseUp
global g_status, g_select, g_statusMes
put "Get faults" into g_statusMes
put "Res" into g_select
repeat with cardNo = 2 to 9

go to card cardNo
get line 1 of field 4
if last char of it is ")" then put it & return after last <cont>

char of field 4 of card "selector"
get line 2 of field 4
if last char of it is ")" then put it & return after-_
last char of field 4 of card "selector"

end repeat
go to last card
put "Write faults" into field "status"
open file "problems"
put the number of lines of field 4 into n
repeat with i -- 1 to n

write line i of field 4 to file "problems"
write return to file "problems"

O

m

Demonstration of Rule Based Programmin9 for Potable Water Subsystem 32

end repeat
close file "problems"
push card
open "eclss simulator" with "clips"

end mouseUp

BUTTON NUM 3 NAME "RUN DIAGNOSTICS"

SCRI PT

This script calls CLIPS with the appropriate file
that performs the diagnostics on the current state
of the system.The openStack script will direct the

application of the evaluate handler.

on mouseUp
push card
evaluate

end mouseUp

BUTTON NUM 4 NAME

SCRI PT

"CLEAR"

This script clears syseclss and prepares it to be
used a,qain.

on mouseUp
global g_select, g_statusMes
put empty into g_select
put "Clear" into g_statusMes
put g_statusMes into field "status"
repeat with cardCount = 2 to 9

go to card cardCount
put empty into field 4
put the number of card fields into countFields
repeat with fieldCount = 1 to countFields

put empty into card field fieldCount
end repeat

end repeat
put empty into field "state"
go to last card
put empty into field 4
doMenu "Compact Stack"

end mouseUp

Demonstrationof RuleBased Procjrammin_] for Potable Water Subsystem 33

APPENDIX B

SIMULATOR RULES AND SYSTEM DEFINITION

SYSTEM DEFI NITION

(flowrate fi .00775)
(toc fi 20)
(iodine fi 2)
(conductivity fi 120)
(ph fi 6.0)
(pressure fe 35)
(temperature fi 45)
(nodes A fi cs-tocl cs-cl cs-I1 hes-pl hes-fl hes-tl hes-hel hes-ht hes-t2
hes-rv hes-f2 hes-he2 hes-t3 hes-p2 hes-bpv hes-p3 hes-f3 mf-fil mr-p1
mf-cl mf-ubl mf-c2 mf-ub2 mf-c3 mf-ub3 mf-ub4 mf-ub5 mf-c4 mf-ftl

mf-p2 mf-vlv wqm-pmp wqm-pl wqm-str wqm-p2 wqm-phl wqm-p3 wqm-
tl wqm-cl wqm-tocl mpsa-tl)
(nodes B mpsa-tl mpsa-hel mpsa-ht mpsa-t2 mpsa-acc mpsa-he2 mpsa-pl
mpsa-t3 mpsa-bpv pps-pl pps-fl pps-tl pps-12 pps-13 pps-14 plsa-tl
plsa-hel plsa-ht plsa-t2 pl.sa-acc plsa-he2 plsa-pl plsa-t3 plsa-bpv iml
pdl-cl pdl-pl pdl-flpus-ftl pus-c1 pus-p1 fe)
(gauges pressure hes-pl hes-p2 hes-p3 mf-pl mf-p2 wqm-pl wqm-p2 wqm-
p3 mpsa-pl

pps-pl plsa-pl pdl-pl pus-p1)
(gauges temperature hes-tl hes-t2 hes-t3 wqm-tl mpsa-tl mpsa-t2 mpsa-t3
plsa-tl plsa-t2 plsa-t3)
(gauges flowrate hes-fl hes-f2 hes-f3 pps-fl pdl-fl)
(gauges conductivity cs-cl mf-cl mf-c2 mf-c3 mf-c4 wqm-cl pdl-cl pus-
cl)
(gauges ph wqm-phl)
(gauges toc cs-tocl wqm-tocl)
(gauges level cs-I1 pps-I1 pps-12 pps-13 pps-14)
(gauges iodine ira1)
(gauges flow-total mf-ftl pus-ftl)
(heaters hes-hel hes-ht hes-rv hes-he2 mpsa-hel mpsa-ht mpsa-acc mpsa-
he2 plsa-hel plsa-ht plsa-acc plsa-he2)
(heater-delta-t 20 40 20 -40 20 40 20 -40 20 40 20 -40)
(delta-p relative wqm-str .25)
(delta-p absolute hes-bpv mpsa-bpv plsa-bpv 37.3)
(delta-p relative mf-fil .75)
(delta-p relative mf-ubl
(delta-p relative mf-ub2
(delta-p relative mf-ub3
(delta-p relative mf-ub4
(delta-p relative mf-ub5
(spent mf-ubl 0)
(spent mf-ub2 0)
(spent mf-ub3 0)
(spent mf-ub4 0)

2.5)
2.5)
2.5)

2.5)
2.5)

Demonstration of Rule Based Programmin 9 for Potable Water Subsystem

(spent mf-ub5 0)

Sl MULATOR RULES

;; Eclss Monitoring Prototype - Simulator

;; Physical Components

(defrule no-leak
(flowrate ?location ?value)
(not (problem ?location leak ?percentage))
(nodes ?key $?any ?location ?next $?rest)
(not (flowrate ?next ?))

=>

(assert (flowrate ?next ?value)))

(defrule leak ;"Reflect flow changes due to Leaks"
?problem <- (problem ?location leak ?percentage)
?original <- (flowrate ?location ?value)

=>

(retract ?original ?problem)
(bind ?value (* (- 1 ?percentage) ?value))
(assert (flowrate ?location ?value)))

(defrule temperature-problem
?prob <- (problem ?location heater ?percentage)
(heaters $?start)
?vals <- (heater-delta-t $?heat)

=>

(retract ?prob ?vals)
(bind ?pos (member ?location $?start))
(bind ?val (* (nth ?pos $?heat) ?percentage))
(bind $?fseq (mv-subseq 1 (- ?pos 1) $?heat))
(bind $?lseq (mv-subseq (+ 1 ?pos) (length $?heat) $?heat))
(assert (heater-delta-t $?fseq ?val $?lseq)))

(defrule propagate-temperature
(temperature ?location ?value)
(not (heaters $?start ?location $?end))
(nodes ?key $?any ?location ?next $?rest)
(not (temperature ?next ?))

_-->

(assert (temperature ?next ?value)))

(defrule temperature-changes-at-a-source-or-sink
?heater <- (heaters $?start ?location $?rest)
(nodes ? $? ?location ?next $?)
(heater-delta-t $?heat)

?original <- (temperature ?location ?value)
=>

(bind ?delta (nth (+ 1 (length $?start)) $?heat))
(retract ?original ?heater)
(bind ?value (+ ?delta ?value))

34

Demonstrationof Rule Based Programmin 9 for Potable Water Subsystem 35

(assert (temperature ?location ?value)
(heaters $?start used $?rest)))

(defrule blockage ;reflect pressure change due to blockage
?problem <- (problem ?location blockage ?percentage)
?original <- (pressure ?location ?value)

(retract ?original ?problem)
(bind ?value (* ?value (+ 1 ?percentage)))
(assert (pressure ?location ?value)))

(defrule pressure-change-at-filters-and-unibeds
?node <- (pressure ?location ?value)
?press <- (delta-p ?type $?before ?location $?after ?delta)

_->

(retract ?node ?press)
(if (eq ?type relative)

then

(bind ?value (+ ?value ?delta))
else

(bind ?value ?delta))
(assert (pressure ?location ?value)

(delta-p ?type $?before $?after ?delta)))

(defrule back-propagate-pressure
(pressure ?location ?value)
(not (delta-p ?location ?delta))
(not (problem ?location blockage ?percentage))
(nodes ?key $?any ?next ?location $?rest)
(not (pressure ?next ?))

=_

(assert (pressure ?next ?value)))

(defrule bad-gauge
(declare (salience -100))
?prob <- (problem ?location bad-gauge ?percentage)
(gauges ?type $? ?location $?)
?press <- (?type ?location ?value)

=_

(retract ?prob ?press)
(bind ?value (* ?value ?percentage))
(assert (?type ?location ?value)))

;; System Chemistry

(defrule spent-unibed
(declare (salience 1000))
?prob <- (problem ?location spent ?percentage)
?uni <- (spent ?location ?value)

(retract ?prob ?uni)
(assert (spent ?location ?percentage)))

(defrule propagate-chemical-properties

Demonstrationof RuleBasedProcjrammincjfor PotableWaterSubsystem 36

_-->

(iodine ?location ?iodine)
(conductivity ?location ?conductivity)
(ph ?location ?ph)
(toc ?location ?toc)
(not (spent ?location ?percentage))
(nodes ?key $?any ?location ?next $?rest)
(not (toc ?next ?))

(assert (iodine ?next ?iodine)
(conductivity ?next ?conductivity)

(toc ?next ?toc)
(ph ?next ?ph)))

(defrule chemical-change-at-unibeds
?iold <- (iodine ?location ?iodine)
?cold <- (conductivity ?location ?conductivity)
?pold <- (ph ?location ?ph)
?told <- (toc ?location ?toc)
(nodes ?key $?any ?location ?next $?rest)
(spent ?location ?percentage)
(not (toc ?next ?))

---_>

(retract ?told ?iold ?cold ?pold)
(bind ?percentage (log10 (+ 1 (* ?percentage 9))))
(bind ?toc (* (+ .25 (* .75 ?percentage)) ?toc))
(bind ?ph (+ 7.0 (* (+ .5 (* .5 ?percentage)) (- ?ph 7.0))))
(bind ?conductivity (* (- 1 (* .95 (- 1 ?percentage))) ?conductivity))
(bind ?iodine ?iodine)
(assert (iodine ?location ?iodine)

(conductivity ?location ?conductivity)
(toc ?location ?toc)
(ph ?location ?ph))

(assert (iodine ?next ?iodine)
(conductivity ?next ?conductivity)
(toc ?next ?toc)
(ph ?next ?ph)))

;; Data Transfer and Initial Set-up

(defrule Initial-facts
(declare (salience 9000))
(initial-fact)

=>

(load-facts "system node definitions")
(load-facts "problems"))

(defrule open-output-file
(declare (salience -1000))
(initial-fact)

=>

(open "current status" output "w"))

(defrule close-output-file

Demonstrationof RuleBasedProcjrammin9 for PotableWaterSubsystem

=>

(declare (salience -10000))
(initial-fact)

(close))

(defrule write-output-to-file
(declare (salience -2000))
(initial-fact)
(gauges ?type $? ?location $?)
(?type ?location ?value)

(fprintout output "(" ?location " " ?value ")" crlf))

37

Demonstrationof Rule Based Programmin 9 for Potable Water Subsystem 38

APPENDI X C

DIAGNOSTIC RULES

(defrule read-in-data
(initial-fact)

=>

(load-facts "Dan's data set"))

(defrule find-min-same-node-list-differential
(declare (salience 5000))
(not (clue ?loc ?))
(differential $? ?type $?)
(gauges ?type $? ?prev ?loc $?)
(nodes ?key $?first ?prev $?middle ?loc $?)
(delta-lower ?type ?key $?vals)

(bind ?pos (+ 1 (length $?first)))
(bind ?count (length $?middle))
(bind ?sum 1)
(while (> ?count -1)

(bind ?pos (+ 1 ?pos))
(bind ?sum (* (- 1 (nth ?pos $?vals)) ?sum))
(bind ?count (- ?count 1)))

(bind ?result (- ?old ?sum))
(if (> ?result ?new)

(assert (clue ?loc low))

(nominal minimum ?loc ?result))
else

(assert (check-high ?loc))))

(defrule

=_

find-min-different-node-list-differential
(declare (salience 5000))
(not (clue ?loc ?))
(gauges ?type $? ?prey ?loc $?)
(differential $? ?type $?)
(?prey ?old)
(?loc ?new)
(nodes A $?first ?prev $?mid)
(nodes B $?next ?loc $?)
(delta-lower ?type A $?vall)
(delta-lower ?type B $?val2)

(bind $?middle (mv-append $?mid $?next))
(bind $?vals (my-append (mv-subseq (+ 2 (length $?first))

Demonstrationof RuleBasedProcjrammin9 forPotableWaterSubsystem 39

(length $?first)(length $?mid))
(+ 1

$?vall)

(mv-subseq 1 (length $?next) $?val2)))
(bind ?pos 0)
(bind ?count (length $?middle))
(bind ?sum 1)
(while (> ?count 0)

(bind ?pos (+ 1 ?pos))
(bind ?sum (* (- 1 (nth ?pos $?vals)) ?sum))
(bind ?count (- ?count 1)))

(bind ?result (- ?old ?sum))
(if (> ?result ?new)

(assert (clue ?loc low))

(nominal minimum ?loc ?result))
else

(assert (check-high ?loc))))

(defrule find-max-same-node-list-differential
(declare (salience 5000))
?high <- (check-high ?loc)
(gauges ?type $? ?prev ?loc $?)
(?prev ?old)
(?loc ?new)
(nodes ?key $?first ?prev $?middle ?loc $?)
(delta-lower ?type ?key $?vals)

(retract ?high)
(bind ?pos (+ 1 (length $?first)))
(bind ?count (length $?middle))
(bind ?sum 1)
(while (> ?count -1)

(bind ?pos (+ 1 ?pos))
(bind ?sum (* (- 1 (nth ?pos $?vals)) ?sum))
(bind ?count (- ?count 1)))

(bind ?result (* ?old ?sum))
(if (> ?result ?new)

(assert (clue ?loc agree))
else

(assert (clue ?loc high))))

(defrule find-max-different-node-list-for-differential
(declare (salience 5000))
?high <- (check-high ?loc)
(gauges ?type $? ?prey ?loc $?)

Demonstration of Rule Based Programmin{] for Potable Water Subsystem 40

(?prev ?old)
(?loc ?new)
(nodes A $?first ?prev $?mid)
(nodes B $?next ?loc $?)
(delta-upper ?type A $?vall)
(delta-upper ?type B $?val2)

(retract ?high)
(bind $?middle (mv-append $?mid-$?next))
(bind $?vals (my-append (mv-subseq (+ 2 (length $?first))

(length $?first)(length $?mid))
(+ 1

$?vall)

(mv-subseq 1 (length $?next) $?val2)))
(bind ?pos 0)
(bind ?count (length $?middle))
(bind ?sum 1)

; (fprintout t "variables " $?middle crlf "values" $?vals crlf)
(while (> ?count 0)

(bind ?pos (+ 1 ?pos))
(bind ?sum (* (- 1 (nth ?pos $?vals)) ?sum))
(bind ?count (- ?count 1)))

(bind ?result (- ?old ?sum))
(if (> ?result ?new)

(assert (clue ?loc agree))

(nominal minimum ?loc ?result))
else

(assert (clue ?loc high))))

(defrule group-gauges-phase-I
(declare (salience 4900))
(gauges ?type $? ?loc $?)
?old <- (clue ?loc ?clue)
?new <- (unsorted-gauge-clues ?type $?clues)

(retract ?old ?new)
(bind $?clues (my-append $?clues ?loc ?clue))
(assert (unsorted-gauge-clues ?type $?clues)))

(defrule sort-grouped-gages
(declare (salience 4500)
?old <- (unsorted-gauge-clues ?type $?ciues)
(gauges ?type $?gauges)

(retract ?old)
(bind ?count 1)

w

Demonstration of Rule Based Pro_rammincj for Potable Water Subsystem 4 1

(bind $?total nil)
(until (> ?count (length $?gauges))

(bind ?val (nth (+ 1 (member (nth ?count $?gauges)
$?clues)) $?clues))

(bind $?total (mv-append $?total ?val))
(bind ?count (+ 1 ?count)))

(assert (gauge-clues ?type $?total)))

(defrule compare-gauges-against-absolute-readings
(?loc ?value)
(nominal ?loc ?nora)
(gauges ?type $?first ?loc $?)
(delta ?type $?deltas)

=>

(bind ?diff (- ?value ?nom))
(bind ?del (nth (+ (length $?first) 1) $?deltas))
(if (> ?diff ?del)

(assert (clue ?loc high))
else

(if (< (+ ?diff ?del) O)

low))
(assert (clue ?loc

else (assert (clue ?loc agree)))))

(defrule Check-differential-gauge-pattern-changes
(gauge-clues ?type $?pattern)
(gauges ?type $?gauges)
(differential-gauges $? ?type $?)

=>

(bind ?n 1)
(bind ?mode agree)
(bind $?changes nil)
(while (<= ?n (length $?pattern))

(bind ?current (nth ?n $?pattern))
(if (not (equal ?current agree))

(bind ?j ?n)
(if (null $?changes)

(bind $?changes (mv-append $?changes
(- ?n 1)))
(if (equal ?current high)

(bind ?test low)
else

(bind ?test high))
(until (or (= ?j (length $?pattern))

(equal (nth (+ ?j 1) $?pattern)
?test))

(bind ?j (+ ?j 1)))
(bind $?changes (mv-append $?changes

(+1 (- ?j ?n))))))
(assert (gauge-changes ?type $?changes)))

(defrule check-diffe rential-gauge-patterns-for-bad-gauges
(gauge-clues ?type $?pattern)
(gauges ?type $?gauges)

w

Demonstration of Rule Based ProgrammincJ for Potable Water Subsystem 42

(gauge-changes ?type $?changes)
(differential-gauges $? ?type $?)

(bind ?n 1)
(bind ?pos 1)
(if (not (null $?changes))

(while (< ?n 3)
(bind ?current (nth ?pos $?pattern))

(if (equal ?current agree)
(if (equal (nth (+ ?pos (nth 2 $?changes))

$?pattern) high)
(bind ?current low)

else
(bind ?current high))
(bind ?j ?n)
(bind ?new-pos ?pos)
(bind $?hard-faults-loc nil)
(until (>= ?j (length $?pattern))

(bind ?end-pos (+ ?new-pos
(nth ?j $?pattern)))

(bind $?hard-faults-loc (my-append
$?hard-fault-loc

(mv-subseq ?new-pos
(+ ?new-pos ?end-pos) $?gauges)))

(bind ?new-pos (+ ?end-pos
(nth (+ j 1) $?pattern) 1))

(bind ?j (+ j 2)))
(assert (problem bad-gauges ?current

$? h a rd-f au Its-Ioc))

(bind ?pos (+ ?pos (nth 2 $?changes)))
(bind ?n (+ 1 ?n)))))

(defrule group-pressure-gauge-patterns
(gauges pressure $?gauges)
(gauge-clues pressure $?changes)
(bpvs $?boundary)
(nodes A $?nodeA)
(nodes B $?nodeB)

=>

(bind $?nodes (mv-append $?nodeA $?nodeB))
(bind ?n 1)
(bind ?j 1)
(bind ?upper (member (nth 1 $?boundary) $?nodes))
(bind $?pgseq nil}
(bind $?pgclue nil)
(while (> (length $?gauges) ?n)

(bind ?n (+ 1 ?n))
(bind ?pg (nth ?n $?gauges))
(bind ?clue (nth ?n $?changes))
(bind ?loc (member ?pg $?nodes))
(if (> ?loc ?upper)

(if (and (not (null $?pgseq))
(< ?j (length $?boundary)))

(assert (pressure-sequence $?pgseq clue $?pgclue))

m

Demonstration of Rule Based Procjrammin_] for Potable Water Subsystem

(defrule

=>

(defrule

=_

(bind $?pgseq nil)
(bind $?pgclue nil))

(while (or (> ?loc ?upper)
(< ?j (length $?boundary)))

(bind ?j (+ 1 ?j))
(bind ?upper (member (nth ?j $boundary)

$?nodes)))
(bind ?n (- ?n 1))

else

(bind $?pgseq (mv-append $?pgseq ?pg))
(bind $?pgclue (mv-append $?pgclue ?clue))))

(if (not (null $?pgseq))
(assert (pressure-sequence $?pgseq clue $?pgclue))))

Analyze-pressure-gauge-readings-for-bad-gauges
(pressure-sequence $?gauges clue $?clues)

(if (not (null $?clues))
(bind ?n 1)
(bind $?choices (my-append low agree high))
(while (< ?n 4)

(bind ?choice (nth ?n $?choices))
(bind ?pos 1)
(bind ?times 0)
(Until (> ?pos (length $?clues))

(bind ?current (nth ?pos $?clues))
(if (not (equal ?current ?choice))

(bind $?bad-gauges
(mv-append $?bad-gauges

(nth ?pos $?gauges)))
else

(bind ?times (+ ?times 1)))
(bind ?pos (+ 1 ?pos)))

(bind ?n (+ 1 ?n))
(if (and (not (null $?bad-gauges))

(or (> ?times 0)
(equal ?choice agree)))

(assert (problem bad-gauges $?bad-gauges))))))

group-temperature-gauge-patterns
(gauges temperature $?gauges)
(gauge-clues temperature $?changes)
(bpvs $?boundary)
(nodes A $?nodeA)
(nodes B $?nodeB)

(bind $?nodes (my-append $?nodeA $?nodeB))
(bind ?n 1)
(bind ?j 1)
(bind ?upper (member (nth 1 $?boundary) $?nodes))
(bind $?pgseq nil)
(bind $?pgclue nil)
(while (> (length $?gauges) ?n)

(bind ?n (+ 1 ?n))

43

w

Demonstration of Rule Based Pro_rammin{] for Potable Water Subsystem 44

(bind ?pg (nth ?n $?gauges))
.(bind ?clue (nth ?n $?changes))
(bind ?loc (member ?pg $?nodes))
(if (> ?loc ?upper)

(if (and (not (null $?pgseq))
(< ?j (length $?boundary)))

(assert (temperature-sequence $?pgseq clue
$?pgclue))

(bind $?pgseq nil)
(bind $?pgclue nil))

(while (or (> ?loc ?upper)
(< ?j (length $?boundary)))

(bind ?j (+ 1 ?j))
(bind ?upper (member (nth ?j Sboundary

$?nodes)))
(bind ?n (- ?n 1))

else
(bind $?pgseq (mv-append $?pgseq ?pg))
(bind $?pgclue (my-append $?pgclue

?clue))))
(if (not (null $?pgseq))

(assert (temperature-sequence $?pgseq clue $?pgclue))))

(defrule check-temperature-sequence-patterns-for-bad-gauges
(gauge-clues ?type $?pattern)
(gauges ?type $?gauges)
(gauge-changes ?type $?changes)
(differential-gauges $? ?type $?)

_-->

(bind ?n 1)
(bind ?pos 1)
(if (not (null $?changes))

(while (< ?n 3)
(bind ?current (nth ?pos $?pattern))

(if (equal ?current agree)
(if (equal (nth (+ ?pos (nth 2 $?changes))

$?pattern) high)
(bind ?current low)

else

(bind ?current high))
(bind ?j ?n)
(bind ?new-pos ?pos)
(bind $?hard-faults-loc nil)
(until (>= ?j (length $?pattern))

(bind ?end-pos (+ ?new-pos
(nth ?j $?pattern)))

(bind $?hard-faults-loc
(mv-append $?hard-fault-loc

(mv-subseq ?new-pos
(+ ?new-pos ?end-pos)

$?gauges)))
(bind ?new-pos (+ ?end-pos (nth (+ j 1)

$?pattern) 1))
(bind ?j (+ j 2)))

Demonstrationof Rule Based Programmin _ for Potable Water Subsystem 45

(assert (problem bad-gauges ?current
$?hard-faults-Ioc))

(bind ?pos (+ ?pos (nth 2 $?changes)))
(bind ?n (+ 1 ?n)))))

Report Documentation Page

2. Go'_,_._r,i AccmuuonNo.

4. T_en4Sub_e
/

ECLSS Advanced Automation:

Preliminary Requirements --Final Report

7. Auth_

J James W. McKee

9. pmtomvng_naJmanNameand/_drm

University of Alabama, Huntsville

1_SpanMx_gAgencyNmand/_nm

NASA/MSFC

3. RK_,;_,f= Cat,_,_ No.

5. Rl_ _m

19 December 1989

8. P_'fom_ O,_,,=xm Code

|. Plrfcmmk'_Ot_ ROI:)o_NO.

10. Worn Unit No.

11. Contrl_'t or GrantNo.

,k"

NAS8-36955

v"

thru 10-31-89

14. Sponeor,_ *_ency C_de

1S. Sum_Mnw_ Not==

In analyzing the baseline ECLSS command and control

architecture, we may find various processes which would be

enhanced by the use of knowledge based system methods of

implementation. The purpose of this project is to document

the most suitable process for prototyping using rule based

methods, while also considering domain knowledge resources

and other practical considerations.

Requirements for a prototype rule based software system

will be documented'. These requirements will reflect Space

Station Freedom ECLSS software and hardware developments

efforts, and knowledge based system requirements. A quick

prototype knowledge based system environment will be

researched and developed.

17. Key WoOl=(SutKImm4by Aumm'(|ll

ECLSS, Final report

18. Dkltnl_OoctStatement
/

Unclassified-unlimited

/ unclassified Unclassified
21. No. of aagu
'I 160

ZL_

N_qJ_ FORM 112l OCTII

