
N91-28073

CONSTRUCTION OF STABLE EXPLICIT FINITE-DIFFERENCE

SCHEMES FOR SCHRODINGER TYPE DIFFERENTIAL EQUA_ONS

Ronald E. Mickens

Departments of Mathematics and Physics
Clark-Atlanta University

Atlanta, Georgia

Technical Monitor

John Shoosmith

Langley Research Center

ABSTRACT

A family of conditionally stable, forward Euler finite-difference equations can be constructed for
the simplest equation of Schr&tinger type, namely ut = iuxr. Generalization of this result to physically
realistic Schr&linger type equations is presented.
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CONS_UCTION OF STABLE EXPLICIT FINITE-DWFERENCE

SCHEMES FOR SCHRODINGER TYPE DIFFERENTIAL EQUATIONS

Introduction

Discrete finite-difference models of differential equations have been a traditional and popular

technique for obtaining numerical solutions of both ordinary and partial differential equations [1,2].
An essential component of this procedure is the replacement of the derivative by its discrete analogue
based on the definition of the derivative as a limit process; that is

dx x(t +h) - x(t)
_- = Lim h ' (1)

h-,,0

and

dx Xk+l --xk
• - -_ h ' (2)

where xk is an approximation to x(tk) with tk = hk. However, more general definitions of the derivative

can be defined. As an example consider

dx x(t +h) - x(t)
d--i-= Limh--O ¢(h) ' (3)

where _p(h) has the property

¢p(h) = h +0(h2). (4)

Note that for this case the discrete replacement for the derivative is

dx Xk+I -- Xk

• " '" ¢(h) ' (5)

which, in general, differs from Eq. (2) for finite values of the step-size h.

The major implication of the above remarks is that new discrete models of differential equations
can be constructed based on Eq. (3). These models have the potential for providing solutions that arise

when the conventional discrete derivation of Eq. (2) is used.

As an illustration, consider the differential equation

dx
_- = i3,x, x(t0) = xo, 2 = real parameter, (6)

with solution
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x(t) = x0 exp [ i,t (t - to) ]. (7)

Application of conventional procedures [1] gives, for example, the finite-difference scheme

Xk+l -- Xk
h - i2Xk. (8)

In contrast, consider the following exact scheme [3]

Xk+l -- Xk

_(h) = iRxk, x0 = given, (9)

where

e/__l
_(h) = i_ (10)

An easy and direct calculation [4] shows that for Eqs. (6) and (8), we have for their solutions

x(tk) _ _, while for Eqs. (6) and (9), x(tk) = xk for all step-sizes h. Also, from Eq. (10), we obtain

_(h) = h + i2h2 + 0(h3). (11)

Consider the simplest Schr6dinger-type equation

Ut = iuxr. (12)

Conventional finite-differences, using a forward Euler replacement for the time-derivative, give a

scheme that is unconditionally unstable [5]. We now show how conditionally stable schemes can be
constructed.

To proceed, based on the discussion presented earlier, we construct the following finite-difference
scheme

u_ +I - u_ u,,,+l - 2u_ + u_-I

i_l(At,A) - _2 (Ax,A) (13)

where the "denominator functions" have the properties

¢1(At,2) =At + i2(At) 2 + 0[(At) 31 (14a)

_2 (Ax, t) = (Ax) 2 + 0[(Ax) 3] (14b)

and _., for the moment, is an unspecified parameter. Defining R(At, Ax, 2) as

 l(At, 4)
R - _pE(AX,2) = RI(At, Ax, 2) + iR2 (At, Ax, 2) (15)

we can rewrite Eq. (13) in the form
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= +1 + (1 -2R)

The substitution of a typical Fourier mode

u_ = C(n) exp [ia,(Ax)m],

+ Ru_.

(17)

into Eq. (16) and requiring the C(n) be bounded allows the determination of the stability properties.
(This concept of stability is called "practical stability" [5,6].) A straight-forward calculation shows that
Eq. (16) is stable if the following condition is satisfied.

12 1
(R1 - _) + (R2) 2 _ i-6" (18)

This relation has the interesting geometric interpretation: In the (R1,R2) plane, Eq. (16) is stable for

points on and inside the circle of radius 0.25 centered at (0.25, 0). We will refer to the inequality of Eq.
(18) as the circle condition.

For a given application, the following procedure is to be followed:

a) Select denominator functions with the properties given in Eqs. (14) and calculate R in Eq. (15).

b) Choose a point (R1, R2) consistent with the circle condition of Eq. (18).

c) Determine RffAt, Ax, 2) and R2(At, Ax, 2) from Eq. (15) and set them equal, respectively to
if,1 and if,2, i.e.,

RI(At, Ax, it) = ffq, ff,2(At, Ax, it) = if,2. (19)

d) Select a value for the space-step, Ax, and solve the two relations of Eq. (19) for At and it in
terms of Ax. Doing this gives

At = f1(Ax), it = fE(AX). (20)

Thus, the selection of the point (RI, R2), satisfying the circle condition and the relations of Eq. (20),
defines completely the finite-difference scheme of Eq. (16).

As an example, consider the following denominator functions

_1 = At + i2(At) 2, _2 = (AX) 2, (21)

with

R=I
4 (22)

The following results are easily obtained
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_ 1-i (23)At -- , 2 = 4 , Cpl = 4 "

and

Note that everything can be expressed in terms of Ax, the space step-size; its value can be selected as
desired.

A second, nontrivial example is the nonlinear Schr'6dinger equation

u, -- + lul2u. (25)

A finite-difference scheme that embodies the work of this paper and also uses the nonlocal modeling

of the nonlinear term [3] is

u_+l -u'qn_p_ -i -[unto+l- 2u'qn +unm-1]_ -

+ ]Un+l,
2 (26)

where the star (*) denotes complex conjugation, and the denominator functions ¢1(At, 2) and

_2(Ax, 2) satisfy the conditions of Eqs. (14). Note that Eq. (20) is an explicit finite-difference scheme.

In summary, we have presented a new procedure to construct explicit finite-difference schemes

for SchrSdinger type partial differential equations. In general, we expect these schemes to be condi-

tionally stable. This paper summarizes research that has already been published in Physics Review A,

June 1989 and in the "Proceedings of the 2nd IMAC Conference on Computational Acoustics."
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