https://ntrs.nasa.gov/search.jsp?R=19910018829 2020-03-19T16:42:26+00:00Z

NASA Technical Paper 2922

August 1989

Longitudinal Aerodynamic Characteristics of a Subsonic, Energy-Efficient Transport Configuration in the National Transonic Facility

Peter F. Jacobs and Blair B. Gloss

NOTICE

FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being deseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Belease of this information to other domestic parties by the recipient shall be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.

Date for general release August 31, 1991

NASA Technical Paper 2922

1989

Longitudinal Aerodynamic Characteristics of a Subsonic, Energy-Efficient Transport Configuration in the National Transonic Facility

Peter F. Jacobs and Blair B. Gloss Langley Research Center Hampton, Virginia

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Division

Summary

An investigation has been conducted in the National Transonic Facility (NTF) at the Langley Research Center to determine Reynolds number, aeroelasticity, boundary-layer transition, and nonadiabatic wall temperature effects for a subsonic, energy-efficient transport model. The model was tested over a Mach number range from 0.50 to 0.86 and a Reynolds number range from 1.9×10^6 to approximately 23.0×10^6 (based on mean geometric chord). The majority of the data were taken using cryogenic nitrogen. (Data at a Reynolds number of 1.9×10^6 were taken in air.) Longitudinal force and moment, wing pressure, and wing thermocouple data are presented in this report. The data indicate that increasing the Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, thus resulting in greater lift and pitching-moment coefficients at nearly all angles of attack for a Mach number (M) of 0.82. As Reynolds number was increased, untrimmed lift-drag ratio (L/D) increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag-divergence Mach number increased slightly. Data repeatabilty for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transitionfree and transition-fixed configurations had significantly different force and moment data at M = 0.82for low Reynolds numbers, and very small differences were noted at high Reynolds numbers.

Introduction

To aid in the checkout of the data acquisition systems of the National Transonic Facility (NTF) and for a tunnel-to-tunnel comparison, several cryogenic tunnel models were built. These models were based on existing NASA Langley wind-tunnel models for which a large data base existed. One of these models, the Pathfinder I, is representative of a subsonic, energy-efficient transport (EET) with a wide-body fuselage and an aspect-ratio-9.8 supercritical wing (fig. 1). The Pathfinder I model, which was based on one of the EET configurations developed by Whitcomb and Bartlett (refs. 1 and 2) in the late 1970's, was designed for a cruise Mach number of 0.82 at a cruise lift coefficient (wingbody configuration) of 0.55. The Pathfinder I has been used extensively in the NTF, not only in the checkout of tunnel systems but also as a research model for high Reynolds number and cryogenic flow phenomena. For the present investigation, the primary objectives were to determine Reynolds number,

aeroelasticity, boundary-layer transition, and nonadiabatic wall temperature effects. The model was tested over a Mach number range from 0.50 to 0.86and a Reynolds number range from 1.9×10^6 to approximately 23.0×10^6 (based on mean geometric chord). The majority of the data were taken using nitrogen as the test gas; however, the data at a Reynolds number of 1.9×10^6 were taken in the air mode of operation.

Symbols

Force and moment data presented in this paper have been reduced to conventional coefficient form based on the wing trapezoidal planform area (extended to the fuselage centerline). Longitudinal aerodynamic characteristics are referred to the stability-axis system. Moments are referenced to the quarter-chord of the mean geometric chord. All dimensional values are given in U.S. Customary Units. The symbols are defined as follows:

b	wing span, 52.97 in.
C_D	drag coefficient, Drag/qS
C_L	lift coefficient, $Lift/qS$
C_m	pitching-moment coefficient, Pitching moment/ $qSar{c}$
C_p	pressure coefficient, $(p-p_{\infty})/q$
с	local streamwise chord of wing, in.
ō	mean geometric chord of reference wing panel, 5.74 in.
E	Young's modulus of elasticity
i_H	horizontal tail incidence, positive for leading edge up, deg
L/D	lift-drag ratio
M	free-stream Mach number
p	local static pressure, psi
p_T	total pressure, psia
p_∞	free-stream static pressure, psia
q	free-stream dynamic pressure, psf
$R_{ar{c}}$	Reynolds number based on mean geometric chord
r	fuselage cross-section radius, in.
S	wing planform reference (trape- zoidal) area, 1.988 ft ²
Т	absolute temperature of wing from thermocouples, °R
$T_{\rm aw}$	absolute adiabatic wall temperature, ${}^{\circ}\mathbf{R}$

T_T	total temperature, °F
x	chordwise distance, positive aft, in.
y	spanwise distance from model centerline, in.
z	vertical coordinate of airfoil, posi- tive upward, in.
z_o	waterline (W.L.) of leading edge for wing coordinates in table II, in.
<i>z'</i>	coordinate of vertical tail airfoil (see table V), in.
α	angle of attack, deg
Δ	incremental value
η	semispan station, $2y/b$
Subscripts	s:
le	leading edge
\min	minimum value
Abbreviat	ions:
F.S.	fuselage station, in.

- L.S. lower surface
- U.S. upper surface
- W.L. waterline, in. (fuselage centerline is W.L. 0.00; positive direction is up)

Experimental Apparatus and Procedures

Test Facility

The National Transonic Facility (NTF) at the Langley Research Center is a closed-circuit, continuous-flow, cryogenic pressure tunnel. The test section is 8.2 ft by 8.2 ft and 25 ft long with slots in the floor and ceiling. The NTF has a Mach number range from 0.2 to 1.2, a total pressure range from approximately 15 to 125 psia, and a temperature range from 320° F to 150° F. Actual test conditions for this investigation are presented in table I.

The test gas may be either dry air or nitrogen. For the air mode of operation, heat is removed by a water-cooled heat exchanger located at the upstream end of the settling chamber. For the cryogenic mode of operation, heat is removed by evaporating liquid nitrogen, which is sprayed into the tunnel circuit upstream of the fan. When nitrogen is injected into the tunnel, venting is used to maintain constant total pressure. To minimize energy consumption and reduce thermal cycling of the pressure shell, thermal insulation in the NTF is installed internal to the pressure shell. In order to maintain good flow quality and aerodynamic efficiency over the wide operating range of the NTF, the test-section floor and ceiling walls, the reentry flaps, and the step height for reentering slot flow can be varied remotely. In addition, there are four turbulence damping screens in the settling chamber and a 15:1 contraction from the settling chamber to the nozzle throat to reduce turbulence. Acoustic treatment upstream and downstream of the fan helps minimize fan noise effects. Further details of the tunnel can be found in reference 3.

Model Description

The Pathfinder I model is representative of a subsonic, energy-efficient transport (EET) with a wide-body fuselage and supercritical wing. This configuration was designed for a cruise Mach number of 0.82 at a lift coefficient (wing-body) of 0.55. A sketch of the model is shown in figure 2.

The supercritical wing has a span of 52.97 in., a trapezoidal planform area of 1.98 ft², an aspect ratio of 9.8, 35° of sweep at the quarter-chord, and 5° of dihedral. The wing has thickness-chord ratios of 0.145 at the root, 0.120 at the geometric break, and 0.106 at the tip. Wing coordinates are presented in table II. The fuselage is 50.00 in. long and has a maximum diameter of 5.75 in. The fuselage geometry is presented in table III.

The all-moving supercritical horizontal tail has a span of 19.59 in., a planform area of 0.70 ft², an aspect ratio of 3.82, 32.5° of sweep at the quarterchord, 10° of dihedral, and a thickness-chord ratio of 0.10. The incidence of the horizontal tail was set at 0° throughout the investigation. The supercritical vertical tail has a span of 10.00 in., a planform area of 0.42 ft², an aspect ratio of 1.65, 35° of sweep at the quarter-chord, and a thickness-chord ratio of 0.10. Coordinates of the horizontal and vertical tails are presented in tables IV and V, respectively.

This small-scale model was designed to be tested at near-flight Reynolds numbers, and therefore a very smooth model surface was required. The surface finish was 8–10 μ in. (root-mean-square) over the entire model.

Instrumentation includes a three-axis accelerometer and six, 32-port, electronically scanned pressure (ESP) modules housed in the nose of the fuselage, a six-component strain-gauge balance, three balance thermocouples, and nine wing and fuselage thermocouples.

Transition Strips

Transition strips consisting of sparsely distributed No. 180 carborundum grit set in a plastic adhesive were applied to the wing, tails, and fuselage

of the Pathfinder I model for most of the test. The strips were approximately 0.1 in. wide and were located 1.0 in. aft of the nose of the fuselage and at 10 percent of the local chord on the wing and tails.

The grit was sized based on charts developed for the NTF that use the ideal-gas equations of references 4 and 5. Use of the real-gas equations was considered unnecessary, because real-gas corrections are small except at very high Reynolds numbers (where transition strips probably are not needed), and also because the roughness particles are usually chosen to be slightly larger than the critical roughness height in order to ensure transition for a range of test conditions. However, since the viscosity of nitrogen changes significantly with pressure at low temperatures, the viscosity equations of reference 6 were used. The grit size was calculated for low Reynolds number conditions. The grit was located relatively far forward throughout most of the test because time considerations did not allow for numerous tunnel entries to relocate the transition strips. Normally, the transition strips would be located as far aft as possible for low Reynolds number conditions to simulate a higher Reynolds number. Consequently, for this investigation drag levels at low Reynolds number conditions are higher than would result for aft transition locations. As the Reynolds number is increased, the wing boundary layer gets thinner and eventually the transition strip height exceeds the calculated flatplate boundary-layer thickness.

Measurements

Aerodynamic force and moment data were obtained with a six-component, electrical strain-gauge balance. The quoted accuracy of the balance is 0.5 percent of the full-scale values (normal force, 3400 lb; axial force, 300 lb; pitching moment, 10000 in-lb; rolling moment, 5000 in-lb; yawing moment, 5000 in-lb; and side force, 1000 lb). However, the repeatability of the data was generally better than the quoted accuracy.

A three-axis accelerometer package attached to the balance block was used to measure roll angle and angle of attack. Static pressures were measured in the model along the sting cavity by using differentialpressure transducers referenced to tunnel plenum static pressure.

The Pathfinder I has a total of 173 wing-surface pressure taps located in six spanwise rows ($\eta = 0.131$, 0.282, 0.432, 0.640, 0.829, and 0.961). Nominal chordwise pressure orifice locations are presented in chart A. Because of model strength and construction considerations, the upper- and lower-surface pressures were located on left and right wing panels, respectively. The wing pressures were measured with six, 32-port, electronically scanned pressure (ESP) modules. Three of the modules had a full-scale range of ± 30 psid, and three had a range of ± 15 psid. Accuracy of the modules over their full pressure range is ± 0.25 percent of full scale.

<i>1</i>	c/c
U.S.	L.S.
0.025	0.025
.075	.075
.125	.125
.200	.200
.300	.300
.400	.400
.450	.500
.500	.600
.550	.700
.600	.800
.650	
.700	
.800	
.900	

Chart A

The thermocouples on the model were type T (copper-constantan). The wing thermocouples were located at $\eta = 0.2, 0.5$, and 0.8 at $x/c \approx 0.4$.

Corrections

The angle of attack of the model was corrected for flow angularity in the tunnel test section. This correction was obtained from upright and inverted tests of the model. Drag data presented herein have been adjusted to correspond to the condition of freestream static pressure acting in the balance chamber and at the base of the fuselage. No correction has been made to the data to account for wall interference effects.

The wind-tunnel floor and ceiling walls were set at the proper angles (from tunnel-empty calibrations) to eliminate pressure gradients and buoyancy effects in the test section. Also, the solid-blockage ratio of the model was sufficiently small to minimize blockage effects based on conventional criteria.

During previous cryogenic investigations of the Pathfinder I in the NTF, a "frostlike" substance was observed on the model. This substance was later shown to be water vapor that was released from the internal insulation of the NTF and then formed frost on the model. After an extensive study of the problem and several operational procedure changes, the amount of water vapor being released was greatly reduced. Pressure distributions from the current investigation are presented in reference 7 and show that frost effects on model surface pressures are very small. The errors in pressure measurements due to frost at design conditions are on the same order as those due to Mach number differences of less than 0.001 or angle-of-attack differences of approximately 0.01°. Thus, since it is unlikely that frost effects are discernible, no corrections have been made to the data of this investigation.

Discussion of Results

A typical map of test conditions for a cruise Mach number of 0.82 is shown in figure 3. Since it is more cost-effective to make cryogenic runs at low pressure (less nitrogen consumption), most of the Reynolds number effect data are taken at approximately 30 psia. However, as shown in figure 3, the Reynolds number range that can be achieved by a reduction of gas temperature increases significantly with pressure. The data taken at a total pressure of approximately 30 psia have a Reynolds number range from 4.8×10^6 to 17.9×10^6 . To achieve a Reynolds number of 22.7×10^6 , the total pressure was increased to approximately 40 psia. Data were taken at both pressures for a Reynolds number of 17.9×10^6 in order to determine model aeroelastic effects.

Because the steel used in the Pathfinder I model becomes stiffer (the modulus of elasticity (E) increases) as temperature decreases, the test points showing the Reynolds number effect are not run at a constant dynamic pressure. Instead, the total pressure is increased slightly as temperature is decreased to maintain a constant ratio of dynamic pressure to modulus of elasticity (q/E). Test points for other Mach numbers are similar to those in figure 3.

Repeatability

The repeatability of the longitudinal aerodynamic data taken during separate runs in the air mode and cryogenic mode of operation at M = 0.82 is shown in figures 4–6 and figures 7–9, respectively.

In the air mode, the variations of C_L versus α (fig. 4) and C_{2n} versus C_L (fig. 5) show exceptional repeatability for values of C_L up to the initial break in the lift curve, and good agreement is shown beyond the break. The variation of C_D versus C_L (fig. 6) shows good repeatability, with a maximum difference in drag coefficient of approximately 0.0004. It should be noted that this increment in drag is equivalent to approximately 0.5 lb and that the axial-force capacity of the balance is 300 lb. Thus, the repeatability for these data is better than the quoted accuracy for the balance of 0.5 percent of full scale. In the cryogenic mode of operation, the lift data (fig. 7) and pitching-moment data (fig. 8) show very good repeatability. The drag data (fig. 9) have a similar maximum variation as in the air mode for lift coefficients up to the lift-curve break. The increment in drag increases after the lift-curve break possibly because of small differences in Mach number between the repeat runs.

Aeroelasticity

One of the advantages of a cryogenic pressure tunnel is that Reynolds number and aeroelastic effects may be studied independently. For the Pathfinder I. the effect of a variation in total pressure at nearly constant Reynolds number on the longitudinal force and moment data and the chordwise pressure distributions is presented in figures 10–12 and figure 13. respectively. Data are presented for a Mach number of 0.82 at total pressures of approximately 31.2 and 40.0 psia. The lift and pitching-moment data in figures 10 and 11, respectively, indicate essentially negligible aeroelastic effects. Some exaggeration of the effect in figures 10 and 11 occurs because the cubicspline fairings are affected by the differences in data density at values of C_L greater than 0.7. A comparison of pressure distributions at an angle of attack of approximately 3.2° (fig. 13) reveals a very slight unloading of the wing outboard of $\eta = 0.432$ for the higher dynamic pressure data. However, it should be noted that some of the differences between the data in figure 13 are due to small angle-of-attack and Mach number variations ($\Delta \alpha = 0.008$ and $\Delta M = 0.0019$). Small differences in drag level (fig. 12) are due to base-pressure correction differences that cannot be explained.

Transition Effects

Longitudinal force and moment data for the clean wing (transition off) and transition-fixed (transition on) configurations at a Mach number of 0.82 are presented in figures 14–16, and chordwise pressure distributions at a Reynolds number of approximately 22×10^6 are presented in figure 17.

Low Reynolds number data. At a Reynolds number of 4.8×10^6 , the variation of C_L versus α (fig. 14(a)) indicates that the clean wing has greater effective camber because of a thinner boundary layer and thus generates more lift. The effectiveness of aft-cambered supercritical wings is sensitive to boundary-layer transition location, as was shown in references 8 10. At $\alpha \approx 1^\circ$, the transition point on the upper surface of the clean wing moves forward and causes a loss of lift. However, the average natural transition point on the clean wing remains aft of the transition for the transition-fixed configuration (0.1c). At the highest angles of attack tested, the clean wing has reduced trailing-edge separation and significantly higher lift than the transition-fixed configuration. The data trends shown in the lift data are also evident in the variations of C_m versus C_L and C_D versus C_L (figs. 15(a) and 16(a), respectively). Because the clean wing has a thinner boundary layer and more effective camber, it produces a more negative pitching moment and lower drag than the transition-fixed data. As the transition point for the clean wing moves forward, the pitching moments become less negative and the drag level increases.

The clean-wing force and moment data underscore the importance of transition fixing for low Reynolds number tests. The natural transition point for configurations like the Pathfinder I can move around significantly with angle of attack, thus making data analysis and extrapolation very difficult.

High Reynolds number data. Longitudinal force and moment data are presented in figures 14(b), 15(b), and 16(b) for the clean wing and the transitionfixed configuration at a Mach number of 0.82 and Reynolds numbers of 22.7×10^6 and 21.5×10^6 . respectively. The dynamic pressure and Reynolds number for these two configurations are not identical ($\Delta q \approx 1$ percent); however, the small differences should not significantly affect the data comparisons. The variation of C_L versus α (fig. 14(b)) and of C_m versus C_L (fig. 15(b)) indicates that the transition points for both configurations are nearly identical.

The drag data (fig. 16(b)) indicate that the increment in drag coefficient between the transitionfixed and clean wing configurations is approximately 0.0010 to 0.0020. However, only a portion of this increment can be considered "trip drag" in the classical sense. Some of the drag increment is probably due to increased trailing-edge separation for the transitionfixed configuration. Evidence of trailing-edge separation is shown in figure 17(b) at $\eta = 0.640$, where the shock wave for the transition-fixed configuration has moved forward of the clean wing shock wave. The transition strips (which were sized for low Reynolds number conditions) may have some effect on local surface pressures near the leading edge of the outboard pressure rows. It should be noted that the lower-surface pressures for the clean wing configuration were not available because of ESP instrumentation malfunction.

An estimation of the trip drag penalty has been made in the following manner. Minimum drag values $(C_{D,\min})$ were determined from a series of transitionfixed polars at M = 0.82 and Reynolds numbers from 1.9×10^6 to 21.5×10^6 . The values of C_L corresponding to the values of $C_{D,\min}$ were less than 0.1 and were approximately the same. Therefore, an assumption was made that the induced-drag portion of $C_{D,\min}$ was essentially the same for each Reynolds number and was small enough to neglect. Using the Somer and Short T' method of reference 11, flatplate turbulent-skin-friction values were computed for boundary layers starting at the leading edge of the wing and at 0.1c. No estimate was made for laminar skin friction on the first 10 percent of the chord in the latter case. All skin-friction values were then multiplied by the ratio of $C_{D,\min}$ (with $R_{\bar{c}} = 1.9 \times 10^6$) to the 90-percent turbulent-skinfriction value (with $R_{\bar{c}} = 1.9 \times 10^6$). The data are presented in figure 18 and indicate that for Reynolds numbers greater than approximately 3.0×10^6 . the transition on the wing moves forward of 0.1c. Also, it would appear that for Reynolds numbers higher than approximately 12.0×10^6 , the boundary layer is fully turbulent and some trip drag is present. At a Reynolds number of 21.5×10^6 , the trip drag increment is approximately 0.0008.

Nonadiabatic Wall Effects

The influence of nonadiabatic wall conditions on skin friction and boundary-layer properties is wellknown. In cryogenic tunnels such as the NTF, the model should be nearly stabilized in temperature to minimize nonadiabatic wall effects. The instrumentation of the Pathfinder I model included thermocouples on the wing and fuselage to monitor model temperatures. Typical wing temperature data for a series of runs at M = 0.82 are presented in figure 19 for three wingspan stations ($\eta = 0.2, 0.5, \text{ and } 0.8$) at $x/c \approx 0.4$. Each symbol represents a different angle of attack in a pitch polar. The method of Johnson and Adcock (ref. 12) was used to calculate the adiabatic wall temperature. It should be noted that the wing thermocouples were buried in the wing, not on the surface. It is reasonable to assume then that the thermocouple response would lag the surfacetemperature variations caused by changes in local flow conditions with angle of attack. Therefore, the data in figure 19 are considered to be conservative and actual surface temperatures should be closer to the adiabatic wall temperatures.

For relatively warm surface-temperature data $(T_T > -100^{\circ}\text{F})$, the wing temperatures are within approximately 2 percent of the adiabatic wall temperatures; and for the coldest surface-temperature data $(T_T < -250^{\circ}\text{F})$, the wing temperatures are less than 8 percent higher than the adiabatic wall temperatures. Data from references 13 and 14 indicate

that for configurations with transition near the leading edge, values of $T/T_{\rm aw}$ of the same magnitude do not significantly affect the data. Thus, any error due to nonadiabatic wall effects should be well within the balance accuracy and within the balance repeatability as well.

Reynolds Number Effects

The effects of Reynolds number $(R_{\tilde{c}})$ on the longitudinal aerodynamic characteristics of the Pathfinder I (with transition fixed) at a cruise Mach number of 0.82 are presented in figures 20-23. The Reynolds number ranged from 1.9×10^6 to 21.5×10^6 . It has been shown that aeroelastic effects for a total pressure range of approximately 31 to 40 psia (i.e., the data from a Reynolds number range between 4.8×10^6 and 21.5×10^6) are small. However, because of tunnel operational constraints, the data at $R_{\tilde{c}} = 1.9 \times 10^6$ and 3.0×10^6 were run at significantly lower values of q/E. Therefore, data comparisons with the higher Reynolds number data involve unknown aeroelastic effects.

The lift data (fig. 20) demonstrate the effective camber increase with Reynolds number for the highly aft-cambered supercritical wing of the Pathfinder I. Although the shape of the lift curves is fairly constant, the curves translate in the positive C_L direction with increasing Reynolds number. Some of the difference is a function of the forward transition strip location. If the transition strips had been located farther aft (i.e., in a thinner boundary layer) for the lower Reynolds number data, the extent of the translation of the curves would be reduced. The increase in the aft loading and in the extent of the uppersurface pressure plateau with Reynolds number is evident in the pressure distributions of figure 24.

The variation of C_m versus C_L and of C_m versus α (figs. 21 and 22, respectively) indicates more positive (nose-up) pitching moments with increasing Reynolds number. The increase in effective camber of the wing with Reynolds number, which would tend to produce a more negative C_m , is offset by increased negative loading on the horizontal tail resulting in a more positive C_m . It should be noted that at $R_c = 21.5 \times 10^6$, the α required for any C_L is approximately 0.4° less than the α required at $R_{c}^{L} = 1.9 \times 10^{6}$ (fig. 20). Thus, for constant C_{L} , the incidence of the horizontal tail would be 0.4° lower at $R_{\tilde{c}} = 21.5 \times 10^6$ than at 1.9×10^6 ; and because the horizontal tail has inverted airfoils (negative camber), the negative load on the tail would increase with Reynolds number. In addition, the load on the horizontal tail would also increase with Reynolds number because of greater effective camber. A comparison of pitching-moment data for the Pathfinder I with data

taken in the NASA Langley 8-Foot Transonic Pressure Tunnel for the geometrically similar Pathfinder I prototype configuration of reference 2 is shown in figure 25. The Pathfinder I data have been recomputed using approximately the same static margin as the data from reference 2. The data in figure 25 indicate that the increase in C_m due to an increase in Reynolds number for the Pathfinder I is remarkably similar to the increase in C_m due to a decrease in horizontal tail incidence of 0.5° for the Pathfinder I prototype ($R_{\tilde{c}} = 2.4 \times 10^6$).

The smoothness of the untrimmed drag data (fig. 23) is adversely affected by unresolved base pressure fluctuations and also by small errors in the test conditions that were introduced by manual control of the wind tunnel. It should be noted that the NTF integrated control system (simultaneous control of M, p_T , and T_T) was not fully operational during this investigation, and manual control was often required. The shape of the drag polars for the Pathfinder I does not change significantly with Reynolds number for $C_L < 0.6$. However, the increased trailingedge separation present at low Reynolds numbers for $C_L > 0.6$ results in a more rapid increase in drag than for higher Reynolds numbers. Also, as previously discussed, some trip drag was present at the higher Reynolds numbers that would affect overall drag level.

The untrimmed lift-drag ratio (L/D) data for the Pathfinder I (with tails) in figures 26 and 27 indicate that the maximum L/D occurs at $C_L \approx 0.6$ regardless of Reynolds number. The angle of attack for the maximum L/D decreases slightly with increasing Reynolds number as would be expected.

Drag data for Mach number sweeps at Reynolds numbers of 3.0×10^6 and approximately 23.0×10^6 (fig. 28) were used to determine the effects of Reynolds number on the untrimmed drag rise characteristics of the Pathfinder I (fig. 29). The high Reynolds number data (fig. 29(b)) show significantly less drag creep than the low Reynolds number data (fig. 29(a)), even though some trip drag is present in the high Reynolds number data. For $C_L = 0.6$, the drag creep between M = 0.5 and M = 0.82 is 0.0050 and 0.0021 for the low and high Reynolds numbers, respectively. The drag-divergence Mach number is based on $\Delta C_D / \Delta M = 0.1$ and is indicated by a tick mark in figure 29. The drag-divergence Mach number at $C_L = 0.6$ increased slightly with Reynolds number from 0.821 to 0.825.

Summary of Results

An investigation has been conducted in the National Transonic Facility (NTF) at the Langley Research Center to determine Reynolds number, aeroelasticity, boundary-layer transition, and nonadiabatic wall temperature effects for a subsonic, energy-efficient transport model. The model was tested over a Mach number range from 0.50 to 0.86 and a Reynolds number range from 1.9×10^6 to approximately 23.0×10^6 (based on mean geometric chord). The majority of the data were taken using cryogenic nitrogen. (Data at a Reynolds number of 1.9×10^6 were taken in air.) Longitudinal force and moment, wing pressure, and wing thermocouple data are presented in this report. The results of this investigation may be summarized as follows:

1. Increasing the Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, thus resulting in greater lift and pitching-moment coefficients at nearly all angles of attack for a Mach number (M) of 0.82.

2. As Reynolds number was increased, untrimmed lift-drag ratio (L/D) increased and the angle of attack for maximum L/D decreased.

3. Drag creep was reduced significantly and dragdivergence Mach number increased slightly with increasing Reynolds number.

4. NTF data repeatability for both air and cryogenic nitrogen modes of operation was generally very good.

5. Comparisons of force and moment data at M = 0.82 for transition-free and transition-fixed configurations showed significant differences at a Reynolds number of 4.8×10^6 and very small differences at a Reynolds number of approximately 21.6×10^6 .

6. Nonadiabatic wall effects were estimated to be small.

NASA Langley Research Center Hampton, VA 23665-5225 June 14, 1989

References

 Bartlett. Dennis W.: Wind-Tunnel Investigation of Several High Aspect-Ratio Supercritical Wing Configurations on a Wide-Body-Type Fuselage. NASA TM X-71996, 1977.

- 2. Jacobs, Peter F.: Experimental Trim Drag Values and Flow-Field Measurements for a Wide-Body Transport Model With Conventional and Supercritical Wings. NASA TP-2071, 1982.
- 3. Fuller, Dennis E.: Guide for Users of the National Transonic Facility. NASA TM-83124, 1981.
- Chapman, Dean R.; and Rubesin, Morris, W.: Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer With Arbitrary Distribution of Surface Temperature. J. Aeronaut. Sci., vol. 16, no. 9, Sept. 1949, pp. 547-565.
- Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NACA TN 4363, 1958.
- Kilgore, Robert Ashworth: The Cryogenic Wind Tunnel for High Reynolds Number Testing. Ph.D. Thesis, Univ. of Southampton, 1974. (Available as NASA TM X-70207.)
- Gloss, Blair B.; and Bruce, Robert A.: A Solution to Water Vapor in the National Transonic Facility. AIAA-89-0152, Jan. 1989.
- Anglin, Ernie L.; and Byrdsong, Thomas A.: Wing Flap-Type Control Effectiveness and Effects of Control Hinge Gap Seals for a Supercritical Wing. AIAA-82-0960, June 1982.
- Jacobs, Peter F.: Aileron Effectiveness for a Subsonic Transport Model With a High-Aspect-Ratio Supercritical Wing. NASA TM-85674, 1983.
- Jacobs, Peter F.: Effect of Aileron Deflections on the Aerodynamic Characteristics of a Semispan Model of a Subsonic Energy-Efficient Transport. NASA TP-2478, 1985.
- 11. Peterson, John B., Jr.: A Comparison of Experimental and Theoretical Results for the Compressible Turbulent-Boundary-Layer Skin Friction With Zero Pressure Gradient. NASA TN D-1795, 1963.
- Johnson, Charles B.; and Adcock, Jerry B.: Measurement of Recovery Temperature on an Airfoil in the Langley 0.3-m Transonic Cryogenic Wind Tunnel. AIAA-81-1062, June 1981.
- Johnson, Charles B.: Study of Nonadiabatic Boundary-Layer Stabilization Time in a Cryogenic Tunnel for Typical Wing and Fuselage Models. J. Aircr., vol. 18, no. 11, Nov. 1981, pp. 913–919.
- Lynch, F. T.; Fancher, M. F.; Patel, D. R.; and Inger, G. R.: Nonadiabatic Model Wall Effects on Transonic Airfoil Performance in a Cryogenic Wind Tunnel. *Wind Tunnels and Testing Techniques*, AGARD-CP-348. Feb. 1984, pp. 14-1 14-11.

-M	R_c	p_T , psia	T_T . °F
0.50	3.0×10^{6}	26.3	26
.50	23.0	57.5	-262
.60	3.0	22.9	26
.60	23.2	49.8	-263
.70	3.0	20.8	25
.70	22.9	44.5	-262
.75	3.0	19.9	27
.75	22.9	42.8	-261
.80	3.0	19.2	28
.80	23.0	-111	-262
.82	1.9	1.4.7	100
.82	3.0	19.0	27
.82	4.8	30.0	22
.82	4.8	30.2	27
.82	6.0	30.0	-52
.82	7.3	30.5	-101
.82	7.7	38.9	-50
.82	7.8	26.3	-153
.82	7.8	20.4	-200
.82	9.0	26.9	-175
.82	13.1	30.0	-224
.82	17.4	40.0	-224
.82	17.8	31.2	-263
.82	21.5	40.4	-254
.82	22.7	-40.0	-263
.82	22.8	-40.4	-262
.84	3.0	18.8	28
.84	23.0	40.3	-262
.86	3.0	18.5	27
.86	23.1	39.8	-263

Table I. Test Conditions

i

Table II. Wing Coordinates

(a) $\eta=0;\,c=13.58$ in.; $x_{l\rm e}=17.56$ in.; $z_o={\rm W.L.}-2.145$ in.

	z/c			2	:/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06127	-0.08318
.002	.01006	00683	.380	.05963	08349
.005	.01542	01339	.420	.05577	08328
.010	.02076	02004	.460	.05135	08203
.020	.02835	02779	.500	.04656	07990
.030	.03383	03292	.520	.04407	07853
.040	.03784	03690	.540	.04154	07692
.050	.04135	04020	.560	.03900	07504
.060	.04456	04318	.580	.03645	07294
.070	.04741	04599	.600	.03388	07062
.080	.04992	04867	.620	.03131	06814
.090	.05211	05118	.640	.02876	06541
.100	.05401	05354	.660	.02623	06240
.110	.05569	05577	.680	.02370	05922
.120	.05718	05789	.700	.02117	05580
.130	.05850	05992	.720	.01864	05226
.140	.05972	06186	.740	.01610	04858
.150	.06079	06374	.760	.01352	04485
.160	.06166	06551	.780	.01090	04109
.170	.06250	06717	.800	.00822	03747
.180	.06319	06875	.820	.00550	03408
.190	.06379	07027	.840	.00273	03099
.200	.06433	07162	.860	00008	02823
.220	.06501	07408	.880	00296	02604
.240	.06540	07621	.900	00590	02442
.260	.06551	07804	.920	00890	02351
.280	.06526	07959	.940	01196	02327
.300	.06470	08084	.960	01510	02378
.320	.06383	08191	.980	01828	02525
.340	.06269	08271	1.000	02152	02778

(b) $\eta = 0.109$; c = 11.40 in.; $x_{le} = 19.74$ in.; $z_o = W.L. - 1.893$ in.

		/c		2	:/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06127	-0.08318
.002	.01006	00683	.380	.05963	08349
.005	.01542	01339	.420	.05577	08328
.010	.02076	02004	.460	.05135	08203
.020	.02835	02779	.500	.04656	07990
.030	.03383	03292	.520	.04407	07853
.040	.03784	03690	.540	.04154	07692
.050	.04135	04020	.560	.03900	07504
.060	.04456	04318	.580	.03645	07294
.070	.04741	04599	.600	.03388	07062
.080	.04992	04867	.620	.03131	06814
.090	.05211	05118	.640	.02876	06541
.100	.05401	05354	.660	.02623	06240
.110	.05569	05577	.680	.02370	05922
.120	.05718	05789	.700	.02117	05580
.130	.05850	05992	.720	.01864	05226
.140	.05972	06186	.740	.01610	04858
.150	.06079	06374	.760	.01352	04485
.160	.06166	06551	.780	.01090	04109
.170	.06250	06717	.800	.00822	03747
.180	.06319	06875	.820	.00550	03408
.190	.06379	07027	.840	.00273	03099
.200	.06433	07162	.860	00008	02823
.220	.06501	07408	.880	00296	02604
.240	.06540	07621	.900	00590	02442
.260	.06551	07804	.920	00890	02351
.280	.06526	07959	.940	01196	02327
.300	.06470	08084	.960	01510	02378
.320	06383	08191	.980	01828	02525
.340	.06269	08271	1.000	02152	02778

ļ

(c) $\eta=0.132;\,c=10.92$ in.; $x_{l\rm e}=20.22$ in.; $z_o={\rm W.L.}-1.840$ in.

	z/c				
x/c	U.S.	L.S.	x/c	Ū.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06073	-0.08128
.002	.00971	00799	.380	.05926	08141
.005	.01525	01414	.420	.05579	08092
.010	.02075	02050	.460	.05178	07948
.020	.02830	02800	.500	.04741	07721
.030	.03358	03298	.520	.04513	07578
.040	.03747	03687	.540	.04279	07411
.050	.04085	04012	.560	.04041	07219
.060	.04391	04305	.580	.03801	07005
.070	.04664	04581	.600	.03557	06769
.080	.04906	04845	.620	.03310	06516
.090	.05118	05093	.640	.03063	06239
.100	.05304	05325	.660	.02816	05938
.110	.05469	05544	.680	.02568	05620
.120	.05615	05751	.700	.02318	05282
.130	.05746	05949	.720	.02065	04931
.140	.05865	06137	.740	.01810	04568
.150	.05969	06319	.760	.01550	04201
.160	.06056	06490	.780	.01286	03833
.170	.06139	06650	.800	.01016	03478
.180	.06206	06802	.820	.00740	03145
.190	.06265	06945	.840	.00459	02842
.200	.06317	07076	.860	.00172	02574
.220	.06387	07312	.880	00120	02361
.240	.06429	07512	.900	00419	02208
.260	.06442	07683	.920	00725	02129
.280	.06423	07827	.940	01038	02121
.300	.06375	07939	.960	01360	02189
.320	.06299	08031	.980	01687	02353
.340	.06199	08095	1.000	02019	02618

(d) η = 0.150; c = 10.54 in.; x_{le} = 20.60 in.; z_o = W.L. -1.799 in.

	z/c			2	:/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06025	-0.07965
.002	.00940	00896	.380	.05894	07963
.005	.01509	01481	.420	.05579	07890
.010	.02073	02090	.460	.05215	07730
.020	.02825	02819	.500	.04813	07490
.030	.03336	03304	.520	.04603	07341
.040	.03715	03684	.540	.04384	07169
.050	.04041	04005	.560	.04162	06974
.060	.04335	04293	.580	.03935	06756
.070	.04598	04566	.600	.03701	06517
.080	.04831	04827	.620	.03463	06260
.090	.05036	05071	.640	.03223	05980
.100	.05219	05301	.660	.02981	05679
.110	.05381	05515	.680	.02737	05362
.120	.05526	05719	.700	.02490	05026
.130	.05656	05911	.720	.02238	04679
.140	.05771	06095	.740	.01980	04320
.150	.05873	06271	.760	.01719	03958
.160	.05961	06438	.780	.01453	03596
.170	.06041	06593	.800	.01181	03247
.180	.06108	06739	.820	.00901	02920
.190	.06166	06876	.840	.00617	02622
.200	.06217	07002	.860	.00325	02362
.220	.06287	07230	.880	.00028	02154
.240	.06331	07418	.900	00275	02008
.260	.06347	07579	.920	00586	01940
.280	.06333	07713	.940	00905	01947
.300	.06292	07815	.960	01233	02030
.320	.06226	07893	.980	01568	02207
.340	.06136	07944	1.000	01908	02484

(e) $\eta=0.188;\,c=9.79$ in.; $x_{le}=21.35$ in.; $z_o=\mathrm{W.L.}-1.711$ in.

	<i>z/c</i>			2	z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.05922	-0.07602
.002	.00872	01112	.380	.05826	07564
.005	.01476	01630	.420	.05583	07438
.010	.02072	02181	.460	.05298	07242
.020	.02814	02860	.500	.04975	06975
.030	.03288	03317	.520	.04803	06815
.040	.03644	03679	.540	.04621	06632
.050	.03946	03988	.560	.04430	06428
.060	.04211	04269	.580	.04231	06201
.070	.04452	04533	.600	.04021	05956
.080	.04666	04784	.620	.03804	05689
.090	.04858	05025	.640	.03577	05404
.100	.05035	05246	.660	.03348	05101
.110	.05190	05451	.680	.03112	04785
.120	.05331	05646	.700	.02871	04456
.130	.05457	05831	.720	.02620	04117
.140	.05567	06003	.740	.02361	03768
.150	.05663	06166	.760	.02097	03417
.160	.05750	06321	.780	.01827	03070
.170	.05827	06466	.800	.01548	02735
.180	.05892	06599	.820	.01261	02420
.190	.05948	06721	.840	.00967	02134
.200	.05995	06837	.860	.00666	01888
.220	.06069	07046	.880	.00359	01692
.240	.06118	07210	.900	.00048	01565
.260	.06138	07348	.920	00276	01519
.280	.06137	07461	.940	00609	01557
.300	.06111	07538	.960	00950	01674
.320	.06067	07586	.980	01302	01883
.340	.06004	07607	1.000	01660	02184

(f) $\eta=0.226;\,c=9.03$ in.; $x_{le}=22.11$ in.; $z_o=\mathrm{W.L.}$ –1.623 in.

	z/c				z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.05929	-0.07075
.002	.00862	01115	.380	.05866	07041
.005	.01443	01622	.420	.05696	06919
.010	.02034	02158	.460	.05482	06727
.020	.02777	02826	.500	.05218	06456
.030	.03258	03281	.520	.05074	06289
.040	.03606	03639	.540	.04916	06095
.050	.03896	03938	.560	.04747	05883
.060	.04151	04201	.580	.04568	05643
.070	.04383	04446	.600	.04374	05388
.080	.04587	04678	.620	.04171	05111
.090	.04769	04895	.640	.03958	04818
.100	.04935	05094	.660	.03739	04507
.110	.05075	05279	.680	.03515	04184
.120	.05202	05452	.700	.03284	03844
.130	.05316	05612	.720	.03041	03498
.140	.05417	05762	.740	.02788	03148
.150	.05508	05902	.760	.02531	02797
.160	.05588	06032	.780	.02265	02455
.170	.05660	06155	.800	.01991	02128
.180	.05724	06267	.820	.01706	01827
.190	.05778	06372	.840	.01415	01560
.200	.05829	06470	.860	.01116	01335
.220	.05911	06643	.880	.00811	01169
.240	.05969	06780	.900	.00498	01068
.260	.06005	06894	.920	.00177	01042
.280	.06021	06982	.940	00150	01093
.300	.06021	07041	.960	00486	01221
.320	.06007	07076	.980	00832	01432
.340	.05977	07087	1.000	01186	01727

Ţ

(g) $\eta = 0.254$; c = 8.46 in.; $x_{le} = 22.68$ in.; $z_o = W.L. -1.559$ in.

ļ

				z	z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.05939	-0.06614
.002	.00849	01113	.380	.05905	06584
.005	.01410	01613	.420	.05795	06472
.010	.01998	02136	.460	.05639	06285
.020	.02744	02797	.500	.05426	06013
.030	.03229	03250	.520	.05304	05840
.040	.03572	03604	.540	.05168	05636
.050	.03853	03894	.560	.05018	05415
.060	.04100	04142	.580	.04856	05166
.070	.04322	04370	.600	.04678	04901
.080	.04516	04585	.620	.04486	04616
.090	.04690	04782	.640	.04284	04317
.100	.04847	04959	.660	.04075	03998
.110	.04975	05126	.680	.03862	03667
.120	.05091	05283	.700	.03639	03317
.130	.05196	05421	.720	.03401	02964
.140	.05290	05550	.740	.03156	02614
.150	.05376	05667	.760	.02903	02263
.160	.05452	05777	.780	.02642	01924
.170	.05520	05880	.800	.02373	01605
.180	.05582	05975	.820	.02089	01316
.190	.05637	06063	.840	.01800	01065
.200	.05691	06144	.860	.01503	00859
.220	.05781	06285	.880	.01199	00719
.240	.05846	06399	.900	.00884	00641
.260	.05895	06491	.920	.00566	00633
.280	.05927	06557	.940	.00243	00696
.300	.05949	06602	.960	00087	00832
.320	.05961	06626	.980	00427	01046
.340	.05958	06630	1.000	00778	01334

(h) $\eta=0.282;\,c=7.89$ in.; $x_{le}=23.25$ in.; $z_o=\mathrm{W.L.}-1.494$ in.

	z/c				z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06059	-0.06439
.002	.00839	01079	.380	.06040	06415
.005	.01407	01568	.420	.05965	06313
.010	.01989	02084	.460	.05834	06127
.020	.02735	02739	.500	.05650	05847
.030	.03227	03191	.520	.05543	05664
.040	.03579	03544	.540	.05423	05451
.050	.03861	03835	.560	.05290	05216
.060	.04099	04084	.580	.05142	04947
.070	.04306	04305	.600	.04980	04658
.080	.04488	04512	.620	.04808	04348
.090	.04652	04699	.640	.04625	04022
.100	.04800	04869	.660	.04430	03677
.110	.04931	05029	.680	.04225	03319
.120	.05050	05179	.700	.04005	02949
.130	.05159	05313	.720	.03772	02576
.140	.05257	05437	.740	.03527	02209
.150	.05348	05550	.760	.03272	01853
.160	.05432	05654	.780	.03006	01513
.170	.05509	05751	.800	.02731	01196
.180	.05580	05838	.820	.02444	00912
.190	.05644	05921	.840	.02148	00673
.200	.05704	05995	.860	.01842	00484
.220	.05806	06124	.880	.01526	00356
.240	.05889	06225	.900	.01202	00289
.260	.05955	06308	.920	.00871	00294
.280	.06004	06373	.940	.00533	00372
.300	.06039	06415	.960	.00188	00522
.320	.06062	06440	.980	00169	00750
.340	.06068	06449	1.000	00537	01056

İ

•

(i) $\eta=0.339;\,c=6.83$ in.; $x_{le}=24.39$ in.; $z_o=\mathrm{W.L.}$ –1.362 in.

	z	/c			z/c
x/c	U.S.	L.S.] x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06413	-0.06157
.002	.00832	00935	.380	.06421	06129
.005	.01385	01429	.420	.06405	06020
.010	.01947	01949	.460	.06330	05818
.020	.02680	02613	.500	.06208	05523
.030	.03179	03059	.520	.06130	05332
.040	.03539	03411	.540	.06041	05113
.050	.03833	03700	.560	.05938	04865
.060	.04076	03951	.580	.05822	04585
.070	.04285	04168	.600	.05691	04273
.080	.04469	04366	.620	.05549	03942
.090	.04638	04543	.640	.05398	03588
.100	.04791	04704	.660	.05231	03219
.110	.04930	04855	.680	.05052	02837
.120	.05061	04994	.700	.04856	02450
.130	.05181	05122	.720	.04646	02062
.140	.05294	05239	.740	.04418	01681
.150	.05399	05348	.760	.04178	01314
.160	.05497	05446	.780	.03922	00964
.170	.05588	05536	.800	.03654	00640
.180	.05675	05618	.820	.03372	00346
.190	.05756	05695	.840	.03076	00098
.200	.05829	05765	.860	.02767	.00102
.220	.05960	05882	.880	.02440	.00245
.240	.06073	05974	.900	.02103	.00330
.260	.06170	06049	.920	.01738	.00329
.280	.06249	06105	.940	.01374	.00262
.300	.06312	06141	.960	.00995	.00117
.320	.06362	06161	.980	.00598	00124
.340	.06393	06167	1.000	.00183	00457

(j) $\eta=0.375;\,c=6.19$ in.; $x_{\rm le}=25.11$ in.; $z_o={\rm W.L.}-1.279$ in.

	<i>z</i>	/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06702	-0.05969
.002	.00825	00796	.380	.06730	05934
.005	.01361	01303	.420	.06752	05806
.010	.01907	01841	.460	.06718	05589
.020	.02624	02515	.500	.06643	05285
.030	.03124	02955	.520	.06585	05094
.040	.03490	03307	.540	.06520	04878
.050	.03798	03596	.560	.06436	04629
.060	.04050	03846	.580	.06341	04352
.070	.04273	04063	.600	.06219	04056
.080	.04468	04259	.620	.06099	03719
.090	.04647	04433	.640	.05968	03359
.100	.04812	04591	.660	.05821	02984
.110	.04959	04733	.680	.05666	02600
.120	.05098	04868	.700	.05493	02210
.130	.05231	04992	.720	.05305	01821
.140	.05353	05105	.740	.05101	01435
.150	.05469	05210	.760	.04883	01057
.160	.05578	05305	.780	.04643	00697
.170	.05679	05394	.800	.04389	00357
.180	.05776	05475	.820	.04117	00048
.190	.05869	05550	.840	.03831	.00226
.200	.05951	05621	.860	.03529	.00453
.220	.06103	05734	.880	.03204	.00627
.240	.06237	05827	.900	.02866	.00746
.260	.06354	05897	.920	.02504	.00791
.280	.06453	05947	.940	.02124	.00747
.300	.06538	05977	.960	.01721	.00620
.320	.06609	05990	.980	.01295	.00379
.340	.06661	05986	1.000	.00843	.00034

(k) $\eta=0.433;\,c=5.72$ in.; $x_{le}=26.07$ in.; $z_o=\mathrm{W.L.}-1.145$ in.

	2	z/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06462	-0.05399
.002	.00711	01008	.380	.06510	05350
.005	.01193	01492	.420	.06578	05208
.010	.01691	01970	.460	.06605	04994
.020	.02376	02553	.500	.06584	04698
.030	.02845	02932	.520	.06555	04510
.040	.03203	03233	.540	.06521	04285
.050	.03498	03480	.560	.06473	04025
.060	.03746	03692	.580	.06409	03730
.070	.03963	03881	.600	.06333	03404
.080	.04154	04051	.620	.06243	03059
.090	.04324	04199	.640	.06136	02700
.100	.04482	04326	.660	.06017	02332
.110	.04629	04444	.680	.05885	01964
.120	.04768	04553	.700	.05741	01595
.130	.04900	04652	.720	.05580	01230
.140	.05023	04744	.740	.05404	00878
.150	.05135	04831	.760	.05209	00534
.160	.05244	04910	.780	.04993	00201
.170	.05343	04982	.800	.04751	.00100
.180	.05438	05044	.820	.04489	.00381
.190	.05529	05101	.840	.04202	.00627
.200	.05617	05157	.860	.03894	.00836
.220	.05777	05243	.880	.03554	.00991
.240	.05919	05314	.900	.03190	.01085
.260	.06040	05370	.920	.02795	.01107
.280	.06148	05413	.940	.02366	.01045
.300	.06246	05432	.960	.01908	.00876
.320	.06326	05440	.980	.01414	.00602
.340	.06400	05429	1.000	.00885	.00187

L

(l) $\eta = 0.489$; c = 5.46 in.; $x_{le} = 27.00$ in.; $z_o = W.L. - 1.016$ in.

	2	/c			z/e
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06469	-0.05322
.002	.00723	00988	.380	.06519	05273
.005	.01202	01471	.420	.06591	05126
.010	.01697	01951	.460	.06621	04909
.020	.02370	02531	.500	.06604	04609
.030	.02836	02906	.520	.06578	04418
.040	.03192	03205	.540	.06546	04194
.050	.03484	03448	.560	.06500	03932
.060	.03732	03659	.580	.06439	03638
.070	.03949	03844	.600	.06365	03314
.080	.04140	04010	.620	.06278	02968
.090	.04310	04158	.640	.06173	02610
.100	.04468	04284	.660	.06058	02245
.110	.04618	04401	.680	.05928	01877
.120	.04757	04508	.700	.05786	01507
.130	.04890	04606	.720	.05629	01140
.140	.05013	04696	.740	.05455	00788
.150	.05127	04780	.760	.05263	00444
.160	.05234	04860	.780	.05049	00110
.170	.05336	04930	.800	.04813	.00195
.180	.05432	04989	.820	.04554	.00476
.190	.05524	05046	.840	.04270	.00725
.200	.05612	05100	.860	.03966	.00934
.220	.05774	05182	.880	.03630	.01090
.240	.05916	05251	.900	.03270	.01184
.260	.06040	05304	.920	.02878	.01208
.280	.06149	05343	.940	.02453	.01147
.300	.06246	05360	.960	.01996	.00977
.320	.06330	05366	.980	.01504	.00702
.340	.06405	05353	1.000	.00975	.00288

ŀ

(m) $\eta=0.564;\,c=5.10$ in.; $x_{le}=28.24$ in.; $z_o=\mathrm{W.L.}-0.843$ in.

	2	z/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06485	-0.05202
.002	.00735	00954	.380	.06539	05150
.005	.01210	01442	.420	.06618	04997
.010	.01698	01920	.460	.06656	04773
.020	.02364	02494	.500	.06646	04464
.030	.02823	02864	.520	.06624	04273
.040	.03175	03159	.540	.06595	04044
.050	.03464	03398	.560	.06555	03782
.060	.03711	03606	.580	.06497	03490
.070	.03929	03788	.600	.06428	03165
.080	.04119	03952	.620	.06344	02821
.090	.04290	04096	.640	.06248	02464
.100	.04450	04220	.660	.06136	02097
.110	.04599	04335	.680	.06012	01727
.120	.04741	04439	.700	.05873	01357
.130	.04875	04534	.720	.05721	00990
.140	.04998	04624	.740	.05553	00634
.150	.05114	04707	.760	.05368	00286
.160	.05223	04783	.780	.05158	.00051
.170	.05325	04850	.800	.04930	.00359
.180	.05424	04908	.820	.04677	.00644
.190	.05517	04962	.840	.04399	.00896
.200	.05605	05012	.860	.04101	.01107
.220	.05769	05092	.880	.03773	.01267
.240	.05916	05154	.900	.03419	.01365
.260	.06042	05204	.920	.03034	.01391
.280	.06153	05238	.940	.02616	.01332
.300	.06255	05250	.960	.02163	.01164
.320	.06342	05252	.980	.01673	.00889
.340	.06419	05237	1.000	.01146	.00474

(n) η = 0.602; c = 4.93 in.; x_{le} = 28.86 in.; z_o = W.L. -0.755 in.

	2	/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06504	-0.05128
.002	.00748	00946	.380	.06560	05073
.005	.01215	01428	.420	.06643	04915
.010	.01700	01905	.460	.06686	04687
.020	.02361	02477	.500	.06684	04372
.030	.02814	02845	.520	.06664	04177
.040	.03164	03134	.540	.06637	03949
.050	.03455	03372	.560	.06599	03686
.060	.03701	03577	.580	.06545	03391
.070	.03918	03758	.600	.06480	03067
.080	.04108	03918	.620	.06399	02721
.090	.04282	04061	.640	.06305	02363
.100	.04443	04185	.660	.06198	01998
.110	.04594	04298	.680	.06077	01626
.120	.04734	04402	.700	.05944	01255
.130	.04869	04494	.720	.05794	00885
.140	.04994	04583	.740	.05630	00526
.150	.05110	04663	.760	.05446	00177
.160	.05221	04737	.780	.05242	.00162
.170	.05323	04803	.800	.05017	.00475
.180	.05422	04861	.820	.04768	.00762
.190	.05517	04913	.840	.04496	.01015
.200	.05606	04961	.860	.04204	.01230
.220	.05772	05037	.880	.03878	.01391
.240	.05919	05098	.900	.03529	.01490
.260	.06049	05142	.920	.03150	.01520
.280	.06164	05175	.940	.02735	.01462
.300	.06266	05182	.960	.02286	.01298
.320	.06357	05182	.980	.01799	.01022
.340	.06436	05163	1.000	.01272	.00609

(o) $\eta=0.678;\,c=4.58$ in.; $x_{le}=30.09$ in.; $z_o=\mathrm{W.L.}$ -0.580 in.

	2	:/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06579	-0.04928
.002	.00770	00908	.380	.06643	04865
.005	.01232	01394	.420	.06740	04695
.010	.01709	01868	.460	.06798	04450
.020	.02355	02430	.500	.06810	04122
.030	.02804	02791	.520	.06800	03919
.040	.03150	03074	.540	.06781	03684
.050	.03438	03305	.560	.06752	03417
.060	.03685	03503	.580	.06707	03117
.070	.03903	03678	.600	.06651	02790
.080	.04097	03834	.620	.06580	02443
.090	.04270	03974	.640	.06496	02084
.100	.04435	04093	.660	.06398	01712
.110	.04589	04203	.680	.06287	01336
.120	.04733	04302	.700	.06161	00960
.130	.04870	04391	.720	.06023	00585
.140	.04999	04475	.740	.05868	00220
.150	.05118	04551	.760	.05696	.00137
.160	.05230	04622	.780	.05502	.00485
.170	.05338	04682	.800	.05286	.00804
.180	.05439	04735	.820	.05050	.01100
.190	.05536	04783	.840	.04788	.01359
.200	.05630	04826	.860	.04509	.01582
.220	.05800	04894	.880	.04196	.01750
.240	.05956	04945	.900	.03859	.01858
.260	.06091	04981	.920	.03491	.01892
.280	.06212	05004	.940	.03088	.01843
.300	.06322	05006	.960	.02646	.01682
.320	.06417	04997	.980	.02165	.01411
.340	.06503	04971	1.000	.01645	.01003

(p) $\eta=0.715;\,c=4.41$ in.; $x_{le}=30.71$ in.; $z_o=\mathrm{W.L.}$ -0.495 in.

	2	z/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06636	-0.04802
.002	.00775	00893	.380	.06703	04734
.005	.01236	01375	.420	.06811	04555
.010	.01711	01849	.460	.06879	04300
.020	.02350	02405	.500	.06904	03959
.030	.02797	02764	.520	.06898	03753
.040	.03143	03040	.540	.06885	03513
.050	.03429	03267	.560	.06861	03242
.060	.03676	03461	.580	.06821	02941
.070	.03896	03635	.600	.06772	02613
.080	.04091	03787	.620	.06707	02262
.090	.04267	03922	.640	.06627	01900
.100	.04432	04041	.660	.06537	01527
.110	.04590	04146	.680	.06432	01147
.120	.04736	04243	.700	.06313	00767
.130	.04875	04331	.720	.06180	00388
.140	.05006	04411	.740	.06032	00017
.150	.05127	04483	.760	.05865	.00344
.160	.05242	04551	.780	.05680	.00697
.170	.05349	04610	.800	.05471	.01022
.180	.05454	04659	.820	.05242	.01323
.190	.05554	04704	.840	.04987	.01588
.200	.05648	04744	.860	.04715	.01815
.220	.05824	04808	.880	.04411	.01988
.240	.05984	04850	.900	.04080	.02100
.260	.06124	04881	.920	.03718	.02140
.280	.06250	04898	.940	.03324	.02093
.300	.06365	04894	.960	.02888	.01937
.320	.06466	04879	.980	.02413	.01669
.340	.06555	04850	1.000	.01896	.01263

(q) $\eta=0.791;\,c=4.06$ in.; $x_{l\rm e}=31.95$ in.; $z_o={\rm W.L.}-0.319$ in.

	2	z/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.06797	-0.04481
.002	.00804	00848	.380	.06877	04403
.005	.01254	01331	.420	.07012	04198
.010	.01720	01800	.460	.07105	03917
.020	.02349	02345	.500	.07156	03549
.030	.02789	02693	.520	.07165	03331
.040	.03129	02959	.540	.07166	03080
.050	.03417	03174	.560	.07157	02800
.060	.03666	03360	.580	.07133	02492
.070	.03889	03524	.600	.07097	02154
.080	.04088	03668	.620	.07046	01799
.090	.04271	03794	.640	.06983	01431
.100	.04442	03907	.660	.06907	01048
.110	.04604	04007	.680	.06819	00660
.120	.04754	04097	.700	.06717	00269
.130	.04901	04177	.720	.06599	.00121
.140	.05035	04250	.740	.06466	.00501
.150	.05164	04316	.760	.06317	.00877
.160	.05284	04374	.780	.06144	.01243
.170	.05398	04425	.800	.05955	.01582
.180	.05507	04468	.820	.05743	.01894
.190	.05613	04505	.840	.05506	.02175
.200	.05715	04539	.860	.05252	.02411
.220	.05901	04586	.880	.04965	.02597
.240	.06073	04614	.900	.04654	.02721
.260	.06224	04630	.920	.04310	.02771
.280	.06364	04632	.940	.03931	.02738
.300	.06491	04615	.960	.03513	.02593
.320	.06603	04587	.980	.03049	.02331
.340	.06705	04541	1.000	.02541	.01935

(r) $\eta=0.867;\,c=3.71$ in.; $x_{le}=33.18$ in.; $z_o=\mathrm{W.L.}-0.144$ in.

	<i>z</i>	c/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.07021	-0.04067
.002	.00837	00798	.380	.07119	03974
.005	.01278	01275	.420	.07285	03736
.010	.01733	01742	.460	.07414	03420
.020	.02347	02270	.500	.07500	03018
.030	.02780	02605	.520	.07528	02782
.040	.03120	02854	.540	.07548	02519
.050	.03408	03059	.560	.07554	02224
.060	.03661	03231	.580	.07550	01906
.070	.03886	03383	.600	.07532	01560
.080	.04093	03517	.620	.07503	01194
.090	.04283	03635	.640	.07460	00817
.100	.04464	03738	.660	.07405	00424
.110	.04632	03827	.680	.07335	00023
.120	.04792	03909	.700	.07253	.00382
.130	.04942	03978	.720	.07154	.00785
.140	.05085	04045	.740	.07043	.01180
.150	.05221	04101	.760	.06912	.01573
.160	.05349	04151	.780	.06761	.01954
.170	.05471	04190	.800	.06594	.02312
.180	.05588	04222	.820	.06403	.02643
.190	.05701	04251	.840	.06192	.02937
.200	.05810	04274	.860	.05960	.03191
.220	.06012	04302	.880	.05695	.03391
.240	.06199	04312	.900	.05406	.03532
.260	.06368	04305	.920	.05086	.03595
.280	.06522	04288	.940	.04729	.03577
.300	.06667	04254	.960	.04327	.03446
.320	.06795	04207	.980	.03879	.03192
.340	.06912	04146	1.000	.03384	.02807

.

(s)
$$\eta = 0.961$$
; $c = 3.27$ in.; $x_{le} = 34.74$ in.; $z_{o} = W.L. 0.073$ in.

	z	/c	<u> </u>		z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.07403	-0.03392
.002	.00875	00711	.380	.07527	03271
.005	.01310	01191	.420	.07753	02977
.010	.01754	01649	.460	.07938	02604
.020	.02345	02153	.500	.08084	02143
.030	.02769	02464	.520	.08143	01882
.040	.03105	02690	.540	.08190	01594
.050	.03397	02872	.560	.08228	01278
.060	.03656	03025	.580	.08254	00941
.070	.03892	03161	.600	.08270	00577
.080	.04108	03276	.620	.08271	00195
.090	.04310	03378	.640	.08263	.00199
.100	.04504	03463	.660	.08239	.00610
.110	.04685	03542	.680	.08203	.01031
.120	.04857	03608	.700	.08154	.01458
.130	.05021	03662	.720	.08089	.01885
.140	.05177	03710	.740	.08010	.02309
.150	.05326	03749	.760	.07912	.02730
.160	.05464	03785	.780	.07797	.03135
.170	.05599	03808	.800	.07666	.03525
.180	.05731	03826	.820	.07510	.03883
.190	.05858	03837	.840	.07336	.04203
.200	.05977	03842	.860	.07143	.04482
.220	.06205	03841	.880	.06916	.04712
.240	.06420	03815	.900	.06665	.04878
.260	.06618	03777	.920	.06382	.04968
.280	.06799	03727	.940	.06060	.04973
.300	.06969	03661	.960	.05688	.04863
.320	.07126	03587	.980	.05269	.04631
.340	.07268	03496	1.000	.04797	.04264

Table II. Concluded

(t) $\eta=1.000;\,c=3.12$ in.; $x_{l\rm e}=35.37$ in.; $z_o={\rm W.L.}$ 0.163 in.

	<i>z</i>	/c			z/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.360	0.07620	-0.03019
.002	.00902	00672	.380	.07761	02885
.005	.01329	01152	.420	.08016	02560
.010	.01765	01602	.460	.08237	02158
.020	.02344	02092	.500	.08413	01662
.030	.02764	02392	.520	.08489	01384
.040	.03098	02604	.540	.08556	01082
.050	.03392	02778	.560	.08609	00753
.060	.03653	02920	.580	.08655	00405
.070	.03895	03042	.600	.08685	00032
.080	.04116	03148	.620	.08706	.00361
.090	.04327	03241	.640	.08717	.00763
.100	.04526	03321	.660	.08711	.01188
.110	.04716	03388	.680	.08696	.01622
.120	.04896	03446	.700	.08664	.02062
.130	.05065	03493	.720	.08616	.02502
.140	.05231	03531	.740	.08559	.02942
.150	.05385	03563	.760	.08478	.03376
.160	.05533	03588	.780	.08384	.03800
.170	.05672	03602	.800	.08275	.04205
.180	.05812	03608	.820	.08139	.04581
.190	.05947	03611	.840	.07986	.04919
.200	.06074	03610	.860	.07814	.05211
.220	.06315	03589	.880	.07610	.05455
.240	.06544	03548	.900	.07378	.05639
.260	.06758	03492	.920	.07118	.05740
.280	.06952	03423	.940	.06814	.05762
.300	.07139	03340	.960	.06462	.05668
.320	.07313	03249	.980	.06056	.05444
.340	.07470	03140	1.000	.05598	.05091

F.S., in.	r, in.	F.S., in.	r, in.
0.00	0.000	12.00	2.875
.05	.245	14.00	2.875
.10	.339	16.00	2.875
.15	.406	18.00	2.875
.20	.459	20.00	2.875
.25	.500	22.00	2.875
.30	.535	24.00	2.875
.35	.568	26.00	2.875
.40	.601	28.00	2.875
.45	.634	31.20	2.875
.50	.666	32.00	2.873
.55	.698	33.00	2.867
.60	.730	34.00	2.856
.65	.762	35.00	2.841
1.00	.974	36.00	2.820
1.50	1.253	37.00	2.795
2.00	1.507	38.00	2.765
2.50	1.735	39.00	2.730
3.00	1.940	40.00	2.690
3.50	2.123	41.00	2.646
4.00	2.284	42.00	2.596
4.50	2.425	43.00	2.543
5.00	2.546	44.00	2.484
5.50	2.648	45.00	2.421
6.00	2.730	46.00	2.352
6.50	2.794	47.00	2.279
7.00	2.839	48.00	2.201
7.50	2.866	49.00	2.119
8.00	2.875	49.50	2.075
10.00	2.875	50.00	2.030

Table III. Fuselage Geometry

Table IV. Horizontal Tail Coordinates

	2	/c		z/	<u>c</u>
x/c	L.S.	U.S.	x/c		U.S
0.000	0.00000	0.00000	0.500	-0.04900	0.04650
.002	00760	.00760	.510	04880	.04600
.005	01160	.01160	.520	04850	.04540
.010	01550	.01550	.530	04820	.04470
.020	02070	.02070	.540	04790	.04400
.030	02420	.02420	.550	04760	.04320
.040	02690	.02690	.560	04720	.04230
.050	02910	.02910	.570	04680	.04130
.060	03100	.03100	.580	04640	.04030
.070	03270	.03270	.590	04590	.03920
.080	03420	.03420	.600	04540	.03810
.090	03555	.03560	.610	04490	.03690
.100	03680	.03690	.620	04430	.03570
.110	03790	.03810	.630	04370	.03440
.120	03890	.03920	.640	04310	.03310
.130	03990	.04020	.650	04250	.03170
.140	04080	.04110	.660	04180	.03030
.150	04160	.04200	.670	04110	.02890
.160	04240	.04280	.680	04040	.02750
.170	04310	.04350	.690	03960	.02610
.180	04380	.04420	.700	03880	.02470
.190	04440	.04490	.710	03800	.02330
.200	04500	.04550	.720	03720	.02190
.210	04560	.04600	.730	03630	.02050
.220	04610	.04650	.740	03540	.01910
.230	04660	.04700	.750	03450	.01770
.240	04700	.04740	.760	03360	.01630
.250	04740	.04780	.770	03260	.01490
.260	04780	.04810	.780	03160	.01350
.270	04810	.04840	.790	03060	.01210
.280	04840	.04870	.800	02960	.01070
.290	04870	.04890	.810	02850	.00930
.300	04890	.04910	.820	02740	.00790
.310	04910	.04930	.830	02630	.00050
.320	04930	.04940	.840	02520	01000.
.330	04950	.04950	.850	02410	.00380
.540	04960	04900	.800	02290	.00250
.350	04970	.04970	.870	02170	.00130
.300	04980	.04970	.880	02050	.00020
.370	04990	.04970	.890	01930	00080
.580	05000	.04970	.900	01800	00170
.590	05000	.04900	.910		00200
.400	05000	.04930	.920	01040	00310
190	05000	.04940	.930	01.410	- 00350
120	05000	.04920	.940	01270	00300
1 10	05000	.04900	.990	01130	00340
	04990	.04880	.900	0.00980	00290
.400	-0.1970	04800	.970	00830	00220
.170	= 0.1060	04820	000	00070	
.180	- 0.10.10	04740	1.000	+.00000	00170
.490	- 0.1920	04700	1.000	00320	.00170
		10.4100	1	1	

Table V. Vertical Tail Coordinates

	z'	/c		z	'/c
x/c	U.S.	L.S.	x/c	U.S.	L.S.
0.000	0.00000	0.00000	0.500	0.04840	-0.04840
.002	.00760	00760	.510	.04810	04810
.005	.01160	01160	.520	.04780	04780
.010	.01550	01550	.530	.04740	04740
.020	.02070	02070	.540	.04700	04700
.030	.02430	02430	.550	.04650	04650
.040	.02700	02700	.560	.04600	04600
.050	.02920	02920	.570	.04550	04550
.060	.03110	03110	.580	.04490	04490
.070	.03280	03280	.590	.04430	04430
.080	.03430	03430	.600	.04360	04360
.090	.03570	03570	.610	.04280	04280
.100	.03690	03690	.620	.04200	04200
.110	.03800	03800	.630	.04110	04110
.120	.03900	03900	.640	.04020	04020
.130	.04000	04000	.650	.03920	03920
.140	.04090	04090	.660	.03820	03820
.150	.04170	04170	.670	.03715	03715
.160	.04250	04250	.680	.03610	03610
.170	.04320	04320	.690	.03505	03505
.180	.04390	04390	.700	.03400	03400
.190	.04450	04450	.710	.03295	03295
.200	.04510	04510	.720	.03190	03190
.210	.04560	04560	.730	.03085	03085
.220	.04610	04610	.740	.02980	02980
.230	.04660	04660	.750	.02875	02875
.240	.04700	04700	.760	.02770	02770
.250	.04740	04740	.770	.02665	02665
.260	.04780	04780	.780	.02560	02560
.270	.04810	04810	.790	.02455	02455
.280	.04840	04840	.800	.02350	02350
.290	.04870	04870	.810	.02245	02245
.300	.04900	04900	.820	.02140	02140
.310	.04920	04920	.830	.02035	02035
.320	.04940	04940	.840	.01930	01930
.330	.04960	04960	.850	.01825	01825
.340	.04970	04970	.860	.01720	01720
.350	.04980	04980	.870	.01615	01615
.360	.04990	04990	.880	.01510	01510
.370	.05000	05000	.890	.01405	01405
.380	.05000	05000	.900	.01300	01300
.390	.05000	05000	.910	.01195	01195
.400	.05000	05000	.920	.01090	01090
.410	.05000	05000	.930	.00985	00985
.420	.04990	04990	.940	.00880	00880
.430	.04980	04980	.950	.00775	00775
.440	.04970	04970	.960	.00670	00670
.450	.04960	04960	.970	.00565	00505
.460	.04940	04940	.980	.00460	00460
.470	.04920	04920	.990	.00355	00399
.480	.04900	04900	1.000	.00250	00250
.490	.04870	04870			

Figure 1. Photograph of Pathfinder I in the NTF.

L-86-10666

Figure 2. Sketch of Pathfinder I model. All linear dimensions are in inches.

р_т, psia

Figure 4. Air mode repeatability of lift coefficient versus angle of attack at M = 0.82.

Figure 6. Air mode repeatability of drag coefficient versus lift coefficient at M = 0.82.

Figure 7. Cryogenic mode repeatability of lift coefficient versus angle of attack at M = 0.82.

Figure 9. Cryogenic mode repeatability of drag coefficient versus lift coefficient at M = 0.82.

Figure 10. Aeroelasticity effects on lift coefficient versus angle of attack at M = 0.82.

Figure 12. Aeroelasticity effects on drag coefficient versus lift coefficient at M = 0.82.

(a) Low Reynolds number.

Figure 14. Transition effects on lift coefficient versus angle of attack at M = 0.82.

 $\mathbf{45}$

Figure 14. Concluded.

_

Figure 15. Concluded.

48

ļ.

I

i.

l

I.

ļ.

Figure 16. Transition effects on drag condicient versus lift coefficient at M = 0.82.

1

ļ

T T

 $\mathbf{53}$

Figure 19. Wing thermocouple data at M = 0.82 with $x/c \approx 0.4$.

Figure 19. Continued.

Figure 20. Reynolds number effects on lift coefficient versus angle of attack at M = 0.82.

 $\mathbf{57}$

 $\mathbf{58}$

Figure 23. Reynolds number effects on drag coefficient versus lift coefficient at M = 0.82.

Figure 27. Reynolds number effects on untrimmed lift-drag ratio versus angle of attack at M = 0.82.

(a) $R_{\bar{c}} = 3.0 \times 10^6$.

Figure 28. Mach number effects on drag coefficient versus lift coefficient.

(b) $R_{\bar{c}} \approx 23.0 \times 10^6$. Figure 28. Concluded.

NATION: Aeronalis sand Space Administration	t Documentation Page	2
. Report No. 2. Governm NASA TP-2922	ent Accession No.	3. Recipient's Catalog No.
. Title and Subtitle		5. Report Date
Longitudinal Aerodynamic Characteristic	s of a Subsonic, Energy-	August 1989
Efficient Transport Configuration in the National Transonic Facility		6. Performing Organization Code
Author(s)		
Peter F. Jacobs and Blair B. Gloss		8. Performing Organization Report No. L-16569
Destancing () musication Name and Address		10. Work Unit No.
NASA Langley Research Center		505-61-21-03
Hampton, VA 23665-5225		11. Contract or Grant No.
2 Sumsoring Agency Name and Address		13. Type of Report and Period Covered
National Aeronautics and Space Adminis	tration	Technical Paper
Washington, DC 20546-0001		14. Sponsoring Agency Code
6. Abstract An investigation has been conducted in Research Center to determine Reynolds nonadiabatic wall temperature effects for	the National Transonic number, aeroelasticity, l a subsonic, energy-efficie	Facility (NTF) at the Langley boundary-layer transition, and nt transport model. The model
6. Abstract An investigation has been conducted in Research Center to determine Reynolds nonadiabatic wall temperature effects for was tested over a Mach number range f 1.9×10^6 to approximately 23.0×10^6 (bas were taken using cryogenic nitrogen. (Dat Longitudinal force and moment, wing pres- report. The data indicate that increasing t of the supercritical wing and horizontal the coefficients at nearly all angles of attack was increased, untrimmed lift-drag ratio (decreased, drag creep was reduced signification should be a supercritical wing and nonadiabatic and transition-fixed configurations had signification for the supercritical configuration of the supercritical wing and nonadiabatic and transition-fixed configurations had signification for the supercritical configuration for the supercritical con	the National Transonic number, aeroelasticity, I a subsonic, energy-efficien rom 0.50 to 0.86 and a sed on mean geometric ch ta at a Reynolds number ssure, and wing thermoco- che Reynolds number resu- tail, thus resulting in gre- for a Mach number (M) (L/D) increased, the ang ficantly, and drag-diver- es of operation of the NT c wall effects were estima gnificantly different force I differences were noted a	Facility (NTF) at the Langley boundary-layer transition, and nt transport model. The model Reynolds number range from nord). The majority of the data of 1.9×10^6 were taken in air.) ouple data are presented in this ilted in greater effective camber eater lift and pitching-moment) of 0.82. As Reynolds number cle of attack for maximum L/D gence Mach number increased 'F (air and cryogenic nitrogen) ted to be small. Transition-free and moment data at $M = 0.82$ at high Reynolds numbers.
 6. Abstract An investigation has been conducted in Research Center to determine Reynolds nonadiabatic wall temperature effects for was tested over a Mach number range f 1.9 × 10⁶ to approximately 23.0 × 10⁶ (bas were taken using cryogenic nitrogen. (Dat Longitudinal force and moment, wing pres report. The data indicate that increasing t of the supercritical wing and horizontal 4 coefficients at nearly all angles of attack was increased, untrimmed lift-drag ratio (decreased, drag creep was reduced signi slightly. Data repeatabilty for both mode was generally very good, and nonadiabatic and transition-fixed configurations had sig for low Reynolds numbers, and very smal 7. Key Words (Suggested by Authors(s)) Cryogenic wind tunnel Energy-efficient transport (EET) Supercritical wing Reynolds number effects Nonadiabatic wall effects Nonadiabatic wall effects	the National Transonic number, aeroelasticity, 1 a subsonic, energy-efficien from 0.50 to 0.86 and a sed on mean geometric ch as at a Reynolds number ssure, and wing thermoco- che Reynolds number resu- tail, thus resulting in gre- for a Mach number (M) (L/D) increased, the ang ficantly, and drag-diver- ts of operation of the NT wall effects were estima gnificantly different force 1 differences were noted a 18. Distribution S FEDD	Facility (NTF) at the Langley boundary-layer transition, and nt transport model. The model Reynolds number range from nord). The majority of the data of 1.9×10^6 were taken in air.) ouple data are presented in this ilted in greater effective camber eater lift and pitching-moment) of 0.82. As Reynolds number (le of attack for maximum L/D gence Mach number increased CF (air and cryogenic nitrogen) ted to be small. Transition-free and moment data at $M = 0.82$ at high Reynolds numbers.