PROBABILISTIC STRUCTURAL ANALYSIS METHODS

FOR N91-28238

SPACE TRANSPORTATION PROPULSION SYSTEMS

C. C. CHAMIS NASA Lewis Research Center Cleveland, Ohio

Prepared For The Space Transportation Propulsion Technology Symposium Penn State University, June 25-29, 1990

PROBABILISTIC STRUCTURAL ANALYSIS

COORDINATOR: C. CHAMIS

C. ANIS

V. NAGPAL

NASA-LERC CLEVELAND, OHIO

CONTRIBUTORS: N. MOORE

NASA-JPL PASADENA, CALIFORNIA

UTC-P&W WEST PALM BEACH, FLORIDA

J. NEWELL ROCKWELL INT'L, ROCKETDYNE CANOGA PARK, CALIFORNIA

> SVERDRUP TECHNOLOGY BROOK PARK, OHIO

S. SINGHAL SVERDRUP TECHNOLOGY BROOK PARK, OHIO

PRESENTATION OUTLINE

- ISSUES
- STATE-OF-THE-ART
- NEEDS IDENTIFIED
- PROPOSED PROGRAM
- SUMMARY

ISSUES

CERTIFICATION OF SPACE TRANSPORTATION PROPULSION SYSTEMS:

* IS COSTLY.

* IS TIME CONSUMING.

* IS DIFFICULT DUE TO UNCERTAINTIES IN ACTUAL OPERATING CONDITIONS.

* NEEDS TO BE REPEATED FOR:

- MODIFICATIONS TO EXISTING SYSTEMS.
- UPDATED CHANGES IN OPERATING CONDITIONS.

CERTIFICATION: STATE-OF-THE-ART

- * CERTIFICATION OF PROPULSION SYSTEMS IS DONE ON THE BASIS OF:
 - MEETING LIMIT LOAD CONDITIONS.
 - AVAILABILITY OF TECHNOLOGY BASE THAT CAN BE SAFELY EXTRAPOLATED WITHIN THE LIMITS.
- * THE RELIANCE IS ON
 - DETERMINISTIC STRUCTURAL RESPONSE.
 - EXTENSIVE TESTING FOR VERIFICATION.
 - PROOF TESTING FOR CERTIFICATION.
- * THE CERTIFICATION METHODOLOGY PROVIDES LITTLE GUIDANCE FOR HEALTH MONITORING.

DETERMINISTIC CERTIFICATION METHODS: STATE-OF-THE-ART

CURRENT DESIGNS ARE BASED ON DETERMINISTIC STRUCTURAL ANALYSIS WITH TEST-INTENSTIVE VERIFICATION AND PROOF TESTING FOR CERTIFICATION.

PROBABILISTIC SIMULATION IS THE RATIONAL ALTERNATIVE IN

THE ABSENCE OF TRADITIONAL TECHNOLOGY BASE FOR

ADVANCED VEHICLE SYSTEMS WHICH ARE DRIVEN BY:

- o High Risk
- o Quantum Performance Improvements
- o Short Schedules
- o Limited Resources

PROBABILISTIC STRUCTURAL ANALYSIS METHODS ON-GOING PROGRAMS AT NASA LEWIS RESEARCH CENTER

PROBABILITY OF FAILURE - 'DAMAGE INITIATION

Component Response Analysis Using CLS Coupled With PSAM

Nockwell International

Random Variables Considered and Their Statistics

			Affeoled FEM		Blandard .
Ž	nandoni Variabie	Type	Quantities	Mean	Deviation
		Material	Anisotropic	-0.087206 radian	0.007644
	Malerial axis 4		staria!	-0.034907	0.067644
2	Material axis Y		Orlaniation angles	-0.062360	0.067644
-	Material axis X			IA JAFA nel	0.4605E0
-	Elastic modulus	Malerial			
ø	· Poleson's ratio	properlies		0.380	0.00000
•	Sheer modulue			10.07E0 Per	
-	Geometrie lean	Geometrical	Node coordinates	0 den	0.14 000
• •		variations		0 deg	0.14 deg
-				0 dec	0.30 400
0	Geometric Iwlet				0.00
9	Mixiure railo	System	Presoure, temperature,	0.0	
2 :	Burd Islah statestic	Independent	contrifugal force	30.0 pet	6.00
=			<u>,</u>	100.00 pel	26.00
5	Oxidizer iniet pressure			17°N	0.60
C	Fuel inlet temperature			0.701	
-	Oxidizer iniet temperature				
	Buma afficiency	Component	Pressure, lemperature.	1.00	0.006
-		Independent	centrituoel force	1.024	0.008
2	Head coellicient	loade			
		I col ellecte	Tannaralura	1.0	0.10
1	Coolant seat leakage				0.05
8	Hot gas seal laskage				

NATURAL FREQUENCIES DECREASES AS FRACTURE PROGRESSES

NATURAL FREQUENCIES (HERTZ)

PROBABILITY OF COMPONENT DAMAGE PROPAGATION PATH CAUSED BY 100,000 FATIGUE CYCLES

PROBABILITY OF PATH A OCCURS = 0.00001

PROBABILITY OF PATH B OCCURS = 0.0002

PROBABILISTIC RISK-COST ASSESSMENT

THE TOTAL COST TO IMPROVE THE STRUCTURAL RELIADILITY CAN BE QUANTIFIED IN TERMS OF QUALITY CONTROL (GIVEN MEAN STRENGTH)

PROBABILISTIC STRUÇTURAL ANALYSIS METHODS DEVELOPMENT

FY90 Add component risk.assessment capability

- o State-of-the-art method
- Incorporate uncertainties in a multilactor interaction equation for material strength degradation
- o Probabilistic nonlinear constitutive relationships

FY91 Add system risk assessment capability

- o Fault tree concepts
 - o Global model concepts

FY92 Develop qualification/certification capability

- o Incorporate structural fracture concepts
- o Probabilistic progressive fracture
- o Probabilistic life/durability

FY93 Develop system health monitoring criteria

- o Inspection criteria/intervals
- o Updated life
- o Retirement for cause

NEEDS IDENTIFIED

FOR MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

- * COMPUTATIONAL METHODS NEED TO BE DEVELOPED FOR CONDUCTING PROBABILISTIC ANALYSES AT VARIOUS LEVELS OF THE SYSTEM (SUB-COMPONENT, COMPONENT, SYSTEM).
- * SMART DECISION-ORIENTED CODES NEED TO BE DEVELOPED FOR AUTOMATED, FAST, AND EFFICIENT PROBABILISTIC ANALYSIS AT ALL LEVELS OF THE SYSTEM.
- * AUTOMATED SELF-ADAPTIVE CODES NEED TO BE DEVELOPED FOR PERFORMING GLOBAL/ LOCAL NONLINEAR ANALYSES.
- * A GLOBAL/LOCAL DAMAGE INITIATION LIBRARY IS NEEDED WITH CAPABILITY FOR AUTOMATIC IDENTIFICATION OF APPLICABLE DAMAGE INITIATION MECHANISMS.
- * COMPUTATIONAL METHODOLOGIES NEED TO BE DEVELOPED FOR PROBABILISTIC ASSESSMENT OF PROGRESSIVE DAMAGE GROWTH AND GLOBAL/LOCAL DAMAGE COALESCING.
- * RISK MODELS NEED TO BE DEVELOPED FOR PROBABILISTICALLY QUANTIFYING RELIABILITY, RISK, AND COST.
- * SIMULATION METHODS ARE NEEDED FOR DEVELOPING DATA/RESULTS REQUIRED FOR SYSTEM VERIFICATION.
- * PROBABILISTIC METHODS NEED TO DEVELOPED FOR DETERMINING CRITERIA AND SELECTING MINIMUM NUMBER OF TESTS REQUIRED FOR SYSTEM VERIFICATION.
- * METHODOLOGIES ARE NEEDED FOR SYSTEM VERIFICATION USING EXISTING/NEW TECHNIQUES/EQUIPMENT.
- * QUANTIFIABLE CERTIFICATION CRITERIA MUST BE DEVELOPED. PROBABILISTIC SIMULATION WILL ACCOMPLISH THIS GOAL
- * MATHODOLOGIES NEED TO BE DEVELOPED FOR HEALTH MONITORING BASED ON PROBABILISTICALLY QUANTIFIED RELIABILITY AND RISK.

PROPOSED PROGRAM

MAJOR OBJECTIVE:

SOFTWARE SYSTEM TO PROBABILISTICALLY SIMULATE CERTIFICATION OF SPACE TRANSPORTATION PROPULSION STRUCTURAL SYSTEMS.

PROPOSED PROGRAM

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

- **OBJECTIVE:** Automated software packages for multi-level system probabilistic structural integrity, progressive damage and risk analyses required for testing, verification, certification and guidance for health monitoring of propulsion systems.
- **JUSTIFICATION:** Propulsion systems are presently certified based on deterministic structural analysis, local failure models, a large experimental database, and gradually increasing confidence based on qualitative judgement and continually increasing in-flight experience. This results in certification of designs which do not account for realistic load, material characteristics and responses. Such a practice is very expensive and inefficient. An economically attractive alternate based on modelling for actual operating conditions is by probabilistic analysis.
- APPROACH: Research will be conducted to develop efficient, automated, costeffective probabilistic structural analysis methods. The research activities will consist of (1) telescopic analysis capability for analyzing propulsion systems at various structural detail levels, automatically with a minimum number of system parameters, (2) smart solver codes for efficient solutions with automated identification of minimum number of degrees of freedom required to capture the physics of the system, (3) automated nonlinear global/local structural analysis with user-independent decision making for solution of nonlinearities and damage-critical areas, (4) damage initiation library for identifying material/structure/load-specific damage sites/types, (5) damage growth and pattern for predicting site and type of failure, (6) risk models for predicting cost/reliability/insurance, (7) simulation methods for generating data/results required for verification, (8) criteria and test selection for identification of suitable minimum experiments, (9) verification using existing systems, (10) certification based on quantifiable reliability and risk levels, and (11) guidance for health monitoring based on probabilistically quantified risk.

RESOURCES: \$25M over a 5-year period (See attached time schedule chart)

PROPOSED PROGRAM: TIME SCHEDULE AND RESOURCES

S
Ŝ.
ш
ົດ
×
S
Ž.
0
S S
5
<u>ā</u>
õ
E.
ш
0
Z
Q
E
5
H.
Ξ
È
Щ.
Š
E
5
Ξ
Σ
S
≻
Ц
Χ.
Ξ
5
Ξ
×
ö
Ă
Δ.
Ш
ŝ
Ц
Ė
H
ž
~

RESEARCH		YEARS F	TAN STAR	IT (\$ M)		TOTALS	
ACTIVITY	1	2	e	4	5		INIGEL GUALS
1. TELESCOPIC ANALYSIS							MIN HUMAN INTERACTION
CAPABILITY	0.5	F	0.5			2	
2. SMART SOLVERS	0.3	0.7	0.8	0.2		N	MIN TURNAROUND TIME
3. AUTOMATED NONLINEAR						c	USER-TRANSPARENT COMPLETE ANALYSIS
		0.8	0.8	0.4		N	
4. DAMAGE INITITATION			1			ſ	AUTOMATED FAILURE MODE INDENTIFICATION
	0.2	0.8	0.7	0.3		•	
5. DAMAGE GROWTH AND PATTERN		0.5	-	0.5		2	DEVELOPMENT OF INSPECTION AND MAINTAINENCE PLANS
6. RISK MODELS		0.5	1.5	-		c	MORE RELIABLE ESTIMATE OF REMAINING SERVICE LIFE
7. SIMULATION METHODS FOR VERIFICATION				1.5).5	2	COMPONENT VERIFICATION
8. CRITERIA & SELECTION OF TESTS			0.8	0.9	0.3	2	CRITERIA AND MIN NUMBER OF TESTS
9. VERFICATION USING EXISTING SYSTEMS				1		c	DEMONSTRATION OF METHODS/RESULTS
10. CERTIFICATION METHODOLOGIES				ł	2	С	CERTIFICATION
11. HEALTH MONITORING					2	2	GUIDANCE FOR HEALTH MONITORING
TOTALS PER YEAR (\$ M)	1	4.3	61	6.6	6.8	25	

PROGRAM IMPLEMENTATION

- * MULTI-INSTITUTION PARTICIPANT DEVELOPMENT. (DIFFERENT INSTITUTIONS DEVELOP DIFFERENT PARTS.)
- * ANNUAL RELEASES WITH PROGRESSIVE SOPHISTICATION CAPABILITY.
- * WORKSHOPS FOR NEW CAPABILITY USER INSTRUCTIONS.
- * EARLY-ON ADAPTATION INTO PRELIMINARY AND FINAL DESIGN ENVIRONMENTS.
- * VERIFICATION/COMPARISON WITH PAST DESIGN AND FIELD EXPERIENCE AT USERS FACILITY.
- * FORMATION OF PARTICIPANTS' USERS GROUP.
- * FORMATION OF SOFTWARE MAINTENANCE INSTITUTION.

SUMMARY

CERTIFICATION OF SPACE TRANSPORTATION PROPULSION SYSTEMS:

- * ISSUES:
 - COST/TIME/ACTUAL OPERATING CONDITIONS.
- * STATE-OF-THE-ART
 - CERTIFICATION/DETERMINISTIC METHODS/PROBABILISTIC STRUCTURAL ANALYSIS METHODS.
- * NEEDS IDENTIFIED
 - PROBABILISTIC METHODS FOR UNCERTAINTIES IN LOADING/STRUCTURE/ MATERIAL/DAMAGE/FABRICATION.
 - PROBABILISTIC RISK MODELS/TEST SELECTION/VERIFICATION/ CERTIFICATION.
 - GUIDANCE FOR HEALTH MONITORING.

SUMMARY (CONTINUED)

* PROPOSED PROGRAM

- OBJECTIVE: PROBABILISTICALLY SIMULATED CERTIFICATION.
- JUSTIFICATION: ACTUAL OPERATING CONDITIONS/QUANTIFIABLE RISK/ DECISION-ORIENTED SMART CODES/LESS COST/ GUIDANCE FOR HEALTH MONITORING.
- APPROACH: 11 RESEARCH ACTIVITIES.
- TIME SCHEDULE AND RESOURCES: \$25M OVER A 5-YEAR PERIOD.

* IMPLEMENTATION

- INCORPORATION INTO A DESIGN ENVIRONMENT.
- EDUCATION TO USERS.
- VERIFICATION/COMPARISON WITH PAST DESIGN AND FIELD EXPERIENCE.

LIQUID ROCKET PROPULSION

CURRENT DETERMINISTIC APPROACH

LIQUID ROCKET PROPULSION

GOAL: QUANTIFIED DECISION PROCESS FOR RISK & COST BASED ON TOTAL PROCESS

PROPOSED PROGRAM

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

OBJECTIVE: AUTOMATED SOFTWARE PACKAGES FOR INTEGRATED SYSTEM LIFE CYCLE MULTI-LEVEL PROBABILISTIC STRUCTURAL INTEGRITY, PROGRESSIVE DAMAGE AND RISK ANALYSES REQUIRED FOR CERTIFICATION AND HEALTH MONITPRING OF PROPULSION SYSTEMS.

JUSTIFICATION:

- DESIGN FOR REALISTIC IN-FLIGHT ENVIRONMENT
- QUANTIFIABLE RELIABILITY/RISK/COST
- DECISION-ORIENTED SMART CODES
- LESS COST
- GUIDANCE FOR HEALTH MONITORING

PROPOSED PROGRAM (CONTINUED)

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

APPROACH:

- TELESCOPIC ANALYSIS CAPABILITY
- SMART SOLVER CODES
- AUTOMATED NONLINEAR GLOBAL/LOCAL STRUCTURAL ANALYSIS
- DAMAGE INITIATION LIBRARY
- DAMAGE GROWTH AND PATTERN
- RISK MODELS
- SIMULATION METHODS FOR VERIFICATION
- CRITERIA AND TEST SELECTION
- VERIFICATION USING EXISTING SYSTEMS
- CERTIFICATION
- HEALTH MONITORING

RESOURCES:

\$25M OVER A 5-YEAR PERIOD

PROPOSED PROGRAM

MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION OF PROPULSION SYSTEMS

OBJECTIVE: AUTOMATED SOFTWARE PACKAGES FOR INTEGRATED SYSTEM LIFE CYCLE MULTI-LEVEL PROBABILISTIC STRUCTURAL INTEGRITY, PROGRESSIVE DAMAGE AND RISK ANALYSES REQUIRED FOR CERTIFICATION AND HEALTH MONITPRING OF PROPULSION SYSTEMS.

- **JUSTIFICATION:** DESIGN FOR REALISTIC IN-FLIGHT ENVIRONMENT
 - QUANTIFIABLE RELIABILITY/RISK/COST
 - DECISION-ORIENTED SMART CODES
 - LESS COST
 - GUIDANCE FOR HEALTH MONITORING
- **APPROACH:** TELESCOPIC ANALYSIS CAPABILITY
 - SMART SOLVER CODES
 - AUTOMATED NONLINEAR GLOBAL/LOCAL STRUCTURAL ANALYSIS
 - DAMAGE INITIATION LIBRARY
 - DAMAGE GROWTH AND PATTERN
 - RISK MODELS
 - SIMULATION METHODS FOR VERIFICATION
 - CRITERIA AND TEST SELECTION
 - VERIFICATION USING EXISTING SYSTEMS
 - CERTIFICATION
 - HEALTH MONITORING

RESOURCES:

\$25M OVER A 5-YEAR PERIOD

913

PR	OBABILISTIC STRUCTURAL ANALYSIS METHODS FOR SPACE TRANSPORTATION PROPULSION SYSTEMS
ISSUES:	CERTIFICATION OF SPACE TRANSPORTATION PROPULSION SYSTEMS: * IS COSTLY AND TIME CONSLIMING
	 Is difficult due to uncertainties in actual operating conditions. NEEDS TO BE REPEATED FOR MODIFICATIONS TO EXISTING SYSTEMS AND FOR ENHANCED CAPABILITY IN OPERATING CONDITIONS.
PROPOSE	D ACTIONS/PROGRAM:
	 CONTINUATION/AUGMENTATION OF ON-GOING NASA PROGRAMS. MULTI-LEVEL SELF-ADAPTIVE SOFTWARE FOR GLOBAL/LOCAL NONLINEAR ANALYSIS.
	 LIBRARY OF POSSIBLE FAILURE MODES. DECISION LOGIC FOR DAMAGE INITIATION/COALESCING/GROWTH.
	 RISK MODELS/PROBABILISTICALLY SELECTED TESTING/VERIFICATION/CERTIFICATION. & GUIDELINES FOR HEALTH MONITORING.
MAJOR OF	3JECTIVE:
	 MULTI-LEVEL PROBABILISTICALLY SIMULATED CERTIFICATION FOR SPACE TRANSPORTATION PROPULSION STRUCTURAL SYSTEMS.
MAJOR MI	LESTONES:
	 MULTI-LEVEL PROBABILISTIC STRUCTURAL ANALYSIS METHODS. LIBRARY OF POSSIBLE FAILURE MODES.
	LOGIC FOR DAMAGE INITIATION/COALESCING/GROWTH.
	* SOFTWARE FOR COMPONENT/SYSTEM TESING/VERIFICATION/CERTIFICATION.
	* STREAMLINED SOFTWARE FOR IN-SERVICE HEALTH MONITORING.
	SOFTWARE VALIDATION.