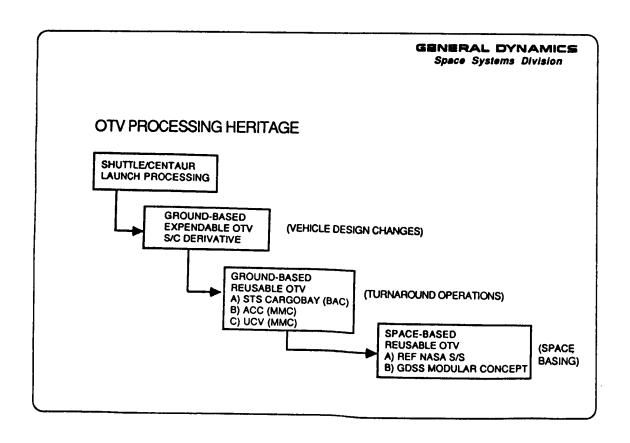
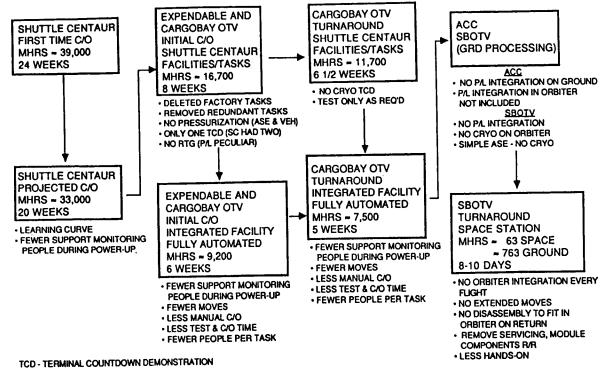
N91-28253

PRESENTATION 4.3.1

GENERAL DYNAMICS
Space Systems Division


OPERATIONAL EFFICIENCY PANEL
SPACE-BASING TECHNOLOGY REQUIREMENTS
LUIS R. PEÑA

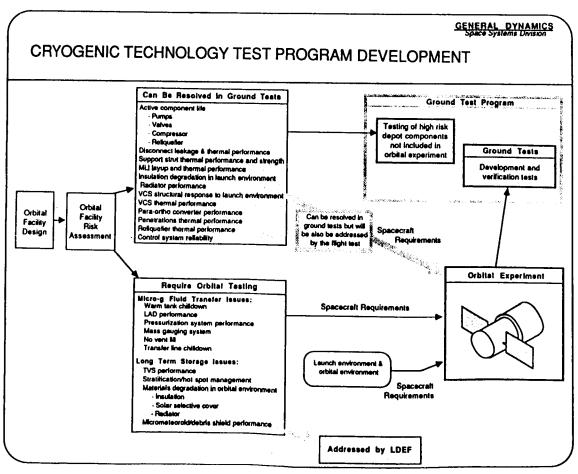
THE SPACE EXPLORATION INITIATIVE


GENERAL DYNAMICS Space Systems Division

SPACE-BASING TECHNOLOGY REQUIREMENTS SOURCES

	SPACE STATION	- OTV CONCEPT DEFINITION AND SYSTEMS ANALYSIS	MSFC
		- TURNAROUND OPERATIONS ANALYSIS FOR OTV *	MSFC
		- CENTAUR OPERATIONS AT THE SPACE STATION	LeRC
		- LONG TERM CRYOGENIC STORAGE FACILITY	MSFC
	LUNAR/MARS/	- INFRASTRUCTURE STUDY *	MSFC
	NODES	- CENTAUR DERIVED LUNAR TRANSFER VEHICLE	LeRC
		- UP-GRADED CENTAUR	LeRC

GROUND PROCESSING PROGRESSION TO SPACE PROCESSING



GENERAL DYNAMICS Space Systems Division

TECHNOLOGY REQUIREMENTS SPACE-BASED OTV SERVICING AND MAINTENANCE

- 1. CRYOGENIC PROPELLANT TRANSFER, STORAGE AND RELIQUEFACTION
- 2. AUTOMATED FAULT DETECTION / ISOLATION AND SYSTEM CHECKOUT
- 3. OTV DOCKING AND BERTHING
- 4. OTV MAINTENANCE / SERVICING OPERATIONS AND FACILITIES / SUPPORT EQUIPMENT
 - TELEOPERATORS / ROBOTICS
 - CREW TRANSLATION EQUIPMENT
 - OTV TRANSLATING & BERTHING ROTATION EQUIPMENT
 - CONTROLS AND DISPLAYS
 - EVA OPERATIONS
- 5. OTV / PAYLOAD MATING AND INTERFACES

GENERAL DYNAMICS Space Systems Division DESIGN AND DEVELOPMENT SCHEDULE FOR OTV'S AND OTV ACCOMMODATIONS/SUPPORT HARDWARE FY 1 2 3 4 13 10 11 12 14 15 1ST MAN **SPACE STATION** øC/D LAUNCH TENDO DIOC PHASE I D PHASE II **SBOTV** αA ΔŽ IOC CDRV øC/DA øB **TECHNOLOGY** DEVELOPMENT GROUND **ANALYSIS TESTING** SHUTTLE/ELV SORTIES/FLT TEST **SPACE STATION DESIGN/MANU/TEST TDMS** LAUNCH GR OPS FLT OPS øΑ CDR V LAUNCH D OTV ACCOMMODATIONS/ SUPPORT HARDWARE

CRYOGENIC PROPELLANT TRANSFER, STORAGE AND RELIQUEFACTION MANAGEMENT SUMMARY

MANY OTV PROPELLANT STORAGE, TRANSFER, AND RELIQUEFACTION TECHNOLOGY PERFORMANCE ISSUES CAN BE RESOLVED THROUGH ANALYSIS AND GROUND TESTING

- o ACTIVE COMPONENTS (RELIQUEFIER, PUMPS, VALVES, COMPRESSORS, RADIATOR)
- o PASSIVE COMPONENTS (MLI, VCS, P-O CONVERTER)

CERTAIN TECHNOLOGY DEVELOPMENTS REQUIRE ORBITAL, LOW-G TESTING

- o TRANSFER
 - LIQUID ACQUISITION DEVICE
 - PRESSURIZATION SYSTEMS
 - MASS GAGING SYSTEMS
 - NO-VENT FILL/REFILL
 - TRANSFER LINE CHILLDOWN
- o LONG-TERM STORAGE ISSUES
 - THERMODYNAMIC VENT SYSTEM
 - STRATIFICATION AND "HOT SPOT" MANAGEMENT
 - MATERIALS DEGRADATION (MLI, SOLAR SELECTIVE COVER, RADIATOR)
- o MICROMETEOROID/DEBRIS SHIELD PERFORMANCE

PROPELLANT TRANSFER TECHNOLOGY ANALYSIS & GROUND TESTING

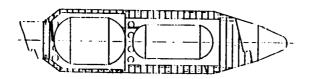
DESCRIPTION OF TECHNOLOGY:

- o AUTOMATIC, LEAK-FREE OPERATION OF CRYOGENIC TRANSFER LINES AND DISCONNECTS
- o CHILLDOWN BEHAVIOR OF TRANSFER LINES
- o PRECHILL ACCUMULATOR & COMPRESSOR SYSTEM TEST
- **O VALVE & TRANSFER PUMP TESTING**

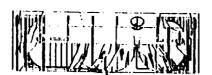
RATIONALE & ANALYSIS:

- SYSTEM REQUIRES FULLY AUTOMATED TRANSFER SYSTEM
- o RELIABILE, LEAK-FREE OPERATION OF DISCONNECTS, PUMPS, VALVES, AND COMPRESSORS

TECHNOLOGY OPTIONS:


- TRANSFER LINE CONFIGURATIONS; ELV-SS DEPOT TANK, DEPOT-OTV, ET SCAVENGING
- o TRANSFER PRESSURANT SYSTEM; AUTOGENOUS, GHe, GH2, PUMP-FED
- O TRANSFER LINE INSULATION TYPES/INTERNALLY COATED VS. UNCOATED

OTV PROPELLANT STORAGE DEPOT DEVELOPMENT CRITICAL SCALING RELATIONSHIPS


EXPERIMENT	SIGNIFICANT PARAMETERS				
Thermodynamic venting, passive & active	TVS flowrate/direct venting flowrate, tank pressure/vapor pressure Weber no., jet Reynolds no., mixing parameter (time), Bond no., mixer heat input / total heat input				
Tank prechill	Tank pressure, volume/tank mass, temperature, Nusselt no., spra Reynolds no., mixing parameter				
No-vent fill	Nusselt no., spray / jet Reynolds no., mixing parameter, peak pressure / vapor pressure, Weber no., Jacob no.				
Liquid acquisition device fill / refill	Bond no., liquid volume / total volume, bulk density / liquid density, average bubble volume / total ullage volume				
Slosh dynamics & control	Bond no., jet Weber no., acceleration ratios, dimensionless slosh frequency, damping factor, expulsion efficiency				

FLIGHT EXPERIMENT OPTIONS

SMALL SCALE (~1/10) ORBITAL FLIGHT EXPERIMENT

Launch Vehicle: Atlas/Centaur

Experiment Size: 10.5 ft. dia. max., 24 ft. long LH2 Capacity: 230 cu. ft., 998 lbs. (Receiver Tank)

Total Weight: ~9800 lbs. wet

LARGE SCALE (-4/10) ORBITAL FLIGHT EXPERIMENT

Launch Vehicle: TITAN IV SS I &II Experiment Size: 15 ft. dia. max., 47 ft. long

LH2 Capacity: 1320 cu. ft., 5728 lbs. (Receiver Tank)

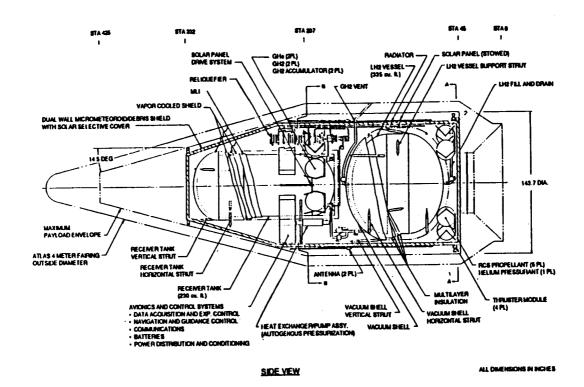
Total Weight: ~25000 lbs. wet

FULL SPACE STATION LH2 TDM

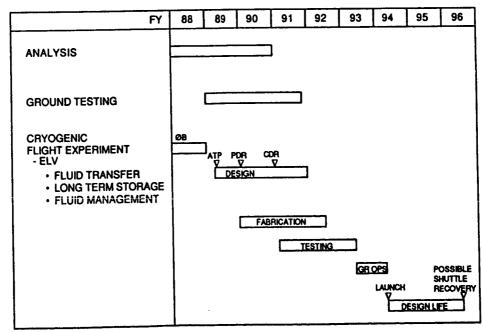
Launch Vehicle: Space Shuttle (dry), or SDV Experiment Size: 14.5 ft. dia. x 34.5 ft. long LH2 Capacity: 3292 cu. ft., 14286 lbs.

Total Weight: ~18000 lbs. dry

FULL SCALE LONG TERM CRYOGENIC STORAGE DEPOT


Launch Vehicle: Space Shuttle (dry), SDV or ALS Size: 14.5 ft. dla. x 50 ft. long

Capacities: 3292 cu. ft. LH2, 1203 cu. ft. LO2


14286 bs. LH2, 85714 bs. LO2

~30200 lbs. dry Total Weight:

SMALL SCALE (~1/10) LTCSF FLIGHT EXPERIMENT (CONFIGURED FOR ATLAS/CENTAUR LAUNCH VEHICLE)

OTV ACCOMMODATIONS/SUPPORT HARDWARE *TECHNOLOGY DEVELOPMENT - CRYOGENIC PROPELLANT ELV EXPERIMENT

***MAY REQUIRE SPACE STATION TDM**

GENERAL DYNAMICS Space Systems Division

OTV MAINTENANCE PHILOSOPHY

THREE-LEVEL MAINTENANCE

 LEVEL ONE - OTV LOCAL MAINTENANCE

 LEVEL TWO - SPACE STATION REPAIR OF REPLACEABLE UNITS

• LEVEL THREE - RETURN TO EARTH MAINTENANCE

STOCK SPARE PARTS BASED ON RELIABILITY, CRITICALITY & COST

SPACE STATION STORAGE VS SHUTTLE DELIVERY

STRESS MODULAR CONSTRUCTION FOR ASSEMBLY & REPLACEMENT CAPABILITY

- MINIMIZE INTERFACES
- SIMPLIFY INTERFACES

PROVIDE OPERATIONAL FLIGHT INSTRUMENTATION & BUILT-IN TEST

FAULT ISOLATE TO REPLACEABLE UNIT

MINIMIZE EVA VEHICLE MAINTENANCE OPERATIONS

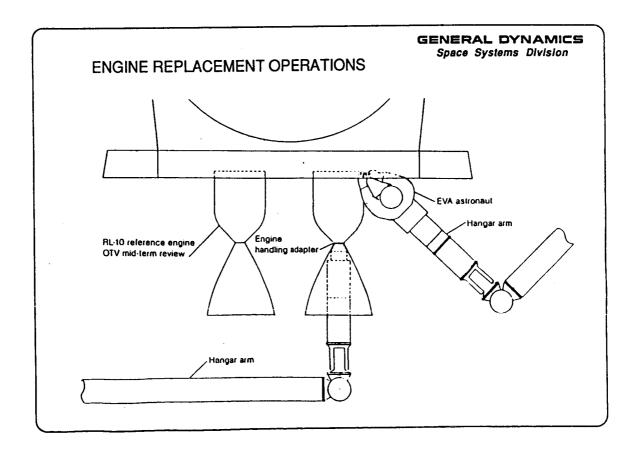
- CONSIDER SAFETY IN HAZARDOUS SITUATIONS
- TRADE-OFF EVA VERSUS SUPPORT EQUIPMENT
 - TV INSPECTION
 - TELEOPERATIONS / ROBOTICS FOR COMPONENT REPLACEMENT

AUTOMATED FAULT DETECTION/ISOLATION AND SYSTEM CHECKOUT SUMMARY

THE AUTOMATED FAULT DETECTION/ISOLATION AND SYSTEM CHECKOUT REQUIRED TECHNOLOGY DEVELOPMENT FOR GROUND PROCESSING CAN BE RESOLVED THROUGH ANALYSES, SIMULATION AND GROUND TESTING.

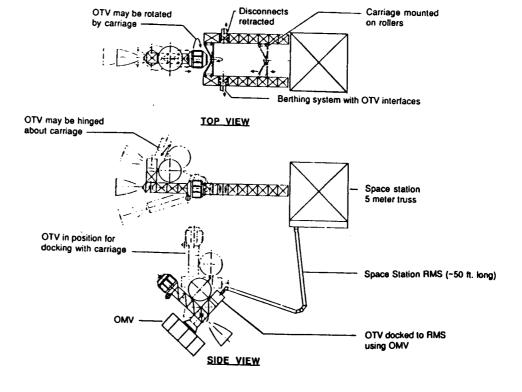
THE REQUIRED TECHNOLOGY DEVELOPMENTS FOR SPACE PROCESSING (SAME AS ONES FOR THE GROUND) CAN FOR THE MOST PART BE RESOLVED THROUGH ANALYSES, SIMULATION AND GROUND TESTING.

- · NO TESTING ON A SHUTTLE SORTIE OR ELV
- MAY WANT TO INCLUDE SOME PROTOTYPE EQUIPMENT ON MAINTENANCE/SERVICING/SUPPORT EQUIPMENT SPACE STATION TDM

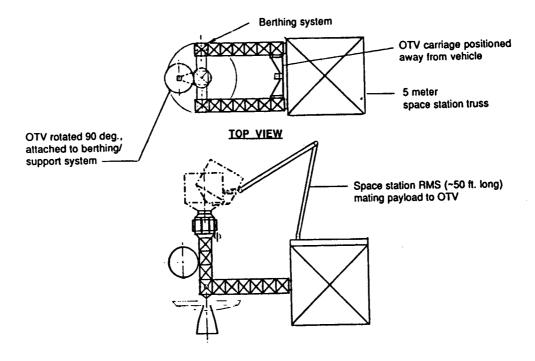

MAINTENANCE/SERVICING OPERATIONS AND SUPPORT EQUIPMENT TECHNOLOGY SUMMARY

MANY MAINTENANCE/SERVICING/SUPPORT EQUIPMENT REQUIRED TECHNOLOGY DEVELOPMENTS CAN BE RESOLVED THROUGH ANALYSIS, SIMULATION AND GROUND TESTING.

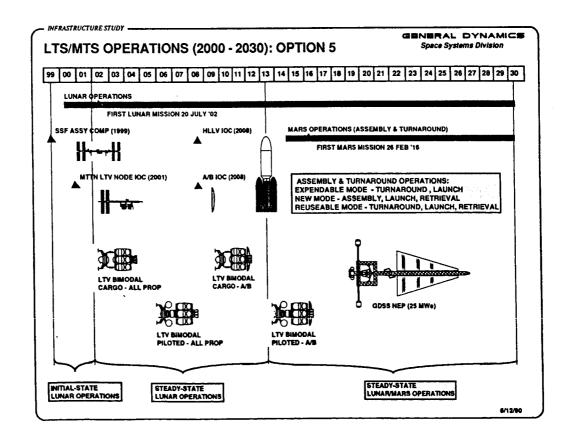
- · TELEOPERATIONS/ROBOTICS/TOOLS
- CREWMAN SUPPORT/WORKSTATION/TRANSLATION EQUIPMENT
- OTV TRANSLATING AND BERTHING ROTATION EQUIPMENT
- CONTROLS/DISPLAYS/COMMUNICATIONS


CERTAIN TECHNOLOGIES REQUIRE ORBITAL, LOW-G TESTING

- EVA MAINTENANCE/SERVICING OPERATIONS/CONTROLS/TOOLS
- TELEOPERATIONS/ROBOTICS/CONTROLS/TOOLS (VERIFICATION)



OPTION CRITERIA SUPPORT EQUIPMENT REQUIREMENTS VEHICLE DESIGN REQUIREMENTS		TELEOPERATION	TELEOPERATION	TELEOPERATION WITH AUTOMATED LATCHES 1 RMS - 1 grasping adapter OTV modular design Automated disconnect	
		WITH EVA	ONLY		
		2 RMS - 1 crew support adapter - 1 grasping adapter EVA support equipment	2 RMS - 1 servicing tool adapter - 1 grasping adapter		
		OTV modular design EVA compatible disconnect	OTV modular design EVA/teteoperator compatible disconnect		
TASK DURATI	ON	18:10	12:50	7:15	
MANHOURS	EVA	24:50			
	TOTAL	53:30	20:20	13:45	
MANHOUR CO		49.5M	7.5M	2.7M	
VEHICLE WEIGHT PER MISSION REQUIRE TECHNICAL DEVELOPMENT ACCESSIBILITY REQUIREMENT VEHICLE COMPLEXITY VEHICLE RELIABILITY COST (REV 8 NMM)		Baseline	Same	+100lb/engine Yes Aerobrake: not removed Crew: none RMS: nozzie area	
		No	Minimat		
		Aerobrake: remove Crew: 4 ft x 5 ft x 6.5 ft RMS : nossle area	Aerobrake: remove Crew: none RMS : 28 in. dia for RMS & tool, nozzle area		
		Baseline	. Same	Increased - Hardware - Soltware	
		Baseline	Same		
		130M	53M	Decrease 556M	


ALTERNATIVE DOCKING OPERATION

CONCEPT FOR OTV/PAYLOAD INTEGRATION

SIDE VIEW

GENERAL DYNAMICS Space Systems Division

TECHNOLOGY CRITICALITY & CAPABILITY ASSESSMENT

Assessment	Lunar			
1		Mars	Capability	Need Date
1	x	х	Refuel/Store	1998
1		х	25 MWe	2005
1		х	F=410n, ISP=9ks	2005
1		х		2005
2	x	X	Man-rated, Reuse,	
			High ISP, Throttle	
1	Low Engy	High Engy	Flex Preferred	1998/05
3	X	X	50-100# thrust	1998
2	X	Х	All systems	1998
1	х	X	4-6kW	1998
1	х	X	Lunar/Mars Orb	1998
2	х	X	8 psi suit	1998
1	х	Х	Ground control	1998
2	х	х		1998
1	х	x	Crew Mod	1998
2		х		2005
1	х	х	80 Klbs P/L	1998
	1 3 2 1 1 2 1 2	1 Low Engy 3 X 2 X 1 X 1 X 2 X 1 X 2 X 1 X 2 X 1 X 2 X	1	1 X F=410n, ISP=9ks 1 X Man-rated, Reuse, High ISP, Throttle 1 Low Engy High Engy Flex Preferred 3 X X 50-100# thrust 2 X X All systems 1 X X 4-6kW 1 X X Lunar/Mars Orb 2 X X Ground control 1 X X Crew Mod 2 X X Reqm't pending

TRANSFER VEHICLE **TECHNOLOGY DEVELOPMENT PLAN**

TECHPLA GDSS NA			TECH P	LAN: NASA	TECHNOLOGY APPLICATIONS
STV	4	HUMAN FACTORS • MAN RATING/SAFING, PROXIMITY OPS • LIFE SUPPORT SYSTEMS AND REG'MTS • ARTIFICIAL GRAVITY, ECLSS	STV AUS ATLAS T/C ALS	Ţ	AVIONICS, MPRAS, REDUNDANCY • ADAPTIVE / EXTENDED GN & C • SOFTWARE UPDATE SYSTEMS • SPACE COMM'S HI RATE - DATA / VOICE
STV	1	SPACE MISSION PLANNING AND SUPPORT INTEGRATED MISSION DEVELOPMENT MISSION PERFORMANCE SCENARIOS EMERGENCY SCENARIO/ALTERNATIVES	STV AUS NASP ATLAS T/C ALS & S	rs	MATERIALS / STRUCTURES AND TANKS COMPOSITES - STRUCTURAL SHIELDING METAL MATRIX COMPOSITES, AL-LI CRYO-TANK COMPOSITES / INSULATION
STV NASP COLTV		AEROBRAKE / AEROSYSTEMS • HYPERSONIC AERO THERMODYNAMICS • MATERIALS • AUTONOMOUS OPERATIONS	STV AUS NASP ATLAS T/C ALS	1	FLUID / MECHANICAL SYSTEMS - ADVANCED • ELECTRO / PNEU VALVES • ELECTROMECHANICAL ACTUATORS • AUTOGENOUS PRESSURIZATION / TVS
STV V HASP ALS		ON-BOARD INTELLIGENT SYSTEMS DECISION-AID GROUND AND MISSION OPS INTEGRATION	STV AUS T/C	4	PROPULSION SYSTEMS - ADVANCED • ALTERNATE RCS METHODS • MULTI- MISSION & MULTI-CYCLE PROP • NUCLEAR PROPULSION SYSTEMS
STV NASP ATLAS ALS	•	SIMULATION MODELS - INTEGRATED • MISSION PARAMETERS • AVIONICS & STRUCTURES DEVELOPMENT • LAUNCH AND GROUND SYSTEMS	STV SPS	4	BATTERIES, SOLAR CELLS, FUEL CELLS RTG AND NUCLEAR SYSTEMS, He3 SUPERCONDUCTIVITY, COLD FUSION
STV Y	,	IN-SPACE OPERATIONS RENDEZVOUS, DOCKING, MATING & ASSY SPACE BASING, MAINTENANCE, ROBOTICS AUTONOMOUS OPERATIONS	STV AUS ATLAS T/C ALS	1	MANUFACTURING TECHNOLOGY CONCURRENT ENGR, COST REDUCTION SIMPLIFIED METHODS / HIGH RELIABILITY ROBOTIC APPLICATIONS
STV AUS NASP ATLAS ALS SPS	•	CRYOGENIC MANAGEMENT - ADVANCED • "0" G CRYO XFER, LIQUID ACQ DEV (LAD) • FLOW & MASS MEASUREMENT • RELIQUEFACTION, INSULATION SYSTEMS	STV AUS ATLAS T/C ALS	1	LAUNCH RESPONSIVENESS • AUTO CH'KOUT, IHM, REDUNDANCY MGT • AUTO PROPELLANT LOADING • AUTOMATED / INTEGRATED TEST & GSE