provided by NASA Technical Reports Serve

N91-28270

PRESENTATION 4.4.8

SPACE SHUTTLE MAIN ENGINE

FOR MANNED SPACE FLIGHT

RONALD G. WEESNER PENN STATE PROP. SYMPOSIUM JUNE, 1990

SSME IS FIRST REUSABLE LARGE LIQUID ROCKET ENGINE

• FULL POWER LEVEL (FPL) 109%

512,300 LBS

• RATED POWER LEVEL (RPL) 100%

470,000 LBS

• CHAMBER PRESSURE

3200 PSIA

• SPECIFIC IMPULSE AT ALTITUDE

435.5 SECONDS

• THROTTLE RANGE

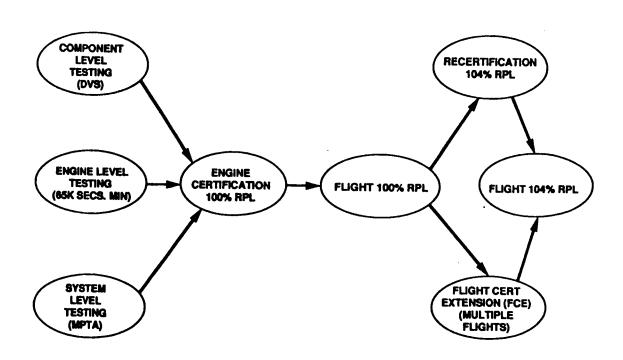
65 TO 109%

▶ PROPELLANTS

OXYGEN/HYDROGEN

▶ WEIGHT

7000 LBS


DESIGN LIFE

27,00 SECONDS 55 STARTS

• AT FULL POWER LEVEL

14,000 SECONDS

SSME CERTIFICATION PROCESS

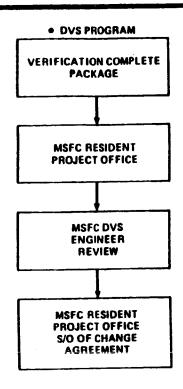
SSME DEVELOPMENT/CERTIFICATION

- SSME REQUIREMENTS IDENTIFIED IN NASA APPROVED DOCUMENTS
- DESIGN VERIFICATION SPECIFICATIONS (DVS) USED TO DEFINE REQUIREMENTS AND METHOD OF VERIFICATION
- DETAILED AND COMPLETE PLANS PROVIDE FOR VERIFICATION OF EACH REQUIREMENT
 - LABORATORY TESTS, COMPONENT TESTS AND ENGINE TESTS
- TESTS PLANNED TO EXPOSE PROBLEMS EARLY
 - OFF LIMITS TESTING/MALFUNCTION TESTING/MARGIN TESTS
- ENGINE CERTIFICATION (CULMINATION OF DEVELOPMENT PROCESS)
 - TWO CERTIFICATION CYCLES ON EACH OF TWO ENGINES
 - CERTIFICATION CYCLE 10 TESTS AND 5000 SECONDS

DESIGN VERIFICATION SPECIFICATIONS (DVS)

- ESSENTIALLY 25 LEVEL IV CEI'S CATEGORIZED BY MAJOR COMPONENT AND/OR SUBSYSTEM
- PROVIDES ALL DESIGN AND VERIFICATION REQUIREMENTS AT COMPONENT LEVEL
- PROVIDES TRACEABILITY TO THE CEI/ICD

DOCUMENT	TITLE	DOCUMENT	TITLE
DVS-SSME-102 GIMBAL DVS-SSME-106 POGO SI	UPPRESSION SYSTEM	DVS-SSME-403 DVS-SSME-404	LPFTP ASSEMBLY HPOTP ASSEMBLY HPFTP ASSEMBLY CHECK VALVES
DVS-SSME-202 ELECTRI DVS-SSME-203 INSTRUM	NLER SOFTWARE - VOLUME 2 CAL HARNESS ASSEMBLY MENTATION SYSTEM	DVS-SSME-510 DVS-SSME-511	PNEUMATIC CONTROL ASSEMBLY FLEXIBLE AND HARD DUCTS AND LINE ASSEMBLIES
DVS-SSME-204 FLOWME DVS-SSME-205 IGNITION DVS-SSME-206 FASCOS DVS-SSME-303 THRUST	CONTROLLER	DVS-SSME-513 DVS-SSME-514	HYDRAULIC ACTUATION SYSTEM HEAT EXCHANGER STATIC SEALS PROPELLANT VALVES
DVS-SSME-304 HOT GAS DVS-SSME-305 FUEL AN ASSEMBLIES DVS-SSME-401 LPOTP A	S MANIFOLD ID OXIDIZER PREBURNER 3	DVS-SSME-517	FUEL AND OXIDIZER BLEED VALVE ASSEMBLIES POGO SUPPRESSION SYSTEM VALVE SEMBLIES


TOTAL LABORATORY DVS TEST SUMMARY ALL COMPONENTS

THRUST CHAMBER	131	PNEUMATIC CONTROL ASSY	303
PREBURNERS	70	INSTRUMENTATION SYSTEM	70
CONTROLLER	192	CHECK VALVES	173
HIGH-PRESSURE FUEL T/P	365	HEAT EXCHANGER	22
HIGH-PRESSURE LOX T/P	830	STATIC SEALS	100
LOW-PRESSURE FUEL T/P	100	GINBAL BEARING	2
LOW-PRESSURE LOX T/P	96	DUCTS AND LINES	528
IGNITION SYSTEM	789	FLOWMETER	7
HYDRAULIC ACTUATION SYS	228	ENGINE SYSTEM	12
ELECTRICAL HARNESSES	85	POGO SYSTEM	125
HOT GAS MANIFOLD	40	POGO VALVES	276
PROPELLANT VALVES	38	FASCOS	16
BLEED VALVE	29	TOTAL	4627

COMPONENT HOT-FIRE TEST SUMMARY

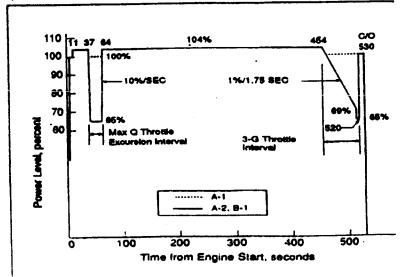
<u>TEST</u>	NUMBER OF TESTS
SUBSCALE THRUST CHAMBER AND MAIN COMBUSTION CHAMBER AUGMENTED SPARK IGNITER	236
IGNITION SYSTEMS AND PREBURNERS	918
THRUST CHAMBERS	94
OXIDIZER TURBOPUMPS	70
FUEL TURBOPUMPS	100
TOTAL	1418

VERIFICATION COMPLETE APPROVAL FLOW VERIFICATION COMPLETE PACKAGE

• ENGINE LEVEL TESTING

- PROGRAM REQUIREMENT OF 65,000 SECONDS TO DEMONSTRATE FLIGHT WORTHINESS
- 619 STARTS/79,235 SECONDS ACCUMULATED PRIOR TO STS-1
- SYSTEM LEVEL TESTING (MPTA)
 - SYSTEMS LEVEL TESTING TO VERIFY MPS COMPATIBILITY AND PERFORMANCE
 - TEST ARTICLE CONSISTED OF 3 SSME'S, ET, ORBITER SIMULATOR, ETC.
 - TEST PROGRAM INCLUDED STRUCTURAL RESONANT SURVEYS, PROPELLANT LOADING TESTS, AND 12 HOT FIRINGS
 - 54 STARTS / 11,326 SECONDS ACCUMULATED PRIOR TO STS-1

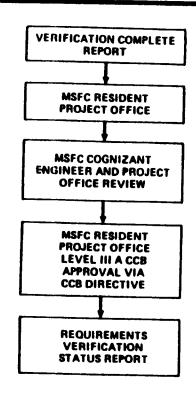
- FLIGHT CERTIFICATION PROGRAM
 - CERTIFICATION DEMONSTRATION TEST PROGRAM
 - TWO CERT CYCLES ON EACH OF TWO FLIGHT CONFIGURATION ENGINES
 - EACH CERT CYCLE CONSISTED OF 10 STARTS/5000 SECONDS
 - INCLUDED OVERSTRESS TESTING AND ABORT SIMULATION
 - SSME CERTIFIED FOR 100% RPL OPERATION
 - 109% RPL ABORT CAPABILITY DEMONSTRATED
 - 51 STARTS/19,858 CERT SECONDS ACCUMULATED PRIOR TO STS-1
- TOTAL HOT-FIRE TEST EXPERIENCE PRIOR TO STS-1:
 - >110,000 SECONDS >720 STARTS
- STS-1 THROUGH STS-5 FLOWN AT 100% RPL


CERTIFICATION EXPERIENCE PRIOR TO STS-6 104% POWER LEVEL

- RE-CERTIFICATION (104% RPL)
 - FOUR CERT CYCLES COMPLETED (52 STARTS/20,710 SECONDS)
 - ENGINE CERTIFIED FOR 104% RPL OPERATION
- ENGINE DEVELOPMENT TESTING
 - 812 STARTS/117,514 SECONDS CUMULATIVE TOTAL PRIOR TO STS-6
- STS-6 AND SUBS WERE FLOWN AT 100% OR 104% RPL

10-TEST CERTIFICATION CYCLE/TYPICAL PROFILE

Table 1A. Certification Test Requirements Sample No. 1


	Thrust		Mainstage Duration, sec				
	Profile	1	Total	109%	104%	100%	Other
1	1	104% Nominal Mission	520		416		104
Ž	li	104% Nominal Mission	520	1	416	1	104
3	l i	104% Nominal Mission	520	1	416		104
4	2	109% Nominal Mission	503	381	1	1	122
Š	ا ک	109% Nominal Mission	503	381	1	1	122
6	i i	104% Nominal Mission	520		416	1	104
i	48	104% Abort - AOA	623	1	581	ł	42
ė	34	109% Abort - RTLS	761	518	1	194	49
9	l ï	104% Nominal Mission	520		416	1	104
10	l i	104% Nominal Mission	520		416		104
		Minimum Cum	5510	1280	3077	194	959

CERTIFICATION EXPERIENCE POST-51L (RETURN TO FLIGHT)

- 39 CHANGES CERTIFIED AND INCORPORATED PRIOR TO STS-26R
 - CUMULATIVE TESTING DURING PERIOD 234 STARTS/89,384 SECONDS
- PRIMARILY CHANGES TO IMPROVE LIFE OF PUMPS AT FPL
 - REDUCED FUEL TURBINE TEMPERATURE
 - IMPROVED TURBINE BLADES
 - IMPROVE DYNAMIC STABILITY OF HPOTP
 - INCREASED HPOTP BEARING LIFE
- TWO 5000-SECOND CERTIFICATIONS REQUIRED FOR MODIFICATIONS

VERIFICATION COMPLETE APPROVAL FLOW VERIFICATION COMPLETE REPORT

CERTIFICATION REQUIREMENTS (CONT'D)

- FLIGHT CERTIFICATION EXTENSION (FCE) RSS-8503-2E
 - VERIFY SSME CAPABILITY FOR EXTENDED LIFE
 - MAINTAIN A FACTOR OF TWO ON STARTS/DURATION ON TWO SAMPLES WITH A LEAD TIME OF TWO YEARS OVER FLIGHT PROGRAM (2X2X2 RULE)
- FLEET LEADER CRITERIA (RF005-009)
 - CERTIFIED HARDWARE IS RESTRICTED FOR FLIGHT USE TO 50% OF THE FLEET LEADER EXPOSURE
 - LOWER LIFE LIMITS (RESULTING FROM PART FAILURE, ANALYSIS OR EMPIRICAL DATA) CAN BE IMPOSED BY DEVIATION APPROVAL REQUESTS (DAR)

IN RETROSPECT...

- STRUCTURED COMPONENT DEVELOPMENT YIELDED HIGH RETURN ON INVESTMENT SHOULD HAVE BEEN EXPANDED
- EXTENSIVE GROUND TEST PROGRAM WHICH BRACKETED FLIGHT OPERATIONS ASSURED SAFE FLIGHTS
- SYSTEM LEVEL TEST PROVIDED NECESSARY VALIDATION OF ELEMENT INTERACTIONS
- SOPHISTICATED HIGH POWER/DENSITY RATIO DESIGNS COMPROMISE RELIABILITY, MANUFACTURING AND COST. ROBUST DESIGNS RECOMMENDED
- HARDWARE UNDERSUPPORT FOR FAB., ASSEMBLY AND TEST REQUIRES COMPROMISE AND CONCESSION IN EVERY ASPECT OF THE PROGRAM AND SHOULD BE VIGOROUSLY AVOIDED
- MATERIAL CHARACTERIZATION, WELD ASSESSMENT AND STRUCTURAL AUDIT SHOULD BE EARLY IN THE PROGRAM AND VERY THOROUGH
- PROGRAM COULD HAVE GREATLY BENEFITED FROM TODAY'S CFD TECHNOLOGY - ALSO CAD/CAM, TQM
- AVIONICS SIMULATION LAB FOR SOFTWARE VALIDATION PROVED TO BE MAJOR PROGRAM ASSET
- MAINTAINABILITY AND CONDITION MONITORING FEATURES WERE EXCELLENT AND SHOULD HAVE BEEN MORE EXTENSIVE
- EFFORT TO MINIMIZE CRITICALITY 1 FAILURES SHOULD HAVE BEEN MORE INTENSIVE IN THE INITIAL DESIGN PHASE
- COMPUTER CONTROLLED ENGINE OFFERS GREAT FLEXIBILITY AND WAS A DEFINITE PLUS