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Abstract

The dependence of counts in cells on the shape of the cell for the large-scale galaxy dis-

tribution is studied. A very concrete prediction can be done concerning the void distribution

for scale invariant models. The prediction is tested on a sample of the CfA c&talog, and good

agreement is found. It is observed that the probability of voids is bigger for spherical cells

than for elongated ones, whereas the probability of a cell to be occupied is bigger for some

elongated cells. A phenomenological scale-invaria_t model for the observed distribution of

the counts in cells --an extension of the negative binomial distribution-- is presented in order

to illustrate how this dependence can be quantitatively determined. An original, intuitive

derivation of this model is presented.
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1 Introduction

One of the standard approaches to the study of the 3-D space distributions of galaxies

over distances of tens of Mpc has been the consideration of the two-point correlation

function, _(r), which can be derived both from observational data, angular (e.g. Groth

and Peebles 1977) or redshift (e.g. Davis and Peebles 1983) catalogs of galaxy po-

sitions, and from specific cosmological scenarios: _ is directly related to the power

spectrum of fluctuations (see e.g. Peebles 1980). Some striking large-scale observa-

tional results concerning big voids (Kirschner 1981, Bothun et al. 1986), 'bubbles'

(de Lapparent, GeUer and Huchra 1986), 'great walls' (Geller and Huchra 1989) or

'sponge-like' topologies (Gott et al. 1989), have also proven to be relevant differential

criteria to study this structure and do not seem to be trivially related with _ --but

rather with a complicated integration of all N-point correlation functions. It is then

important to address the question of extracting statistical information from the higher

order correlation functions.

Counts in cells, the probabilities Pi to have i galaxies inside a randomly chosen

cell of volume V, and in particular the void probability P0, are related with higher

order correlations --as is clear e.g. from (6) below-- and have received increasing

attention as a tool to study 3-D redshift catalogs from data, and to compare them

with simulations or theoretical predictions (see e.g. Fall et. al 1976, White 1979,

Sharp 1981, Fry 1984, Ryden and Turner 1984, Saslaw and Hamilton 1984, Fry 1985,

Hamilton 1985, Schaeffer 1985, Fry 1986, Otto et al. 1986, Bouchet and Lachi6ze-

Rey 1986, White et. al 1987, Maurogordato and Lachi/.'ze-Rey 1987, Mellot 1987,

Balian and Schaeffer 1988, Elizalde and Gaztanaga 1988, Fry et. al. 1989, Balian and

Schaeffer 1989, Elizalde and Gaztanaga 1990, Maurogordato and Lachi_ze-Rey 1991,

and references therein). The void probability P0 is of special interest, since it generates

all the other counts in cells Pi (see White 1979), although is not trivially related to the

observed big voids, because they are not statistically significant (see Otto et al. 1986).

The void probability contains higher-order correlation functions, generates counts in

cells and provides an easy way to test scale-invariant models. We would like to study

in this paper the dependence of the void probability and of the other counts in cells

on the shape of the cell. This dependence might be appropriate to address questions

such as whether elongated or spherical cell occupancy is statistically more significant.

Furthermore, the analysis of the shape dependence might be useful when cell counts

must be binned in non-spherical cells for practical purposes.

We shall concentrate on a phenomenological scale invariant model for counts in



cells: an extension of the negative binomial distribution. It is very simple and seems

to reproduce fairly well the observed redshift distribution. We first present (in Section

2) an original and intuitive derivation of this distribution. In Sections 3 and 4 we

compare the model with a sample from the CfA redshift catalog. We will argue in the

discussion (Section 5) that the analysis presented below can be applied to any scale

invariant model. For scale invariant models the shape dependence will be proven to be

fixed by the volume dependence.

2 The negative binomial distribution

A continuous generalization of the negative binomial distribution, see (17) below, which

was originally applied to hadron multiplicities at high-energy colliders (Carruthers and

Shih 1983), has been used by Fry (1986) and Fry et al. (1989) as a phenomenological

illustration of a model with a scaling relation on N-point correlation functions. This

scaling property seems to be related with the so-called hierarchical universes. Although

no physicai or intuitive explanation have yet been given, the negative binomial distri-

bution does provide a fair agreement with the observational distributions (Fry et. al

1989) of the GiovaneUi-Haynes (1985) catalogue over Pisces-Perseus. As pointed out

by Fry et al. (1989), the agreement --as shown in the scaling function Xp is not

perfectly accurate but can be used as a first analytical approximation to the observed

galaxy distribution. It is not clear to us whether the small, but systematic, discrep-

ancies between the model and the observational counts correspond to real differences,

since systematic errors coming from peculiar velocities have not yet been estimated. It

is well known that peculiar velocities produce spurious effects on the estimate of the

two point correlation function _ from redshift catalogs (e.g. Davis and Peebles 1983,

de Lapparent, Geller and Huchra 1988). This, by itself, affects the analysis by Fry et

al. (1989), because the scaling function X is studied as a function of _, which is directly

extracted from data, but is not corrected from peculiar velocities. One might also ex-

pect further distortions, coming from peculiar velocities, on higher order correlations,

and thus on P0. These effects are by no means small, specially when samples are close

to a big cluster (like Pisces-Perseus), since they can distort small scale into large scale

statistics. In fact, the anisotropies presented in Section 4, below, might be caused by

peculiar vdocity distortions.

B_tlian and Schaeffer (1989) compiled different values for Po obtained from different

catalogs, including the ones from Fry et al. (1989) of Pisces-Perseus, and the ones



from Maurogordato and Lachi6ze-Rey 1987 of the CfA redshift catalog (Huchra et al

1983), showing that the scaling function, X = -(log Po)/nV, with n the density and

V the cell volume, can be fitted to a power law: X "_ (nV_ -'_, being _" an average

over _ [see (19) below] and _ a parameter fitted about w ,-, .7. This same compilation

also fits the negative binomial expression: X = [log(1 + nv_]/nv( which has no free

parameter. As pointed out by Balian and Schaeffer (1988 and 1989) the agreement 1

obtained for different catalogs and samples, with different luminosities and densities,

is highly non-trivial and provides a good verification of scale-invariant models.

We have independently found a good agreement with the negative binomial distri-

bution, which we called the quasi-Poisson model, both in an analysis over the CfA2

slice sample from the Lapparent, GeUer and Huchra (1986) and Huchra et al. (1990)

redshift catalog (Elizalde and Gaztanaga 1988) and over a sample from the Huchra et

al. (1983) CfA1 redshift catalog (Elizalde and Gaztanaga 1990).

The original discrete negative binomial distribution is well known from standard

statistics (see e.g. Eddie et al. 1971). It accounts for the probability, PI, of the number

i of trials necessary for m successes to occur, the events being independent and having

each a probability p of success:

P, = ('_,) p_(1 - p)'-", (1)

with i > rn. If we use a new variable, defined as 8 - i - rn, we have the (also common)

expression

P. ; (.'+'-') p_(1 - p)'. (2)

with 8 = 0, 1, .... It is this last form the one that leads to the distribution under study

when generalized to continuous values of m. Indeed for m = 1/_" and p = 1/(1 + ng_,")

it is easy to reproduce formula (28) of Fry (1986), or the equivalent expression (17)

below. After performing these changes one completely looses the original simple in-

terpretation of the discrete negative binomial distribution. In order to recover such

an interpretation we summarize below our original and independent derivation of the

binomial distribution, which was constructed from a simple and intuitive statistical

model (we called it quasi-Poisson) for the box distribution of a sample of galaxies. It

has not been until recently that we have realized that our quasi-Poisson model has the

same distribution of counts in cells as the binomial distribution (2). The quasi-Poisson

model is, however, much more concrete, because we also have explicit expressions for

the distribution in boxes, the variance and the higher-order momentums correspond-

ing to the cell counts. In Elizalde and Gaztanaga (1990) a different derivation of the

1In particular, the fact that all data yield X as a function of ng_ only.
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model was presented. There, the quasi-Poisson distribution was obtained directly from

an initial guess for the configurational probability, FN "_ 1][1 + _(i,j)], the same as ex-

pression (15) of Politzer and Wise (1984) for bias statistics (Bardeen et al. 1986). This

alternative derivation was only valid under a very restrictive, low-density condition,

where the cell occupancy is strictly less or equal than one galaxy per cell.

2.1 Counts in cells

Let us first introduce some concepts and notations. The problem of characterizing

the large-scale structure of the universe can be formally solved, statistically, from the

knowledge of the (configurational) probability of having a certain spatial point dis-

tribution rt,...,rN. This can be shown to be equivalent to the knowledge of all the

N-point correlation functions, _N(rl,-..,rN) (Peebles 1980), which are direct observa-

tional quantities, although impossible to compute in practice for N > 3. In general,

evaluations are restricted to N = 2, where there are already big uncertainties and, even-

tually, they reach N = 3 (Groth and Peebles 1977) or N=4 (Fry and Peebles 1978),

which are known to be very elusive correlation functions, specially for redshift surveys.

The correlation functions can be also related with the counts in cells PriVy), the prob-

abilities of having i galaxies inside an arbitrary cell of volume V_. These probabilities

are easy-to-measure observable quantities that contain statistical information about

the higher-order correlation functions. The connection is performed by introducing a

generating function

i

which can be shown to be (see e.g. White I979, Fry 1985, Fry 1986, Otto et al. 1986,

Balian and Schaeffer 1988):

where n is the system density, dr is the differential of volume and _'_ is the cell volume.

Moreover, _a = 1. By taking convenient derivatives of G(_) and by evaluating them at

A = 1, one can easily find the relations between the Pi and the _lv. For instance, the

second derivate gives

i
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which is the well known result that the two-point correlation function, _ for brief, gives

the system number density fluctuations. It is also interesting to notice that for A = 0

we have

Po = exp nN(--1)N
N! d,'N6,(r,,...,,'N) , (6)

so that P0 depends, in principle,on allorder correlationfunctions.Notice in particular

that for an uncorrelated system allthe (Iv are zero (except for (I),and we get the

Poisson resultexp(-rtV_). We see also that P0 isobtained in terms of a complicated

integration of all N-point correlation functions.

2.2 Distribution in boxes

To introduce the binomial model let us consider a more restricted characterization of

a point distribution. Divide the sample of # points into m identical cells of volume

V_ = V/rn and of a given shape, and consider the probability Ps,(kl, ...,k,_) of having

kl particles in cell 1, k2 particles in cell 2, ..., and k_ particles in cell m. For the

uniform distribution, where any point has the same probability of being in any cell,

the probability of the configuration kl,..., kt- 1, ..., k,, is related with the previous one

by

po(kl,...,km;N ) = 1 _ P__l(k,,...,k,- 1,...,k_; N). (7)
m 1=1

This gives the uniform distribution; for # = N,

k, L..km,m' '_ 1m t', k, L..k_,m, _..__(1)"PN(kl, ..., N) - - . (s)

What we have called the quasi-Poisson distribution is defined by considering the proba-

bility that a point belongs to a particular cell to be proportional to the number of points

which are already occupying this cell. The proportionality constant will be called 9.

It may depend on the volume and on the shape of the cell, and can be interpreted as

a kind of attraction/repulsion parameter. The value g = 0 represents no interaction

and reproduces the uniform distribution. With these considerations, the recurrence

relation corresponding to (7) is in this case

I71

P_,(kl,...,k_;N) = C_-_ P,-l(kl,...,kt- 1,...,kin; N) [1 + (k,- 1)9], (9)
1=1
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with C a normalization constant that can be easily computed, what leads to

•" 1 + (k_- 1)g
P,(kx, ..., k,,; N) = _ Po-t(kl, ...,kt - 1,..., k_; N)

i=_ m + (N - re)g"
(10)

2.3 Explicit solution for the distribution

We have been able to solve the recurrence (10) analytically. In Appendix A.1 we show

that

,_ k, 1 + (l- 1)g (11)PN(k_, _,;N) - m! 1I 11 --j-m- ---.
"'" kl!...k._[ t=l j=l m + g(Ei=l ki + 3 - 1)"

This result reproduces the uniform distribution (8) when g = 0. Once g is known,

all the information about the system in the configuration space is obtained. We can

compute, in particular, the expectation value for the number of particles in a cell and

also its fluctuation. This gives a directly observable magnitude which can therefore be

checked experimentally: the counts in cells. With the aim of computing this average,

let us first elaborate on (11) in order to obtain from it the corresponding distributions

of the usual random variables Zl, the number of cells with i points inside. In Appendix

A.1 it is found that

m! N! r(m/g) l-l_=,[r(l/g + i)]=' (12)
PN(zO, ZN)= r(m/g+ N)g_-=o[F(1/g+ 1)]"-(=o+=,)]-I_1 Zlt lli=_l,,.)""' ,-'_N t'D= i"

Out of this expression it is possible to calculate the mean value E(zl) and the

variance V(zi) associated with this random variable. This is done by adding up the

corresponding contributions from (12)

_c(=,)= _ =jPN(=o,...,=j,..., =N). (13)

In Appendix A.2 this is seen to give

E(zi) = A(m,N,i), (14)

where

N Nr(1/g + i)r(m/g)r(_-_ + N - _)

A (m , N, i ) =_ ( i ) g-_ g __ _ -_ -N--jF(( --_-)
(15)



is a convenient expression introduced in order to express the different characteristics of

the probability distribution in a simple way. For instance, its variance can be written

as

V(x,) = A(m,N,i)[1 ÷ Aim- 1, N - i,i)- A(m,N,i)]. (16)

These results can be tested in the limit g _ 0, where they actually reproduce the

results for the binomial distribution --since g = 0 means no interaction.

If we now take the coniinuum limit for the probability of finding i points in a certain

cell, P, = E(_,d/m, we get

(nY_)_ . _-'
P_CY.)- T., (1 + gny_)-'/,-' TI(1 + gJ), (1_)

• j=l

which also reproduces the Poisson distribution for g ---*0. This is precisely the so-called

negative binomial distribution, presented in Section 2.

The distribution (17) above can also be tested by calculating _i i2Pi directly, which

in Appendix A.3 is shown to yield

i_P, = (nV_) 2 + nV_ + g(nV_) 2. (18)
i

By comparing with (5), the value of g is completely fixed:

1

which happens to be a well-known quantity, usually referred to in the literature as _"

(cf. e.g. Peebles 1980, Fry 1986, Balian and Schaetter 1988) and is also related to the

known Js: _" _" 3s/V_. Notice that one of the integrals in (19) can be readily performed

using the hct that _(rl,r_) = _(rl - r_), but the second one is restricted to some

different contour and will depend on the shape of the cell.

It is important to observe that, in addition to the new interpretation of the binomial

distribution, we have been able to derive a very concrete model for the box distribution,

Pjv(kl, k2, ..., l_; N), eq. (11), a discrete version of the counts in cells for a finite sample,

eqs. (14) and (15), and its variance, eq. (16).

3 Comparison with data

We now turn to the crucial point of comparing this information with real data. In

doing so, we face a rather strong imposition from the theoretical model, namely that
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the expression of counts in cells (17) represents a very concrete prediction without any

free parameter to be fitted, provided we compute the fluctuation _ directly from the

data.

We have checked counts in cells in a redshift survey using a volume-limited sample

from the completed North Zwicky Forty CfA catalog, rr_B < 14.5 (Huchra et al. 1983).

We will focus on a sample with Ms < -20 and v < 8000 Km/s. Cell counts iv/have

been computed by placing a random cell on the sample and by counting the number

of objects inside the cell. This has been repeated a number of times for 40,000 to

4,000,000 cells, depending on the statistical uncertainties, and then we have recounted

the number of cells having a given number, i, of galaxies inside. This provides our

result for Pi. Errors are estimated by going through different independent samples.

Boundary problems have been faced up by choosing only cells which fell completely

inside the sample. This has introduced a bias, because some zones of the sample (the

central ones) are overweighted. The effect is bigger for bigger cells (for spherical 10

Mpc cells the contour zone which is underweighted represents 80% of the sample) and

thus values for big cells contain inescapable uncertainties.

We have used the standard known value for the correlation function: _(r) __ (a/r) _,

with 7 -_ 1.8 and a __ 5 Mpc (H0 = 100 Km s-lMpc -1) for the 14.5 ms CfA catalog

(Davis and Peebles 1983), to estimate g(_) (or _ in (19). The two-variable probability

observational distribution of counts in cells PI(R) is automatically fitted with the neg-

ative binomial distribution (17) for all significant values of R and i. The fitted curve is

shown in Fig. 1, where for the sake of clarity we have plotted observational values only

for voids, P0, but for different cell sizes, compared with theoretical values for different

7 and a corresponding to different uncertainties in the knowledge of _. The average

fitted values, that is a = 5 Mpc and 7 = 1.8, perfectly match with the observations.

4 The shape dependence and anisotropies

An interesting characteristic of counts in cells is their ability to provide a good measure

of some statistical shape features. When the shape of the cell is no longer an sphere

but rather e.g. an ellipsoid of a given fixed volume but of varying shape, information

about the way galaxies choose to cluster can be easily extracted. We can, for simplicity,

characterize an ellipsoid by its three half-axes: a, b, c with the restriction: abe = R _,

and take one of them fixed and the other two: v_R and R/v_ , so that the excentricity,

s, and the radius, R, characterize the shape of the cell V_(R, 8). If clusters or groups



10

tend to appear with elongated shapes, counts in cells PI(R, a) will be increasing with

s (a > 1) --up to a maximum value of a-- and if voids are statistically more probable

to be spherical, Po(R, a) will be decreasing with s. Since the probability, Pi, must be

normalized when summed over all values of i, there is a relation between these last

effects: if the void probability decreases with increasing s, the occupancy probability

must increase.

For the negative-binoraial model the shape dependence comes from the integration

of _ in (19) since, for a given volume, different shapes will contribute to _"with different

numerical factors. Formally, _'is then a function of R and 8, _'(R, s). We can introduce

a shape factor r/(R, s),

1) (20)

so that, r/(R, 1) = 1. For ellipsoids this factor is a decreasing function of the excentricity,

s, as can be seen in Fig. 2, where the values of _" are obtained as a function of s, by

numerical integration of (19), using a power law for _. The corresponding effect on Pi

is shown in Fig. 3, where the values of Pi coming from eq. (17) are shown as a function

of s, for a given V_. We see that there is a bigger probability to find spherical voids

and elongated clusters than elongated voids and spherical clusters.

Let us now compare, as in the previous section, these predictions with observational

data, just by performing the same counts for elongated cells. We find the striking result

that there is a big anisotropy in the catalog, because Pi(R, s) depends strongly on which

one of the axes is chosen to be fixed, or, in other words, on the precise plane where

we perform the elongation, and also on the orientation of the ellipsoid's section inside

this plane. In Fig. 4 we have plotted different probabilities for Po, extracted from the

catalog, varying with _ and for six differently oriented ellipsoids --corresponding to

three different frames of orthogonal directions for the fixed axes or plane. Inside each

plane we choose two distinct perpendicular orientations.

Very different values are found for the various orientations; the differences between

them increase with excentricity, that is, with the main scale involved. However, some

warnings should be made concerning this anisotropy. As pointed out before, there

exist inescapable uncertainties due to the contour, and this effect also increases with

the scale, just as in our anisotropy. The contour forces us to center the cells in a

certain inner region which represents only a 10% of the total volume, for R=5 Mpc

and 8=5 (the main distance involved is 25 Mpc). Anisotropies in this central region,

where the Coma cluster is located, highly contribute to the effect. There is another

point to be taken into account, which is the fact that the contour is not symmetric

and, thus, the mentioned central region is not the same for every direction. Peculiar
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velocity distortions coming from the Coma cluster (the "finger of God effect") are, very

possibly, responsible for this effect. Actually this anisotropy had already been observed

(Elizalde and Gaztanaga 1988) in a slice catalog, almost included in the one we are

dealing with: the first CfA2 mB= 15.5 slice (de Lapparent, Geller and Huchra 1986,

Huchra et al. 1990) which containts the Coma cluster.

We have performed estimations of counts in cells with different corrections in the

redshifts, to take into account the local motion of our galaxy. No significant differences

in the results have been found when data is corrected either from the MWB inertial

frame, the local group frame or galactocentfic velocities.

The above is a new result that can be perfectly measured quantitatively via the

Pi(R,s,a), where ct stands for the orientation angles, but interferes somehow with

our original purpose of checking the dependence with the shape. Although a detailed

analysis of the anisotropy dependence has not yet been performed, we can average over

all the orientations in order to obtain an estimation for the Pi(R, s). The real average

would probably have some weight which we do not know and thus, we can only expect

to find some fit within the standard deviations.

In Fig. 6 error bars are compared with predictions from the model using the

corresponding average on (19) and good overall agreement is found, within the error

bars, again without having to adjust any parameter.

5 Discussion and conclusions

As mentioned in the introduction, our analysis of the shape dependence can be extended

to very different models, being the negative binomial distribution an appropriate phe-

nomenological tool that can be used to illustrate it.

In general, the dependence of P0 on the shape of the cell can be easily obtained

for any scale-invariant model, for which we already know the volume dependence. For

the scale invariant models of the galaxy distribution, it is already known (Fry 1986,

Balian and Schaeffer 1988) that X = -(log Po)/nV has to be a function of the combined

variable nV( alone. This statement is true for a cell of any shape, so that the only

way the shape can affect the probability P0 is through _'. We can use, for example,

elipsoids as cells and characterize their shape, for a fixed volume, by the value of the

excentricity s --for spheres 8 = 1. The dependence _'(s) is obtained, from a known

correlation function, _, by performing the integration in (19), which will introduce

and additional factor, 7/(s), coming just from the shape, so that, _'(s) = _/(s)_'(1) (see
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eq. (20)). Thus, given a sample where the correlation function and the functional

dependence of Z (or P0) on _V are known for a given shape, e.g. for, = 1, one can

easily predict the values corresponding to other shapes, since this just requires the

appropriate scaling of nV. Formally

x[-Vt(+)]= (21)

where nV' = nVTl(8). In the previous sections it has been illustrated how to do this

prediction for a concrete analytical distribution, but our whole study is completely

general, and can be reproduced, numerically, without referring to the binomial distri-

bution.

It is concluded then, that the shape dependence of P0 (or X) can be predicted from

the values which are obtained for a given fixed shape, provided that the distribution

is scale invsriant. Although the analysis presented here is quite restricted (only one

sample has been considered) and affected by large anisotropies (coming probably from

the Coma cluster), a good qualitative agreement has been observed. We propose this

type of analysis as a further way to test the functional dependence of X on nV_', X =

X(nV_ and, thus, to study the scale invsriant characteristics of the galaxy distribution.
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A Appendix

A.1 Conflgurational probability into boxes

We would like first to show how to solve the recurrent relations in (10):

m

P,(kl,..., _; N) -- _ P,_l(k,,...,k, - 1, _;N)_ + (k'- s)g,=1 ""' + (_ re)g"
(22)

This can be done by applying the recurrence several times, one after the other. It

is convenient to realize at this stage that # = _q=l kq, since this is the total number

of points to be distributed into the m cells, with occupation number kq, q = 1, ..., M.

If we apply (22) two successive times, and take into account that # must be replaced

by # - 1 (since one of the # total points is already fixed in kt), we get

P,_(kl,...,k,_;N) _, _, P,_l(k,,...,ki- 1, ..., kt - 1, ..., k,.,,; N)
i=1 I----1

1 + (k, - 1)g 1 + (k,- 1)g

m - g + g _=1 kl m - 2g + gE_I kt
(23)

Going on with the recurrence and re-expressing the summations in terms of prod-

ucts, we arrive to

,,,, kj 1 + (l- l)g

P,,(kl, _,;N)- N! iiHm+g(E{=_k,+ t 1)'"'" k,!.../_! j=lt=l -
(24)

which is indeed eq. (11).

In terms of the variables zl (number of cells which have i points inside), this ex-

pression can be further elaborated, in the form,

P,(k,,..., k..;N) =
N_ N_I( 1 N =iI-I,=1 + lg)Ej=,+,

(0!)=o (l!)=z ...(N!)=,, N-,]]l=o (m + lg)
(25)

from which we get the probability density in terms of the zi:

P(xo, ..., zm; N)
m_ N_

Xo!Zl!...XN! (0!)=° (I!)='...(N!) ="

r(m/g) H_= r(1/g + l) =,

r(m/g+N) g,,,-=o[r(1/g+1)]"'-(=o+=,) (26)

this is the same as eq. (12).



A.2 Expectation value and variance

Let us now calculate the mean value E(z,) and the variance V(z,):

E(_,) = _ _jPN(_o,...,_,'",_N),
{_ .j=m) (_ j_j=N)

V(z,) = E(z_)- E(z,) 2,

for expression (12). This is computed by noticing that

__, PN(zO,...,x_,...,zN) = i,

(E.j=,-,,) (_._ffij=N)

and that, for any xj >_ 1,

PN(XO, ..., xj -- 1, ..., ZN) : 1.

(E =J =m--l) (E J=i =N-i)

Use of these expressions allows us to write

E(xl) = E
(_: _j_-_)(_jffij=N)(.,>l)

(E _i=m)(_ Jfi=N)(-,>1)

z_P(zo, ..., xi, ..., z_)

zi P( zo , ..., Zl, ..., X N-I, 0,...,0),

and replacing (12), we get

mN!r(l/g + i) (n,- 1)!
E(zl) = g( N _ i)!i!F(llg + 1) _ z0l...(x,- 1)!..zN-,!

(N-i)! r(mlg) 13_'rCllg + i)"

(O!).o...(i!).,-1(N!).,,-, r(m/g + N)gm-l-.o[r(1/g + 1)]"'-l-('o+ffix)"
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(27)

(28)

(29)

(30)

(31)

By calling

z-_ -- zi - 1,

and by writing the sum which appears in (31) as

E---- E p(z0,...,_-_,...,z.) = 1.
(zo +..+k--_+..+=N =m-- 1)(zt +..+t__+..+zN=N-i)

we arrive at the very simple expression

mN!r(1/g + i)r(m/g)r(_ + N - i)

(32)

(33)

(34)E(z,) = g(N-i)!i!F(1/g+ 1)r(m/g + N)F(_)"
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This can be written in the form

where

E(x_) : A(m,N,i), (35)

A(,.,, N, i) - C) r(l/g + 0r(m/g+ 1)r(_ + N-0
rC1/g+ 1)r(m/g + N)r(_-_) (36)

is a convenient expression introduced in order to write in a simple compact way the

different characteristics of the probability distribution. A similar calculation for the

variance yields

V(x,) = A(m,N,i)[1 + A(m- 1,N - i,i)- A(m,N,i)]. (37)

A.3 Fluctuations

We now want to obtain g in (17), by first calculating _i i_Pi and by comparing then

with (5):

i

We start from (17)

(_v_)' '-'
Pi - _ (1 +gnV_)-lla-iI_(1 +g), (39)

j=l

with

_ P,i = ,-,y_.
i

Differentiating (40) with respects to n, we get,

(40)

(41)

On the other hand, by computing _ from (39)dn

dP, . P_ . p_gy_
--_--'i-7dn n_o - _il + gnV_)

(42)

and substituting in (41), we get

• 2T,2
i2P, = (n_) _ + n_ + n % g.

i

(43)
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Finally, comparison of this equality with (38) yields the expression for g we were looking

for

g = _ _(rl,r,)drldr,. (44)

This is eq. (19).
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Figure captions

Fig. 1: Values of P0 (in %) for cells of different radii: R = 1.5 - 7.5 Mpc. Dashed

circles represent observational values, the dashed line is the theoretical value for a = 5

Mpc and 7 = 1.8, and the continuous upper and lower lines are the theoretical values

for a = 4 Mpc and 7 = 1.6, and a = 8 Mpc a.nd 7 = 1.85, respectively.

Fig. 2: Values of the averaged two-point correlation function, _', normalized to the

value of _"for a sphere, are computed numerically for a power law correlation function,

_, and plotted as a function of the excentricity of the cell, for a fixed volume, over

which _ is averaged.

Fig. 3: Values of counts in cells, Pi, for i = 0, 1, 2, 3, are plotted for the negative

binomial model as a function of the excentricity of the cell for a fixed volume.

Fig. 4: Variation of P0 (in %) with the excentficity, s = 1-5, with fixed R = 5 Mpc, for

different orientations. Lines with equal type of dash represent two different orientations

in the same plane. Different dashes correspond to three different orthogonal choices of

the plane of elongation.

Fig. 5: Values of P0 (in %) for different shapes of the cell, parametrized by its excen-

tricity s = 1 - 5, being R = 5 Mpc. The error bars correspond to observed deviations

with orientation. The continuous line corresponds to the theoretical prediction, with

a = 5 Mpc and 7 = 1.8.

Fig. 6: The same as in Fig. 5, for P_.
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