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Abstract

This note is concerned with the derivation of exact solutions for determining the
characteristics of an oblique shock wave in a supersonic flow. Specifically, an explicit
expression for the oblique shock angle in terms of the free-stream Mach number, the
centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler
approximate solution is obtained and compared to the exact solution. The primary
objectives of obtaining these solutions is to provide a fast algorithm that can run in a real-
time environment.

Introduction

Oblique shocks usually form when a supersonic flow is deflected and turned into
itself [1], as shown in Figure 1. The flow before the wedge is supersonic, i.c., My > 1.0 .

At point A the centerbody surface is deflected upward through an angle 8. This will force
the flow streamlines to be deflected upward through the main bulk of the flow above the
centerbody surface. A shock wave is then formed which is oblique to the free-stream flow
direction. This is a two dimensional interaction of the flow field. Although numerous
tables and charts are available for determining the characteristics of the oblique shock, to
the best of the authors knowledge, no closed-form solutions have been explicitly reported.

*This research was supported by the Advanced Control Technology Branch of NASA
Lewis Research Center via NASA Grant NAG 3-904.



v = Ratio of Specific Heats
M, = Upstream Mach No.
o
8 = Centerbody Deflection Angle

M,
> /r 8 o = Oblique Shock Angle
L

Figure 1

In this note, we formulate a closed-form solution for the oblique shock angle, o, in
terms of the free-stream Mach number, M;, the centerbody deflection angle, 8, and the
ratio of the specific heats, y. This information can in turn be used for design and control
purposes. It should be remembered that the primary objective of obtaining the solutions is
to implement them in a real-time environment

Derivation of an explicit expression for Oblique Shock Angle

In order to find an explicit expression for the oblique shock angle resulting from the
incidence of a supersonic flow upon an uptended centerbody, some straight-forward but
messy mathematical manipulations must be performed.

The relationship between the centerbody angle, 8, and the oblique shock angle, o,
can be easily determined from the basic thermodynamic relationships. That is (cf. reference
[1]; equation 4.16);

tan (@-8) _ 2+(y- DM3 sina
tan o (v+ DM? sin2 o

(1)

Cross multiplying, squaring, and simplifying, results in the following cubic equation in
terms of [sin (a)]%;



X3+bX2+cX+d=0 (2)

where

X =[sin ()] %,
2
b=-[-"i1—+l+ysin28} (3)
M2
1
2 -
c=2M1+1+((7'21)2+7 zl)sinz& and (4)
M; Mj
d=-cos29 (5)
M}

This equation was derived and presented long ago [3]. Apparently, however, no
one has since published an exact solution to this cubic equation. This now follows. By the
general solution of the cubic [4] define;

D=Q3+R2. : (6)

The deflected shock exists only if D < 0, as equation (2) has two complex conjugate
solutions for D > 0 (this will never occur in a real problem). There now remain two
solutions for the shock angle, a. The larger shock angle is called the strong shock angle,
o, and the other one is referred to as the weak shock angle, .. These shock angles are
determined as follows:
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where

xs=-2+21-Q cos ¢ , (82)
xw=-2-7-Q lcos¢-V3sin0) , (8b)
0= {5 + ) and ®

0 if R20
a=l . (10)

n if R<0

The weak shock is the one which is of particular interest. However, the formation of the
strong or weak shock is determined by the back pressure. For the strong shock solution,
the flow after the shock is subsonic, whereas for the weak shock solution the flow after
the shock is still supersonic.

Although the present equation for a, equation (7), would be rather formidable if put
explicitly in terms of M, 3, and ¥ ; a simpler solution for programming is suggested as
follows:

1) Given M, §, and y; compute the cubic equation coefficients from equations (3), (4),
and (5).

2) Compute the solution parameters from equation (6).

3) Then obtain the solution by computing in order equations (10), (9), (8), and (7).

Approximate Solution

There exist many tables from which the shock angle can be determined as the

function of My, 8, and v, e.g. [2]. For on-line computational use of such information,
table look-up algorithms are usually implemented. This procedure is very fast especially if
the table is described by one variable. The major problems for a table look-up procedure
are the inaccuracy introduced by interpolating the data and the volume of data to be stored.

As an alternative approximation, one can use the Least-Squares algorithm to fit a



polynomial to the now available exact solution. This approach is faster to compute on line
than the exact solution, but probably slower than the table look-up. Although not
necessarily more accurate than the table look-up, it does generate the solution from a
compact predetermined formula which is much easier to program. The resulting
polynomial is subsequently evaluated to obtain the approximate solution. This procedure
does require some off-line calculation for determining the coefficients of the polynomial.
The amount of the on-line calculation is directly dependent upon the order of the
polynomial, that is, the desired accuracy. The procedure can be described as follows.
Suppose that for a fixed ¥ and 8 a set of data V and @, in vector form, is given where
vector V corresponds to the freestream Mach numbers and vector o contains the shock
angle associated with the corresponding Mach number. Then one can fit a polynomial
P(M) of degree n to the given data by:

= El— aee -&-:
PM)=ap+ £ +..- + S = a(M) (11)

The n+1 coefficients of the polynomial are determined by solving a system of simultaneous
equations, i.e.

Aa=q (12)
or in matrix form
- L -
M, (MP
1 L. 1
M, (M ap oy
a2
1 L ... _1_||®|=|a;|withk>n. (13)
M; (Msp : :
a, .
: O
1 A ... 1
L My (M _

The subscripts on the Mach number, M; , correspond to different input freestream Mach
numbers of interest in the specific application with the corresponding shock angle a;. The
Least-Squares solution to this overdetermined system of equations is known to be [4] :



a=(ATA)'ATqQ (14)

The above approximation is carried out for the case in which 8 = 17° and k=19. The
approximation results for several different degrees of accuracy are tabulated and compared
to the exact results as shown in Table 1. It should noted that the on-line computation
associated with equation (11) is significantly less than that for the exact solution, equations
(3)-(10), and generally more easily programmed than table lookup.

Conclusion
This paper contains an exact solution to the oblique shock equations. Specifically,
an exact solution is given for the oblique shock angle as a function of centerbody deflection
angle, freestream Mach number, and the ratio of specific heats. A technique for obtaining a
simplified approximation is also given which is faster for real-time implementation.
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Table 1

Max.
fficients of polynomial
Coc polyn error

in

ag ap az a3 y as o°
13.6112 67.0661 — — — — 4.3298
20.3487 12.3061 88.2963 — — — 0.7626
19.3487 27.8523 27.6956 66.5591 — — 0.4295
21.0962 -11.9379 287.3568 -575.0471 530.7294 — 0.1202
20.4147 8.6005 91.2243 224.0812 -918.7301 962.3091 0.0876
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