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Computation of compressible quasi-axisymmetric slender vortex
flow and breakdown

Osama A. Kandil _ and Hamdy A. Kandil 2
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Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered.

The compressible Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry

assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary, ,,'_ "

conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure

of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external

axial-pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between the computed results

using the slender vortex equations and those of a full Navier-Stokes solver.
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Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered.

The compressible Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry

assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary

conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure

of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external

axial-pressure gradients and swirl ratios, Excellent agreement is shown for a bench-mark case between the computed results
using the slender vortex equations and those of a full Navier-Stokes solver.

1. Introduction

The phenomenon of vortex breakdown or

bursting was observed in the water vapor con-

densation trails along the leading-edge vortex cores

of a gothic wing. Two forms of the leading-edge

vortex breakdown, a bubble type and a spiral

type, have been documented experimentally [1].

The bubble type shows an almost axisymmetric
sudden swelling of the core into a bubble, and the

spiral type shows an asymmetric spiral filament

followed by a rapidly spreading turbulent flow.

Both types are characterized by an axial stagna-

tion point and a limited region of reversed axial

flow. Much of our knowledge of vortex break-

down has been obtained from experimental stud-

ies in tubes where both types of breakdown and

other types as well were generated [2-4].
The major effort of numerical simulation of

vortex breakdown flows has been focused on in-

compressible, quasi-axisymmetric isolated vortices.

Grabowski and Berger [5] used the incompressible,

quasi-axisymmetric Navier-Stokes equations. Ha-
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fez et. al [6] solved the incompressible, steady,
quasi-axisymmetric Euler and Navier-Stokes

equations using the stream function-vorticity for-
mulation and predicted vortex breakdown flows

similar to those of Garbowski and Berger. Spall,

Gatski and Grosch [7] used the vorticity-velocity
formulation to solve the three-dimensional, in-

compressible, unsteady Navier-Stokes equations.

Flows around highly swept wings and slender

wing-body configurations at transsonic and super-

sonic speeds and at moderate to high angles of

attack are characterized by vortical regions and
shock waves, which interact with each other. Other

applications which encounter vortex-shock inter-

action include a supersonic inlet ingesting a vortex

and injection into a supersonic combustor to en-

hance the mixing process, see Delery et. al [8] and

Metwally, Settles and Horstman [9]. These prob-

lems and others call for developing computational
schemes to predict, study and control com-

pressible vortex flows and their interaction with

shock waves. Unfortunately, the literature lacks

this type of analysis with the exception of the

preliminary work of Liu, Krause and Menne [10]

and Copening and Anderson [11].

In this paper, the steady, compressible Navier-

Stokes equations are simplified using the quasi-

0010-4655/91/$03.50 _ 1901 - Elsevier Science Publishers B.V. (North-Holland)
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axisymmetry and slenderness assumptions. A

compatibility equation [10] has been used and the

governing equations are transformed to a rectan-

gular computational domain by using a Levey-
Lee-type transformation. A compatible set of ini-

tial conditions and boundary conditions is ob-

tained and the problem is solved using a type-dif-

ferencing scheme. The numerical results show the

effects of compressibility, external axial pressure

gradients and the swirl ratio on the vortex break-
down location. A bench-mark flow case has been

solved using these equations and the full Navier-

Stokes equations. The results are in excellent

agreement with each other.

2. Highlights of the formulation and computational
scheme

Starting with the steady, compressible Navier-

Stokes equations which are expressed in the cylin-

drical coordinates (._, ? and q_), assuming the

isolated vortex flow to be slender [_/l= 0

(1/RvrRe), _/U,_ = 0 (1/Rv/-R'e), where l is a char-

acteristic length, _7 the radial velocity, U_ the

freestream velocity and Re the freestream Reyn-

olds number] and quasi-axisymmetric [3/3_ )=

0], and performing an order-of-magnitude analy-
sis, the equations are reduced to a compressible,

quasi-axisymmetric, boundary-layer-like set. The

dimensionless flow variables p, p, u, v, w, T and

/.t are non-dimensionalized by p=, 0_a 2, a_,

a2/Cp and _t_ for the density, pressure, velocity,

temperature and viscosity, respectively, where Cp
is the specific heat at constant pressure. Next, we

introduce a Levey-Lee-type transformation which

is given by

fox Pc ff---P dr, (1)_= Pd_c dx, n-- _---(_ o #c

where _ is given by

_. (,_) rc (,_)

MSF = f-'_ = rc(_,)

--- modified shape factor characterizing

the growth of vortex-flow boundary (2)

quasi-axisymmetric slender vortex flow 165

and f(o) is a function relating the density integral
at any axial station to that at the initial station. It

is equal to 1 for incompressible flow. The sub-

script e refers to external conditions and the sub-

script i refers to initial location.

The governing equations become

OV 1 a _,

O--_+ -_-_-_-_( Xur ) + pr V= O,

where V=_p V-r/_--_-, and _=--'0x

where

+ X7 '

(3)

(4a)

1

0 =

2 _P

r _rt

aw vow
u-u( +

=M_M_&
_.2r2 Or/

OT vOT
+ Oo

u Op

and c= P-----_-_,

+ -F;( v - o. ) w

,,vw2...Mp r Pr _k2r Orl

(4b)

(5)

(6)

+ r O w

where Pr - Prandtl number = 0.72.

y-1
p = _0r, (8)

where "r -= ratio of specific heats.

The viscosity # is related to the

through the Sutherland law. At

boundary, ,_ = '_i, we specify

ui=/g('O), wi=w('o) and T,=T(r/). (9)

The other compatible initial conditions are ob-

tained from a compatibility equation and eqs. (5)

temperature
the initial
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and (8). At the vortex axis, "O= 0, we specify

au aT

aT1 V= w -_ O. (10)

At the outer boundary, _7= r/c, we assume the

boundary to be a stream surface, specify the axial

pressure gradient (ap/a_)c and use the Euler

equations to match the outer profiles to those of

the viscous core to obtain the conditions on u e,

wc, T_, pc.

Eqs. (3)-(7) are solved using an implicit, type-

differencing scheme. The computational proce-
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Fig. 1. Slender quasi-axisymmetric flow solutions for the effect of Mach number, external axial pressure gradient and swirl ratio.
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dure consists of two parts. In the first part a

compatible set of initial profiles are obtained at

= _, and in the second part we use eqs. (4)-(8)

and the compatibility equation to obtain p, u, w,

p, T and V (or t,).

3. Numerical examples

In the present numerical examples, the outer

edge of the vortex, r/C, is taken as 10, and 1000

grid points are used and hence Arj¢ = 0.01. The
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results are shown for two Mach numbers: M = 0.5

and 0.75. The step size in the axial direction is
0.02 for M = 0.5 and 0.04 for M = 0.75. For each

Mach-number case, we solve for two external axial

pressure gradients; (8p/Ox)e = 0.125 and 0.25 and

two swirl ratios: fl--(w/u)r = l = 0.2 and 0.4. The

r _> 1 and T, = 2.5, respectively. Fig. 1 shows MSF,

u_, Pa and Ta which are referred to by curves A,

B, C and D; respectively. The results show that

the breakdown length is more than doubled when

the Mach number increases from 0.5 to 0.75. They

also show that while the outer boundary continu-

initial profiles for u,. w, and T, are u i = constant, ously increases for M = 0.5, it initially decreases
w, = flu,r(2 - r z) for r < 1 and w i = flu_/r for and then increases for M = 0.75; see the A curves.
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Fig. 2. Flow profiles for slender quasi-axisymmetric flows at M - 0.5 and 0.75, ,8 = 0.4, (dp/dx)= = 0.25.
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The adverse pressure gradient at the vortex axis
decreases faster for M= 0.75 than for M = 0.5.

The results also show that the external axial pres-

sure gradient is a dominant parameter on the

breakdown length. As the external axial pressure

gradient is doubled, the breakdown length sub-

stantially decreases. Doubling the swirl ratio

slightly decreases the breakdown length.

Fig. 2 shows the profiles of u, w, p and 0
across r at axial stations until the breakdown

location for M= 0.5 and 0.75 for the cases of

(dp/dx) e = 0.25 and /3 = 0.4. The initial profiles

are indicated by the number 1 and the next shown

station is indicated by 3. At M = 0.75, it is noticed

that the pressure and density gradients in the axial
direction decrease faster than those at M= 0.5.

V
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Fig. 2 (continued).
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The profiles show that the viscous diffusion at

M = 0.75 is larger than that at M = 0.5.

Fig. 3 shows the profiles of u, w, v and p

which has been coraiguted by the present method

and by an upwind Navier-Stokes solver for the

case of M = 0.5, fl -0.6 and (dp/dx) e =o0. For
the Navier-Stokes solver a rectangular grid of
100 × 51 × 51 in the axial direction and cross-flow

plane is used. The curves are labeled by the capital

letters A, B .... etc. Comparing the curves of the

two sets, a remarkable agreement is seen.

It is concluded from the given numerical exam-

ples that increasing the flow Mach number has a
favorable effect on the vortex breakdown location.

The external axial pressure gradient is a dominant
parameter on the vortex breakdown. Its effect
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Fig. 3. Flow profiles for slender quasi-axisymmetric flows using the present method and the full Navier-Stokes equations, M = 0.5,

/_ - 0.6, (dp/dx) e = 0.0.
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decreases as the Mach number is increased. Com-

parison of the present results with the full Navier-

Stokes results gives a strong confidence in the

present analysis. The present formulation and re-

suits are used to generate compatible initial pro-

files for the full Navier-Stokes solutions, and to

provide data for breakdown-potential cases for

accurate computations using the full Navier-

Stokes equations. The full Navier-Stokes equa-

tions are currently applied to these cases, so that

we can solve for the flow in the breakdown region.
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COMPUTATION OF STEADY AND U_STEADY COMPRESSIBLE

QUASI-AXISYMMETRIC VORTEX FLOW AND BREAKDOWN

Osama A. Kandil* and Hamdy A. Kandil**
Old Dominion University, Norfolk, VA

C. H. Liu***

NASA Langley Research Center, Hampton, VA

Abstract

The unsteady, compressible Navier-Stokes equations
are used to compute and analyze compressible quasi-
axisymmetric isolated vortices. The Navier-Stokes equa-
tions are solved using an implicit, upwind, flux-difference
splitting finite.volume scheme. The developed three-
dimensional solver has been verified by comparing its so-
lution profiles with those of a slender, quasi-axisymmetric
vortex solver for a subsonic, isolated quasi-axisyrnmetric
vortex in an unbounded domain. The Navier-Stokes

solver is then used to solve for a supersonic quasi-
axisymmetric vortex flow in a configured circular duct.
Steady and unsteady vortex-shock interactions and break-
down have been captured. The problem has also been
calculated using the Euler solver of the same code and
the results are compared with those of the Navier-Stokes
solver. The effect of the initial swirl has been tentatively
studied.

Introduction

The phenomenon of vortex breakdown or bursting
was observed in the water vapor condensation trails
along the leading-edge vortex cotes of a gothic wing.
Two forms of the leading-edge vortex breakdown, a
bubble type and a spiral type, have been documented
experimentally t. The bubble type of vortex breakdown
shows aa almost axisymmetric sudden swelling d the
core into a bubble, and the spiral type of vo_x lx'eak-
down shows an asymmetric spiral filament followed by a
rapidly spreading turbulent flow. Boeh types ate chat.
acterizod by an axial stagnation point and a limited
region of reversed axial flow. Much of our knowl-
edge of vortex breakdown has been obtained from ex.

perimental studies of pipe flows where both type, of
breakdownand othm"typesas wellwere generated and
documented 2"4. The major effort of numerical _.
ulafion of vortex breakdown flows has been focused

on incompressible, quast-_euic isolated vorskea.
Grabowski and Berge_ used the incompressible, quasi-
axisymmetrie Navier-Stokes equations to study isolated
vorlex flow in an unbotmded region. Haftz, et. al_ solved
the incompressible, steady, quasi-axisymmetric Eul_ and

•l_rofmw¢.,,a EmimmSd_ol=,____
md Mec.lm_t, Asmeiam Fellow, AiAA.

"<_Khum l_mmtt_AuXin, S.tm DEW.,Manbtt A/AA
•"Oroup Lad=, Tlxtmm_ Flowl_,im _rmdt. SmiorMm/m,

AIAA.

Navier-Stokes equations using the stream function-
vorticity formulation for isolated vortex flows. They pre-
dicted vortex breakdown flows similar to those of Gar-
bowski and Berger. Menne 7 has also used the stream

function vorticityformulation for unsteady, incompress-
ible quasi-axisymmetric isolated vortex flow. Menne and
Lius used the Navier-Stokes equations to study three-
dimensional incompressible flows in a tube. Spall, et. al9
presented a study of the structure and dynamics of bubble-
type vortex breakdown in incompressible flows using the
vorticity-velocity formulation. For more information on
the physical and computational aspects of the incompress-
ible vortex breakdown, the reader can refer to the paper
by Krause 1°.

Flows around highly swept wings and slender wing-
body configurations at transonic and supersonic speeds
and at moderate to high angles of attack are character-
ized by vortical regions and shock waves, which inter-
act with each other. Other applications which encounter
vortex-shock interaction include a supersonic inlet ingest-
ing a vortex and injection into a supersonic combustor to
enhance the mixingprocess,seeD¢lery, et. altt and Met-
wally, settles, and Horslrnan12. Figure 1 shows these ex-
amples, where Fig. 1.a and 1.b are taken from ref. 11 and
b'ig.l.c is taken from ref. 12. These problems and oth-
ers call for developing computational schemes to predict,
study and control compressible vortex flows and their in-
teraction with shock waves. Unforttmately, the literature
lacks this type of analysis with the exception of the pre-
liminary work of Liu, Krat_ and Menne t3' Copenlng and
Andersont4, Delery, et. al tx, Kandil and Kandil ts, Mead-
ows, Kumar and Hussalrtit_.

In this paper, we use the unsteady, compressible full
Navier.Stokes equations to compute and analyze com-
pressibleand supersonic quasi-axisymmetric isolated vor-
rices. An implicit, upwind, flux-difference splitting finite-
volume scheme, which is based on the Roe scheme, has
been used to solve the full Navier-Stokes equations. The
three-dimensional solver, which is called "FTNS3D", has
been used to solve two problems of isolated vortex flows.
The first problem is that of a subsonic, isolated quasi-
axisymmetm vortex in an unbounded domain. This case
has been verified by comparing the flow-profiles solutions
with those of the slender vortex solver of ref. 15. Next,

the throe-dimeax_onalNavier-Stokes equations are used
to solve for a supersonic quasi-axisymmetric vortex flow

ThispaperisdeclaredaworkoftheU.S.Governmentand

isnotsubjecttocopyrightprotectionintheUnitedStates. I



in a configured circular duct II. Since the flow is quasi-

a.xisymmetric, the solution is obtained by forcing the flow
variables to be equal on two axial (meridian) planes. So-

lutions for steady and unsteady vortex.shock interactions
and breakdown have been obtained. These solutions ate

compared with those of the Euler equations using the in-
viscid version of same solver. Effects of the initial swirl

ratio has been tentatively investigated.

Formulation

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of

time-independent, body-conformed coordinates _t _2 and
_3 is given by

0t O__* 0p

where

=0;m=l-3, s=l-3 (1)

,f" = _=(xj, x2, x3) (2)

(_ = _"= b, pu,,/,u_,/,u_, pc]* (3)

I_,_- inviscidflux

1J
1

= -;[pU.,putU. + ÙtC'p,pu_U,.
j--

+_Cp, ;u3U. + a3C'p, (?e + p)U.]* (4)

(I_,),= viscousand heat--conductionfluxinC

dixection

= ][0, o_'_, o_'_2, Ag'a3,

0k,_'(u, rlm - oa)]'; k = I - 3, n = 1 - 3 (5)

U. = #k_'*uk (03

The first element of the th_ m_ntum elements of Eq.
(5) is given by

of,

The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in

Eq. (7), with 2 and 3, respectively. The last element ot

Eq. (5) is given by

_'(%_p - ca) = Re

Up_--_-

- s - n _Up

+_'_ _'_ %E_;

A .0(_:)_
+ (7- l)Pr _ "_--J

;p= 1 -3 (S)

The reference parameters for the dimensionless form

of the equations ate L, a_, Liar, p_ and #_ for the

length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re =

p_V_L/lz_, where L is the initial radius of the vor-
tex or the duct inlet radius. The pressure, p, is related

to the total energy per unit mass and density by the gas
equation

[ 12 ]P=(7-1)p e-_(u,+u_+u_) (9)

The viscosity is calculated from the Sutherland law

-s,_/i + C_

and the Prandfl number P_ = 0.72. In Eqs. (1)-(8), the
indicial notation is used for convenience.

Computational Scheme

The computational scheme used to solve the full

Navier-Stokes equations is an implicit, upwind, flux-
difference splitting, finite-volume scheme. It employs
the flux-difference splitting scheme of Roe, The/aco-

bian matrices of the inviscid fluxes, 3., = _-'; s = 1-3,
are split into backward and forward fluxes according to

the signs of the eigenvalues of the inviscid Jacobian ma-
trices. Flux _i_ are used to eliminate oscillations in

the shock region. The viscousand heat-flux terms are
cen_y diffei_ The resulting_differenceequation

is solved using approximate factorization in the _, _2
and _3 directions. In addition to the three-dimensional

flows, the presentcomputer program can solve for ax-
isymmetricand quasi-axisymmetricflows.The resulting

computer tm3gram can alsobe used m solve the Euler
equations.Thiscode is a modified versionof the CFL3D
which iscurrentlycalled"FTNS3D'. The modifications

have been developed by the present authors.
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Computational Applications

In this seoion, two computational applications are
presented. The first application is that of a steady, sub-
sonic quasi-axisymmemc vortex flow in an unbounded
domain. The purpose of this application is to verify
the Navier-Stokes solver by comparing the results of this
case with those of a previously developed slender vortex
solver, see ref. 15. The second application is that of a
steady and unsteady, supersonic quasi-asymmetric vortex
flow in a configured circular duct. This application is
solved by using pseudo-time stepping and accurate-time
stepping. The results are compared with those of the Eu-
[er equations solver of the same computer program. Next,
we consider each application and discuss its results.

Steady Subsonic Quasi-Axisymmetric Vortex
Flow in an Unbounded Domain

Here, the three-dimensional Navier-Stokes is used
tosolveforan isolatedquasi-axisymmetricflow.The
computationaldomainfortheNavier-Stokesequationsis
a parallclopipcdrectangulardomainwitha squarecross-

section of 10x 10 units. The downstream length is 10
units. The rectangular grid consists of 51 x51 x 100 points
in the two directions of the square section and in the axial
direction, respectively. The grid is clustered algebraically
at the axis of the parallelopiped domain. The step size in
the axial direction is 0.1.

For the slender-vortex solver tS, the computational do-
main is a cylindrical one and the solution is obtained on
one meridian plane having a radius of 10 and a length
of 10. The number of grid points in the radial direction
is 1000. The step size in the axial direction is 0.1. The
initial profile for the slender vortex solver are given by
ui = axial velocity = constant, wi - tangential velocity =

u_ r(2--r2) for r _ 1 and wi = B u.dr for r _ 1 and Ti -
temperature = 2.5, where/3 = 0.6. The Mach number at
the outer radius of the initial station, M, = 0.5. The other
compatible initial profiles for Pi, vi and _ (pressure, ra-
dial velocity and density; respectively) ate obtained from
the radial momentum equation, a compatibility equation t3
and the equation of state. The external axial pressure gra-

dient is =0.
conditions on the cyli_l_c_l outer bounch_ are obtained
by using the Euler equations to match the outer profiles to
those of the viscous core in order to obtain the conditions

onu,, w,, T. and p..

For the Naviet-Stok_ solver, the initial profile, are
obtainedfromthepreviousinitiall_offleaby interpolating
the slendervormx prolileson tlmrectangulargrid at the
initial station. The Reynolds number of the Navier-Stokes
solver for this case is set at 100.

Figure 2 shows the Navier-Stokea solutions on tim
left and the slender-vtxtex solutiom on the fight. Tim
figure shows comparh_ of the profiles of axial velocity
u, tangential velocity w, radial velocity v, pressure p and
density p at tim same axial statiom which are marked

by A, B, C.... It is remarkable to see the excellent
agreement between the Navier-Stokes solutions and the
slender-vortex solutions at every axial station. It should
be emphasized here that the Navier-Stokes solutions for
this quasi-axisymmetric flow have been obtained by using
the three-dimensional solver on a three-dimensional grad.

Having verified the Navier-Stokes solver, the next
problem to consider is the supersonic vortex flow in a
configured circular duct.

Supersonic Quasi-Axisymmetric Vortex in
a Configured Circular Duct

Figure 3 shows a configured circular duct which con-
sists of a straight cylindrical part at the inlet that is fol-
lowed by a short, diverging cylindrical part. At x =
0.75 and beyond, the duct radius is kept constant and a
convergent-divergent nozzle with a throat radius of 0.95
is attached. The overall dimensions of the duct is 1 x 2.90.

This configured duct ensures that the inlet supersonic flow
will becomes supersonic at the exit. Moreover, the con-
vergent part near the inlet ensures the stability of the
formed shock in the inlet region. This configured duct has
also beenusedby Delery, eL altt for their Euler equations
computations in an attempt to computationally model an
experimental set up. It should be pointed here that the Eu-
ler equations, used by Dclery, et. al, assume isenthalpic
flow in order to drop the energy equation. This is a seri-
outsapproximation since the upstz-eam flow is a rotational
flow. Moreover, as our present calculations show, the
flow is actually unsteady and hence, the isenthalpic as-
sumption is not valid.

The Navier-Stokes solver is used to compute this flow
case by using a grid of 200x51 on two meridian planes,
where the 200 points are in the axial direction and the 51
points are in the radial direction. The grid is clustered at
the center line (CL) and at the wall. It is also clustered
in the diverging part near the inleL The two meridian
planes are spacedcircurnferentially at a certain angle so
that the aspect ratio of the m_um grid size will be less
than 2. The upstream Mach number is M_ = 1.75 and
the Reynolds number for the Navier-Stokes computations
is 104. The initial I_ofile for the tangential velocity is
given by

-- = 1 -exp - (11)
U=

wlmz U= = 1.74, r, = 0.2 and k, = 0.1. The maximum

is at r = 0.224 and it is equal to 0.32. The radial
velocity, v, at the initial station is set equal to zero and
the radial momentum equation is integrated to obtain the
initial pressure profile. Finally, the density p is obtained
from the definition of the speed of sound for the inlet
flow. With these compatible set of profiles, the computa-
tions for both the Navier-Stokes equations and the Euler
equations start. The exit boundary conditions are obtained
by exWapolali0n from the interior since the flow is super-
sonic at the exiL The wall boundary conditions follow the



typicalNavier-StokesandEuler equations solid-boundary
conditions. These computations have been carried out on
the CRAY YMP of the NAS-Ames computational facil-
ities. The CPU time is 30/_s/grid point/iteration for the
Navier-Stokes calculation and 20 /_s/grid point/iteration
for the Euler equations.

a. Pseudo-Time-Stepping Solutions

Figure 4 shows the pseudo-time stepping solutions of
the Navier-Stokes (NS) equations on the left and the Euler
(E) equations on the right. Each column in the figure
shows flow properties at the center fine, the total Math
contours, the streamlines throughout the duct and a blow
up of the streamlines in the vortex breakdown region.

The figure of properties along the center line of the
NS solution shows a strong shock at the inlet. Behind
the shock, the pressure and density sharply increase and
the axial velocity decreases to a negative value (upstream
flow) at x = 0.10. The axial velocity becomes more
negative one more time at x = 0.4 indicating the formation
of another bubble. At x = 0.7, the axial velocity becomes
positive and it continuously increases till the duct exit.
The Mach number contours of the NS solutions shows
the shock system near the inlet. The shock at the center
line is a normal strong shock, then it becomes an oblique
strong shock, again it becomes a normal strong shock, and
at the wall it becomes an oblique weak shock (supezsonic-
supersonic flows upstream and downstream of the shock).
It is seen that the oblique shock at the wall is followed
by a separation bubble (see the streamline figure) which
is due to the shock and the divergence of the duct at
this location. The streamlines figure of the NS solution
shows a very large vortex-breakdown bubble and the
blow-up figure of the streamlines shows another small
bubble upstream of the large one.

The figure of Euler solution shows similar vortex
breakdown features with a few differences from the NS
solution. These differences are due to the absence of vis-

cous forces. The figure of properties along the cent_- line
oftheE solutionshowsa sm_g shockattheinlet.Behind

the shock,the pressure and d_nsity sharply increase to a
level higher than that of the NS solution. The axial veloc-
ity decreases to a negative vahm which is less than that
of the NS solution. Tim Mach-numb_r contours of the E

solution show the shock system near the inlet. Tim shock
at the center line is a normal strong system, then it be-
comes an oblique weak shock and at tlm wall it becomes
a strongnormalshockwhere thereisno shockinduced
separation.Anoth_ normalshockdevelopsatx = 0.61,

wheretheaxialvelocitybecomessubstantiallynegative.
The streamline figure shows three vortex-breakdown bub-
bles; two small counter rotting bubbles and a third large
bubble. The _ of vor_x-breakdown bubbles of the E

solutions is larger than those of theNS solution.

It shodd be slzes,s_ here that this is the first lime,
that we know of, such solutions have been presented for
supersonic vortex breakdown.

b. Time-Accurate-Stepping Solutions

It has been noticed during the pseudo-time stepping
solutions that the residual-error dropped two orders of
magnitude and then it went through oscillations. It is
then decided that time-accurate-stepping solutions must
be checked. The same problem was recalculated using the
NS equations and E equations with At = 0.005. Figures
5-8 show snap shots of the time accurate solutions of
the NS equations on the left and the E equations on the
right. The snap shots are shown every 400 time steps.
The figures show the streamlines (Fig. 5), blow-up of
streamlines in the breakdown region (Fig. 6), total Mach-
number contours (Fig. 7) and flow properties at the center
line (Fig. 8).

Following the snap shots of NS streamlines (Figs. 5
and 6), we se_ a large bubble forming at the center line
at the time t = 4. At t = 6, the bubble expands in the
upstream and lateral directions. During this time period t
= 4--6, the Mach contours (Fig. 7) show the shock system
at the inlet moving in the upstream direction. At t = 8,
two bubbles appear and are convected in the downstream
direction. The Mach contours show that the shock moves
upstream and reaches the inlet as a normal strong shock.
At t -- 10, a new vortex breakdown occurs producing
new small bubbles which combine to form a large bubble
at t = 12. It should be noted here that the bubble at
t = 12 resembles that at t = 4. This suggests that the
vortex breakdown process is almost periodic. To show
the periodicity of the breakdown, one has to pick up
the exact correspondingsnap shots which are one period
apart. This search is underway and it will be shown in
the near future. The solutions at t = 12, 14 and 16 show a
trend of repetition of the breakdown process. It should be
notedthattheseparationbubble at the wallgoesthrough
a periodicprocessofconvectionand reproduction.The
Mach contours in the period of t = 10--16 show that the
shock systemmoves in the downstreamdirectionagain.
Figure 8showsmap shots ofthe correspondingproperties
variations along the center line. It shows the shock
motionand themotionof the negative valuesof the axial

velocity.

Followingthe snap shots of the E equations, we see
thata largevortexappearsatthecenter lineatt= 4.
At = 6, thevortexgrows up and extendslaterallyand

upstreams.At t = 8, itisconvecteddownstzeamsand
anoth_vortexappearsbehindtheshockneartheinlet.

Figure7showsthattheshocksystemneartheinletmoves
upstreamsin theperiodof t = 4..-8.The convection

processand productionofnew vorticesbehindtheshock
continuethcreaft_(Figs.5and6)whiletheshocksystem
moves downsu-eams.Itshouldbe notedthatthemotion

of the shock system of the E solutions is larger than that
of the NS solutions. The reason is the absence of the
viscosityandhence the flow slips at the wall.Moreover,

there is no sepanuion bubble at the divergent part of the
channel. The flOWproperties at the center line show the
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mouon of the shock system and the motion of the negative
values of the axial velocity.

Effect of Increasing Swirl Ratio

Next, the flow conditions and duct dimensions are
kept constant while the initial S;_Frado is increased to
3 = 0.38. The pseudo-time-stepping results are shown in
Fig. 9. It is seen that the number of vortex breakdown
bubbles increases to three instead of the two bubbles of
the previous case, Fig. 4. Moreover, we notice that the
shock system of the present case is nearer to the inlet in

comparison with the shock system of the previous case.
Figure 10 show snap shots of the time-accurate-stepping
solutions of this case at t - 5, 12.5 and 15.5. Again,
we see the vortex breakdown process of production and
convection and the associated oscillation of shock sys-
tem. The solution shows larger size and more number
of bubbles in comparison with those of the previous case
(Figs. 5-7). The dme stepof this caseis the sameas that
of the previous one, At = 0.005.

Concluding Remarks

The unsteady,compressiblefullNavicr-Stokesequa-
tions are usedto computeand analyzecompressibleand
supersonicquasi-axisymmelricisolatedvortices.First,
the three-dimensional Navier-Stokes solver has been
verified by solving for a subsonic,isolatedquasi-
axisymmetric vortex in an unbounded domain. The re-
suits have been compared with those of a slender-vortex
solver and they are in excellent agreement. Second, the
three.dimensional Navier-Stokes and ELder solvers are
used to solve for a supersonic quasi-axisymmetric vor-
tex ina configuredcircularduct.The ductisdesigned
suchthattheinflowand outflowconditionsare super-

sonic.The quasi-axisymmetricsolutionisobtainedby
forcingtheflowfieldvectorto be equalon two merid-
ianplanesincloseproximityofeachother.Forthefirst

time, we have obtainedsupersccfic vortex breakdownso-
lutions behind a shock. The time-accurate solution of
the problem shows that the vonax breakdown bubbles
and the shock system ahead of them ate time dependent.
The solution strongly indicates that the vertex breakdown
process and the motion of the shock system ate periodic.
The Euler solution shows lager size and more number
of bubbles than those of the Navier-Stokea solution. The

Eulersolutionalsoshowsthattheamplitudeoftheshock
oscillationislargerthanthatof theNaviet-Stokessolu-
tion.Increasingtheinitialswirlratio shows that the
andnumberofvortex-breakdowntmbblesincrease.These

resultsatevitalforthemixingproce=inscramjelsand

their design for the best perfomumce and efficiency. A
very carefulparametricstudyisunderway toshow theef-
fects of theswirlratio,Mach number,Reynoldsnumber
and relative dimensions of the duct. Three-dimensional
solutions are currently being devolopcd.
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a. Transonic shock-vortex interaction on wings b. Supersonic shock-vortex interaction

at inlets

c. Supersonic shock-vortex interaction

.at nozzle exits

Figure I. Applications of vortex-shock interaction and vortex breakdown
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Figure 3. Typical grid for a supersonic axisymmetric duct configuration; 200x51 x2
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