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Abstract

A multigrid acceleration technique developed for solving the three-dimensional Navier-

Stokes equations for subsonic/transonic flows has been extended to supersonic/hypersonic flows.

An explicit multistage Runge-Kutta type of time-stepping scheme is used as the basic algorithm

in conjunction with the multigrid scheme. Solutions have been obtained for a blunt conical

frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high-speed flows.

Computations have also been performed for a generic High-Speed Civil Transport configuration

designed to cruise at Mach 3. These solutions demonstrate both the efficiency and accuracy of the

present scheme for computing high-speed viscous flows over configurations of practical interest.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-18605 while the author was in residence at the Institute lot Computer Applications in Science and Engineering(ICASE),

NASA Langley Research Center, Hampton, VA 23665.





Introduction

During the last decade or so, significant progress has been made in the field of compu-

tational fluid dynamics (CFD) to have an impact on the design and analysis of aerodynamic

configurations. Solutions of the Euler (inviscid) equations for essentially complete aircraft con-

figurations [1-4] and the solutions of the Navier-Stokes equations for high Reynolds-number,

viscous, transonic flows over aircraft components are now available in the open literature [5-9].

It is noteworthy that most of the efficient numerical schemes for solving aerodynamic flows

rely on multigrid acceleration technique [2,8,9] to enhance the convergence rate. The multigfid-

based schemes have the desirable property that the number of iterations required to achieve a

steady-state solution is nearly independent of the mesh size for a given class of problems. Thus

one can achieve essentially grid-converged, steady-state solutions, even for the numerically de-

manding problem of high Reynolds-number, transonic, viscous flow over realistic aerodynamic

configurations with a reasonable amount of computer resources [9].

Despite the progress achieved in solving transonic flows, the development of CFD methods

for supersonic/hypersonic flows seems to be lagging behind at the present time. With the current

interest in high-speed vehicles such as the High-Speed Civil Transport (HSCT) and the National

Aero-space Plane (NASP), it is imperative that efficient computational algorithms be developed

for high-speed flow regimes. In this paper, we will discuss the progress made in this direction

using a multigrid-based central-difference scheme and present sample results for problems of

practical interest.

Governing Equations and Numerical Method

The basic equations under consideration here are the unsteady Navier-Stokes equations.

These are specialized to a body-fitted coordinate system (_, _/, _), where _, 7l, and (,"represent the

streamwise, normal, and spanwise coordinates, respectively. The */ coordinate lines are nearly



orthogonalto the wing surface.Sincethe dominantviscouseffectsfor high-Reynolds-number

turbulentflowsarisefrom viscousdiffusionnormalto thebodysurface,athin-layerassumptionis

employedhereby retainingonly theviscousdiffusiontermsin thezl-direction. Theseequations

can be written in the conservationlaw form as:

0 OF OG OH

(a-'v) + + N + V(
OGv

07/
(1)

where the dependent variable vector U is given by the relation

P

p u

U = , pv (2)

pw

pEj

In the eq. (1), F, G, G_, and H are the flux vectors, and Y is the Jacobian of the transformation.

The complete forms of these quantities are readily available in [9].

A pseudo time-stepping scheme based on a Runge-Kutta scheme [10,11] is used for integrat-

ing the time-dependent equations to steady state and as a smoother in the multigrid scheme. For

convenience, let us first write the discretized form of the governing equations in the following

operator notation:

d

d_ (J-_U) + Q(U)- D(U)= 0 (3)

where Q contains all the convective and viscous fluxes and D represents the artificial dissipative

fluxes.

Since our primary interest here is to obtain solutions for viscous flows via the Navier-Stokes

equations, both the diffusion and the convective terms are important in contrast with the Euler

equations where convective terms are dominant. Therefore, it is preferable to employ a scheme
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that has a larger stability bound along the real axis in addition to good stability properties

along the imaginary axis. Based on the Fourier stability analysis of a one-dimensional model

problem, the five-stage Runge-Kutta scheme proposed by Jameson [12], with 3 evaluations of

the dissipative operator at the first, third, and fifth stages, appeaxs to be very attractive and is

employed in the present work. The convergence to steady state is enhanced via the use of local

time-stepping and implicit residual smoothing techniques [10,11], with the coefficients of the

residual smoothing computed in the manner described by Vatsa and Wedan [9].

Artificial Dissipation Model

The basic artificial dissipation model used in this study is patterned after the work of Jameson,

Schmidt and Turkel [10] and of Jameson and Baker [11] for 2-D and 3-D Euler equations

respectively, and modified later by Vatsa and Wedan [9] for 3-D Navier-Stokes equations. In

order to discuss the modifications required for supersonic/hypersonic flows, let us first examine

the dissipation terms in the i-direction:

di+½'J'k -- e(2)_ (I'Vi+l,£k - llTi,j,t-) -

Ai+½,j,k i+_,j,k
£!4) . . (l'V,+,, 3 k + 31'Wi j,k [Vi-l,j,k)

_+7,3,k -, , -- 3l'Vi_t_l,3, k , --

(4)

In the above expression, Ai+_,j, k is the modified eigenvalue scaling factor [9] and the coefficients

e(2) and e (4) are related to the pressure gradient as follows:

(2)
ei+_,), k =

e(i4_½,3,k :

t;(e)ma,r( ui+ l , ui)

,?l.(ta,{O,(h.(,l} (2)- ei+½,j,k) }

(5)

where the coefficients _(2) and h"(4) are set equal to 1/2 and 1/64, respectively. The term u

depends on the pressure gradient and is modified to give a TVD variation of the shock switch

[13] in the following manner:

Pi+l,j,k -- 2pi.i.k + Pi-l,j.k I
ui = (6)

(1-,o)( Pi+l,j,k- Pi,:ra + ]Pi,j,k- pi-*,a,*,l)+ _(z,i+_,j,a, + 2pz,a,a-+ p,-,j,k)



Note that by setting w = 1, we can recover the shock switch that has been used in earlier studies

for computing transonic flows [9-12]. For supersonic and hypersonic flows, where shocks are

much stronger, we use _v = 1/2. The expressions for the dissipation terms in the j and k

directions are derived in a similar manner.

Evaluation of Time-Step

It is very important to estimate the allowable time-step as accurately as possible in order

to construct a robust time-stepping scheme. Failure to do so generally creates difficulties when

the scheme is applied to different flow problems with widely varying test conditions and grid-

densities. An attempt is made here to derive the expressions for allowable time-step for the

present scheme from stability considerations. For convenience, let us start with the Navier-

Stokes equations written in non-conservative form:

B OUOU OU ' " D 02lr_ + EO2U 0'2U
-- 60z - 0,r 2 _ F_Ot + A-_x + -O-j+ +

02 U 02 U O'2U

+ G_u OxO---yy+ Gu" O_jOz + G_x OzOz

(7)

where U is the velocity vector and A, B, - - - Gzx are the coefficient matrices, their full form

being available in [14 ].

Transforming these equations to the body-fitted curvilinear coordinate system _, tl and ¢,

and making the thin-layer assumption, one gets

Ot + [At, + B_ u + _J (-0-_ + [A,h; + Bqu + Cq._] oUOq

+ B¢_, + 6'¢=]_ (8)+ [A¢,

02U

= [oTt_ + E,1; + F,fi + 6_u,/x,/a + Gy_71v,l_+ G_7/:_] 0q 2

In general it is very difficult to derive an exact expression for the time-step At, since the

coefficient matrices are non-symmetric. Abarbanel and Gottlieb [14] have recently delineated a

procedure to symmetrize all of these coefficient matrices simultaneously. Taking advantage of
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theworkof [14], andthepropertythatthe normof asymmetricmatrix equalsits spectralradius,

onecan find an upperboundon At in the following manner:

1 1 1 1 1
-- > -- + + + --- (9)
/xt - .Xt_ _ _ Ate, H

where, the first 3 terms on the fight hand side arise due to the convective terms and the last term

is due to diffusion terms. Setting the bounds of these components of At equal to their respective

spectral radii, we arrive at the following expressions for the convective terms:

1

At(
1

At q
1

Arc

where c is the speed of sound.

(10)

(11)

(12)

The diffusion limit on the time step is obtained in a similar

manner and is given by the relation:

1
-- _ "_diff
mtdiff

+ +

(13)

For viscous flow problems, the most restrictive time step is in the boundary layer region near

a solid surface, where Atr/ and Atdiff are the most critical terms in determining the actual value

of At. For adiabatic, high Mach number flow near a stagnation point, one can show that [13]

Adiff _ ,\,IM_ (14)

Thus the diffusion limit on time step becomes increasingly more important as the flow Mach

number is increased. As expected, the diffusion limit reduces the allowable time step in the

near wall region. However, by incorporating the diffusion limit in the time step, we were able

to perform the computations over a large range of Mach number without changing the CFL

number, which is very desirable from a practical point of view since it helps to make the scheme

more robust.



Multigrid Acceleration Technique

The convergence acceleration due to the use of multigrid techniques has been demonstrated

for both inviscid and viscous flows [8,9,12] in the transonic flow regimes. In the current

application, the Full Approximation Storage (FAS) scheme of Brandt [15] is used in conjunction

with the multigrid strategy devised by Jameson [12] for the solution of the Euler equations.

The extension of the scheme of [12] to the three-dimensional thin-layer Navier-Stokes equations

for transonic flows described by Vatsa and Wedan [9] is used as a starting point for this work.

A 5-stage Runge-Kutta scheme with coefficients selected to provide optimum damping of the

high frequency errors is employed. The restriction operator used to transfer the solution to a

coarser grid is a volume-weighted average of the eight surrounding cell-centered values. The

forcing function for a cell on the coarse grid is obtained by simply summing the residuals of

its constituent fine-grid cells. The corrections are transferred from the coarse grid back to the

fine grid (or prolonged) by simple trilinear interpolation in computational space. On highly

stretched or nonuniform grids, this prolongation operator can introduce high-frequency errors

back to the fine grid, causing degradation of the convergence rate. To prevent this, the coarse-

grid corrections were processed through an implicit residual smoothing operator before adding

to the fine-grid corrections. Whereas the smoothing of the coarse-grid corrections was certainly

helpful for transonic flow calculations, it was found to be essential for obtaining converged

solutions for higher speed flows.

The solutions presented in this paper were obtained using a W-cycle, in which governing

equations are solved only in the restriction step. The W-cycle resulted in approximately a

25-percent improvement in computational time compared to a standard V-cycle for achieving

comparable convergence levels of the residuals. In addition, global properties such as lift and

drag, develop more rapidly with the W-cycle, since more time is spent on the coarser grids. It



was also found helpful to run more cycles on coarser grid levels for supersonic and hypersonic

flows in order to better establish and precondition the flowfield before starting computations on

the finest mesh in the Full Multigrid (FMG) cycle.

The variable-coefficient residual smoothings were applied on all grid levels of the multigrid

cycle. On the finest grid, the blend of second- and fourth-difference artificial dissipation discussed

previously was employed. For the coarser grids, a fixed coefficient second-difference dissipation

model has been found adequate for transonic flow computations [9,12]. However, the coarse-grid

dissipation model had to be modified via a pressure gradient based TVD switch (see eqs. (5-6)) to

improve the convergence rate of the present scheme in supersonic and hypersonic flow regimes.

Results and Discussion

Two test cases covering supersonic to low hypersonic speed regimes are chosen for testing

the multigrid Navier-Stokes code described in the preceding paragraphs. The accuracy of the

computed solutions is assessed via comparisons with available experimental data. In the present

investigation, C-O type grids are employed. The computational grids are generated so as to

cluster points in the appropriate regions to resolve sharp gradients present therein. In addition,

significant grid clustering is used in the thin region adjacent to the solid surface in order to

resolve the thin shear layers present in high Reynolds-number turbulent flows.

a. Conical Frustum Entry Configuration

The first test case used for this study is a simple aerodynamic shape designed for entry at

Mach 6. The configuration consists of a modified conical-frustum [16] and is shown in Fig.

(1), along with the downstream and symmetry planes. This configuration evolved through a

conceptual study for the design of a vehicle to accommodate an 8-person crew, which could

sustain a supersonic/hypersonic reentry and be capable of landing as a paraglider [16]. A wind

tunnel model was tested at Moo : 6.0 and Reynolds number of 0.8x10 6 based on the model



length. TheNavier-Stokescalculationswereperformedona grid consistingof 161x65x29mesh

points. The lift- and drag-coefficientdata from the wind-tunnel testsare availablefor up to

an angleof attack(n) of 12°. TheNavier-Stokessolutionsspanningthis entire angle-of-attack

rangehave beenobtainedto assessthe performanceof the current schemeover sucha large

rangeof test conditions.

Theconvergencehistory in termsof theresidualerrorof thecontinuity equationandthelift

coefficient, Cl for the c_ = 60 case are shown in Fig. (2) as a function of work-units, where

a work unit represents the computational effort required for one fine-mesh iteration. A total of

400 iterations (620 work-units) were performed on the fine grid which resulted in approximately

seven orders of reduction in the residual. The lift and drag coefficients for this case converged

to within 0.1% of their final values in less than 50 fine-grid iterations. The convergence histories

for this series of test cases are similar to the n --=60 case shown in Fig. (2) except for the case

of c_ = 12 °, for which the residual started oscillating after dropping approximately five orders,

possibly due to slight unsteadiness.

The computed lift and drag coefficients for o = 0-12 o shown in Fig.(3), are found to be in

excellent agreement with the experimental data over the complete range of or. Thus, not only does

the present scheme have good convergence properties for these test conditions, but in addition it

produces accurate solutions that are in good quantitative agreement with the experimental data.

A better understanding of the overall flow field is obtained by examining Fig. (4), where

the pressure contours for the ,a, = 6 o case are shown on the symmetry and downstream planes,

in addition to the body surface. One can clearly observe the nearly conical growth of the shock

surface in the streamwise direction. In the crossflow direction, the distance between the shock

and the body surface goes through a minimum near the tip and then increases towards both the

windward and the leeward planes of symmetry.



b. High-Speed Civil Transport

The next test case considered here is that of the flow over a generic High-Speed Civil

Transport (HSCT) configuration designed to cruise at a Much number, Mzc = 3.0. The

conceptual development and geometric details of this highly blended wing/body configuration

are available in [17]. A wind-tunnel model representative of this vehicle was tested over a

large angle-of-attack range for several Mach numbers, and the experimental data from this study

have been documented by Covell et al. [18]. In the present study, we will concentrate on

the M_ = 3.0 case, which was the design cruise Mach number for this configuration. The

corresponding Reynolds number based on mode/ length was 6.3x106.

A grid consisting of 145x65x73 nodes was generated for the Navier-Stokes calculations. A

partial view of the mesh on the symmetry plane and several streamwise cuts is displayed in

Fig. (5). The outer boundaries of the grid were placed so as to contain the shock emanating

from the leading-edge within the computational domain. Grid clustering in the tip, leading and

trailing-edges are used to accurately resolve the flow in high gradient regions.

The convergence histories for the lift and residual of the continuity equation for the c_ = 50

are shown in Fig. (6), which shows a reduction of three orders in the residual after 300 fine

grid iterations (470 work-units). The lift for this case converged after about 50 iterations. The

convergence histories for the entire angle-of-attack range considered here ( c_ = 0 - S°) are very

similar to this case. The integrated lift and drag coefficients are compared with the experimental

data of [18] over the complete range of angle of attack in Fig. (7). It is clear from this

figure that the computed results are in very good agreement with the experimental data. This is

very encouraging especially for drag prediction, since viscous drag, which is difficult to predict

accurately, constitutes a significant part of the total drag for this configuration at Mach 3.

Next we examine the detailed surface pressure distributions for this vehicle. For this purpose,



we concentrateagainon the c_ = 50 case for which experimental pressure data are available at

selected streamwise and spanwise stations. Since the computational grid does not follow the

cuts along which experimental data was acquired, the computed pressure distributions had to

be interpolated for a meaningful comparison. The interpolated solutions at two x-locations are

compared with the experimental data in Fig. (8). For the station x=129, experimental pressures

are available only on the upper surface, whereas both upper- and lower-surface pressures are

available at the x=171 station. The agreement with the measured pressure data at both of these

stations is quite good. It is noted that the computed solutions predict the correct variation

in pressure even in the vortex-dominated flow near the wing-tip region. Similar comparisons

have also been obtained at c_ = I o and _ = 3°; however these results are not shown here for

conciseness.

Whereas the global force coefficients and surface pressure comparisons are helpful in quan-

titative validation of a prediction method, these flow properties are inadequate for understanding

the true three-dimensional nature of the flow problem, such as the development of vortical-flow

regions off the wing-tips. Following the lead of [19], an attempt is made here to visualize the

vortical flow by plotting the density contours at fixed x-locations. This is done in Fig. (9) for

x=129 and x=171, the same stations for which the surface pressure distributions were exam-

ined. The experimental laser sheet photographs, that are used routinely for visualizing shock

and vortex formations are also shown in Fig. (9) at the corresponding stations. The core of

the vortex forming between the wing-tip and the fuselage and its feeding sheet are the most

dominant flow structure visible in these figures. After a careful examination of these results,

the following observations can be made. First, the core of the vortex is predicted to grow in

size and lift off farther away from the surface as one moves downstream. Secondly, the overall

shape and size of the vortex predicted by the Navier-Stokes calculations are in reasonably good

agreement with the laser-sheet data.
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Concluding Remarks

A multigrid acceleration technique developed originally for transonic flows has been extended

to solve the three-dimensional Navier-Stokes equations for supersonic and hypersonic viscous

flows. The convergence rate of the modified multigrid code for obtaining steady-state solutions

of high Reynolds-number viscous flows in the supersonic/hypersonic flow regimes ( up to Mach

6), is comparable to the convergence rate in transonic flows. Convergence histories and detailed

comparisons with the experimental data are presented for two problems of practical interest.

Based on these solutions, it is concluded that the resulting code is capable of predicting high-

speed viscous flow problems in an efficient and reliable manner.
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Fig. 1 • Partial view of grid fi_r conical frustum
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Fig. 4 " Pressure contours for conical frustum,

M_ = 6.0, c_ = 60 , l?ct =: 0.Sxl0 _;
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Fig. 5 • Partial view of grid for IISCT
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