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ABSTRACT

The injection of supercritical pressure, subcritical-temperature fluids air and nitro-
gen, into a two-dimensional, ambient, static-temperature and static-pressure supersonic
tunnel and free jet supersonic nitrogen flow field was observed.

Observed patterns with fluid air were the same as those observed for fluid nitrogen
injected into the tunnel at 90° to the supersonic flow. The nominal injection pressure was
of 6.9 MPa and tunnel Mach number was 2.7.

When injected directly into an opposing tunnel exhaust flow the observed pat-
terns with fluid air were similar to those observed for fluid nitrogen but appeared more
diffusive. Cryogenic injection creates a high density region within the bow shock wake
but the standoff distance remains unchanged from the gaseous value. However as the
temperature reaches a critical value T*,inj the shock faded and advanced into the super-
sonic stream. For both fluids nitrogen and air the phenomena was completely reversible.

INTRODUCTION AND OBJECTIVES

The fracturing of a supercritical-pressure water stream discharged to ambient condi-
tions has been studied by Field and Lesser /1/. The shock structure is evidenced in his
photographs and stream breakup is cataclysmic. Droplets are rapidly disbursed. The
fracturing of sub- and supercritical-pressure, radial inward flows has been studied by
Hendricks, et al. /2/. Motion pictures of the flow between parallel disks spaced 0.076 mm
apart show rapid stream breakup immediately downstream of the exit plane. The flow
appears finely disbursed with the potential of fluid fracture occurring within the passage.

The penetration of a supersonic flow field by cryogen injection was found to be
strongly dependent on the flow Mach number, the cryogen injection pressure (Pi/Pc), and
injector geometry /3/. The normalized penetration distances were found to be less than
those of Reichenbach and Horn /4/, but followed similar trends with injection pressures.

From these experiments /1/, /4/ it is clear that supercritical-pressure jets fracture
almost immediately after discharge and that fluid streams can penetrate supersonic flow
fields. It is also clear that when high pressure fluid nitrogen at T,inj < T*,inj = 90 K, is
injected directly into a gaseous supersonic flow the shock front becomes diffusive /5/.

Herein we describe a qualitative investigation of injecting fluid air, a mixture, into a
supersonic flow similar to that described in /4/, /5/.



MATERIAL ANI ODS

The experiment is classically simple. A Mach 2.7 two-dimensional gas nitrogen
tunnel is coupled with a high pressure cryogenic source (Figure 1).

The tunnel operates at 2.3 MPa in the chamber, achieving Mach 2.7 at :
pressure. This flow field is maintained for nearly 720 mm and provides a
for flow observations via the 25 mm Lucite cover plates. The tunnel cross
16 by 25 mm at the throat and 16 by 106 mm at the constant section.

The tunnel was calibrated by using several types of probes that measured stagnation

préssures in the exhaust stream as described in /3/.

Fluid air was passed through a copper coiled heat exchanger in a liquid nitrogen
bath open to ambient to both reduce and maintain constant injection temperature.

For tunnel injection at 90° a flush mounted 3.2 mm LD. copj
Temperature and pressure were measured prior to injection.

be was used.

For injection into and opposing the supersonic free flow a2 3.2 mm O.D. by 1.6 mm
I.D. copper tube was mounted 25 mm above the nozzle exhaust plane and centered in the
exhaust stream. The pressure was measured prior to injection and the temperature was
measured less than 0.5 diameters from the tube tip. The thermocouple ball was soldered
to the tube and the lead wires tightly wrapped around the tube out of the flow field.

A second injector (Figure 2), had a 1.6 mm 1.D. injection port, arbitrary external
geometry, no thermocouple, and was mounted approximately 105 mm above and centered
in the nozzle exhaust stream.

A shadowgraph scheme was devised to observe the flow field and the results were
recorded on videotape. The flow field noise level was intense and strongly effected some
videocameras. The flow details are strictly qualitative.,

D DISCUSSION

Data was difficult to acquire and interpret, as reported in /3 and 5/, and the injected
jet “fluttered” unstably. The interface of the free stream and injected fluid was diffusive,
two phase, and unstable; only data for the developed flow injection ports are discussed.

For injection 90° to the tunnel wall the nominal cryogen fluid injection pressure was
set to 6.9 MPa to determine if the penetration distance for fluids air and nitrogen differed.
For the case cited, and within the limits of these tests, no significant difference was found.
The penetration distance was up to one-half the tunnel width and further tests eliminated.

In all instances the injected fluid forms a diffusive region rather than a sharp shock
front and is rapidly swept downstream. The region resembles a separation bubble
(Figure 3).



For jet injection the shock front dissipation for fluid air and nitrogen was also simi-
lar. The shadowgraph images illustrate the nature of the flows. Figures 4(a) and 5(a)
show gaseous nitrogen and air injection into the supersonic flow field. The injection pres-
sure is a nominal 6.9 MPa. The sharp interface of the bow shock is clear in both fluids.

With cryogenic injection, and the injection temperature decreasing toward T¥,.
(=90 K), the sharpness of the bow shock declines and the shock interface standoff distance
begins to increase as the shock begins to advance into the supersonic flow stream, Fig-
ures 4(b) and 5(b).

For Tinj < T’fnj the appearance of Mach lines and the growth of the injected region
continues. The standoff distance continues to increase (Figures 4(c) and 5(c)). For both
fluids the shock appears dissipated but more diffusive for fluid air.

Each step of the shock dissipation can be readily retraced by increasing T’g‘nj

Tipj = TY,; and the bow shock will reappear for all Tipj > T¥p;- Small temperature
changes about T%,. provide a shock or no shock phenomena for both fluid air and

nitrogen.

until

Even for an arbitrary geometry, Figure 2, the bow shock stands off the injector
when gaseous nitrogen is injected, Figure 6(a). Decreasing T, toward T%,. the shock
front weakens, Figure 6(b). For Tinj < T’}‘nj the shock front is dissipated, Figure 6(c).

The enriched fluid air as condensed and used herein was nominally 20 to 28 percent
oxygen with an undetermined amount of water and carbon-dioxide solid. As such it was
also enriched with entrapped solids. The 5 K difference between air and nitrogen satura-
tion temperatures was expected to enhance shock advancement into the supersonic stream
but interface fluttering obscured the details and remains a question to be answered through
further testing.

CONCLUSION AND SIGNIFICANT FINDINGS

For a two-dimensional, gaseous nitrogen, Mach 2.7 tunnel, with cryogen air injected
at 6.9 MPa through a 3.2 mm diameter tube at 90° to the flow the penetration distance ap-
proached one-half the tunnel width. The result was the same as for fluid nitrogen
injection.

When injecting supercritical pressure enriched fluid air directly into and opposing
the supersonic flow there was no effect on the bow shock for temperatures above the
critical injection temperature (90 K). However for injection temperatures below the
critical injection temperature the shock strength weakens and becomes diffusive. The
observed phenomena is completely reversible.

The enriched air mixture (nominally 20 to 28 percent oxygen) also had an undeter-
mined amount of solid water and carbon-dioxide solid entrapped. The mixture compo-
nents may have caused the diffuse, unsteady nature of the interface when compared to
single component fluid nitrogen.



Photographic details of the interface are lacking, so how the interface fractures and
the dynamics of the interface are not resolved.
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Figure 5.—Fluid air injection into and opposing a M = 3.0 jet. Figure 6.—Fluid air injection into an opposing M = 2.7 gas nitrogen
Injection pressure = 6.9 MPa. jet for an arbitrary geometry. Nominal injection pressure =
6.9 MPa.
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