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Timely overhauls produce in-flight service
reliability greater than the calculated design

reliabilities of the transmission components.
Although necessary for aircraft safety, transmis-
sion overhauls contribute to aircraft expense.
Predictions of the transmission's maintenance needs

at the design stage should enable the development
of more cost-effective and reliable transmissions
in the future.

This work estimates the frequency of overhaul
and the number of transmissions or components
needed to support the overhaul schedule. Two meth-

ods based on the two-parameter Weibull statistical
distribution for component life are used to esti-
mate the time between overhauls. These methods

predict transmission lives for maintenance sched-
ules which (i) repair the transmission with a com-

plete system replacement or (2) repair only failed
components of the transmission. An example illus-
trates the methods.

INTRODUCTION

Aircraft transmissions include bearings and

gears which have finite fatigue lives with detect-
able failure warnings. The two-parameter Weibull
distribution statistically describes the drive

system bearing and gear life [_3_4.4]
The in-flight service rellabiiity of aircraft

transmissions is much higher than the design reli-
ability of their components. Transmission over-

hauls provide the difference. By monitoring the
onset of potential fatigue failures, one can use
just-in-time overhauls to maintain the transmission
economically and reliably [5].

A two-parameter WeibuIT distribution provides

the transmission system life model for repairing a

transmission with full-system replacement [6,7].
The sum of the component failure rates predicts the

repair frequency for maintenance with partial-

replacement repair [8_L99].
Renewal theory IS a secondary statistical

model that describes the maintenance process. It
estimates the number of replacements needed to

maintain transmission reliability with a specified
maintenance schedule. The theory considers the
ongoing sequence of use, failure onset, repair, and

return to use. For this sequence, renewal theory
predicts the frequency of component replacement and
the number of replacements needed to support the

service maintenance schedule [10-12].

Confidence theory complements these statistics
with estimates of the likelihood of the predic-
tions. Higher confidence levels require more

spare parts to cover a greater range of possible
situations [11,12].

This work presents these theories and applies

them to a simple transmission (Fig. I) to show
their use. Estimates of drive system component
failure onset rate and replacement needs are essen-
tial in design. They allow one to compare the
worth of different designs from a maintenance cost

perspective, and they help assess the cost of oper-
ating a proposed drive system design.

COMPONENT RELIABILITY

The two-parameter Weibull distribution is a

statistical function commonly used to describe
fatigue life data. It can describe a variety of

life patterns in which the reliability of a compo-
nent is the complement of its probability of
failure.
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Fig. 1. Single-mesh transmission.



In statistics, reliability is a double nega-

tive. Reliability, or the act of surviving, is the
state of not having failed. Statistics count sin-
gle events such as the act of failing. A part can
fail only once, whereas it survives for its entire
life. The probability of failure for the two-
parameter Weibull distribution, which is a direct
statistic, is

F - 1.0 - e -(_le)b - 1.0 - R (i)

The derivative of Eq. (I) with respect to life
is the probability density function f:

bI_l b'l
f = _L_J e-(_/e) _ (2)

The probability density function is a histo-
gram of life failures for a unit population. The

Weibull reliability function can be expressed as a
log reciprocal:

Ln[;)[;I
In working with the high-reliability range,

the _I0 life often replaces the characteristic
life 8 as the scaling parameter. In terms of
_Io life, Eq. (3) is

(4)

Even though it is cumbersome, manufacturers
use Eq. (4) as the two-parameter Weibull distribu-

tion of bearings to place 90-percent reliability
lives in the catalogs [13].

In both Eqs. (3) and (4), the log of the reli-
ability reciprocal is proportional to the life
raised to the Weibull slope. Taking the log of
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either equation generates a straight-line plot as
shown in Fig. 2. The plot is a probability graph
for the two-parameter Weibull distribution.

The average life is the mean time to failure
(MTTF), which is the sum of all times to failure
divided by the total number of failures. For a
continuous distribution, the total number of fail-
ures is unity, and the sum of all lives to failure
is the integral of time or life times the probabil-
ity density function. Integrating from zero to
infinity gives the mean life:

_av =MTTF =f_, f(_)d_ (s)

Substituting the probability density function
of Eq. (2) for the two-parameter Weibull distribu-
tion and integrating yields the well-known gamma
function F multiplied by the characLeristic
life 8:

[1i_av :MTTF :SI" I ÷ 5!
(6)

The solid curve in Fig. 3 is a plot of the
ratio of the two-parameter Weibull mean life to the

characteristic life versus Weibul] slope. The meaf_
life equals the characteristic life at b = 1.0,
drops below the characteristic life to a minimum

relative value at b = 2.i5, and then increases

back to the characteristic life as b approaches
infinity. When b is infinite, the distribution

is an impulse with all lives equal to the charac-
teristic life.

By a similar integration, one can find the

standard deviation of the two-parameter Weibul]
distribution. The standard deviation is the square

root of the second moment of the component life
distribution about the mean.

Of : -ofm[_,_ _ av)_ f (_) de (7)
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ratios to characteristic life for a Weibutl distribution

as a function of the Weibull slope.



In terms of the gamma function, the standard devia-
tion of the two-parameter Weibull distribution is

(8)

The standard deviation of a distribution is a

measure of the scatter of the distribution. It is

valuable in estimating a confidence limit for the
average life.

The broken curve in Fig. 3 is a plot of
the ratio of the standard deviation of the two-

paralneter Weibull distribution to its characteris-

tic life versus the Weibull slope. At a slope of
one, the distribution is the exponential distri-
bution, which has a large scatter. As the slope

increases to two, the scatter decreases rapidly and
continues to decrease with increasing slope.

SYSTEM LIFE WITH FULL REPLACEMENT

To model the transmission life based on full

replacement, one must have a life model for the

transmission as a complete system which treats the
system as a single component. The life of a drive
system can be considered to be a strict series

probability model of the lives of its components
[Z]. In this model, the reliability of the system
Rs is the product of the reliabilities of all the
components:

Rs- I_ Ri (9)
i-I

The high speed of drive system components and
the spray of loose debris warrant the strict series

probability model. If any component fails, debris
may be present which could accelerate the fatigue
damage in other components. Therefore, the drive

system will need an overhaul to return it to a high
state of reliability when any element fails.

The log of the reciprocal of Eq. (9) is

Ln[3_s]. i_ Ln[l_i I (I0)

and substitution of Eq. (4) into Eq. (i0) for each
component yields

Ln[l_s I " Ln[_g- 1 )-_. I _s I b_i-II_T, _J
(11)

In Eq. (11), _s is the life of the entire drive

system for the system reliability Rs. It is also
the life of each component at the same drive system
reliability R_. For consistency in Eq. (11), all

the Component lives must have the same counting
base of hours.

Equation (11) is a two-parameter Weibull dis-

tribution only when all the Weibull exponents bi
are equal. However, a two-parameter Weibull dis-
tribution can approximate Eq. (11) quite well.

Equation (12) is the drive system two-
parameter Weibull relationship. It includes the

system reliability parameters bs and t10,s.

LnFl_=. [' I _F _s Ib_
LnL Jl J

(12)

The straight-line reliability relationship of
Eq. (12) can be fit numerically to the more exact

relationship of Eq. (11) with a linear regression.
The slope of the fitted straight line is the drive

system Weibull s]ope bs, and _10,s is the life a[

which the drive system reliability Rs equals
90 percent on the straight ]ine.

SYSTEM LIFE WITH PARTIAL REPLACEMENT

To model the transmission live based on par-

tial replacement, one can treat the full system as
a collection of independent components. Separate
analysis of each component will predict the number
of replacements needed. If no two components are
repaired at the same overhaul, the maximum number
of overhauls is equal to the sum of all individual
component replacements. One can estimate the mean
time between overhauls as the total service time

divided by the number of replacements for this
component sum repair calculation and for the full-
system repair.

RENEWAL THEORY

Renewal theory estimates the number of
replacements as a function of the component failure
distribution and its life [10-12]. It assumes that
failed components will be replaced ,just before they
fail, which models an unending sequence of use and
repair. Aircraft drive system maintenance follows
this pattern closely.

The mean number of failures is the infinite
sum of the probabilities of at least i failures
in the life period _. This function, M(_), is the
renewal function. It is expressed as

M(_) =F1(_ ) ,S_ M(_ - x)f(x) dx (13)

The derivative of the renewal function with

respect to life is the renewal density function:

m(_) " f1(_) *S_m(_ -x)f(x) dx (14)

These equations give the number of replace-
ments needed to support a maintenance schedule.
Their solution involves a series of convolution
integrals that can be performed on any failure
distribution. However, the solution, which is an
oscillation of replacement numbers about a straight
line, is not easily obtained. The solid curve of
Fig. 4 shows the renewal function for a component
with a two-parameter Weibull reliability,
8 : 5000 hr and b = 1.5. Tabulated solutions to
the renewal function for the two-parameter Weibull
distribution are available [12].

An approximation for the renewal function [11]
is

2 2

Me(_ ) . _ _ _av - a______f (15)
2

lay 2_av

The accuracy of this approximatio:1 increases
as _ increases. Equation (15) is an asymptote



for thetrue renewalfunctionof low-scatterdis-
tributions. Forhigh-scatterdistributions, it
approximatesthe true renewalfunctionclosely.

Therenewalfunctionis theprobabilityof
replacementfor a singlecomponent.Its valuegoes
aboveonebecausemultiplereplacementscanoccur.
Fora set of Q identical components,the total
numberof replacementsis the product:

Nr - QM(1) (16)

Estimates of replacement inventory need a
margin for variations from the mean, as do repair
frequency estimates. Confidence statistics based

on the renewal standard deviation provide one means
for determining this margin. The broken curve of
Fig. 4 is a plot of the renewal function standard

deviation versus life for the component with a
characteristic life of 5000 hr and a Weibull slope

of 1.5 For which the solid curve of Fig. 4 plots
the renewal mean.

The approximation for the standard deviation
of the renewal function uses the third moment of

the life distribution. For the two-parameter
Weibull distribution, the third moment is

_3 -fo_3f(_)c_ =83r i + (i7)

Figure 5 shows the third moment of the two-

parameter Weibull distribution divided by the cube
of the characteristic life versus the Weibull
slope.

The approximation for the standard deviation
of the renewal function is [11]

2 2

2 f'av' ,l, 2so )2.3crlQ

(line(1): -T. +/_/t._l_,,+

lav" 4o7"'[ lay J 31av

(18)

The standard deviation of the renewal function
gives a measure of the scatter in replacement needs
from one sample to the next. Estimates of replace-
ment inventory need a margin for variations from
the mean, as repair frequency estimates do. Confi-
dence statistics provide one means for determining
this margin.

CONFIDENCE STATISTICS

In predicting replacement rates and mainte-
nance inventories, direct theory provides mean or
"average" estimates. These estimates coine from the

statistics of a universal population. With enough
cases, they will be the true average ,values.

In any real situation, the number of drive

systems under service is a limited sample. Confi-
dence statistics estilaate how differently a small

sample may behave from its universal population.
It uses the standard deviation of the universal

failure distribution and the sample size to esti-
mate the mean of the sample. Confidence intervals
are shown by the broken lines in Fig. 2,

For many samples of the same size, the mean of
the samples has a normal distribution about the
overa]l mean. The standard deviation of the means
is

of
Cav: -- (Ig)

q_-

where Q is the size of the sample.
In reliability predictions, the lower confi-

dence bound is valuable in aircraft applications.
This confidence distribution estimates the life at

which a large percentage of the samples of a given

set will survive. For a high confidence, this life

is less than the mean life For the entire popula-
tion. For a 90-percent confidence,

_av,90 " _av - Zzo#av (20)
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TableI. - Single-meshtransmissionproperties
Load, lO-percent

kN life,
_I0'

IOs cycles

Bearing I 4.1 317
Bearing 2 10.3 578
Pinion 5.8 298
Bearing 3 10.3 868
Bearing 4 4.1 475
Gear 5.8 380
Transmission 127

lO-percent
life,

tl0,
hr

2640
4820
2486
7230
3960
3170
1060

Average
life,

_av'

hr

16 187
29 554

5 426
44 330
24 280

6 920
3 990

Standard
deviation
of life,

_f,
hr

13 570
24 776

2 324
24 460
20 097

2 963
2 600

Since the behavior of samples differs from the

behavior of the "ideal" distribution, confidence
estimates help one to see the effects of sample
size on the life and replacement estimates.

EXAMPLE

For the single-mesh transmission shown in
Fig. I, the 90-percent reliability lives for the
bearings and gears are shown in Table I. The
Weibull slope for the bearings is 1.2, and for the

gears is 2.5. For a fleet of Q = 50 aircraft, we
would like to estimate the number of overhauls in
the first 10 000 hr of service and the number of

replacement components needed to support these
overhauls. Two types of overhaul are treated -

full replacement and failed-component replacement
only. All estimates will be with 90-percent confi-
dence for the 50 aircraft sample size. From
Eq. (6), the average lives were determined for each
component. From Eq. (8), the standard deviations
for each component were determined. The results
are shown in Table I.

Full Replacement

To treat the transmission as a complete system
undergoing full-replacement repair, one can use the

two-parameter Weibull system model of Eq. (12).
The parameters bs and q10 s for Eq. (12) come
from a least squares fit to'Eq. (11). The two-

parameter Weibull slope is bs = 1.57 for the
transmission, and the system 90-percent reliability
life is _Io s = 1060 hr. From Eq. (3), the trans-
mission char'acteristic life is 8 = 4440 hr. For

these data, the transmission average life is
_av = 3990 hr with a standard deviation of

of = 2600 hr.
The renewal function can estimate the number

of transmissions needed for full replacement in a
continual sequence of failure warning, repair, and
return to service for the 50 aircraft. For an
average life of 3990 hr and a standard deviation

life of 2600 hr, Eqs. (15) and (16) give the total
number of replacements in the period from 0 to

hr.

From Eq. (17), the third moment of the trans-

mission life distribution is #3 = I"62xi01! hr3,
and Eq. (18) gives the standard deviation of the
renewal function for the transmission.

Equations (18) and (19) give the standard
deviation of the number of replacements in the

period from 0 to I. Finally, a relationship simi-
lar to Eq. (20) gives the replacement estimate for
complete transmissions with a 90-percent confidence
that the replacements will be less.

For the first I0 000 hr of operation, this
procedure estimates an average number of 111
replacements for the 50 aircraft. A confidence
limit of go percent boosts this estimate to 121

transmission replacements for 500 000 fleet service
hours. This represents a mean time between over-

hauls of 4130 hr and a total spare parts require-
ment of 726 parts.

Partial Replacement
When only the failing components are replaced,

the renewal function can estimate the number of

replacements needed, also. Applying the calcula-
tions of this procedure for each of the six compo-
nents in the transmission estimates the number of

components needed to support a partial-repair main-

tenance schedule with a gO-percent confidence.
Table 2 summarizes these calculations for the

four bearings and two gears in the transmission.
Adding the total number of components that renewal

theory estimates will need to be replaced yields 72
bearings and 135 gears, for a total of 207 compo-
nents. This total of 207 spare parts is signifi-
cantly less than the 726 parts required by the 121
full-transmission replacements required of the

other service procedure.
If each component failure required its own

overhaul, then 207 overhauls would be required with
the same gO-percent confidence as used for the
full-replacement calculations. Dividing the
500 000 fleet service hours by the maximum number
of 207 overhauls yields an estimate for the mean

time between overhauls equal to 2420 hr. This is
1710 hr less than the mean time between overhauls

for full-transmission replacement because it does
not consider repair of components near failure in a
maintenance session.

By only replacing the failed components, one
would need 86 more overhauls, but 519 less parts.

Table 2. - 10 O00-hr repair estimates
for 50 transmissions

Transmission

component

Bearing i
Bearing 2
Pinion

Bearing 3
Bearing 4
Gear

Total

Replacements required

Mean Standard
deviation

23 5.2

9 4.1
72 4.7
4 3.6
13 4.4

52 4.3

173

90-percent
confidence

30
15
78

8
19
57

207



Thesamehighreliability wouldbepresentfor both
maintenanceproceduresbecauseof theon-board
failure monitoringsystem.Theseestimatesare for
cost andschedulingpurposesonly.
SUMMARY OF RESULTS

Two methods of estimating the time between
transmission overhauls and the number of replace-
ment components needed are presented. The first

treats full replacement of failed transmissions,
whereas the second treats replacement of failed
components only. Confidence statistics are applied
to both methods to improve the statistical estimate
of sample behavior.

The method to predict overhaul timing with
full replacement is based on a two-parameter
Weibu]l system life model. The relationship

between the system life model and the component
life models is presented. In addition, formulas
for the mean and standard deviation of the two-

parameter Weibull distribution are given.
Renewal theory is presented as a tool to esti-

mate the number of replacements in a transmission
undergoing a consistent maintenance procedure. The

theory is useful for estimating replacements for
both full and partial transmission-replacement
procedures. Approximation formulas are given for
the mean and standard deviations of the renewal

function. These approximations are valid for two-

parameter Weibul] distribution lives amongst
others. Formulas for sample replacement numbers
are given in terms of the renewal function.

Single-sided confidence theory is presented
for the replacement number and overhaul timing
estimates. A transmission example is presented to
illustrate the methods. Comparisons of overhaul
timing and spare-part requirements are made in the
example between full-transmission replacement and

partial component-replacement overhauls. High
reliability is assured for the transmissions in

both cases by the on-board monitoring system.

NOMENCLATURE

b

e

F

f

Ln

M

Me

MTTF

m

Nr

Q
R

X

zlo

r

6

Weibull slope

base of the natural log

probability distribution function (probabil-
ity of failure)

probability density function

natural log

life, hr

renewal function

approximate renewal function

mean time to failure

renewal density function

number of replacements

sample size

reliability (probability of survival)

integration time variable, hr

number of standard deviations from the mean

which cuts off a 10-percent population tail

gamma function

characteristic life, hr

third moment of a probability density
function

a standard deviation

Of standard deviation of Weibull function

Ome standard deviation of renewal function

Subscripts:

av average or mean

i index

n number of components

s system

i index value

10 IO-percent failure, gO-percent
reliability

90 90-percent confidence
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