
Center for

Case Western Reserve University

Automation and Intelligent Systems Research

Technical Report TR 90-121]_/_C_- _-) _)/& May 1990

ICE SYSTEM: INTERRUPTIBLE CONTROL
EXPERT SYSTEM

.,.,.¢

James M. Vezina

F

w

:_::-

The ICE (Interruptible Control Expert) System, is based on an architecture designed to provide a
strong foundation for real-time production rule expert systems. Three principles are adopted to guide the
development of lCE. A practical delivery platform must be provided, no specialized hardware can be used to
solve deficiencies in the software design. Knowledge of the environment and the rule-base is exploited to
improve the performance of a delivered system. The third princ_le of lCE is to respond to the most critical
event, at the expense of the more trivial tasks. Minimal time is spent on classifying the potential
importance of environmental events with the majority of the time is used for finding the responses. A
feature of the system, derived from all three principles, is the lack of working memory. By using a priori
information, afixed amount of memory can be spectred for the hardware pla_orm. The absence of working
memory removes the dangers of garbage collection during the continuous operation of the controller.

t

i

u

w

=

This report describes research done at the Center for Automation and Intelligent Systems Research,
Case Western Reserve University, Cleveland, Ohio 44106. Support for the Center's research is provided in
part by the Cleveland Advanced Manufacturing Program and the State of Ohio.

© Case Western Reserve University

https://ntrs.nasa.gov/search.jsp?R=19910021407 2020-03-19T16:57:50+00:00Z

m

W

m
E
m
ii

m

l

mR
m
mm
mm

z

m

W

m

m

m
II

UR

m

z
im

m

m
l

(

ICE SYSTEM:

INTERRUPTIBLE CONTROL EXPERT
SYSTEM

=

w

!

By

JAMES M. VEZINA

= :

C
i

v

L

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

Thesis Advisor: Leon Sterling

I

w

w

r

B

DEPARTMENT OF COMPUTER ENGINEERING AND SCIENCE

CASE WESTERN RESERVE UNIVERSITY

MAY 1990

m

ii

m

III

m
m

z

Im

z
ii

Z
E

II

Z---
If

w

m_m

RB

m

L
m

g

iml

ii

li

I

_(
ICE SYSTEM:

INTERRUPTIBLE CONTROL EXPERT SYSTEM

g

LJ

Abstract

By

JAMES M. VEZINA

(

z

w

m_

w

i

r

u_r

m
[

w

The ICE (InterruptibleControl Expert) System, isbased on an architec-

ture designed to provide a strong foundation for real-time production rule

expert systems. Three principlesare adopted to guide the development of

ICE. A practicaldelivery platform must be provided, no specializedhard-

ware can be used to solve deficienciesin the software design. Knowledge of

the environment and the rule-baseisexploitedto improve the performance

of a delivered system. The third principleof ICE isto respond to the most

criticalevent, at the expense of the more trivialtasks. Minimal time is

spent on classifyingthe potentialimportance of environmental events with

the majority of the time isused for finding the responses. A feature of the

system, derived from allthree principles,isthe lack of working memory. By

using a priori information, a fixed amount of memory can be specified for the

hardware platform. The absence of working memory removes the dangers of

garbage collection during the continuous operation of the controller.

I

i
m

m

mm

z

R

m
_m

II

B
II

II

im

um

um

n

l

m

!

m
i

J

M!

z

m
m
m

Acknowledgements

_z

u

m

C
m

w

u

First I would like to thank the financial supporters of this work: NASA

Lewis Research Center (under contract number NAG3-1010) and the Center

for Automation and Intelligent Systems Research at Case Western Reserve

University. Eric Bobinsky, at NASA, not only scrapped up the funding, but

whose discussions inspired this research, thank you.

A thank you goes to the members of my committee, Professors George

Ernst and Yoh-Han Pao for their comments, especially my advisor Professor

Leon Sterling for his help along the way. I think it was Picasso who said it

takes two people to create a painting. One to actually paint it, and another

to hit the first with a stick to make him stop. Thank you Leon for being

that second person.

To my friends who have helped in various ways, like the guys at AI WARE,

Inc. for their patience during these last days. A special thanks goes to

Farrokh Khatibi for our discussions and all the proofing you have done.

Thank you Susan, for your patience and understanding during the endless

work on this thesis, now that it's over, we can get back to those wedding

plans. Of course, a warm thank you goes to my family and God, for allowing

all this to be possible.

r

u

u

ill

111

w

m

Ill

i

II

i

!

II

II

I

m

U

m

I

!

g

II

f

Z "

f

m

w

E.

k _

n

m

m

To Susan,

who soon will be my br|de,

and my family

iv

Hi

i

i

i

m

Nit

maim

i

i

nil

Contents

m

m

r_

w

z

w

==

L

Acknowledgements ... Ill

1, Terminology and Concepts

1.1 General Environmental Terminology

1.2

1.3

1.4

1

1

Model of the Environment and Controller 2

Real-Time Systems 5

1.3.1 Data Processing 6

1.3.2 Interruptability 10

1.3.3 Responding to the Critical Event 10

1.3.4 Practical Issues 10

Expert Systems 11

1.4.1 Typical Prototype 11

1.4.2 The Rete Algorithm 14

1.4.3 Working Memory and Garbage Collection 19

1.5 Parallel Architectures 20

1.5.1 Basic Approaches 21

1.5.2 Contention 22

1.6 Scheduling 22

1.6.1 Task Scheduling 23

1.6.2 Best Guess 24

1.7 Reasoning 25

1.7.1 Truth Maintenance 26

2o Related Work ... 29

2.1 Parallel Implementations 29

2.2 Production Rule Expert Systems 30

2.2.1 CLIPS - NASA's Expert System Shell 30

2.2.2 TREAT 31

V

i

2 _

u

U

in

U

i

n

me

U

mR

I

m

(

m

w

w

°

w

m

2.3

2.4

2.2.3 YES/MVS 39

Blackboard Systems 44

2.3.1 The Guardian System 48

Commercial Real-Time Expert System Shells 52

2.4.1 Gensym's G2 52

2.4.2 NEMO from S_O 54

3. ICE System ... 55

3.1 Design Principles 55

3.2 Architecture 57

3.3 Interface Manager 58

3.4 The Facts of the System 60

3.5 Rules 62

3.6 Scheduling the Agenda 65

3.7 Inferencing 68

3.8 Knowledge Engineering 70

4. Results ... T3

Test System 1: Machine Monitoring 73

Test System 2: Monkeys, Bananas and Zombies 78

4.2.1 Monkey, Bananas and Zombies Description 78

4.2.2 Test Results 81

e Conclusions and Future Directions 89

5.1 Concluding Remarks 89

5.2 Future Directions gO

A. Sensors and Devices Test 92

B. Monkey, Bananas and Zombies Tests 100

Bibliography ... 103

u

vi

m

inn

m

J

z
mm
U

I

W

m

!1

U

InUre

E

hi

IF

!11

I

im

IlK

List of Tables

L_

r

m

m

f

m

2.1 Performance Requirements of Lockheed's Pilot's Associate .

4.2 Benchmark: Average Cycle Time

4.3 Average time between accepting reports

4.4 Times to Recognize the Events

4.5 Times to Respond to the Events

4.6 Response time of controller to the zombie

4.7 Time to send next command

A.8 Ranges for Testlng Normal Operation

A.9 Ranges for Testing Warning Operation

A.10 Ranges for Warning Period

29

T5

82

83

83

86

87

92

93

93

B.11 Box Characteristics 101

B.12 Boxes for the Last Three Tests 101

B.13 Additional Boxes Needed for the Tower 102

w

w

w

mm

V

vii

i

g

m

U

l

: T • ._.?

D

w

m

m

g

I

J

m

I

l

q_

List of Figures

w

w

m

f

w

m
w

==

w

m

T

w

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

3.28

Model of the World 2

Model of the Environment 3

Model of the Controller 4

Variable Sampling Rate 6

Fixed Sampling Rate 6

Fixed Thresholding 7

Fixed Thresholding with a Hysteresis Loop 7

Variable Thresholding 7

Typical Real-Time Production Rule Expert System 12

Example System for the Rete Algorithm 16

Network Generated by the Rete Algorithm 17

T_-qk Dependency and Multiple Processor Example 21

Example of Task Dependency 27

Rule Structure Used in the CLIPS Expert System Shell 30

An Example Rete Network 32

Adding a Fact to the Rete Network 33

Example TREAT Network 34

Adding a Fact to the TREAT System 35

Updated TREAT Network, by Adding a Fact 36

Removing a Fact from the TREAT System 37

TREAT Results 38

Architecture of YES/MVS 40

Antecedent Matching Problems in the Rete Algorithm 43

Koala in its Natural Habitat 45

Basic Blackboard Architecture 46

Blackboard with Controllers 47

Architecture of Guardian 50

Architecture of the ICE System 59

°.*

ViII

w

m

Im

in

lp

in

m

-_yp

9

..... 1

i

J

Um

I

g

I

J

hum

z
Ill

IIw

F

3.29 ICE System Agenda 66

4.30 Machine Monitoring Problem 75

4.31 Benchmark: Response T[mes for the 6 Warning Responses . . 76

4.32 Benchma_: Percentage of Time Used for Each Response . . 77

4.33 Monkey, Bananas and Zombie Problem 79

4.34 Percentage response time of activecontrollableagents 84

4.35 Percentage response time of activeuncontrollable agents . . 84

4.36 Percentage response time of the zomble 86

B.37 Picture of the Monkey, Bananas and Zombie World 102

w

m

w

w

===

m

L

m

m

l

Lx

i

wn

i

I

J

I

I

I

I

I

i

m
(mR

u

m

U

w

Chapter 1

L

wml

w

w

w

W

w

r •

w

w

w

Terminology and Concepts

1.1 General Environmental Terminology

A coarse description of the system is needed before discussing the philo-

sophical question of "real-time. '_ The _whole world _ is considered the En-

vironment, as can be seen in the illustration, Figure 1.1. This includes

the machinery, sensors and control parameters. The medium used to send

information between the environment and control computer is called the

....... _ communications channel. The_real-time software runs on the hardware

platform (or simply, platform). The software will be considered as the

, _ : controller.

;.,_ ,.. Events occur in the environment. They include everything that does

_:j or does not happen. One sensor value changing, and another remaining

constant, are both considered events. Information about an event is sent

: to the controller. Information or data can represent the event itself (the

._i :_.: affect), or be comprised of the effects of another event. If the environment

..... groups data it transmits to the controller, then information is considered

...... to be in a report. For example, due to limitations of the communication

channels, remote locations in the environment may only send reports. As

well as receiving data, the controller responds to particular events, or sets of

events. A response alters the current environment in some way. The amount

of time between an event occuring and the environment receives a response

is called the response time.

The controller processes the environmental data with various tasks, lead-

ing to a response being issued. A dependency path, or bf path, is the order

of tasks from the data representing an event to its response.

(

2

u

i
lira

(
1.2

Figure 1.1: Model of the World

Model of the Environment and Controller

The model of the environment is shown, without the c¢_ntroller, in figure 1.2.

'_o!_ The interface handles communications with the controller. The system

_ : _state contains all the information of the environment, which is sent to the

_' _ controller as a report when triggered by the internal clock. The triggering

" rate is set to be very fast, representing continuous data. Commands are

:_ received and placed into the command queue. If the command queue is

...... full, new commands are accepted and discarded. It is the responsibility of

the controller to be sure the environment can carry out a command. A STOP

command is provided to empty the queue. In an emergency situation, the

controller clears the queue so new actions can be carried out to correct the

problem.

Three types of objects simulate the characteristlcs of the environment.

Active Contronable Agents [Geo86] can be directly controlled by the ex-

pert system. These agents act upon the Passive Agents [Geo84], which

cannot be directly controlled. The last set of agents are the Active Uncon-

troUable Agents [SH88]. This agent can act upon both the passive and

active controllable agents. Consider the power system of the space station as

I

g

mm
i

i

m

g

• g

u

m
u

m
I

m
u_

i

u

-- 3

-"7

w

w

m

out to
Expert
System

Send
Report

.°o,.°

o.,°°oo

°°°,°°,oo

.... °°°.°

...°oo°°o•

.o.o°o_o°o°

°.,, °°,

°,.°°,o,oo.

Clock
, °. , • *

i

°._-

==

F

Active

Agents

Active
Uncontrollable

Agents

rstemstate

Figure 1.2:Model of the Environment

• ° •

° • °

• . °

• • o

• ° °

• • °

° o •

• • °

. • °

° ° .

° ° •

° • •

• , °

• ° *

. • •

. • •

o ° .

• o o

li

w

F

4

m

Emergency Planning
Planning

toj romEnvironment Environment

Figure 1.3: Model of the Controller

an example [Kus88][Do187]. The breakers, active controllable agents, direct
power flow over the transmission lines, which are passive agents. The last,

active uncontrollable agents, are included in the environment. In this exam-

pie there are two active uncontrollable acent_ are: experiments running in

the space station (considered as black boxes with only their power require-

ment_ known), and small meteors bombarding the station. Both of these can

greatly afl'ect the operation of the power distribution system.

The controller can be implemented in many software architectures, some

of which are presented in the following chapters. Regardless of the actual

architecture, the controller must perform the following functions.

Figure 1.3 shows the control]er also has a inter/ace uti]ity, the I/O Co-

ordinator. It receives and processes the data from the environment. Com-

mands sent to the environment must be managed to ensure that a response is

not |oat. Monitor verifies the operation of the environment. Planning was

g

i
I

MI

I

g

m

E
MIM

m

w

m

i

m
w

I

m

i

w

divided into two parts. The Planner handles the typical,long term, plan-

ning for the environment• A second module, Emergency Planner, isadded

to handle the criticalsituationswhere a fastresponse must be issued with-

out being concerned with allaspects of the system. Emergency rulescan be

made to respond to specificevents. After stabilizingthe environment, longer

term planning restores productivity. The thesisconcerns the software ar-

chitecture implementing the controller,and uses the term controller when

refering to the architecture.

w

r_

m

lJ@

===

m

m

w

m

m

m

m
W

wm_

1.3 Real-Time Systems

"Real-time _ isoften exaggerated and misused• It isused incorrectlyto refer

to "fast" systems,where fast can be as slow as seconds or minutes. This

thesis,however, considers seconds as an upper bound, with millisecondsbe-

ing used as the basic time unit. The response time is always a significant

issueindefinitionsofreal-time[KR88][ShiSV][Ber88][Moo86].One def-

inition[Ben84] concentrates on the environment controlling the actions of

the software, while stressingthe importance of continuous operation. Hard

real-time [OC85] requires the software to respond within a designated time

period. Too fasta response can be just as disastrous as one too slow.

There isa common denominator to the definitions.The software must re-

spond to events in sufficienttime to keep the environment running smoothly

and mmlmlze any further damage. Mmlmmng damage iscrucml. -There will

_ . be many situationswhere the environment isin a fatalstate,and itisup to

the controller to gracefullyshut down the machinery to minimize any fur-

ther damage. The software willcontinuallybe bombarded with data about

various events. The controllermust distingu_h between possibly criticaland

non-cr|t,calevents, and determine in appropriate pJanofiC-tlonl 'Planning

must always consider the importance of a timely response.

J

6

! I 6

0 ! |

O ! e

o 6 t

O e !

e e !

e g !
i i | 10

I | I

I i I

I I l

l I I

i I I

g i |

g i I

I I l

I I l

I I I

| l |

Figure 1.4: Variable Sampling Rate

|

|

I

|

I

I

-I

iii

_TT --

.................. : ' Figure 1.8: Fixed Sampling Rate

1.3.I Data Processing

The environmentisgenerallyableto providea continuousvalueforeach

datum, for example an a_alog sensor. Discrete computers must s_mple the

signal in order to convert it to a digital value. Continuous sampling generates

an enormous amount of data. The controller must use s scheme to decrease

the data, while not effecting its integrity. There are four basic methods used:

variable sampling rate, fixed sampling rate, fixed thresholding and dynamic

thresholding. Figures 1.4 through 1.8 demonstrate the effect of each of these

methods. The signal received from the environment is shown as the graph,

while the points reflect the samples taken by the controller.

The first figure uses the variable sampling method [Kuo82], common to

many expert systems. The data is accessed after the controller processes the

I

m
I

I

m

I

i
I

I

I

I

I

I

I

i

I

w

?

w

w

m

m

m

w

I II I II

| II | ||

e I| I I|

| || i I|

| II | i f

| |I I I|

I II I

I II I
| - . .

nut Jill I

"='"l I| I
..m, oo U[• J
ill ii

mmoeeo |i i_
IINI n | I ili

ill II I I I I I

Ill II I I i I i

Ill II | I I I I

lllll II I II

IIII II | I I i I

| I

e I

i I

I !

I i

lii S

ii i |

ii I

ii I Yi

ii i II

ii i II

•=,,,a,, " , , , ,, ; i
|..ll i _,n .= •. -- _ II | m | I • n | | I

Figure 1.6: Fixed Thresholdhng

J

I I I

I I l

I I I

I I I

I I I

" I I I

I I I I

l l I I

II I IO

II I II

II I II

II I II

II I II

II I II

I I II II V

I I

I I

I I

I I
I I

I I

I I

I I

I I

I I

!

II I

II I

II I

II I
I I I

II I

_1 I I1 I I II I! • i , ii I I I ! ! i i i • i

Figure 1.7: Fixed Thresholding with a Hysteresis Loop

liW

i

m

W

Figure 1.8: Variable Thresholding

previous samples. In this way, all of the accepted data can be considered. As

the environment moves into a more dynamic or critical state, the controller

requires more time to process the data, therefore the sampling rate decreases.

Critical states may produce more data to be processed and the sampling

rate again decreases. The controller can be literally blinded by the warning

conditions of the environment and not see future fatal events.

By fixing the sampling rate, the controller is less likely to miss receiving

the fatal events. Unfortunately the figure demonstrates how this situation

can happen. A fixed sampling rate can still present the controller with

much more data than it can handle. Figure 1.4 shows the rate at which the

controller can process the data, while figure 1.5 provides much more than

can be handled. A controller must then be able to distinguish which data

are least important and ignore it. Another option is to retain all of the data

until such time as the controller can process it, however the data validity

is decaying. Validity decay is influenced by the elapsed time and responses

issued by the controller. A response may invalidate the data entirely. If the

controller processes data faster than the sampling rate, then it will remain

inactive until new samples are received.

Thresholding provides a promising method to reduce the amount of in-

significant data. As a data item remains in the current state (based on its

value, trend or other aspects), it is considered to be constant and the new

data is ignored. Upon entering another state, the controller recognizes the

transition and the data is processed. The data is still initially received by

one of the sampling techniques, but is processed by this thresholding method.

This generally reduces the amount of data more than the previous two ap-

proaches alone, but the: controller must still be able to cope with too much

new data. Although fixed thresholding does generally reduce the incoming

data, figure J..6 provides a c0ntra_ctory exampie.-t_s-data oscillates around

a value] each pass across the threshold generates a new item to be processed

by the controller. If the cycling rate and sampling rate are small, the con-

troller receives a practically continuous signal. A similar problem arises in

digital hardware as a signal changes state. The state transition is never clean,

m
J

m
I

m

w

m
MM

g

m

.. J

J

mm

m
m

b

l

m
w

m

9

i

w

m

u

L_
•IE_ii!

u

m

and a certain amount of oscillationalways occurs. One approach to alleviate

the problem isto give the signal enough time to settlebefore accessing its

state. Since the goal of real-time systems is to respond quickly,additional

time to process data isnot desired. Instead of defining the threshold as a

single value, it can be defined as a band around the value, hysteresisloop.

In order for the signal to move into a higher state,itmust cross the higher

threshold level.Correspondingly, to enter a lower state,the signalmust cross

the entire band. Oscillationscan stilloccur, but their amplitude must now

be greater than the threshold band. The technique isdemonstrated in figure

1.7.

The last approach uses dynamic thresholding [WH89], 1.8. Instead of

defining the threshold as a singlevalue or even a range, a band surrounds

the latestaccepted data value. In doing so, a more accurate picture of the

data can be seen, while avoiding oscillationproblems. As the controller

.....requires more processing time for a set of samples, the thresholds around

data values can be expanded. In thisway, the controllerfiltersmore of the

new data. As more data can be processed, the thresholds are contracted.

Unfortunately the problems associated with variable sampling rates appear.

While the problem may not be as prevalent, the controller can stilllose

valuable data. This ismost evident at the worst time, when a criticalevent

is described by a tremendous amount of data. In this case, the controller

must be itsfastest,and be able to handle an unusually large amount of data.

._ _ _ With allthese m etho.ds,the controllermust stillbe capable of determin-

ing the importance of incoming data. As lessdata can be processed, the

unimportant and redundant information must be removed.

It isappropriate to consider the method used by production rulesystems

to determine the states of the data. Most rulesmap the data into one of

several states. An engineer c|_s_fi_a State _ a range, usually with some

error eitherway. For example, water boilsover 212 degrees Fahrenheit. Due

to the thermometer used and atmospheric conditions,the actual temperature

might be plus or minus fivedegrees. Because the rules already define the

thresholds of most states, the fixed thresholding method with hysteresis,

C

I0

seems most logical.While variable thresholdlng has advantages, itdoes not

consider the rules that are using the data. Also ifa variable range grew too

large, itmay combine severalstatesintoone.

1.3.2 Interruptability

Asynchronous operatnon isxmportant when consldermg data processing. An

interrupt generally indicatesa severeevent in the environment, the controller

_ must:i_ocus:on a responsel A binary slgnal-may alteritsstate and interrupt

the controller. State transition,particularlyin the fixed thresholding ap-

proach, also causes an interrupt.The software must be capable of accepting

_' "and processing these interrupts.

1.3.3 Responding to the Critical Event
_:i__ _ _

Events are continuously occuring in a realworld-environment. The mon|-

toring sensors will be providing the controllerwith a representation of the

. _+ events. The software must identifythe possibleevents depicted by the data.

-.- The response to the most criticalevent isthe primary concern of the con-

__ troller. The approach can be better explained by using an example from

....the planned space station Freedom, a sponsor of thiswork. In considering

the space station, an astronaut might be aggravated by the lightsnot ira-

. mediately returning. However he would be dead ifthe lifesupport system

restoration was delayed. Based on thisscenario,the lessimportant tasks are

• truly trivialas compared to the criticaltasks.

Im

m

[]

m
mm

Sm

m

m

u

m

i
m

m
I

m

1.3.4 Practical Issues

There are a few practicalissuesthat need to be addressed by a real-timesys-

tem. The software must be able to run continuously (at leastas long as the

environment is in operation). There are sophisticated real-time expert sys-

tems that Perform Well_on specializedhardware (e.g.Lisp machines)[ST86]

[OD87] [KM85]. Unfortunately, they cannot run continously. This limita-

tion is inherent in s_ngle processor systems that must garbage collect. A

P

u

E

i

I

u

11

w

f--

n

w

u

z

m

controller cannot ignore the environment while garbage collecting. The abil-

ity to interface to the environment and to conventional software is the next

practical issue. This is especially true for an expert system attempting to be

real-time. Knowledge is important, but so are the traditional algorithms in

use today.

Guaranteeing response times is briefly mentioned in every description of

real-time software. However there is never a practical solution to the prob-

lem and software. Real-time programmers will typically _hack _ in assembly

language until the software satisfies the given test conditions or current prol>-

•lem. Industry generally defines the requirements of real-tlme software, by

defining a set of tes-_. If these tests are sat|sfied, the system is said to be

verified and validated (V & V).

1.4 Expert Systems

Typical Prototype1.4.1
;..__ _

This section briefly describes data driven production rule expert systems

_ _ [WL83]. Each rule is made up of antecedents {IF-parts) which must be

proven true, for the consequences (THEN-parts) to be executed, or fired.

The input data (describing the events in the environment) is accepted by

•-_ : the expert system. The raw data is then processed and represented as facts.

These facts lead to a rule firing in two ways.

• '-_- " _ The first method matches the facts to the ant_edents of every rule. If all

• "the antecedents of a rule are true, the rule is then placed (scheduled) into an

agenda (queue). This is called activating a rule. The activated rule with

the highest priority in the agenda is fired. If any new facts are created, the

whole process is repeated, otherwise the next mleintTne agenda is Used. The

Rete algorithm is the most common approach and will be described below.

The second method does not initially do the matching. It determines the

rules that "might _ be activated. These are initiated, placed into the agenda.

The antecedents of the first initiated rule are attempted to be proven. If

w

C

/

(,..

12

Environment

oomrrmnds data

Figure 1.g: Typlcai Real-Time Production Rul: Expert System

: . successful, the rule is immediately fired. Any new generated fact begins the

. :_. cycle again.

Production rule systems, real-time or otherwise, follow the same basic

: _ architecture [SC88] [Ruo88]. Data is received from the environment or a user,

and accepted by an Interface Manager, as seen in figure 1.9. This manager

handles all communications with the environment. Processing incoming data

includes one of the sampling or thresholding techniques from the previous

section, though sampling may be done closer to the hardware level. The

manager c_ alsoprompt for information from a user or sGftware package, a

database for instance. The environmental data must minimally be converted

into data structures used by the expert system, such as facts.

The system considers the new data in the lightof the previously analyzed

data and determines the proper response. The Event Manager determines all

possible avenues to pursue. The Scheduler, in turn, orders these possibilities.

m

i

m

mm

MM

i=.

MM

l

mm

m

m

mw

mm

g

m

13

w

LJ

l

w

w

w

w

t

The Inference Engine reasons about the most probable rule. Upon consider-

ing the rule, new information or facts may be created. These are passed to

the Event Manager directlyor through the InterfaceManager. A necessary

response issent to the InterfaceManager and appropriately directed to the

environment. A common variation isto exclude the InterfaceManager from

receiving data while the current clara !s b_eing analyzed. The manager can be

activated by a timer, a command, or after finishing with the current data. In

many cases, the interface manager accepts data based on a command from

a rule firing in the Inference Engine. A command is issued after the current

data is considered in enough detail to warrant the need for new data.

"_" '_:Event Manager

As stated, the Event Manager determines allpossibilitiesto consider. This

entailsusing allof the factsand activatingthe appropriate rules.As new facts

are asserted, new rules may be activated. There are many variationson the

single theme, the Rete algorithm [For82],described in the following section.

. Matching time isminimized by remembering allprevious matches and partial

matches. New assertionsare compared with the minimum number of rules

•and previous facts. The variations generally tend to alter the amount of

previous comparisons stored. The TREAT algorithm [Mir87] considers the

•Rete algorithm to use too much memory for the increase in performance, and

therefore itsaves lessof the comparisons. Oflazer'salgorithm [LG89] finds

......the twoalgorithms much too conservative, and requires more information to

....be recorded. Although much more memory isused, the performance should

increase.

Matchlng isconsidered to require the most significantamount of process-

ing time, as compared with the other three managers, approximately 85%

[Gup86]. It isalso one of the major obstacles in enabling an expert system

to be interruptable. The system cannot be interrupted while a fact and all

1 itseffectsare being matched to the antecedents of the rules and the previous

facts, this will become clear when the discussion of the Rete algorithm is

presented.

m

_

14

Scheduler

7

The activated rules are scheduled into an agenda, waiting to be firedby the

inferenceengine. The ordering isbased on a prioritygiven to each rule. Some

architectures group the rules in-to-worlds [Fi188]._fl.achw0rldh concerned
T

wlth a differentaspect of the environment. Only the rules in the current

_Wor[dare consideredf0r sc_uling.Thls _¢opic_il d_iscussed below- _

R

W

I

U

Inference Engine

This manager is also fairly straight forward. The first rule, with the highest

priority, is taken from the agenda and its consequences fired. Firing cre-

ates new facts and respondes to the environment. Execution moves to the

• interface or event manager.

_: _ This discussion has concentrated on what is called Data Driven, or

Forward Chaining, production rule expert systems. This means that the

data or facts dictate all of the rules to be activated and fired. In general,

":" this is the appropriate approach for control expert systems. Goal Directed,

or Backward Chaining, is another approach. A goal is determined to be

;i solved, or proven The g0al IS a consequence Of oneormorerules. If the

_o _-'_t_edents of one of these rules is proven true, then the goal is true. The

_' antecedents of all these rules now become goals, and the process continues

_ r_ursively. Goal driven expert systems are often used for diagnosis. Given

information, the system determines why something will not work (the initial

' ' goal). This appears similar to controlling an environment, except the system

is not informed of a problem, it must determine if one exists. Determining

unknown faults is a problem for data driven expert systems.

1.4.2 The Rete Algorithm

The Rete algorithm {For82] is designed to minimize the total amount of

matching time in a production rule expert system by avoiding unnecessary

comparisons between facts and antecedents. The algorithm assumes the

system contains a singleset of rulesand the factsremain relativelyconstant

m

m

uB

m
I

m
i

z

I

R

i

u

u

mm

mm

w

f-
L

w

w

L_

w

r_

m

w

M

15

throughout the course of a consultation. A consultation consists of starting

the system and continuing until finished.

Each antecedent is made up of a number of elements. When compiling

the network, each antecedent of every rule is broken down into its various

elements. By combining similar elements, the amount of matching can be

decreased. The algorithm can be better described by using the example in

figure 1.10. Both antecedents of Rule 1 are similar to antecedents in Rule 2.

Consider the network generated by Rule 1, shown in figure 1.11. The first

antecedent is broken down into its elements: _a n, %'alue _, u?X'_ (assume

a question mark denotes a variable that must be matched). The network

is made a single path begining with "a" and ending with the variable X.

The second antecedent generates a similar path, In this case however, the

X variable must be matched to the same variable of the first antecedent.

The combination of the two paths made by matching creates a join. The

remaining element is then verified, to insure its existence. Upon reaching this

point, the rule is activated. The power of the algorithm can be appreciated

by turning our attention to Rule 2. The first and second antecedents are

already mapped from Rule 1. The path of the last antecedent is similar

to the one created by the second antecedent, except for the last join. Now

the last element of this antecedent (the variable Z) can be joined against its

corresponding element in antecedent _b', after the first join. The sets of

facts that pass the new join activates Rule 2.

At each step, figure 1.11 shows the facts that currently match all of the

constraints.Their addresses,Or indexes,are storedin buckets. Upon con-

sideringthe fact,(a value I) ,the firstelement matches the _a" bucket and

isrecorded there. Itssecond element matches %'alue" and itcontains a third

element. It isrecorded in both buckets. Upon reaching the join, the corre-

sponding bucket from the _b_" path_isempty so no further processing can be

done. The next factalso matches the _a" bucket and isrecorded. Itssecond

element isnot _va|ue', and therefore isabandoned. Fact three is matched

and recorded to the firstthree buckets until reaching the join. There is a

matching fact in the corresponding bucket and the join issuccessful.Now

L

16

m
g

Rule I:

if

(a value ?X)

(b local ?X 7Y)

then

{ fire Rule I)

Rule 2:

if

(a value ?X)

(b local ?X ?Z)

(c local 7¥ ?Z)

then

(fire Rule 2 }

m

l

m

Q_oo_o_
MM

Facts:

_ __'_ i: (a value 1) iv (c local 2 2)

: ,::,. ii: (a local S) v: (b local 1 7)

.:_:_. : : iii: (b local I 2)

...l'r'

- - :z:

Figure I.I0: Example System for the Rete Algorithm

::; both the first (a value I) and third facts _'b local I _) are recorded together,

_ designated here by the set that contains them. The next bucket in the path

: ,: verifies that the "b" fact has a fourth element. Since it is true, the two rules

, ' are recorded in the bucket, and Rule 1 is activated wlth this fact set.

The fourth rule is recorded into all of the buckets that it matches against.

. It is then joined against fact sets in the last bucket, which has activated Rule

- 1. The fact set is considered, and the last element of the _b" fact is joined.

The %" fact is recorded, with the previous set, in the next bucket. Rule 2

in now activated.

Assuming there were no more facts to consider, the rules (scheduled when

activated) in the agenda can now be fired. After firing the first rule, assume

a new fact is created, or rather asserted. Before the next rule is fired, the

fact must be placed into the compiled network. The new fact (b local I 7),

is now matched and Rule 1 is again activated in the same manner as with

the previous %" fact. The path continues to join 2, against %" facts. In

m

l

B
I

g

m

m

mm

m

I

m
u

i

r
b

J

"t"

w

= :

w

m

w

m

imi

w

atom

m

r.- ::i

m

m

activate: Rule I { i, iO}
activate: Rule 1 (_ v}

- activate: Rule 2 { I, iii, iv }

-Rule Ac_ivattons

Rule i: { i. ill }

Rule 2: { i. ili. iv}

Rule 1: { i. v }

Figure I.II: Network Generated by the Rete Algorithm " "

m

m

(

(

18

this case, the latest fact set does not match against any of those recorded in

the other bucket. Now the next activated rule is fired. This continues until

there are no more rules to be fired.

The network created by compiling the rules will fill a given amount of

memory. Each node has a pointer to an area in memory serving as the

bucket. A bucket can be dynamically increased or decreased. The memory

used for the buckets is called working memory. A memory manager must

distribute the available space from one bucket to another that needs it. It

most likely frees the available memory from buckets that were decreased

in size. The freed memory is placed into a pool that can be used for a

bucket overflowing with h_w fact pointers. If:the pool becomes too low,

more stringent measures can be made in freeing memory. If all memory is

being used in the buckets of the network, then the system is in deadlock and

must halt. The memory manager here is analogous to garbage collection

utilities in other systems.

It is evident that the total number of matches is minimized. The network

generation must have a fixed set of rules to generate the data flow network,

the first assumption in the algorithm. The second assumption, a relatively

constant set of facts, is necessary due to a major drawback in the approach.

While asserting a new fact fits nicely into the mechanism, retracting (re-

moving) a fact does not. Upon retracting a fact, all poesible combinations

generated by the fact must be checked and any rules that have been acti-

vated must also be retracted. A large complex network would be unwound,

and the buckets updated. The agenda also has to be searched for the rules

to be removed. If a value in a fact was modified, the previous fact must be

retracted and then the new fact can be asserted. Although the algorithm can

handle a dynamic fact base, it is generally expected to remain fairly static.

Network compiling is not a trivial task. While the network generated by

the two rules was simple, a large number of rules is much more complicated.

The "algorithm defines the type of network structure, but the exact graph

is implementation specific. Each graph may produce dramatically different

results.

D

u

i

m

m

M

m
i

g

i , I

i

z
B

M

l

m

U

h

u

19

f

==_

r .

w

w

r_

w

lo-

w

w

w_

m

m_

w

m

The algorithm possess a more serious flaw when considering a real-time

system. The fairnessgiven to the factsisnot appropriate. All facts(or data)

are given the same weight. An important factcannot preempt the matching

of a less important fact. Before the criticalfact is matched, it must wait

until allpossible combinations of a previous trivialfacts are checked. All of

the later facts must also be matched before any rule is fired.This forces a

controller to execute the largestportion of itstime before any response can

be generated. Therefore the matching of an insignificantfact willpostpone

an important response. The firstsection of the resultschapter shows this

effectas compared to the ICE system. The second section demonstrates the

•._:_:..results of this inefficiency.

_--:-_1.4.3 Working Memory and Garbage Collection

• _:_ Systems using working memory, like the Rete algorithm, reclaim used mem-

ory, garbage collection. Memory must be meticulously search for unused

elements. There are techniques developed to make the job less painful, mad

allow the expert system to control the initiation of garbage collection. Prac-

"" t|ca.lly speaking, memory will be scarce while the environment is in a fatal

state. When the environment is in dire need of a response, the expert system

is forced to hibernate until the garbage collector recovers enough memory

" to continue. This is a worst case scenario, but one that easilyoccurs. A

real-time expert system should be designed to avoid the need for a memory

reclamation facility.
.i

Allowing the factsto be continuously asserted and retracted,the memory

quickly becomes fra_grnente_iT_he decrease in performance due to fragmenta -

tion may be solved with a memory reclamation utility.The time for garbage

collectionisalready very expensive, and increasing the processing time isnot

wise. To compensate for the potentialproblems, an arbitrarilylarge amount

of memory isprovided with the hardware platform.

"Large amounts of data°compoundS memory problem. Asthe amount of

the data received from the environment increases,the need formemory man-

agement also increases.To lessenthe chances of disastrous effectsof garbage

mine

(

2O

collection during a crisis, more memory is arbitrarily added to the hardware

platform. If the increase in memory is inadequate, then more is added. A

particular prototype [HW89] uses 24 megabytes of memory to insure garbage

collecting will not occur at an inopportune moment. By eliminating the need

for a garbage collection facility, the controller has the additional advantage

of being able to more accurately specify its requirements.

1.5 Parallel ArchitectureS

J

m

Ill

I

llJ

Specialized hardware or parallelcomputers tremendously increase the cost

of delivery and do not guarantee a definiteimprovement in performance.

The controller becomes more complex on a parallelplatform and various

contention problems arise.Tasks are scheduled and mana-ged across multiple

queues and computers. Queue contention in a dynamic environment soon

becomes ev]denL

Activated tasks are distributedacrossmultiple computers. As concurrent

: processors are generating new tasks to be scheduled, each processor must

-"• wait for the master queue manager to accept and schedule these tasks.Many

......processing cycles will be lost because of scheduling. SimUarly, a task may

be forced to wait for the resultsof a pending task on another Processor.

Refering to figure1.12,tasks To and T, are needed by task To. Initially,task

'\ _T., needing much processing,isscheduled to run on processor Pt; similarly,

task T_, requiring littlecomputation, issent to P2. Tc isthen scheduled to

run on the third processor. As the firsttwo processors are executing their

respective tasks, P_ iswaiting for tasks T. and Tb to finish.To improve this

scenario, Tc isalsosent to P1 and scheduled afterTo. Since T. requires much

more processing than T,, T. should finishmuch later.IfT, ispreempted or

unexpectedly took a long time, T_ again waits.

Increasing the number of processors also increases the amount of time

necessary to manage and coordinate the system. At a certain point, adding

another processor actually degrades performance. Beyond that point,adding

g

m

w

21

w

n

w

N

j-

m

m

m

E

W

w

n

w

w

\

w

Pro_uors

_ Figure 1.12: Task Dependency and Multiple Processor Example

more processors drastically decreases performance to being practically dead-

locked by processor management. Improving the techniques used in the

controller is a more promising solution to the problem.
3_ "_ -.W el,: • ;2 ":

Basic Approaches

The controller may be distributed across multiple machines. Each computer

is responsible for one aspect of the software: Interface Manager, Event Man-

ager, Scheduler or Inference Engine, each is independent. This approach is

.... a common step in increasing performance and does not have as many of the

_ previous contention problems. Unfortunately the bottleneck of the systems

may not be affected. Production rule expert systems use approximately

..i 8S°_ of their time in thee Event M_aaager, matching facts and antecedents.

If the four managers were on separate computers, performance will not be

:improved by morethan !5_,b_ause the matching process holds up the rest

of the processors. As new data is added, it will spend 857_ of its time in

the computer handling the matting process. The actual gain is lessened

by the additional control needed to coordinate the four computers and the

communication delay, to name only two. Later we will see that network

communications can unexpectedly add minutes to communications delay to

a system that must respond in only a few minutes.

C

_J

22

1.5.2 Contentlon

-v -

Contention may arise as multiple processors access data in shared memory.

As expected, one waits as the other accesses the data. Similar tasks access

similar data, so it is likely that memory contention would arise many times.

Read access does not contribute any constraints in resolving this problem;

however updating the data would. For example, task T4 reads data D_ at the

same instant as T_ requests to update the information. Task T4 reacts much

differently depending on if it was allowed to access the data before or after

Tb. If To wished to update D_ instead, then the final data value depends on

which task was allowed to write last. Not only does memory contention need

to be managed, but much more importantly, truth maintenance becomes a

critical issue.

If a hardware bus is shared by more than one processor (as in many

parallel computers) then contention arises again. A processor may wait to

access data or control communications. The same problem occurs as multiple

processors attempt to access the same device.

":_ _'!Y" "'i C

1.6 Scheduling

Although data may be properly received and validated, the time to issue all

responses will most likely be much more than what is available. A critical

issue is deciding which events and possible responses to pursue. An in-

significant maintenance response may only take a millisecond to issue, while

potential disaster recovery could involve hundreds of milliseconds. The quick

response to the first event is unimportant. It is the second response that is

Important. The difference could be preventing a catastrophe. If the con-

troller receives a report, the response time of the disaster recovery response

is the time to consider. To complicate matters further, it may take Several

tasks (modules) or steps along a path [RSS0] to reach a specific response.

At a given time there will be many possible tasks to perform, and each is at

a different stage in the development of a response.

i
I

mm

I

I

I

g

mm

m

w

u

I

m
I

!

I

u

I

-r"

w

w

w

m

w

!

mw

w

w

L

(
.

23

Fairness, in operating system terms, gives each process (or set of tasks)

an equal opportunity in computing time. However, fairness does not apply

to real-time systems [Sta88]. A non-critical event should not interfere with

the computing of a critical response. Unfortunately, it is hard to determine

which is the most critical event. A path of steps leads to the highest priority

response, but it may prove to be unnecessary. This could be the hardest

aspect of programming real-time software.

Granularity, or size of a task, is as important as schedullng the next

task to execute. Task granularity being too large might waste computing

time by being involved with an unimportant task. On the other hand, very

small steps consume resources because of the system overhead to plan and

schedule the next task to execute. Some systems use parallel processing in

an attempt to solve this problem, but it does not decrease the magnitude of

the problem. Depending on the architecture of the hardware and the number

of processes added, it could actually make the problem worse.

_ Upon processing the data, the software must determine the new tasks to

• :_- be activated and schedule them along with those tasks that are st_ll pend-

ing. While there are many scheduling techniques for a given (static) situ-

ation, dynamic environments are much more complex and requires the use

of heuristics to schedule in a near optimum manner. Time is the trade off

between using heuristics to optimally generate a schedule versus a simple

' _method. While the simple method may not be optimal, it provides much

more time for reasoning. A complex scheduler must also analyze the data

_s: _0 determine|ts importance_G_vi_n_g_prioriti_'to the data-states _d tasks,

may enable a simple method to produce satisfactory results. The scheduling

-_ mechanism also is constrained by the type of architecture used, and will be

presented with the different architectures.

1.6.1 Task Scheduling

TO make a task perform in real-time, many single queue expert systems rely

on improving the scheduling algorithm. Perhaps the reason is the simple

method initially used. Each rule Or group of rules is given a priority. The

24

....:_;:_on the free processor.

_:=-: 1.6.2 Best Guess

..... Time plays an even more integral part of the searching method.

activated rules are sorted by their priorities and merged with the existing

agenda. Variations appear in ordering rules with the same priority, either

oldest first, newest first, or undetermined ordering.

Multiple queues scheduling cannot be generalized as easily. Some systems

give each agenda a priority or range of priorities [Gut88]. The tasks are

placed into the agenda with the equivalent priority. The Inference Engine

looks to the highest priority agenda for a task. If none are present, then it

continues with lower priority queues until a task is found.

Scheduling queues of multiple processors is much more complicated. The

strategy executes the most likely critical tasks in parallel. The sets of tasks

leading to the critical responses are spread across the processors. From

before, figure 1.12 showed Tc requiring the results of Ta _d Tb. So tasks

Ta andTb are each scheduied_d_fferent processors. If there were a similar

task dependency for an alternate response, then its initial task is scheduled

on the third processor. The queues should be dynamic enough to reschedule

the tasks to take advantage of task completions. If all the tasks Tc depended

upon were completed and a processor was free, then Tc is scheduled to run

Here we

consider the data leading down various paths, where each path has a different

response (responses similar to the previous method). A path is chosen based

on the probability of being the best respo_e and the time to determine if the

response can be proven true or false. Using the previous example, the first

operator had two choices: search for the cause or do an immediate shutdown.

He determined it requires too much time to prove the corrective action. An

immediate shutdown was a less optimal response, but could be accomplished

in an acceptable time frame.

• There are two basic approaches designed to respond in a given a_-nount

of time. They are a Best Guess [Kor87][Sor85], and searching based on

the time available [PD88][Kai88]. A set of events invokes various responses

m
I

I

m
W

!

g

i
D

m
m

m

g

I

!

L
b

I

2-

w

w

u

L=L_=

mmm

W

-- =-

i

i

--___:-

i

m

m

u

m
!

--,=

u

25

and one of these two methods are commonly used to determine which is the

appropriate response.

In the course of discovering the optimal response, the controller continu-

ally updates the "best guess". When the allotted time is finished, the system

uses the current (best guess) response. This can be illustrated by an exam-

ple. Upon entering a smoke filled computer room, one operator may allot a

small portion of time for the response and immediately shutdown all of the

-computer systems. Another operator may allot more time to discover the

solution and look for the cause of the smoke. If the cause is quickly found,

it is corrected, otherwise he too shuts down all of the computer systems.

.: : The example shows how necessary it is to correctly predict the amount of

t time to allocate for a response. While pursuing an optimal response, the

-_:-:, environment may become unrecoverable, but responding too quickly may

be ineffective or yield an inappropriate action. It should also be noted that

there will be other important responses that must be determined at the same

time. These other tasks might need to preempt the current path of tasks.

Changing the focus of attention is necessary. By following a path to its

.... Completion, a response to a more critical event may be prevented.

- Reasoning

Time is an important aspect in data analysis. Assuming the data is valid

at the time it was sent to the controller (although faulty and noisy data

__ must also be processed), as time passes, the va[|dity of data may drastically

decrease. The rate may be dependent on other factors in the system• The

actual value may also change m the next moment. Nonmonotomc reason|ng

[Sho88] [MD80] [LR83] is necessary in this Situation. Itinltlally makes some

assumptions (which' include'the _val]dlt_y _of_t_e _data)i but might revise its

beliefs during reasoning about the event. The revision may be because of:

data that follows, decaying data validity, or logic internal to the software.

Monitoring a temperature gauge is a helpful example in explaining this con-
:i. C; i ,

cept. Monotonlc reasoning has the operator record the temperature and

{

C

26

then go to his omce to decide if the machine is working properly. There is no

consideration that the gauge may have drastically increased or is continually

fluctuating. Nonmonotonicity considers the changing value while reasoning.

Temperature increases, or decreases, are an important trend, just as how it

may fluctuate. The knowledge that the temperature tends to be lower at

night and even lower during the winter months, can also put the value or

trend into proper perspective. Temporal Reasoning [VK86] iRA87] [MF86]

considers the aspect of the data changing with respect to time. The order

of events is considered. The order can be sequential or events can overlap.

Event A and B can occur during event C, but A and B may be sequential.

Past events may appear in a different light when new events occur. If the

temperature gauge increases slightly, it might be ignored. However, H"the

machinery suddenly breaks down, overheating is diagnosed based prhnarily

on the previously ignored sensor.

°

1.7.1 Truth Maintenance

The second, more intricate, truth maintenance problem is much harder to

solve. There are three basic methods to handle this situation [WH88]: For-

ward Tracing, Backward Tracing and Dynamically Setting Censors. Given

the example in figure 1.13, assume that Tl started the execution, with T4

and Ts now being the current tasks. If an antecedent of T1 now becomes

false, then the two current tasks need to be deactivated.

In Forward Tracing, the system chases through the paths, setting the

tasks to false until deactivating the current tasks. By giving this function

the ability to preempt all other processing on a single computer, the tasks

can be properly deactivated. This, of course, slows the system down. If the

problem is before a long trivial chain, the critical tasks are preempted for

quite awhile. The importance of the chain cannot be determined from its

root. TI may be unimportant, but it may lead to a problem that can cause

a major catastrophe.

The second method is invoked when a rule is about to fire. Backward

tracing checks the antecedents of all the rules leading to the current one.

mm

mm

I

W

mm

m

mm

mm

mm

mm

mm

m

mm

m

b

mm

27

=

i

J

v

i

f
r

i

i

m

m

L

u

u

Figure 1.13: Example of Task Dependency

In cases where a response must be issued immediately, backward tracing

is ignored. While this may produce an inaccurate response, it is the best

choice within the given amount of time. To further enhance this approach,

both methods can be used simultaneously. Forward tracing isnot given the

ultimate priority,itshares the processing time with the tasks. As itmoves

down the path to the rule to be fired,backward tracing moves in the reverse

direction. Rules that are no longer valid are determined much faster,with

the combined effort,

The preceding approaches to truth maintenance take time and are very

cumbersome. Matching occurs again and again. Dynamically setting

censors [MW86] [Had86] overcomes thisproblem, although it is not as ac-

curate. As a rule fires,a particular censor may be set. If the rule then

becomes invalid,the censor is updated. Rules farther down the path check

the censor to determine the validityof the precesding rules. The censor could

also be represented as a fact.A sensor value may initiatea reasoning process

and also serve as the mechanism for validityof pursuing the problem. While

the sensor is in an abnormal state,the event should stillbe explored. The

accuracy of the method is entirelydetermined by the censors choosen, and

even then itmay not be valid in every circumstance.

Tracing is geared for finding incorrect rules. A rule that is no longer

L

h

28

valid can be proven much faster than an invalid one. Censors allow the valid

responses to be generated in the least amount of time. A censor is analo-

gous to checksums used to determine data validity on a hardware platform.

The checksums do not ensure that the is perfectly correct, but give a high

probability of accuracy. The censors represented by the data from the envi-

ronment are already present in the DataTabl _. 0th_er censors can encode a

much more complicated value, these are placed into the System State Table.

The approach can be seamlessly added to a system designed with the ICE

System architecture.

"'-': :_r

J

lpm

m

Ilm

m
m

m

mm

m

V

Ilm

m
m

IBm

i

m

El

mm

OR|_N_L PAGE IS
OF POOR QUALITY'

m

==
m

m

=

Chapter 2

u

=

=

Related Work

2.1 Parallel Implementations

When discussing real-time software, high performance is always required.

Unfortunately current technology is unable to perform satisfactorily in a

complex environment. Lockheed is developing one of the most well known

real-time expert systems, Pilot's Associate [LG89] [LP87]. It is comprised of

:4 a Digital Equipment Corporation VAX-11/780 networked, via ethernet, with

L three Symbolic Lisp machines (more computers are being considered). The

..... performance of the system is shown in table 2.1, with response times on the

: order of hundreds of milliseconds. However, this is reported as two to three

-_;J_is orders of magnitude too slow. A clear solution to the performance problem

: _1_ is not clear, and it is hoped that the addition of more processing power will

• ;. _help. Another approach is improving upon one of the techniques used in the

_::: system, task scheduling for instance.

m

Objective Response Time

Pilot Modeling 450 msec

Determining Pilot Intent 50 msec

Defining Threat Objects 100 msec

Assessing Target Value 500 msec

Generating Plans 450 msec

Table 2.1: Performance Requirements of Lockheed's Pilot's Associate

k

29

= ,
i

I

3O

(defrule RuleName "comment string"

(first antecedent)

(other antecedents)

(first consequence)

(other consequences))

U

m
i

i

m

mm

Figure 2.14: Rule Structure Used in the CLIPS Expert System Shell.

2.2 Production Rule Expert Systems

2.2.1 CLIPS - INASA's Expert System Shell

:_, NASA developed the C Language Production System, CLIPS, [GR89]

- [Gia87a] [Gia87b] to provide a forward chaining production rulesystem based

. on the Rete algorithm. It is designed to be a low cost, highly portable plat-

s: form to develop and deliver expert systems. The low cost is accomplished by

,_:_Z_" developing the shell internally, thus eliminating profit margins and subsidiz-

.iv - |ng the development costs with NASA funds. Easy integration with external

systems is the third design criterion, enabling it to be embedded in appli-

cations. Although the previous section describes the matching algorithm,

there are a few other points that must be mentioned.

The example from the preceeding section demonstrates the fact structure

used in CLIPS. The rule structure is very similar, as can be seen in fig-

ure 2.14. Each rule is delimited by defrule and must have a unique name.

The arrow (=_) separates the antecedents from the consequences. The an-

tecedents are matc_ecl against the fact'vase. Each consequence performs

some kind of action. The action could assert/retract a fact, interact with

the user or perform a user defined function, to name a few.

Each rule has a priority, but most use the default of zero. The priority is

used to schedule an activated rule into the agenda. The rules with the same

priority are scheduled as last in first out, a LIFO queue.

ms

u

l

i

• s-.

I

mS

m

I

s

i

u

m

E=

F_w

f-

m

u

m

_x

31

By carefully organizing the antecedents of the various rules, different ef-

fects can occur. If a rule is intended to process only one of a group of facts,

the antecedent order would determine the order of the rule activations. If we

further assume that the first rule fired would deactivate the other rules, then

the antecedent order is very important. Consider the example of deciding

on a formal outfit. If first you choose the tie to wear, then the rest of the

apparel is limited. However, deciding a shirt would reversely limit the ties

that can be worn. In choosing a tie to wear, a number of possibilities arise,

and each would activate the rule. After firing one of the rules, the tie is

selected and all of the other rules are deactivated.

2.2.2 TREAT

The TREAT algorithm [Mir87] was designed to increase the performance of

the Rete approach, by improving on the method used to retract invalid facts.

The Rate algorithm saves all of the successful joins in buckets throughout

the network. Retracting a fact must traverse through the network for all

the possible matches the fact may have. TREAT does not save all of the

comparisons. The facts are initially separated and stored. The matching

process proceeds in the same manner, but only the end results are saved.

An example can demonstrate the approach. Figure 2.15 shows a network

created by the Rete algorithm. By adding another fact, A2, to the network,

the results are shown in figure 2.16. As can be seen, it moves to the first

join and is compared to the three 'B' elements. The successful matches are

compared to the 'C' facts in the second join. When removing the fact, the

system traverses the network removing all instances involving A2.

The intermediate buckets are not saved in the TREAT algorithm. The

example of its network is shown in figure 2.17, only the initial and final re-

sults are stored. When adding the fact to the system, two steps occur. The

first generates a network for that fact in the same manner as the Rete algo-

rithm, shown in figure 2.18. Figure 2.19 represents the state once matching

completes, the intermediate steps are lost. A simpler process occurs when

removing the fact, figure 2.20. The fact is removed from the initial 'A'

C
32

m

(A 1)
(C,3)

_ [• ._ -.= -

Figure 2.15: An Example Rete Network

m

t

i
E

I

m

m

m

i

m

hm

m
J

m

f

ORIGINAL PAGE I_

OF POOR QUALITY

m
m

u

m

u

33

=_ _

w

r

w

_ :,. .
w

w

m

m

L
r- _

(A I): (B12): (C2)
(A2);(B2 3);(C3)

Figure 2.16: Adding a Fact to the Rete Network

mz_

ORIGINAL PAGE IS

OF POOR QUALITY

34

m
m

!o oiiool(s 3) 3)
(s 2 4)

m
mm

i

I

RESULTS: I (,4 I); (B 1 2); (C 2) I

I

lib

Figure 2.17: Example TREAT Network U

bucket, and the results are search for an instance of the removed fact. The

appropriate results are removed and the network returns to its original state.

The amount of matching necessary to retract a fact is drastically de-

creased. Memory is not needed to save all of the intermediate matching

stages, so it too is decreased. The flaw in the method is handling new facts.

A new fact requires matching to occur again. Consider a new 'C' fact is

added to the example system. Not only does matching need to occur, but

|t must ako backtrack to discover the previous matches. The matching time

for new facts is considered to be decreased by converting the algorithm to a

parallel machine.

Before leaving the discussion on the TREAT algorithm, the reference pro-

rides results of comparing it to the Rete algorithm. Three of the results are

presented here in figure 2.21. The bars have been normalized to the Rete

algorithm. The black represents the matches necessary for adding facts, and

the white refers to the matches necessary for removing facts. _I'1" and "T2"

refer to two different searching strategies used by the TREAT implemen-

tations. The first uses lexical order when searching, while the second uses

seed-ordering. The three benchmarks are briefly described as:

mm

Mm

m

m

m

i

mm

ss

r

"T',

35

= :

m

w

(C2)
(C3)

RESULTS: (A2); (e 2 3); (c 3) I

I (A1):(B12):(c2) i

. =

m

Figure 2.18: Adding a Fact to the TREAT System

E

36
U

U

i

m
u

l

!_'_] "!_'__,_ Icc_

:=_ RESULTS:

!-

I (A1):(B12): (C2) I(A2):(B2 3);(C3)

tab

n

u

U

m

Figure 2.19: Updated TREAT Network, by" Adding a Fact

IIIBI

g

m

I

m
u

IB

mi

i

3T

E
w

-- .

i

m

iiil

o.

==

iiii

i

i

A

I

.....I_')l
- :- o

i°,oliooj(at_ (c3)
_24)

..._ ;:. ,,, -' .-,
II II • IIII_II IIIIIIIIiIIIIIIIIIIIII IIIIl||IIl

DELETE

.FACT-- I (A2)IPARTITION
IIIIIIIIIIiIIIIOIIIDIIIIIIIIIIIIIIlllliilliiiiiiiiiiiiii

RESULTS:
• T " I

I (_').(.,_),(°_)I
IA !_1. 41_

...... ! Figure 2.20: Removing a Fact from the TREAT System

IW

E_

E

<

38

U

i

1.5

1.0

0.5

l

IS

BIB

m

lib

...... R T1 T2 R T1 T2 R T1 T2

MAB WALTZ MAPPER

}

Figure 2.21: TREAT Results

i.=,.

1. _ - 13 rules with 34 antecedents - the familiar monkeys and bananas

problem [Bea85].

2. WALTZ - 33 roles with 130 antecedents - performs Waltz constraint

propagation [Win79].

3. MAPPER - 237 rules with 7Tl antecedents - assist travelers using

public transportation in Manhattan, New York. The system contains

moet of the bus and subway information.

These results may be encouraging for using a Rete-type algorithm on a

parallel machine, but do not overcome the problems of using this approach

39

for real-time systems. All of the facts are stillmatched activating allthe

rules to be fired,including those for the insignificantevents.

w

F.-

f-

ro

w

w

m

w

L__

2.2.3 YES/MVS

iii! _I_1 .

YES/MVS [Gea84], Yorktown Expert System for MVS operators, I isa con-

tlnuous real-time production rule expert system to continuously maintain

a large IBM mainframe. The system is to dynamically maintain the main-

frame by adjusting internalprocessing parameters to prevent a system crash.

While monitoring the computer, itisalsocapable of analyzing performance

and make recommendations. An experienced operator can perform these

" tasks, such operators are hard to come by and are not always available.

--: The system, shown in figure 2.22, is networked to the mainframe in

question so that |t can run as independently as possible. The MCCF, MVS

: _ Communications Control Facility, receives the filtered information from a

• separately developed facility called the CCOP. This external utility handles

.. i: all direr, communications with the mainframe being monitored and filters

; the messages for the expert system. Upon receiving the data, the MCCF
--]|

i '_!"_: alters the format into a fact structure.

The Operator Interface provides an operator with status of the mainframe

and makes recommendations. The operator can then approve or cancel the

re_:ommended actions. If canceled, an explanation is requested. Other com-

mands can be given to YES/MVS to send to the computer; an explanation

would also be expected. The purpose of this module is to enable the operator

to validate the expert system. Once a type of action is certified, YES/MVS

would automatically carry it out. After proving the operation of the expert

system, the operator interface would be removed.

The heart of the system is the Expert Machine. OPS5 [Bea85] is the

architecture of this module. The software was ported to the IBM com-

puter in Lisp, with some interesting enhancements. Other improvements are

presented as YES/OPS [LT86]. While modifications have been made, the

tyES/MVS was developedby the IBM T.J. Watson Research Center in Yorktown
Heights,New York.

m

dO

m

mm

l

u

CCOP

Subject
MVS

Machine

Expert
System

- , Figure 2.22: Architecture of YES/MVS

Operator

lib

qlm

BE

m

Elm

mm

m

i

im

m

1ira

rI

_ r

L .

w

E

f

l

u

r _

,=.

m

41

architecture follows the previous discussion,including using the Rete algo-

..... _ithm. These enhancements point out furtherdeficienciesand solutionswith

using the Rete algorithm in a dynamic environment. However, some of these

_ .problems can only be partiallysolved.

When reasoning in a real-time situation,a plan willgenerate several re-

_ sponses that must be sent to the environment at specifictimes. On several

computers, one can be dedicated to handling this,but the problem had to be"

solved on a singleprocessor. The resultwas a new consequence command,

• TIMED-MAKE, and a Timer Queue. As a rule generates a command

:.:_._or_otherassertion, itcould either be immediately sent to the environment,

asserted or placed in the timer queue with the TIMED-MAKE instruction.

, _ The command, time to execute, and other parameters would be placed into
_t.,L Jt -

,,-....the timer queue. At the appropriate time, it would be asserted into the

fact base. If itwas a command, a rulewould be activated to send itto the

environment.

..... Rules in the system are each given a priority and are associated with

a task. The task also possesses a'-priority.When deciding the rules to

=._.:,be scheduled, and executed, the rules in the highest priority task would

:_ :_:be considered first.These rules would then be ordered by their individual

:_ ,,..priority. In this way the system can easilychange its focus of attention,

:: _while limiting the number of rules to be focused on, To further enhance the

....performance of the system, the consequences of each rule are also compiled,

__._;:_ !sdone in OPS83 [For85]and YAPS [AI187].Functionally the consequences

: are not changed, they are just not interpreted.

....-o_:_ There have also been changes to matching of antecedents in the rules.

Modifying a fact isone of the most glaringinefficiencieswith the Rete algo-

......_ r!thrnin a dynamic environment. A sensor value changing firstretractsthe

previous fact containing data and then assertsa new fact with the current

value. Rules that do not use the element of the fact that is being altered, •

.....wo_Id be deactivated and immediately reactivated. YES/OPS allows facts

to be modified. The process would follow the path of the invalid fact until

reaching the bucket of the altered element. Parsing continues removing the

rl

C

(

42

fact index from buckets that use the previous element but cannot use the new

value. Rules that were activated by these-are now deact, i_'ated. However, if

the new value is also valid in the bucket, then nothing is changed. All of the

rules that may be effected are left activated. The new value may also follow

other paths and activate new rules that were previously not used. In this

manner, there would not be any unnecessary deactivations or activations. A

point to note is a side effect produced in the original method, by deactivating

and then activating a rule. If rules A and B have the same priority, then the

newer rule, A, would be scheduled ahead of B, the older one. Now if B is

removed and scheduled because of a modified fact, B would now be younger

..... than A. The order of the two rules would be reversed in the agenda.

, _ While matching the antecedents of a rule, a searching method could be

_ useful. A rule may select the highest, or lowest, value of certain sensors. The

original algorithm would compare every fact to every other, searching for the

extreme case. YES/OPS has implemented a mechanism to perform this type

of search. The set of facts being considered is defined and the maximum or

' .-Ji minimum would be returned.

;.: The ordering of the antecedents in rules could impose redundant com-

: _! parisons. Consider the first three rules in figure 2.23, each letter refers to

_L. antecedent. In Rule 1 and Rule 2, the 'a' and 'b' are mapped together as

; one. Unfortunately, Rule 3 cannot take advantage of the fact that its first

• : two antecedents, 'c' and 'd', cannot be mapped with those in Rule 1. The

_. reason follows from the discussion of the Rete algorithm. The data flow

network would be created by parsing each antecedent of each rule, one at a

time. Antecedents 'a' and 'b' would be matched, and their results are used

to match the last two, 'c' and 'd'.

The antecedents can be defined in the YES/OPS system by the last three

rules in the figure. Here we specify that 'c' and 'd' should be mapped in-

dependently of 'a' and 'b'. The results of the two mappings would then be

joined together. In this way, Rule 3 can take advantage of the matching

caused by Rule 1. The method follows the philosophy of the Rete algorithm,

it is only building the data flow network that differs.

mare

D

m

r

w

• Jm

im

m

43

Antecedents of Rules in OPS8

Rule 1: IF a. b, c. d THEN

Rule 2: IF a. b, • THEN

Rule 3: IF c. d, f THEN

Antecedents of Rule in YES/OPS

Rule 1: IF a. b, (c, d) THEN

Rule 2: IF a, b, • THEN

Rule 3: IF ¢. d. f THEN

•, -,-- . .;

Figure 2.23: Antecedent Matching Problems in the Rete Algorithm

w

w

f

w

w

I

i

The problems with garbage collectionsystems have been brought out

before. Any system using the Rete algorithm must provide some utilityto

handle these problems. It isdone here by defining a task of three rules that

_ Would initiateand execute the garbage collectingprocesses. That task would

receive the lowest priorityso that itwould not interferewith any._;her task.

......When the system has no tasks to evaluate, the focus of attention would

turn to garbage collection.A rule would initiatethe process, and another

would actually carry the process out. The third and lastrule terminates

memory reclamation when finished.This task would be preempted by any

other activated task in the system.

The approach should proceed smoothly with enough memory, and the

ability to quickly respond to allof the data. A criticalevent occuring in

the environment, would generate many alarms. These alarms would literally

flood the controllerwith data. Even ifthe controllerwere _ble to respond

immediately, the effectof the response would be delayed as the environment

carries out the command. While thisisgoing on, the controllerwould con-

tinue to be flooded with data. YES/OPS could be deadlocked ifthere were

any task to be executed (otherthan garbage collecting)and no working mem-

ory available. The highest prioritytask could not execute, because of the

lack of availablememory. The garbage collectiontask would not be executed

44

because it would be scheduled to run after the current task.

The deadlock would be solved by allowing the garbage collection task

to preempt any other task, if the available working memory was below a

certain value. However this would greatly delay the response time to the

critical event. Assuming that the amount of information is proportional to

the severity of the event, then the memory reclamation task would be most

likely to preempt the most critical tasks. To make matters worse, the task

would have the most to do when it preempted the other tasks, and therefore

take the longest time. To aid this sitUation, after interrupting the system, the

garbage collection task could continue until reclaiming a specified amount of

memory and then returning to its dormant state. This last approach would

only lessenthe harmof garbagecollection.

T_:_ _ _ . _ _ - _

2.3 Blackboard Systems

Data processing and response has always been the primary aspect in dis-

cussing real-time expert systems. Production rule expert systems using a

data driven, or forward chaining, engine follow this kpproach. Blackboard

architectures follow a similar approach and are also used in developing real-

- ._

..._ time systems [CH87].

._.: ,_A blackboard is the common area for information, but there are specific

sections where the information can be posted. A problem would be broken

down into loosely coupled subproblems, and each of these would be a section

in the blackboard. In general, sections are ordered into layers, constituting

intermediate solutions to the problem. Tasks are associated with each sec-

tion, or rather, information within a section. A task would be a specialist

in the section it was associated with and also be independent of the other

specialists. While it may need information from another section, the actual

operation is independent. In blackboard terms, these tasks are known as

KS or Knowledge Sources. A KS can alter the data, post new data into the

section, or post new data into another section. When new data is posted

into a higher layer, the current layer is said to have provided a solution to

m

g

m

45

/
D

w

m_

--4
W

\

w

//

Figure 2.24: Koala in its Natural Habitat

its subproblem. The higher layer would use this solution in determining an

answer to its sub-problem. Flexibility of the architecture allows a KS to be a

procedural component or a set of ruies.°A controller mechanism is necessary

to determine which KS should be activated.

..... An example will be used to describe the architecture in more detail. Con-

sider the problem of finding and cla_i_ing a koala [CH87!. The koala has

= specific physical characteristics and habits. It has the basic look of a teddy

::"=_ bear, the four limbs, head, their orientation, etc. Figure 2.24 shows the

__" _'particular look of the koala in !_ norms! habitat. T.he koal _ prefer to sit

_ :i in the crook of branches and move up or down the tree depending on the

: 'time of day. When lookin_l for one of the little animals , an observer would

_s explore an area where they have been seen and look 30 to 50 feet in the

trees. When seeing an animal, the observer must then classify it as a koala

or not. While only a few would take their computer along and look for any

animal in the trees, the problem is simple and can illustrate how blackboard

_ systems operate.

The blackboard would be divided in the manner displayed in flgure 2.25.

The top layer determines if a koala is in the scene. The lower layers determine

aspects of the animal. , The poin_ in the area represent information in a

section, while the lines show how a KS uses one fact to determine another.

The di_erent KS illustrate how new facts can be created from information

of a section. The new facts can be in the same section, as in the Color KS

46

C

L

Blackboard Knowledge Sources

Koalas

Torso

Umbl

Regions

.....
Body KS

........... I Color KS

Figure 2.25: Basic Blackboard Architecture

or into a higher level, as in the Leg KS. When looking into an area of a

view in the forest, a partial shape of an animal can he extracted by color.

": A patch of color can be distinguished as separate from the trees, and then

.r_: associated w|th the: animal in question. If a patch of the right color and

': corlehtatlon is determined, a specialist would place the information into the

_J' _' leg section. This new information would be processed and determined it it

_ "_ indeed was a leg. The figure subtly shows how the different sections and KS

: _ are |ndependent. The body specialist does not have to know how the arm

_; specialist determined that something is an arm, the fact that it is an arm is

...... enough.

Now that the basic functioning of the blackboard is seen, the question

arises on how a KS is activated, and which one should be executed tint?

Each specialist knows how it contributes to the solution of the problem and

what information is needed for it to be useful. A KS can be considered as

a very large rule, and its antecedents (pre-condltions) must be met before it

is activated. Controllers are added in figure 2.26 to our previous example.

The dotted lines refer to the flow of information, while the solid lines refer

to the flow of control. The controllers monitor the new data entering the

J

i

m

i

I

g

g

g

m

i

m

m

gm

m

m

i

47

w

w

%._
w

u

ram.

w

Blackboard Knowledge Sources

I Control

KS

Figure 2.26: Blackboard with Controllers

blackboard and also the KS being executed. This information is then used

.. in determining the plan of action.

In determining the solution to our problem a control plan would provide

...... the basic direction to pursue. Based on the current information in the black-

board, a specific subproblem may be addressed. On the other hand, a new

_ piece of information may influence the plan to change direction. From our

example, the plan may suggest looking for anything that does not resemble a

tree. Upon spotting a patch of color, the plan may be directed at analyzing

the color or determining if it be]0ngs to the head, llmb or torso of a koala. A

new direction may be decided upon based on the KS currently being used.

While the color may influence the color KS to be activated, the color KS

..... could then influence the control plan to include the leg KS. When working

on one particular aspect of a problem, other aspects may naturally follow.

If a new piece of information is the reason for the next action, then a

KS is chosen to process the data. Once chosen, the information and the KS

are instantiated, paired, and_ex_uted. _This is known as event-centered

scheduling. Determining if a black spot was an eye of the koala would be

an example.

f--

48

When a KS isthe cause of the current plan, an information objectmust be

selected _i_ _ontext. The two are|nsta_iated using knowledge-centered

scheduling. After deciding the black spot was indeed an eye, now we can

proceed in trying to decide ifthe area around the spot isthe head.

Both the new information and a KS may provoke the scheduler to choose

them. In thiscase, the scheduler would instantiatethe data as the context

of the KS and proceed. While looking for the head, ifa leg was seen, then

we could proceed in searching for an arm or the torso.

J

i

U

m
U

D

m

2.3.1 The Guardian System

The Guardian system [HS89b] [WH89] isa typical example of a blackboard

architecture being used as a real-timesystem. The purpose of the system Is

to monitor patientswho have recently had major surgery on one or more of

....,...theirvitalorgans. Life-support systems provide the fundamental function of

the failingorgans. The machines must not only keep the patient alive,but

also allow the person to be weaned from the device. Ifa patient uses a life-

support system for too long, the ailingorgans willnever recover. Guardian's

mission isto adjust the llfe-supportmachines to the patient'scurrent needs,

while following the weaning plan. Each patient would have his or her own

unique complications,so Guardian must be aware of general care and of the

_patient in question.

Each life-supportand patientsensor (totalof fifteen)ispolledevery twenty

seconds. Two example sensors are breaths per minute and gas pressure. Lab

test data is given as another fivevalues. The lab tests are requested by

Guardian, and afteran appropriate amount of delay,the|r value _ returned.

Guardian would present a user with the current scenario and advice on al-

tering parameters of the life-supportmachines. While Guardian could run

autonomously, itcurrently only provides advice.

The platform ofthe system coversseveralTI Explorer Lisp machines, each

With a unique function,as can be seen in figure 2.27. The lowest levelma-

chine simulates the environment, thiswould not exist in a realscenario. The

next processor provides the interfaceto the environment. It transmits the

.m

g

ms

w

I

49

'v-

u

w

w

w

w

t,.

commands, and accepts and preprocesses the data, by the variable thresh-

olding method mentioned earlier. The communications processor handles

the coordination of incoming (preprocessed) data and outgoing commands.

The commands may have already been issuedand held untilthe appropriate

time. The reasoning mechanism isthen freed of the task of managing the

already planned responses. The Lisp processors for the user interfacespro-

vide a detailed plcture of everything going on in Guardian. This includes the

internal perspective of the environment, the current plan, possible solution,

etc. Each user would only be presented with the appropriate information on

their individual work station. The remaining processor isthe major concern

here. It is the reasoning system, which has been adapted from the dy-

namic control architecture [Hay85] implemented as BB1 [CH87], blackboard

architecture. With the processed data, the reasoning system determines a

plan to analyze the data, does the analysis,and responds in a timely fashion.

The reasoning system has three major processes,the Agenda Manager,

Scheduler, and the Executor. These followthe basic blackboard strategy

presen_d in the previous Section. The events include the data from the

environment and the information generated by the reasoning process. The

Agenda Manager analyzes_the new information and provides an agenda of

possible operations. The Scheduler in turn uses the current plan of action,

or control plan, and determines the focus of attention, the next operation.

The Executor would execute thisoperation and generate more events. These

events include alterlng the Current control plan. The average time of one of

these cycles isfifteenseconds, based on running the system over a forty-five

minute run.

The control plan includes the aspect of the environment Guardian iscon-

cerned with and the reasoning process to use. Associative and Model-

Based Reasoning are the two basic mechanisms. Knowledge base reason-

ing would be used by the firstto quickly provide a response, on the order of

seconds. A designer would spellout the method to determine the cause of

anticipated events and appropriate responses. This issimilar to production

rule systems, except here the reasoning is not very deep. It is intended to

F

5O

f.-

(

= .

Reasoning
System

i

W

I

BB

m

lib

BB

m

IB

lib

IB

Elm

Figure 2.2"/: Architecture of Guardian

m

D

E
U

I

51

m

m

l

Tr

m

provide a fast response to an immediate problem. Model-based reasoning

would require much more time, on the order of minutes, and attempt to

determine the cause of an unknown event. This method compensates for

unfamiliar problems and can also be used to correct previously wrong asser-

tions by Guardian. The approach would be more appropriate for problems

requiring a long term plan of action.

Guardian distinguishes between reasoning about the environment and de-

..... °t_e_rmining the control plan. The two are interleaved so that the system can

take as much advantage of the current state of the blackboard as possible.

The control plan may use either an associative or model-based response, or a

combination of the two. In this way the system has the capability to respond

__ very fast while also being able to consider the whole environment over time.

Depending on the reasoning process being used, various aspects of the

knowledge base would be used. Because of this, the knowledge of the envi-

ronment iS modularized into three types: Reasoning, Domain, and First-

principles. The first, reasoning knowledge, contains information on the ac-

_= tual reasoning processes and the vambus options available to a control plan.

":_! This would present the case for one of the reasoning methods. Associative

_:: reasoning uses the domain knowledge to determine a problem in the envi-

:J_'_ronment. The domain also handles the specific environmental information,

like the breathing rate. The basic model of a general environment would be

_ :placed into first-principle knowledge. It is the text book scenario of how var-

ious aspects of the environment operate. This is independent of the specific

case, but can provide a model for the corresponding environment. By mod-

ularizing the knowledge in this manner, a module can be altered to better

serve its function without affecting the rest of the knowledge base. Another

...... reasoning scheme can be added to the system without affecting the domain

and first-principle knowledge.

Guardian provides a promising direction for a real-time expert system

_chitecture. The system contains task planning over time and data com-

pression mechanisms. The parallel platform allows]nterruptability and sim-

plifies the design of the various processes in figure 2.27. Unfortunately, the

(

52

computer network also provides transmission delays, reaching into the or-

der of minutes [WH89]. These delays occur because of unforeseen network

communications. Network transmission, no matter how fast,also slows the

changes to data thresholding. As the reasoning process isoverrun by new

data, the change to limitnew data willnot go into effectimmediately. Con-

versely, as the system can process more data, a delay would occur again.

Some reported aspects of Guardian, such as model-based planning, have not

yet been implemented. Other properties,such as temporal reMoning, are

deemed necessary although have not been addressed.

Commercial Real-Time Expert System

Shells

There are several expert system shells that are marketed as being real-time,

but unfortunately this is more of a sales ploy rather than a reallty. A typical

..... 'production rule expert system is OPS-832. The company boasts third-party

.... benchmarks showing OPS-83 running faster and in less memory than other

:'_'_he.ding expert system tools. Compiling the consequences_ pf the rules does

increase the speed of the system. It is not reco_ended for autonomous

control, rather it is meant for traditional consulting systems and as an aid

_' to operator monitoring. Although it may be faster than many of the other

products available, it is not real-time.

2.4.1 Gensym's G2

The most well known real-time expert system shell in the United States

market isG2 (Wo187], by Gensym in Cambridge, MA. The product appears

to be geared toward process engineers, rather than _computer engineers. It

enables the user to create a model of a real-time environment and simulate it

aOpS-83 was created by Dr. Charles Forgy, who worked in the development of Digital

Equipment Corporation's OPSS. It is a product of Production Systems Technology, Inc. in
Pittsburg, PA.

m

Jlg

II

i

.am

Im

am

m

i

R

m

m

G3

s"

: =

E_

E_

ram.

L

in non-real-time. It also has many built in capabilities for creating impressive

graphical prototypes of controllers.

The user defines objects to represent various aspects of the environment

using an object oriented approach. Before continuing with this package, a

brief description is necessary on the standard object oriented environment.

A class has a description of the attributes and methods, functions. Objects

|n a class all share the same types of attributes and methods, but each can

be tailored. For example, a class may be a model of automobile. One of

the attributes may be the color of the body and a method could be its

accelerating capabilities. An object of the class could be a black car. If

the black car is accelerated for two minutes, it is said that the method,

i" _accelerate, receives the message accelerate for two minutes. It then responds

....._-_with a given speed and distance. Another object in the same class may be

red and/or accelerate slower.

: : __ These methods can be defined using heuristics or in a more traditional

approach. Rules are associated with a class of objects and may also be

="; associated with related classes. The system focuses its attention on a class

-'_ of objects or a problem type (although the distinction is unclear). Rules

/'_/are inferenced in a data-driven, forward chaining, approach. Although the

: literature gives the option of backward chaining, goal driven, It is most likely

, ° done by defining the rules in a reverse manner. This same technique, and

sales pitch, is common among commercial expert system shells. The data

received by the system is time-stamped and the period in which it is valid.

The system can also schedule alarms at various intervals. These intervals

are based on number of seconds, and there is no guarantee when the task

will be acted upon, only that is should be scheduled at the given number of

seconds.

The software is targeted at a very high level. The system assumes that

there would be low level controllers to compensate for the performance lim-

itations. It also appears to be more of a process monitoring system. Rather

than autonomously control the environment, it would present a higher level

description to an operator.

\

54

The software does enable an engineer to prototype a real-time expert

system and simulate the test environment. The graphics capabilitiesalso

present an impressive demonstration. The software would be very usefulin

specifying the requirements of an autonomous expert system, and perhaps

simulate the knowledge base using itsmodeling capabilities.Itwould be even

more usefulto internallysellthe concept of a real-timeexpert system. Even

though the product can be used to specify and sellthe concept, it would

probably not meet the demands of controllingan environment.

2.4.2 NEMO from S_O

The Paris,France company $20 isnow marketing theirproduct in the United

States. NEMO ismeant to approach the solutionof real-timeexpert systems.

It generates decision support systems that can possess some of the aspects of

a real-time, similar to G2. The product has many built in graphic capabilities

and is useful for high level monitoring. Temporal and nonmonotonic reason-

ing can be embedded intothese rulesand compiled intoa tree-structure.The

inference engine operates by forward chaining through the groups of rules.
;:gtl;.#_

The product also has primitives to build user interfaces,access databases,

and perform data acquisition.Although itmay be satisfactoryfor the types

of solutions itisbeing marketed to, itcannot autonomously control a com-

plex environment.

m

I

_m

_==

m

i

J

m

I

mm

i

i

m
i

ms

Itm

i

Chapter 3

r ,

y

L_

i

w

L_

(

ICE System

3.1 Design Principles

The primary goal of the ICE System, Interruptible Control Expert System,

is to design a production rule expert system architecture for control while

maintaining a practical approach. Minimizing the response time of the most
.r :

_ _¢ritical event is of utmost importance. As we have seen in other systems,

a more general architecture was used and the rule priorities guide the sys-

tem toward the critical events. Systems based on the Rete algorithm will

"' generally minimize the response time for all of the events, including the less

_important ones. Minimizing the response time of the most critical event was

...... des|gned into the architecture of the ICE System, at the expense of the less

- important responses.

• The ICE System follows a different matching strategy. Instead of mini-

mizing the total number of comparisons, it attempts to minimize the corn-

: _ p_is0ns before responding to the most Critical event. The approach assumes

the more vital the response, the less available time. The usual approach min-

imizes the time for all of the responses.The first response is actually issued

later, as can be seen by the results. For a given set of responses, the ICE

System responds much faster to the initial responses, but the last responses

may be slower. The results show that the other enhancements to the system

increase performance to the point where all responses are issued much more

quickly.

The design allows the envir0nment tO interrupt its operation. Interrupt-

ability was deemed necessary for a Controller to be able to quickly respond

to the environment. One or more alarms will generally indicate a fatal event

in the environment and the expert system must immediately be made aware

55

(-

56

of the situation. If" polling the environment, the sampling rate is added to

the response time of the controller. Even if a polling controller was able

to immediately respond to an event, the environment does not receive any

commands until the expert system requests the information. By allowing

the alarms to preempt the current reasoning process of the expert system,

the response is issued that much faster. The time difference may be the

difference between a valid response and a catastrophe.

While striving to minimize the response time, practical issues were al-

ways kept in mind. An autonomous expert system controller is active for

an extended period of time. ICE can run continuously for any period of

...... time, as long as the hardware platform is running. To insure continuous

-_ operation, working memory was not a design option. When using working

memory, there is a point where the amount of free space must be increased

. and a garbage collection utility is run. The memory reclamation places the

controller off-line, unable to respond to environmental events, or at least

..... delaying the necessary reasoning process. In a critical situation, the expert

system will be bombarded with data from tl_e environment. When decid-

Ing the proper response, memory may quickly become a premium. Garbage

_£: collection is used to recover memory. In this situation, the response time

dramatically increases.

A fixed memory size leads into the next design criteria, deliverability. To

overcome the above garbage collection scenario, some systems use specialized

_.___. hardware and massive amounts of memory. Neither may be necessary or able

. to satisfy the control requirements of an environment. Fixing the memory

size and using a single processor were considered the hardware platform of

choice. A large amount of memory may be necessary, but a ceiling can be

placed on the system requirements rather than an arbitrarily large size. The

single processor was adopted because of cost considerations and portabil-

ity. Before designing a massively parallel architecture, a more general, and

cheaper, processor must be considered. If the performance is inadequate,

then specialized hardware may or may not solve the problem.

By no/using specialized hardware, the ICE System can more easily be

m

m
m

U

M

m

m

m

m

m

I

L_

u

I

n

I

57

-1"

w

m

L_

L

m

l=.

t

F

E =_

embedded into an environment and access traditional algorithms. To truly be

capable of integrating with the environment, a real-time expert system must

be able to use functions that were written in traditional languages. These

routines may be used to communicate with the environment, or analyze the

data, to name only two examples the code can provide.

...... _ When discussing real-time software, speed always comes to mind. Pure

performance may be inadequate to satisfy the environmental constraints, but

it is usually necessary. ICE had to be fast. The results examine the overall

performance of the system, but more importantly the time necessary for criti-

cal responses. If the rate of polling is increased, a controller will be receiving

_ much more data from the environment. The increase in data might over-

:::'- :whelm the expert system and cause the response time to increase. Instead

of only designing the system to be fast, ICE also minimizes the amount of

time necessary for a response. Another system of equal speed performance,

may not be able to respond in the same amount of time. The results chapter

compensates the CLIPS implementation for the speed difference, and shows

,_._ .the response time will still be in favor of the ICE System.

3.2 Architecture

= _ _ The ICE System uses rules and forward chaining like other production rule

expert systems. However, there have been modifications to the typical al>-

-_::i,_: proach, enabling ICE to respond to a real-time environment. Figure 3.28

: _represents the basic architecture of the software, briefly described below.

_ The following sections explore each of its components.

The Interface Manager accepts and procdses the incoming data, into

the Environmental Data States. An item from the environment is en-

coded into one or more states,Orseveral pieces of data Combine into a single

state [Pau88]. Most systems match the new data against the rule antecedents

and'previous facts, a very costly process. Instead, the ICE System deter-

mines, a priori [FP88] all of the rules a state will influence. Rules are

58

grouped into tasks,and these tasks are associatedwith the states.When en-

tering,exiting or remaining in a state,the appropriate tasks are Initiated.

An initiatedtask may preempt the current task or wait for the Scheduler

to place itinto the Agenda.

The Inference Engine analyzes the rules of the highest prioritytask.

Antecedents of each rule are verified and fired. The firing of a rule results

In responses to the environment via the Interface Manager, or initiating an-

other task. A rule can also alter an internal state, System States. These

states reflect aspects of the reasoning process that are in addition to the

environmental data. System States operate in the same fashion as the Envi-

ronmental Data States. The two are considered separately because of their

nature, external and internal aspects of the environment. Encoding a system

state also initiates tasks.

..... 3,-3 interface Manager

All communications with the environment are the responsibility of the In-

terface Manager. Not only must it access data, it must also coordinate the

resi)onses to be sent out. The prototypes, described in the results chap-

ter, insure a message is sent and properly received. The interface does not

guarantee that the environment can handle a message. One of the test en-

vironments can only accept a small subset of the commands making up the

long term plan. The Interface Manager will send any number of commands

at a time, and the environment will accept the messages, but k unable to

record the command to be carried out. The reasoning process, rules and

system states, coordinates the number of commands that the environment

can carry out. These are given to the interface to be transmitted.

Environmental data is accessed in two ways: by polling or allowing the

environment to interrupt its operation. Polling is a common approach to

monitor the environment. The test systems use a variable polling rate, a

simpler implementation. A specific rate can be chosen that provides the

controller with enough information to accurately reflect the environment.

g

m

mm

I

mm

mm

m

,U

ms

m
m

mm

I

m
mm

: ,
m

59

w

w

m

• :3 •

Figure 3.28: Architecture of the ICE System

; _ _

m

=

/..

60

Events are able to interrupt ICE, typicallythese are related to catastrophic

events. Expert systems that use an approach based on the Rete matching

algorithm cannot realisticallybe interrupted. Interruptabilityis another

benefit of using the ICE architecture.

Polled data iseither kept or discarded by using fixed thresholding with

hysteresis.By further limitingthe environmental data, more time isleftfor

the reasoning process. The thresholds and theirrange isdefined by the data

states. Each state h_ a method, or function,that converts raw data into a

state. The conversion process eliminates some of the unnecessary data. The

next section provides a detailed descriptionof this process.

3.4 The Facts of the System

The environment may have surprising behaviors, but the data sent to the

controller isfrom specificsensors. Therefore the type of data isspeclficied,

i only the rate and values cannot be provided for allcases.Likewise, the rules

_ of the controller,once verifiedand validated,are also fixed.We can assume

i • rthat new rules will not be added t0 the knowledge base While the expert

i "system isin operation. Based on these assumptions, the amount of memory

....for incoming data can be preciselydetermined.

Assume the environment only possesses a sensor with a singlevalue, and

the controllerhas three rules. One rule determines the environment is in a

criticalstate and must be stopped. The next confirms the environment is

operating normally. The lastrule analyzes the previous three values of the

sensor to determine the trend of the environment. To specify the amount

of memory necessary in the expert system, we consider our singlepiece of

data with respect to the knowledge base. Two rules define the thresholds

for a state as normal or critical.The lastrule uses the trend of the sensor,

itmust have the previous three readings and the state of the current trend.

Summing up our requirements: one memory element for the state,and four

for trend analysis. Therefore, fivememory elements satisfyallof the data

requirements of the rules. A criticalor normal state change initiatesthe

mm

U

mm

m

mm

m

I

mm

h.=

tomb

g

m
mm

I

L--

mmm

_m

mmJ

W

m

w

61

corresponding rule. The state of the current trend willinitiatethe lastrule.

New environmental information can quickly be converted into itsappro-

priate states. By associatingrules with data states,the initiatedrules can

be quickly determined. A state and initiatedrule are coupled together when

being sent to be scheduled. In blackboard terminology, the state isthe con-

text of the rule. While the rule may not be valid,the ICE system ismade

aware of possible problems in the environment. Attention may be focused

on the new information or not. This willbe brought up in latersections.

The encoding methods replacesome of the matching computation, allow-

ing ICE to quickly determine initiatedrules. In a typical system, only the

,_: _ data value isstored, and the lengthy matching process determines the data

,.__.. state. As new data is added, the memory containing old values has to be

'-_i_.__ reclaimed, garbage collected. Ignoring the need to garbage collect,the de-

...._:;_.sign trade-offsare between memory and processing time. The challenge in

_-'__ real-time systems is to respond quickly, hence time is a motivating factor.

Therefore, memory should be used to replace as much processing time as

,_i.....possible. While the amount of memory may be large,it is fixed.In deliv-

:_ _-_ erlng a system, specifying the necessary amount of memory ispreferred to

guessing an amount that may satisfyallsituations.On an autonomous space

":'_':_station, the cost of memory isinsignificantcompared to the possibilityof the

_ _ controller stopping due to a lack of resources.

Each object has an associated method to convert the raw data into the

"_ appropriate states.The method uses thresholding to determine the state of

- the raw data value. Multiple values can be combined into a singlestate.

.... In the case of remembering previous values of the sensor, a simple circular

queue isprovided. Methods can do furtheranalysis,even use neural networks

to process the data. The purpose is to quickly provide the rules with the

environmental data in as usable a form as possible.

The intent is not to run long computations on every new value. The

purpose isto convert a raw value into a state that reflectsone or more an-

tecedents. A rule,in a real-time controller,typically determines ifa value

(represented as a fact) iswithin a certain range (also represented as facts).

(i

62

Instead of considering the state of the data a number of times in the matching

process, it is only determined once. Each rule now has to consider a single

state value rather than comparing, matching, several values and ranges. In-

stead of initially performing a sophisticated function, using resources that

might serve a much more critical rule, processing should be as simple as

possible to determine the direction to proceed. When time is scheduled for

this rule, the more sophisticated algorithm can continue. It may be even

more advantageous tobreak down the processing further and only take steps

toward the final solution. The long processing can be verified along the way.

This depends upon the situation.

...... Rules are associated with the various data states. Upon updating a state,

**_ _: the method also initiates rules. Initlation occurs on entering, leaving or

- _ : _ remaining within a state. Combinations of the three also exist. Since rules

::i r__ are used to create the states, the states in turn, know which rules they might

cause to fire. In one step, their respective tasks are sent to be scheduled.

- This replaces the lengthy matching process found in other systems. The

i.,i, more trivial data takes a miniscule amount of time to Initiate their tasks.

_: _-_ The critical tasks, also quickly recognized, can immediately be acted upon

""' _ by preempting the currently executing rules.

"_'_ _' * '_' Expert Systems use facts other than those representing the environmental

data values. These can likewise be represented as System State Objects.

":_._ ' Created in the same fashion, it has all of the functional characteristics of

environmental data objects. The only actual difference between the two is

"_ access by the Interface Manager. Both can be accessed and updated dur-

ing inferenclng, but only the Data Table can be updated by the Interface

Manager. The distinction follows from the nature of the data.

Rm

_m

m

l

n

w

mm

I

m
I

3.5 Rules

A set of rules are grouped as a task. These rules are related by the states

that initiate them. The rules are ordered in a list and do not need a specific

priority. Individual rules can belong to any number of tasks. Previously we

uffiffi

m
m

u
l

m
J

_=

=T"

i

!

w

m

L_

i

E_
L

63

have referred to groups of rules, being initiated for example, actually tasks

...... were being discussed.

The number of rules in a task is dependent on the environment and the

task in question. The granularity, or size of tasks [MS83][Hob85], has a few

trade-offs. Few rules per task closely controls the inference process. A small

invalid task completes very quickly, thus allowing the next task to start. Very

large invalid tasks generate a long delay before the next response. However,

- small tasks create much more overhead, than a few large ones. A general

heuristic in defining tasks, is to create groupings that seem natural. While

this may not produce the optimum configuration, it is much easier to develop

" " and maintain.

_ _:-':_'_ The rules are functions in the C programming language which verify all

'_.... of their antecedents before firing the consequences. Most of the necessary

_ "matching is accomplished by the data and system state objects. An an-

.... tecedent has the option of performlngadditlonal analysis on the information.

: < The antecedents and consequences are able to perform user-defined functions.

-rl_,,ere are no convoluted _hooks" in which to call a given procedure. It is a

...... _normal function call.

_: The consequences generally alter various states in the System State Ta-

_ _ ble. When altering these values, the associated method is used in the same

• _ _:" : manner as by the interface manager. While the method is processing the up-

date, it will initiate other tasks. A new task can even preempt the currently

executing task.

' An antecedent may need to find a related fact. The state that initiated

the task can be used to directly reference other information. A sensor value

indicating a dangerous level tells the contrOller a device must be shutdown.

The state and task are initiated and inferenced upon. While inferencing, the

device to halt must be found. _ In Rete algorithms, the device configuration

is compiled into the data flow network, and found by matching against the

coriesponding bucket. In the ICE System, the sensor and device configura-

tions are known a priori and therefore directly associated. Given a sensor,

the rule can immediately reference its device.

G4

A second searching and matching problem occurs within a rule, and was

examined by the YES system. For a given situation, a rule finds it necessary

to obtain the greatest, or smallest, value of a specific type. For example,

in assigning a job to a processor, it is generally sent to the one least used.

There is no direct relationship between the job and processors. A search

must occur to discover the least active computer. In the Rete algorithm,

all of the processor activities are compared to each other to discover the

minimum. The YES system implements a special searchlng mechanism to

handle the situation. The same mechanism is used here in ICE.

Matching might also look for an element that must satisfy criteria based

on the initiating element. A data flow network generally has done much

:_.z :_, of the matching, and the answer quickly determined. The same solution to

_ the previous problem is used here. Instead of searching for a minimum, the

. search looks for an element satisfying the given constraints. To speed up the

process, one or more most likely choices can be associated with the state.

._._ _ These choices are checked first. Failing to find a solution, the rest of the

i , possibiiiti_ are_.xamined. - "

When inferencing on rules in any type of real-time expert system, truth

• _ maintenance becomes an issue. Because the environment is nonmonotonlc,

the received data may change at any moment. The data validity is also

....: r decreasing as time goes on. If not processed in a specific amount of time,

...... the data may be invalid. There are two cases where this will cause problems.

The first considers the individual rules. A rule might be correctly activated.

Before it is fired, one of the antecedents changes and invalidates the rule.

The rule may fire before the system deactivates it. The second problem is

much more intricate. A task can invoke other tasks to be inferenced upon.

A dependency path of tasks is made. If one of the previous tasks becomes

invalid, then the current task must be deactivated.

A rule that is ready to fire, but whose antecedents are not true, is par-

•ti_:u!arly a problem with multiple processors. The rule may be on a given

processor, while another computer discovers the error. The Rete algorithm

on a single processor solves the problem by having a mode to handle all

J

z

m

m

mm

mm

M

g

g

mm

I

ms

n

i

65

w

w

w

w

u

L

m

m

M

w

_m

w

t

m

matching, activationsand deactivations.No rulewillfirewhile the matching

mode is executing. The ICE System has the rules verify their antecedents

immediately before being executed. A fact might correctly initiatea rule,

but become invalid before the rule is inferenced upon. When the rule is

ready to fire,the fact ischecked. Iftrue,the rule fires,otherwise the rule is

abandoned.

Maintaining the integrityof a dependency path of tasks ismuch harder.

Dynamic censors were previously discussed,and can be used within the ICE

architecture. The censors are presented as system states and can be refer-

enced, and de-referenced, at any time. This is currently used on a limited

scale. A task initiatesother tasks by using the system state objects. When

these new tasks axe inferenced,the state isverifiedby each rule. By using

the state as an antecedent of rules further down the dependency path, high

leveltruth maintenance can be maintained.

!, 3.6 Scheduling the Agenda

The scheduling is broken down into two processes, as seen in figure 3.29.

The Initial Scheduler accepts the initiatedtask and state,and determines

itspriority.A new task willpreempt the execution of a lower prioritytask.

Otherwise, it isplaced in the temporary queue. The highest priority task

is allowed to execute with the minimum amount of interference from the

other tasks. The current task is 0nly slowed clown by receiving new data

_-and determining itspriorhy.-Ifa new tas-k_more cr]-t_ial,then |tbecomes

.... the current focus of attention of the inferenceengine. Fairness,as mentioned

earlier,isnot appropriate for real-t_mesystems. When m outer space, ifthe

lightshave been offfor a long time and the life-supportonly recently failed,

the lightsare stilllow priority.An astronaut can livein the dark.

It is necessary to use the importance of a state along with the priority

of the task, determining how vitaltheircombination is. A number of com-

binations are possible, but the current prototypes sum the two priorities.

These systems were firstdeveloped in CLIPS, whlch only gives a priority to

=

66

m

g

I
t

AgendaQueue

Figure 3.29: ICE System Agenda

individual rules. In transfering the ._ystem into the ICE architecture, certain

data states were given a priority to fine tune the scheduling mechanism. The

simple summation is the fastest method to combine the priorities and pro-

v|ded a satisfactory solution. Other techniques are possible, but the intent

is to have a very quick determination of the task/state priority.

In the YES/OPS architecture, both tasks and rules were given a priority.

ICE uses the task prior|ty to determine the world, or rules to use. All of these

rules are scheduled together. The ICE System uses a finer _'anu|arity when

defining the tasks. The roles, in a task, can be ordered a p6o6. Two rules

with the same importance can be placed in an appropriate order, otherwise

the order does not matter. Scheduling time is therefore saved in determining

proper respnsses to the environment.

The Initial Scheduler places a priority on a task/sta_ pair, and the

current task priority is checked. A critical event can thus preempt the con-

troller and alter its focus of attention. There is no complex scheduling, the

two values are simply, and quickly, compared. Less important tasks are also

checked, and passed onto the temporary queue. This mechanism provides a

rapid procedure to allow the controller to change its focus at any moment.

The temporary queue is a FIFO, _ust in first out, queue. By using a

I

l

m

i

i

u

l

u

L _

m

67

- i

m

m

w

mm_

FIFO list for the temporary queue, the age of the tasks is implicitly stated.

.... When the scheduler _executes, the first element of the temporary queue is

placed into the agenda queue, a prioritized list. The highest priority task

is the first to be considered by the Interface Engine. Tasks with the same

priority place the younger first.

The younger tasks are considered before older tasks with the same priority.

This choice is dependent on the environment and the tasks used to control

it. Due to the valid!ty decay of the data, older states are less likely of being

true than younger states. CLIPS also uses thls method of conflict scheduling

and was another reason to adapt the approach for similar results.

..... Scheduling can be done in a number of ways. A typical approach sched-

=..... " ules after a specific number of task executions, it may be after each task. The

.... current prototypes inference all of the tasks in the agenda before reschedul-

ing. The scheduler can be started based on a command from a task, or the

priority of the current task. If task response was not critical, the scheduler

has time to merge the two queues. Scheduling can take place immediately,

regardless of the priority, but that drastically conflicts witb the philosophy

........ of the ICE System to respond to the most critical event.

Another method considered in the design of the ICE System invokes

_.scheduling based on the priorities of the waiting tasks. There can be a

=_ _ sl0t to hold the value of the highest priority task in the temporary queue.

Tasks are added in the same fashion, but also compare their priority with

: _ = the highest one in the queue. The value is updated appropriately. Before the

Inference Engine begins processing the next task, it compares the priority

: to the highes t pri0_tyin the temporary queue, oil a higher priority task is

waiting, rescheduling takes place. The purpose of this method allows the

higher priority tasks to execute without waiting for less important tasks to

be scheduled. While it is currently not implemented, it is a useful feature

for future systems.

Before leaving the discussion on the agenda and scheduling, an important

point in memory management _needs to be addr_sed_ While the ICE System

has removed the need fo r working memory, it still must have a pool of nodes

68

to use in scheduling the tasks. Each node ismade up of pointers to the state

and initiatedtask, along with the combined prloriy. These are needed in

any real-timesoftware, for task scheduling,be they rulesor procedural code.

The pool of elements isa fixed size,and thereforea contingency plan must

exist,in case the pool emptied.

The issue becomes which task/state nodes to remove, forget. The least

significantnodes are the most likelycandidates, but are spread across the

two queues. Since the agenda isalready prioritizedand itselements are more

likelyto be older than those in the temporary queue, the lastelements would

be used for new higher prioritytask/data elements. Ifthe system isto the

point of losingtasks in the agenda, then an effortmust be made to schedule

the elements in the temporary queue. A possibilityisto schedule tasks more

important than the lastelement in the agenda. The other nodes are freed

for new initiation_

++ 3.7 Inferencing

The Inference Engine considers the first, highest priority, task in the Agenda.

The rules in the task are sequentially executed. A rule function verifies its

antecedents and is responsible for executing the consequences. The verifi-

cation process can check states, combine states or perform other types of

processing (i.e. searching), The execution of the consequences generates

responses and alters states within the controller. The commands are sent to

the environment via the Interface Manager. States are updated with their

respective methods and might initiate other tasks to execute, just as if the
+.

data came from the environment.

The approach ailows the system to be interrupted at any time. Matching

algorithms used in other systems do not perform well in an interruptable en-

vironment. While these systems may be interrupted outside of the matching

process, it is not worth the effort. The matching process consumes so much

of the execution time, the left over time only allows a very small window for

interrupts to appear. In processing ICE rules, the matching is done locally.

U

m

m

m

u

I

.!

m
u

I

U

m

B

m

Ill

-_ 69

w

m

m

f

m

w

m
m

w

c

If the rule was interrupted, itcan restartthe matching of itsantecedents.

The time lostisfairlyinsignificant.Interrupting in the prototypes isdisabled

during rule execution and only allowed between the rules. This enables the

system to finishitscurrent _thought."

The latency period isthe amount of time between the environment sending

an interrupt signal and being accepted by the controller.The worst case is

the environment generating a signal the moment after inferencingbegan on

a rule. The average amount of time to process a rule is the average worst

case latency time. The absolute worst case considers the rule requiring the

longest time. As isthe norm, rules are fairlyquick and thereforethe latency

period will be acceptable. In cases where a rule consumes too much time,

interrupting may be leftenabled.

Common approaches eitheruse interruptingbetween rulesor not at all.In

cases where an interruptsignifiesa highly criticalevent, the ICE architecture

iscapable of always allowing interrupts.The interruptabilltyscheme depends

on the environment. With the space station Freedom, data isreceived as re-

ports from a sophisticated power distributionsystem. If interrupts are pos-

slble,they would only indicate llfeor station threatening situations.These

......must be responded to immediately and thereforetheir interrupts are always

"_i allowed.

_ Only a m!nlmal amount of processlng tlme istaken away from the most

.... criticalreasoning. If the resulting response was necessary, the system is

performing l#erfectly.Unfortunately, it may not be the case. An alarm

may incorrectlypoint to a catastrophic event, and the controllerdetermines

the error while a valid response isowaiting.This point is unfortunate, but

_ nec_sary.

The greatest strength and weakest linkof the ICE System isin initiating

.... tasks. The approach provides the minimum response time for the critical

events in the environment. The leastimportant event isnot guaranteed a fast

respbnse. The weak aspect occurs because invalidtasks are being initiated

and other tasks becoming invalid.In both these cases the Inference Engine

uses the precious processor time to iteratethrough the rules and determine

7O

..

that they are invalid. This presents a case for using small, fast, rules and

fine granularity when creating the tasks. The time loss is the greatest for

the least important tasks. In designing the system, this was seen as an

unfortunate side effect of quickly generating vital responses. However, the

critical response time is considered to be more important than minimizing

all of the response times, including the trivial ones. A point to notice in

the results is that the system performance is high enough to respond much

faster to all of the events, as compared to the more traditional production

rule system done in CLIPS.

J

i

m

m

C

3.8 Knowledge Engineering

There are several stages in developing an expert system in the ICE archi-

tecture. The first stage defines and validates all of the rules in the system.

These can be created using a commercial expert system shell, which usually

provide many developement features.

The second phase builds the rules, the environmental and system states

of the ICE System. For any given rule, the user specifies which antecedents

cad init|ate the rule, or the hot antecedents. When a hot antecedent enters

(or remains , or leaves) a state, the rule is initiated (sent to be scheduled).

The antecedents that are not hot will still be checked during inferencing, but

cannot initiate this rule. After deciding on at least one hot antecedent for

each rule, the environmental data and system states can be determined by

the rules, The states will reflect those used for comparisons in the rules. A

function must be defined to convert the raw data (a boolean, single value, or

many values) into it corresponding state. To illustrate this point, consider

a rule has an several antecedents stating a sensor is in its warning state,

and another antecedent is concerned with the past history of the machine.

Assume further, that the knowledge engineer has elected to only use the

sensor fact to initiate the rule. By knowing the range defining the sensor

in the warning state, the state tables can be built. The rules can also be

defined in the C programming language, with respect to the states in the

m

im

b

b

I

J

mE

\

r_

i

f

w

w

m

71

various tables.

The more antecedents selected to invoke the rule, the greater the chances

of the rule being initiated multiple times. This also leads to the possibility

of using all of the scheduling memory pool. However, by not using enough

of the antecedents, the rule may not be initiated as often as the user would

llke. These points are very specific to the problem, and the best solution is

not always easy to determine.

The last phase specifies the sets of rules, which are the tasks. To further

increase system performance, rules are grouped into sets or tasks. When the

hot antecedent wishes to fire a particular rule, it actually fires the task, (a

small set of rules). These are usually broken down by the initiating states.

If a sensor state intiates five rules, then these five rules make up a task. This

does not have to be the case, for a faster response the knowledge engineer

may elect to break the rules down into two tasks, those with higher and lower

priority (priorities will be discussed shortly). A rule may be included in a

task because it is always fired after the current set of rules. In this manner,

the new rule does not have to be initiated to fire. However, a user must be

cautioned, a system state should be used to insure that the rule should fire,

the initiated rules may not be true.

In determining the tasks, the rules within the task can be prioritized. The

inference engine sequentially tests and fires each rule in the task. The task

is therefore an ordered list of rules. The ordering is of the discretion of the

__ _-user. _ _ _ _

The tasks and data states must each be given a priority. The higher the

priority reflects the more critical the task or data is. There are several meth-
=

ods to combine these priorities, currently the two are simply added. Consider

the following illustration, there is a breaker going to a life support module in

the space station, and another handling the lights within another module. A

rule states that if a breaker will potentially fail, the other redundant breaker

must be used to insure continuous operation. This rule is given a priority,

as in many expert system shells. If both breakers fail, the rule is initiated

r

72

twice, but the breaker going to the life support system is much more impor-

tant than the other, controlling the lights. By giving each breaker state the

appropriate priority, this can be reflected in prioritizing the task-state pairs.

By using two priorities, the knowledge engineer has a great deal of flex|-

bility and power in ordering the tasks and states. With these features also

comes more complexity. The knowledge engineer must be very careful of un-

expected effects in the system. In the test prototypes, most data states were

given a zero priority, so that only the task priorities were really considered.

For tasks that handled both high and low critical tasks, the critical states

were given a priority. Even by using thls simple scenario in developing a

large system, problems may still arise unexpectedly.

.... A last point for the knowledge engineer to determ|ne is the size of the

scheduling memory pool, the problem also occurs in many other types of

" _ software systems. The pool must be large enough to handle any situation.

•_ _ Some systems will crash if the pool is emptied, which may be fine for their

:- situation. A continuous controller cannot be halted because of a shortage of

..... memory. Here the pool size is determined to be more that is expected. A

contingency plan must be devised for a situation where the pool is emptied,

so that the controller can still operate. The plan depends upon the imple-

mentation, but a few methods were mentioned earlier while dkcueslng the

.... : _ scheduler and the agenda.- __-.............

L As in any system, care must be taken to prevent unexpected events. For

real-time controllers,contingency plans must be determined for every possi-

ble flaw in the design, the scheduling pool problem for example.

_I
mmm

I

mm

I

z

mm

mm

m
i

g

mm

m

mm

D

I

E

Chapter 4

i

r,

m

w

.r

m

Results

The ICE System is compared to a typical expert system based on the Rete

algorithm, we have used CLIPS. There are faster systems on the market, but

it is readily available and able to provide an adequate medium of compar-

: ison after compensating for the overall performance dlfferences. Two sets

of tests are used to analyze ICE. A smaller knowledge base, of 17 rules,

._,_ _ tests the general concepts of the thesis. The performance difference between

the two systems is found along with an analysis of how time is used to dis-

cover the proper responses. The second system, of 80 rules, provides a more

sophisticated environment to further scrutinize the response times of the

architectures.

. -fhe following sections describe the testbed environment and an analysis

...... of the results.The appendix contains specificinformation on the tests.

:_ Both have been executed on a Digital Equipment Corporation VAX com-

. puter running the VMS operating system. Time is measured in ten millisec-

.. _ ,ond units of processor time, but presented as milliseconds. Because of the

basic tlme unit, time measurements less than ten milliseconds will be more

...... sensitve tonoise, -_ =

= 4.1 Test System 1: Machine Monitoring

A machine monitoring problem [GR89] determines the difference in speed

and the response time, due to the matching algorithms. An abstract view of

the environment is shown in the figure 4.30. There are four devices, each

with one or two sensors, for a total of six. Every sensor has unique ranges

indicating the device state:

I. critically high

73

f

t_

j.

74

2. high warning level

3. normal condition

4. low warning level

5. critically low.

The two critical states indicate the machine will soon fail and must be im-

L mediately shutdown, to prevent any further damage. A normal condition

defines the safe, expected, operation of the machine. Warning states can be

entered for short periods of time, with no effect on the system. An operator

must be notified of any machine leaving the normal operating conditions.

::_ :_ The sensor will remain in a warning state for a period of time while the

operation of the machine is degrading. If a sensor remains in a warning state

for a specific amount of time, the machine is shutdown to correct the problem

before any damage is done.

The initial startup time (e.g. compiling the rules into the Rete network)

is not considered when comparing the two systems. One hundred of the one

:_'_ :_' hundred and sixty cycles are considered, and averaged over one thousand

runs of the environment. The other cycles compensate for startup time and

validate the operation of the system. A cycle starts by retrieving prede-

": fined data from each of the sensors. The data is analyzed and acted upon

:_: _ accordingly. After all of the responses are issued, the cycle repeats. Both

systems operate in the same manner, i.e. the ICE System is not allowing

any interrupts. This presents an accurate comparison of the overall speed

performance of the two systems.

The firsttestanalyzes the differencein the cycle speeds between the ICE

System and the typicalapproach. In the firstcase,the environment isoper-

ating normally without any unexpected situations.All sensors remain in the

warning state during the one hundred testcyclesof the second case. Table

4.2 presents the average cycle times. A dramatic differencecan be seen. At

this point, the increase is primarily attributed to writing the rules in the

C programming language. The average of the speed differencesis used to

compensate the second set of testresults.

m
mm

z

m

E
mm

w

U

l

m

I

am

l

l

l

mm

I

m
m

m

75

b

w

u

E

m

m

Figure 4.30: Machine Monitoring Problem

D

Test Case

Normal Operation

Warning Operat!0n

Typical ICE

6O 3

78 8

m_

Table 4.2: Benchmark: Average Cycle Time

\

m

76

8OO

600,

ICE

I

m

m

mm

1 2 3 4 5 6 mm
U

Figure 4.31: Benchmark: Response Times for the 6 Warning Responses

The typicalsystem shows a relativelysmall increasein the cycletime when

handling allof the warning states.The typicalapproach performs allof the

matching for both cases,and thereforethe time period is similar. ICE, on

the other hand, quickly recognizesa sensor has remained in the normal state

and does not initiateany tasks.The raw data isonly placed intoitsproper

state, normal. The warning statesinitiatetasks for inferencing.Scheduling,

Inferencing and responding constitutethe fivemillisecond increase.

During the second test,allof the samples remain in the warning state.

The validityperiods of each of the sensors was greatly increased to allow the

devices to remain operating. Warning messages are issued for each of the

sensors. Again a dramatic differenceisseen in the speed, show in table 4.31.

After examining the firsttable,the speed increase isexpected.

The more interestingpoint is the differencein performance due to the

matching algorithm. Because Rete initiallymatches allof the availabledata,

itrequires much more time at the begining of the cycle. The firstresponse is

then delayed for a long period of time. Figure 4.32 plots the response times

as the percentage of the totalcycle time, showing the processing time used

to accomplish each of the responses. The implemented typicalapproach uses

mm

m

m

g

m
i

m

i

m
m

m

m

m

m

w

77

typical system
100%

75%

5O%

25%

_= g • m w I m E

1 2 3 4 5 6

Figure 4.32: Benchmark: Percentage of Time Used for Each Response

w

w

E

E
r_-

r

=

85 percent of its time hn responding to the first event. The exciting aspect

of the tests is the response times of the ICE System. Less than 45 percent

of the processing time is used to respond to the first event.

Included in the initial response time, is the time used to simulate the

devices and sensors. The simulation involves accessing data report tables

and presenting the sensor data for all of the currently operating devices.

The other five responses already have all of the data available and processed.

These responses only require a confirmation of their actions, the same amount

of work, and therefore show a constant increase in response time.

The typical system performs very quickly for the later responses, because

all of the matching has already been accomplished. The graphs represent

a major aspect of the ICE architecture. The system spreads the matching

process over the whole cycle, therefore more time is needed for the later

respons_._ _he _e_a:Iso_:_;_=°_:I_E not on_]y "outperfo_thetyp|ca] ap-

proach in the first response, but all of the other responses as well.

Other expert system shells based on the Rete algorithm may be much

faster than the CLIPS software, and may not show as dramatic a difference

in the pure speed aspect of ICE. Because these systems are based on Rete,

mm_

(

78

they exhibit the same effectwhen comparing the percentage of time used to

accomplish the various tasks. I

4.2 Test System 2: Monkeys, Bananas and

Zombies

The next set of testsseparate the environment from the controller.A simu-

lation process was created to handle the generate data reports and process

the commands received from the controllerprocess. The two communicate

through a data channel, termed a mailbox in the VMS operating system.

The environment is described in terms of the model presented in the con-

cepts chapter. The analysis of the resultsis then presented, specifictest

information can be found in the appendix.

4.2.1 Monkey, Bananas and Zombies Description

The monkey and bananas problem isused to benchmark many expert sys-

tems. The monkey represents an activecontrollableagent and the boxes, to

be stacked, reflectthe passive agents. The activeuncontrollable agents were

_ _" not present in the scenario. _Zombies _ were added to fulfill this feature.

A Zombie will appear in the environment, and wander about thr room for

a period of time. The monkey must stay away from these monsters. The

procedure is given with the description of the test.

A room contains many boxes, as demonstrated in figure 4.33. A number

of these must be stacked in a tower, under the bananas, for the monkey

to reach the bananas on the ceiling. The controller determines a long-term

plan to stack the objects and manages the commands sent to accomplish the

mission. There are four tests based on variations to this system described in

the following paragraphs.

The first is the standard situation for all of the tests. A dozen, or so, boxes

are stacked to reach the bananas, without anything going wrong. The mon-

key is monlt-o-re_d to determine the completecl Commands, tl_en an appropriate

m
m

R

m

m

J

_==

i

m
U

I

m

m

g

I

m

z

I

w"

7O

m

u

L

w

m

E_
r
w

Figure 4.33: Monkey, Bans_as and Zomb|e Problem

w

r •

m

(

L

8O

number of new commands can be sent.

The next test represents a flaw in the active controllable agent. The

monkey cannot lift the heavy boxes and has no warning alarms to indicate

the failure. The controller must monitor the tower construction to determine

the error. Once a box is found to be too heavy, the current plan must be

augmented to accomodate for the missing object.

The third test simulates passive agent failures. Some of the boxes are

unable to support the weight of the monkey. The monkey, and the controller,

are unable to determine this characteristic until after the failure has occured.

The long-term plan is updated for the broken objects.

Active uncontrollable agents, zombies, are considered in the last type of

test. To allow the two systems to be compared, the zombies appear based

on objects the monkey picks up. Certain boxes, unknown to the controller,

will trigger the appearance of the zombie. The monster at one end of the

room has no effect on the actions of the monkey. When it is too close to the

monkey, the controller must initiate a plan to move the monkey far away.

Once the monkey has been frightened, it does not continue with the tower

construction until after the zombie leaves. After the disappearence of the

monster, the long-term plan is continued at an appropriate place. If the two

are within a warning area, the monkey has time to place the box on the floor,

and move away from the monster. The box is placed on the floor so boxes

lower in the stack can still be accessed without trigger the appearance of the

zombie. As the two active agents become very, critically, close to each-other,

the monkey drops the box as soon as possible and runs. If the monkey is

currently on the top of a stack, the box is left on the top. This results in all

of the boxes in the stack not being accessible. When the abandoned box is

not placed on the tower, the controller must update the plan to compensate

for the lower tower height. After the disappearence of the monster, the

long-term plan is continued.

Boxes are dropped in the previous test situation so the monkey can run

from the zombie. The monkey can walk while carrying an object, but can

run at faster pace, when its hands axe free.

m

n

m

m
U

U

m

M

u

m

u

m

me.

81

r-

!-

i .
r

L

m

m

m

"i

i

4.2.2 Test Results

Each of the three agents generate important and insignificant events. The

monkey, an active controllable agent, is monitored to determine the time

and number of commands to besent_ "A.Cl_ange_in the carrying state of the

monkey reflects either a box has been picked up or put down. The events

can be mapped directly to the corresponding command in the currently sent

subset of the long term plan. When the controller determines the monkey

has nothing to do, standing still, it assumes all of the sent commands are

completed. The maximum number of new commands the environment can

....... accept is determined and sent one at a time.

The passive agents, boxes, can fail and be used to diagnose a failure of the

active controllable agent. Both of these events represent a problem with the

current plan of the tower construction, and an update must be added. There

are no explicit responses sent to the environment. This case only determines

recognizing the event. Because the ICE system is interruptable, replanning

takes place over several cycles and is often preempted by more critical events.

' "<_} ::The zombies, active uncontrollable agents, present another complication

° _ ' to the scenario. If a zombie is currently in the room and close to the monkey,

: ;"_'t_e controllermust first se_nd_t_e_ToP command to _l_e monkey, t//free up

_ the command space. Planning a solution to the problem begins and the

responding commands are sent.: In this test, planning takes place after the

first response.

The responses to events in the test cases are broken down into four seg-

• ments: receiving the data, recognizing the events, the initial response to the

_event, and 'subsequent responsesJ_fhe controller does not analyze all of the

continuous data, instead it considers samples taken from the signal. The

average rate the software accepts data is the average worst case delay in

receiving the data of the most critical event. The time to recognize events

from the data report, and issue the proper responses are dependent on the

event and controller. T0_cletermlhe these t|mes, _the controller records the

actions with a time stamp. The timing of the subsequent responses are also

recorded with a time stamp. Many of the events require multiple commands

r

(

82

Architecture Report Acceptance

Typical 2,502.0
i

ICE 5.O

Compensated ICE 75_0

Table 4.3: Average time between accepting reports

Jl. J .,.

for a complete response, and therefore it is important to know the expected

amount of time delay between the commands. After recognizing an event,

the reasoning process determines a set of commands for the response. Time

for the first command to be sent includes the planning time for the following

commands. Hence the first response is considered separately from the other

commands making up the response.

Delays in Accepting Data Reports

Both controllers require at least a minimal amount of time to process a

report. Table 4.3 shows the average time between accepting reports for all

the tests. Even when compensating for the speed performance of ICE, a

drb.matic difference is still seen. The reason for this affect is interruptabllity.

• The ICE system allows the environment to interrupt with new data. In-

.._; terrupts are enabled afterthe tasks in the agenda are inferenced,only a few

tasks are typicallyin the agenda at a time. The rationalallows the inference

....engine to complete "itscurrent thought" before new data enters the system.

_ By decreasing the time to accept a report,the restof the response times will

be increased. The increase isdue to more data entering the system and less

available time for scheduling and inferencing. However the controllermust

accept as much data as possible to ensure a minimum amount of time to

respond to the most criticalevent.

Recognizing Events and the Initial Response

To respond to the most critical event, the controller must first recognize the

events represented in the data report, table 4.4. The further processing of

U

m

U

n

Iml

U

i

u

U

u

.ram

u

m

B

M

m i

m

f

_ =

w

m

L

m

u

m

m

m

w

r

m

83

Event
Actual

ICE

Compensated

Object Dropped 1,373.5 5.1 76.5

Object Picked Up 961.8 5.1 76.5

Monkey Still 1,073.9 5.2 78.0

Object heavy 1,599.9 8.5 127.5

Object Broke 1,575.1 5.7 85.5

Zombie Too Close 905.3 2.6 39.0

Zombie Gone 1,691.5 9.2 138.5

Table 4.4: Times to Recognize the Events

-Event"

Object Dropped

Object Picked Up

Monkey Still

Zombie Gone

Typical

51.4

52.7

62.1

285.0

Actual

7.3

7.3

6.3

5.2

ICE

Compensated

109.5

109.5

94.5

78.0

Table 4.5: Times to Respond to the Events

the events can then be ordered and the proper responses determined, table

4.5. The matching algorithm plays a significantrolein the differencein these

times. Since the system sizehas increased,the Rete algorithm has more data

to match with more rules,and thereforethe time increases.The ICE system

event recognition time increases clueonly to=the data, itdoes not match the

data against allof the rules.

After the event isrecognized, the typicalsystem issuesthe response faster

than the compensated ICE time. Because most of the matching in the typ-

ical approach has taken place,during °therecognition phase, itcan respond

quickly. The ICE system however, verifiesthe antecedents of the rules mak-

ing up this phase. The passive objects do not issue a response to the envi-

ronment, replanning isdone. The zombie becoming dangerously closeto the

monkey represents a slightlydifferentproblem and is discussed separately.

E

_4 m

_m

mm

Figure 4.34: Percentage response time of active controllable agents

I00%_

75%,

50%,

25%,

Figure 4.35: Percentage response time of active uncontrollable agents

I
U

gi

m

N

m

m
i

u

I

i

aim,,,,

m

m

m

,=

h

I

m

r"

w

u

mw

w

w

m_d

(

85

Recognizing and responding to events are considered together, because

matching occurs in the differentphases. Figure 4.34 and 4.35 demonstrate

the combined effectas a percentage of time from receivingthe data to issuing

the response. As demonstrated, the typicalsystem uses practicallyallof its

time recognizing the event, while ICE uses lessthan half. After recognizing

the most significantevent, the ICE system strive_ to respond to itand only

matches the rulesin the path toward a response. For thisreason, the second

phase of the graphis not m?re significant.The restof the matching, for the

less significantevents, isdone alter the response. This matching increases

the time to receive a data report. The degradation is lessened by allowing

the envlronment to interrupt t_e referencingprocess.

This is the major problem with using Rete types of algorithms in a dy-

namic environment. As the complexity of the environment increases, the

amount of data and rules increase. The response time of the typical ap-

proach is increased by the new data and their combination with allof the

rules. The ICE architecturedoes not possess thisdrawback, itneed only be

concerned with the additional d-_ta.Only rulesadded to the path to a given

event will influencethe particularresponse.

Recognizing and Responding to the Zombies

As mentioned, the monkey willrun ifthe zombie gets too close. The con-

trollerrecognizes ifthe zombie istoo closeto the monkey. When itoccurs,

the firstresponse is to stop the monkey so the situation will not degrade

and to free command queue of the environment for the new commands. The

controller then determines an emergency pl_ of_action for the monkey to

escape from the monster. The second response time includes this planning.

The average response times for the phases are presented in table 4.6, and

figure 4.36 represents the percentage of time used for each phase until the

second response. The same pattern occurs again, a majority of the typical

approach uses most of its_tirne_forthe initialmatching while the ICE time

is used to plan the escape.

86

M

!

m
Ill

Event

Recognized Zombie

STOP Response

Escape Response

Response Time

Typical

905.3

3.5

196.0

1,104.8

Actual

2.6

0.6

10.7

13.9

ICE

Compensated

39.0

9.0

160.5

208.5

Im

Eli

Table 4.6: Response time of controller to the zombie

.: . _._

=

\

1°° 1 t,/
75%/ CLIPS f /

25%_

m •
I

m

=_=

m

g

m

Figure 4.36: Percentage response time of the zombie
u

_m

m

87

F-

Event Typical ICE

Initial Planning

Actual

1,638.5

Compensated

Intermediate Command 46.5 1.3 19.5

9.1 136.7

w

w

[

u

n

E_

w

(

L

Table 4.7: Time to send next command

Other Results

Two other time periods have as yet not been presented. The first is the time

between sending commands. The time, for the controller to determine a set

of commands can be sent to the environment, is discovered by the time of

the first command sent. Table 4.7 presents the average time to send the rest

of the commands. Also found in the table are the initial planning time of

the two systems. The planning time period begins after the expert system

receives the first report from the environmental simulator. The period ends

with the first command being sent to the monkey.

The effect of compiling the rules, into C functions impacts on the these

figures. When planning and finding the next command to send, the typical

approach performs its general search over the data for a specific fact. ICE

rules can perform a more specific search, this approach was found earlier in

YES/MVS and OPS-83. These two systems found significant improvement

by compiling the consequences and using special searching strategies.

Consider the first entry in the table, sending the next command. The

typical system knows the index of the next command, but must search every

command for that index. Commands will be searched after the correct com-

mand is found, there is no mechanism to stop this search. The ICE system

uses the index to directly retrieve the next command.

The second set of figures represents the initial planning phase. Here again

the special searching mechanism is used to find boxes for the tower. The

typical system searches all of the boxes looking for an appropriate one. This

activates the rule to find a suitable box with all of the possible boxes, after

firing with the first instance, all of the other instantiations are retracted.

.

88

Much time isspent on performing allof the initialmatching, and then more

time isneeded to retractthe factthat looks fora box from the data network.

By retracting thisfact,allof the rule instant]ationsare also retracted. The

extra overhead consumes much more time than was saved by recording the

matches to prove a box isvalid.The ICE system search considers each box

untll it finds an appropriate one. Once found, the system continues with

the consequences of the ruleand continues. No overhead ispresent,only the

search. Ifsearching isvery complex, specialmechanisms can be used.

m

B

u

m

i

mIB

mm

"kUf

U

m

J

=

m

W

w

Chapter 5

Conclusions and Future Directions

i

w

mw

m=m

m

L

u

m_

F_

(

5.1 Concluding Remarks

The prototypes show the advantages of ICE over CLIPS in controlling the

dynamic test environments. The comparison can be generalized to include

expert systems based on types of tl_e Rete algorithm. The fundamental

problem of systems, llke CLIPS, for real-time control is the matching process

handles all of the data from the environment before reasoning on the most

_ important response. The ICE system shows it is able to quickly recognize

...... the potential events from the data and can therefore direct the reasoning

process much faster.

"' "_' :: The data processing method of fixed thresholds with hysteresis is a sound

approach in converting the raw data into its associated states. By using the

': a_tecedents of the rules to determine these thresholds, the data states not

"" used by the controller will be immediately discarded. The point is readily

demonstrated by the first test of the Sensors and devices prototype. The

normal sensor conditions were not needed in any of the rules and was dis-

providing a much faster cycle trine. T_e same point can be made on

the Rete approaches, but it would not be as evident to a developer.

The prototypes proved'_he concept0f not using working memory in a

data-driven production rule expert system. The delivered system is able to

specify the exact amount of memory necessary for the expert system. This

may be a large numgerl bu(isthe-agsohte ce_l|fig for continuous operation.

The ICE system architecture shows great potential in delivering an em-

bedded real-tlme expert System_ T_esystems i/slng a form of the Rete

algorithm must overcome the initial matching problem, changing data val-

ues (so_as not to continually retract and assert facts), and dynamic memory

89

7

9O

management. Some of these other systems have developed features used in

ICE, but it was deemed worth abandoning Rete for a new architecture. The

Rete algorithm is a natural approach for off-line systems. Stretching its lim-

its to meet the demands of a dynamic environment appears to be building a

real-time system on a weak foundation.

5.2 Future Directions

The ICE system represents a first step in providing an architecture for real-

time expert systems. Thereare many directions..... that can be taken, internal

mechanisms for the delivery system and those to aid in the development of

...... a system--_ = : _ : :: : =

The first internal mechanism presented uses dynamic censors to aid in

truth maintenance. A developer already can use the system states and

_ his/her rules to accomplish the same result, but a more automatic approach

is highly desirable.

...... An external clock for scheduling tasks needed after a specific time. The

clock is used to solve a number of problems in real-time software, initiating

a polling cycle for instance. Real-time clocks are often interfaced to the

hardware platform to achieve the desired effect. Another approach takes

= adv_tage of thedefined t_ks to be used _ aciock. Knowing thetime for a

task to complete and its start time, the time when the task finishes is easily

........ determ!ned. This kn0w!edge and by modifY!ngthe schedu!ing mechanism, a

task can be scheduled to run at a particular time, without interrupting the

software. The method is termed quantum scheduling [Gut88].

The a priori information on the rules and the environment is mentioned

several times when referring to building a controller with the ICE architec-

ture. Obviously a compiler to generate an ICE system from another system

d_!gned fo r the develoPment process.......[HS89a]. The compiler must_ allow the

developer influence over the sizes of the tasks, priorities and other features

more specific to the problem.

The development can use an existing commercial expert syste shell, or one

mm

m

B

mm

M

m

l

m

mm

m

m

mm

m
g

m
m

m

mm

ml

mm

m

m

m

designed specifically for developing real-time expert systems. In either case,

a modelling utility to simulate the environment allows the developer an easy

mechanism for testing various scenarios. This point may be obvious, but

the modelling facility should not be converted over to the delivery system

[YM83]. If the controller must model the environment, a catastrophe may

take its toll before the model determines its existence.

In discussions on future work of real-time systems, a few points usually

surface. The first is defining a precise mechanism for implementing real-time

software rather than ad-hoc attempts to solve an instance of an environmen-

tal problem. However the same discussions are echoed in building expert

systems. A strong issue in real-time software is the ability to guarantee a

satisfactory response wLthing a specified time window. Perhaps automatic

program verification is the first step in solving this last issue.

L

m

i

m

w

_7

F

mind

U

Appendix A

Sensors and Devices Test

The tests on monitoring sensors and devices [GR89] is comprised of four

devices with one or moresensors. Table A.8 and A.9 contain all of the sensors

and their associated device and thresholds. Below the ULow Critical _ level,

the device is said to be in a critical state and must be immediately shutdown.

The warning state is between the two low thresholds, meaning a potential

problem may exist. If the device is in this state for a short time, it is not

considered a problem. After a fixed period of time, shown in table A.10, the

device is considered unstable and is shutdown. The normal operation of a

device is between the two warning thresholds. No action needs to be taken

by the controller. The _High Warning _ and _High critical _ states operate

in the same manner as their corresponding low states.

Data from both the tests is found at the end of this section. Cycles 3 to

103 are used to compare the two systems in the results chapter.

I

D

I

t_

I

I

m

Sensor

2

3

4

5

6

Device

2

3

4

Critical

6O

2O

6O

6O

65

Low

Warning

7O

4O

7O

7O

7O

High

Critical

8O

85

85

85

85

110 I 115 85

Warning

130

180

130

130

125

130

Table A.8: Ranges for Testing Normal Operation

92

I

J

U

mm

mm

m

93

w

r_

pL,

Sensor Device Low

Critical Warning

High

Critical Warning

1 1 60 70 120 130

2 1 20 40

60 7O

i10

160

120

180

130

125115

4 3 60 70 120 130

5 4 65 70 120 125
= ,

6 130

Table A.9: Ranges for Testing Warning Operation

Sensor Device

1 1

2 1

3 2

4 3

5 4

6 4

Warning Period

Normal pv;q-_ n-_ g

3 120

5 120

4 120

4

4

2

120

120

120

Table A.10: Ranges for Warning Period

,_

g4

SENSOR NUHBER

Cycle I 2 3 4

1: 1_ I_ I_ I_

2: 1_ 1_ 1_ 1_

4: 1_ 1_ 1_ 1_

5: 1_ 1_ 1_ 1_

6: 1_ 1_ 1_ 1_

7: 1_ 1_ 1_ 1_

8: 1_ 1_ 1_ 1_

9: 1_ 1_ 1_ 1_

10: 1_ 1_ 1_ 1_

5 6

100 120

IO0 120

100 120

100 120

100 120

100 120

100 120

IO0 120

100 120

100 120

11 : 100 100 100 100 100 120

12 : 100 100 100 100 100 120

13 : 100 100 100 100 100 120

14 : 100 100 100 100 100 120

15 : 100 100 100 100 100 120

16 : 100 100 100 100 100 120

17 : 100 100 100 100 100 120

18 : 100 100 100 100 100 120

lg : 100 100 100 100 100 120

20 : 100 100 100 100 100 120

21 : 1_ 1_ 1_ 1_ 1_ 120

22: 1_ 1_ 1_ 1_ 1_ 120

23: 1_ 1_ 1_ 1_ 1_ 120

24: 1_ 1_ t_ 1_ 1_ 120

26: I_ 1_ 1_ 1_ 1_ 120

26: 1_ 1_ 100 1_ 1_ 120

mm

i

am

g

rmm

mmm

U

w

I

m

I

m

w

L_

1F

. °

95

27 : 100 1_ 1_ 1_ 100 120

28 : 100 1_ 1_ 1_ 100 120

2g : 100 1_ 1_ 1_ 100 120

30 : 1_ 1_ 1_ 1_ 1_ 120

31 :

32 :

33 :

34 :

35 :

36 :

37 :

38 :

39 :

40 :

- _41 :

42 :

...._ 43 :

44 :

45 :

46 :

47 :

48 :

4g :

_ 50:

llllllll

51 :

52 :

53 :

54 :

55 :

100

100

100

100

100

100

100

100

100

ll I llll

100 1_ 1_

100 100 100

100 100 100

100 100 100

100 _X) 100 100

100 1_ 1_ 1_

100 100 100 100

100 1_ 1_ 1_

1_ 100 1_ 1_

100 120

100 120

100 120

100 120

100 120

100 120

100 120

100 19.0

100 120

I00 120

1_ 120

1_ 120

I_ 120

100 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

100 120

1_ 1_ 1_ 1_ 1_ 120

1_ 1_ 1_ 1_ 1_ 120

1_ 1_ 1_ 1_ 1_ 120

100 1_ 1_ 1_ 1_ 120

100 1_ 1_ 100 I00 120

(

%

96

56 : I00 100 100 100

57 : 100 100 100 100

58 : 100 100 100 100

89 : 100 100 100 100

.-. _m __

1_ 120

I_ 120

I_ 120

I_ 120

I_ 120

61 : 100 100 100 100

62 : 100 100 100 100

63 : 100 100 100 100

54 : lO0 100 100 100

65 : 100 100 100 100

-:_,_ 66 : 100 100 100 100

67 : 100 100 100 100

68 : 100 100 100 100

69 : 100 100 100 100

70 : 100 100 100 100

;:_ 71 : 100 100 100 100 100

- 72 : 100 100 100 100 100

73 : 100 100 100 100 100

74 : 100 100 100 100 100

75 : 100 100 100 100 100

76 : 100 100 100 100 100

77 : 100 100 100 100 100

78 : 100 100 100 100 100

79 : 100 100 100 100 100

80 : 100 100 100 100 100

lllllllllllllllll ll pltllllllllll_

81 : 100 100 100 100 100

82 : 100 100 100 100 100

83 : 100 100 100 100 100

84 : 100 100 100 100 100

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

1_ 120

120

120

120

120

120

120

120

120

120

120

120

120

120

120

m
1

1

1

1

L..--

imii

.. iE

1

tl

1

1

1

mi

1

97

"T

1

r

m

mm

J

L-

b

J

85 : 100 100 100

86 : 100 100 100

87 : 100 100 100

88 : 100 100 100

89 : 100 100 100

90 : 100 100 100

91 : 100 100 100

02 : 100 100 100

93 : 100 100 100

94 : 100 100 100

g6 : 100 100 100

96 : 100 100 100

97 : 100 100 100

98 : 100 100 100

99 : 100 100 100

100 : 100 100 100

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 100 120

100 :00 120

101 : 100 100 100 100 100 120

102 : 100 100 100 100 100 120

103 : 100 100 100 100 100 120

104 : 100 100 100 100 100 120

106 : 100 100 100 100 100 120

106 : 100 100 100 100 100 120

107 : 100 100 100 100 100 120

108 : 100 100 100 100 100 120

109 : 100 100 100 100 100 120

110 : 100 100 100 100 100 120

111 : 100 100 100 100 100 120

112 : 100 119 100 100 100 120

113 : 101 80 90 80 76 124

98

114 : 90 30 90 80 90 120

115 : 119 100 O0 80 123 120

116 : 65 170 O0 80 123 120

117 : 65 170 90 90 123 120

118 : 100 170 66 100 110 120

119 : 101 170 66 90 68 120

120 : 100 170 gO 100 68 120

121 : 100 100 90 110 100 120

122 : 120 100 90 100 123 120

123 : 100 100 100 100 100 120

124 : 100 100 100 100 100 120

126 : 100 100 100 100 100 120

126 : 100 100 100 100 100 120

127 : 100 100 100 100 100 120

128 : 100 100 100 100 100 120

120 : 100 100 100 100 100 120

.... 130 : 100 100 100 100 100 120

131 : 100 100 100 100 100 120

132 : 100 100 100 100 100 1:20

133 : 100 100 100 100 100 120

134 : 100 100 100 100 100 120

136 : 100 100 100 100 100 120

136 : 100 100 100 100 100 120

137 : 100 100 100 100 100 120

138 : 100 100 100 100 100 120

139 : 100 100 100 100 100 120

140 : 100 100 100 100 100 120

141 : 100 100 100 100 100 120

142 : 100 100 100 100 100 120

/

i

w

l

m

I

m

m .
m

m :

m

i

u

m

N

i

L
h

mm
m

m

99

w

w

w

f-

1

143 : 100 100 100 100 100 120

144 : 100 100 100 100 100 120

145 : 100 100 100 100 100 120

146 : 100 100 100 100 100 120

147 : 100 100 100 100 100 120

148 : 100 100 100 100 100 120

149 : 100 100 100 100 100 120

150 : 100 100 100 100 100 120

151 : 100 100 100 100 100 120

159. : 100 100 100 100 100 120

153 : 100 100 100 100 100 120

154 : 100 100 100 100 100 120

155 : 140 85 90 90 123 120

156 : 100 100 125 110 123 120

157 : 90 100 125 100 123 120

158 : 100 200 90 100 100 100

189 : 101 100 90 100 100 100

160 : 100 100 90 100 100 100

(.

I

m

Appendix B
W

..

Monkey, Bananas and Zombies Tests

The environment of the monkey, banana and zombies tests, described in

the results chapter, is presented here. The environment uses a euclidean

coordinate space of 150 by 150 to record the location of each agent. The

bananas _are always found at location (25, 25)at a height of 20 units. The

monkey always starts on the floor at (30, 31) and not holding a box. It can

walk, while carrying a box, at a speed of 2 units per step nd run empty

:-:_handed at 8 unite per step: Each step takes 0ne simulation clock cycle. To

climb up or down a single box requires a full clock cycle of the monkey,

regardless of whether it is carrying anything.

The 19 boxes of the environment are specified in table B.11, and shown

in figure B.37. These are the initial conditions of the boxes for all four of

the tests. The tower construction is initially the same for the tests, but the

CLIPS and ICE systems generate a slightly different plan.

Some of the boxes have slightly different attributes in each of the tests,

table B.12. Table B.13 shows the extra boxes added to the tower. In the

faulty box test, the boxes break when the monkey stands on them, their

height becomes zero. Re-planning must add boxes to replace the lost height.

In the heavy box case, the heavy boxes are replace along with all of the

covered boxes. The heavy object 7 is on top of box 1, thus making the later

box inaccessible to the monkey.

U

U

w

U

J

mm

m
I

I

t

m !

t_,°

100

U

Ill

J

w

101

=

,r

i

E
w

=

w

Box Location

X Y

0 7 50

1 1 2

2 25 100

3 65 140

4 100 100

5 100 100

6 1 2

7 1 2

8 145 95

Height On Under

9 100 100 2

10 75 3 1

11 100 100 3

12 60 67 1

13 107 20 1

14

15 100

16 75

17 70

18

107 20 1

100 1

3 2

71 1

70 71 3

2 floor nothing

3 floor 7

5 floor nothing

1 floor nothing

1 11 5

2 4 nothing

1 7 nothing

2 1 6

1 floor nothing

15 11

floor 16

9 4

floor nothing

floor 14

13 nothing

floor 9

10 nothing

18 nothing

floor 17

Table B.11: Box Characteristics

r

i

i_:_[B°x I Faulty

2

Heavy

7

12

16

17

Zombie

Tabh B.!2; Bo_ for t_heLast Three Tests

102

w

w

m

5
m

4
m

11

9

15

M

i

Figure B.37: Picture of the Monkey, Bananas and Zombie World

u

u

Faulty

,CLZPSIICE
|

13 1

10 4

18 I0

11 11

1 13

Heavy

CLIPS!ICE

13 [1
10 4

18 Iio
11 11

1 13

9

m

i

i

Table B.13: Additional Boxes Needed for the Tower
I

I

-- 103

w

i__

m

/f

w

THIS PAGE WAS INTENTIONALLY LEFT BLANK

m_
w

m

w

_ _..__

z

/
m

Bibliography

[All87]

[BeaSS]

[Ben84]

[Ber88]

[CH87]

[Do187]

[For82]

[ForSS]

Elizabeth Allen. Yaps: a production rule system meets objects. In

AAAI, pages 5-7, 1087.

Lee Brownston and et. al. Programming Ezpert Systems in OPSS:

an introduction to ruie-ba_ed programming. Addlson-Wesley, Read-

lng, Ma_achusetts, 1985.

S. Bennett. Co_truetion of Real-Time So/twore, pages 87-100.
1084.

John A. Bernard. Use of a rule-based system for process control.

IEEE Contro'l Systems Magazine, 8(5):3"i2, October 1988.

Alan Garvey; Craig Cornelius and Barbara Hayes-Roth. Com-

putational costs versus benefits of control reasoning. In AAAI,

pages 110-115, 1987.

James I. Dolce. A Proposal to Investigate Space Station Power

Systern Autonomous Control. Technical Report POP 87-2, NASA

Lewis Research Center, 1987.

Robert E. Filman. Reasoning with worlds and truth maintenance

in a knowledge-based system shell. Communications o/the A CM,

31(4):382, April 1988.

Charles L. Forgy. Rete: a fast algorithm for the many object pat-

tern match problem. Artificial Intelligence an International Jour.

1 0:17-37, 1982.

Charles L. Forgy. 0PS-83 User's Manual. Technical Report ,

Carnegie Me!Ion University, 1085.

i...

u

I

g

=

I

I

m

mm

I

m ,

m

/

(_

104

PR_CF351NG PAGE BL,a_ K N'OT I;'ILMFY)

m

-- 105

w

w

w

w

m
w

m

w

=

[HS89a]

[HSSgb]

[HW89]

[Kai88]

[KM85]

[Kor87]

[KR88]

[Kuo82]

[KusS8]

[LG89]

[LP87]

David Handelman and Robert Stengel. Combining expert systems

and analytical redundancy concepts for fault-tolerant flight control.

Journal o� Guidance, Control and Dpnamies, 12(1):39-45, January

/ February 1989.

Barbara Hayes-Roth; Richard Washlng-

ton; Rattlkorn Hewette; Micheal Hewett and Adam Seiver. In-

telligent monitoring and control. In IJCAI, pages 243-249, 1989.

B. Freitag; B. Huber and W. Womann. An integrated knowledge

based assembly control system for automobile manufacturing. In

IJCAI, pages 1369-1374, 1989.

Hermann Kaindl. Minimaxing. al Magazine, 9(3):69, Fall 1988.

L.B. Hawkinson; M.E. Levis; C.G. Knickerbocker and R.L. Moore.

A paradigm for real-time inference. In AI and Advanced Computer

Technology, pages 51-56, 1985.

Richard Korf. Real-time hearistic search: first results. In AAAI,

pages 133-138, 1987.

Thomas J. Laffey; Preston A. Cox; James L. Schmidt; Simon M.

Kao and Jackson Read. Real-time knowledge-based systems. AI

Magazine, 9(1):27-4,5, Spring 1988.

Benjamin C. Kuo. Automatic Control Systerr_. Prentice-Hail, Inc.,

Englewood Cliffs, New Jersey, 1982.

G.L. Kusic. A System Security Monitor/or Space Station Power

Systems. Technical Report TR-PO-88-1, NASA Lewis Research

Center, 1988.

Thomas Laffey and Anoop Gupta. Real-time knowledge-based syl-

terns. In [JCAI Tutorial: MA$, page, 1989.

Tim A. Nguyen; A. Perkins; Thomas J. Laffet and Deanne Pecora.

Knowledge base verification. AI Magazine, 8(2):69, Summer 1987.

L

w

106

[FP88] Stuart R. Faulk and David L. Parnes. On synchronization in hard-

real-timesystems. Communications o/the ACM, 31(3):274,March

1988.

[Gea84] J.H. Griesmer and et. al. Yes/mrs: a continuous real time expert

systems. In AAAI, pages 130-136, 1984.

[Geo84] Michael Georgeff. A theory of action for multi-agent planning. In

AAAI, pages 121-, 1984.

[Geo86] Michael P. Georgefl'. The representation of events in multi-_gent

domains. In AAAI, pages 70-, 1986.

[Gia87a] Joseph C. Giarrantano. CLIPS Reference Guide. September 13,

1987.

[Gis87b] Joseph C. Giarrantano. CLIPS Userb Guide. September 13, 1987.

[GR89] Joseph C. Giarranto and Gary Riley. Ezpert Svatems: Principle#

and Programming. PWS - Kent, 1989.

[Gup86] Anoop Gupta. Parallelism in Production Systems. PhD thesis,

Carnegie Mellon University, 1986.

[Gut88] Scott B. Guthery. Self-timing programs and the quantum sched-

uler. Communications of the ACM, 31(6):696--, June 1988.

[HA87] Patrick J. Hayes and James F. Allen. Short time periods. In IJCAI,

pages 981-983, 1987.

[Had86] : Peter Had_awy. _Piementation of and _periments with a variable

precision logic inference systems. In AAAI, page 238, 1986.

[Hay85] Barbara Hayes-Roth' A blackboard architecture for control. Arti-

ficialIntelligence an International Journal, 260:251-321, 1985.

[Hob85] J. Hobbs. Granularity. In IJCAI, page, 1985.

g

w

I

am

i

mm

m
g

I

m

mm

mR

N

il

mm

II

Lw

107

m

m

w

_.==,

m

z

w

w

[LR831

[LT86]

William Long and Thomas Russ. A control structure for time de-

pendent reasoning. In IJCAI, pages 230-232, 1983.

Marshall I.Schor; Timothy P. Daly; Ho Soo Lee and Beth R. Tib-

bitts. Advances in rete pattern matching. In AAAI, pages 226--,
1986.

[MD80]

[MF86]

[Mir87]

[MooS6]

D. McDermott and J. Doyle. Non-n_onotonic logic I. Artificial

Intelligence an International Journal, 130:41-72 , 1980.

Bruce Leban; David D. McDonald and David R. Forster. A repre-

sentation for collections of tempored intervals. In AAAI, page 367,
1986.

Daniel P. Miranker. Treat: a better match algorithm for artificial

intelligent production systems. In AAAI, pages 42-47, 1987.

R. Moore. Expert systems in on-line process control. In Proceedings

of CDC Conference, page , 1986.

[MS83]

[MW86]

Shoichi Masui; John McDermott and Alan Sobel. Decision-making

in time critical situations. In IJCAI, pages 233-235, 1983.

R. Michalski and P. Winston. Variable precision logic. Artificial

Intelligence an International Journal, 29(2):, 1986.

C.A. O'Reily and A.S. Cromarty. Fast is not real-time; designing

effective real-time artificial intelligent systems. In Proceeding SPIE,

pages 249-257, 1985.

[OD87] L.L. Odette and W.B. Dress. Engineering intelligence into real-time

applications. Expert Sltstems, 4(4):228-237, November 1987.

lPau88] L:F:'Pau:-'Sensordata i ,ign, Ro#otic
System_, 10:103-116 , 1988.

[PD88] Vict0r R. Lesser; JasminaPaulin and Edward Durfee. Approximate

processing in real-time problem solving. AI Magazine, 9(1):49-61,
Spring 1988.

w

-u

E

L _

108

.

C

[RS80] Chuck Rieger and Craig Stanfill.Real time causal monitors for

complex physical sites.In AAAI, pages 215-217, 1980.

[Ruo88] Corinne C. Ruokangas. Real-time control for manufacturing space

shuttle main engines work in progress. In AISA, page 5, 1988.

[SC88] Ralph P. Sobek and Raja G. Chatila. Integrated planning and

execution control foran autonomous mobile robot. ArtificialIntel-

ligencean International Journal, 3(2)'i03-113, April i088.

[SH88] James C. Sanborn and James A. Hendler. A model of reaction

for planning in dynamic environments. Artificial Intelligence an

International Journal, 3(2):95-102, April 1988.

[Shi87] Richard S. Shirley. Some lessons learned using expert systems for

process control. IEEE Control Systems Magazine, 11-15, December
1087.

[Sho88] Yoav Shoham. Chronological ignorance: experiments in nonmono-

tonic temporal reasoning. In Artificial Intelligence an International

Journal, pages 279-331, April 1988.

[Sor85] Sorrelis. Time-constrained inference strategy for real-time expert

systems. In IEEE Proceeding WESTEX, pages 1336-1341, 1985.

[ST86] A. Paterson; P. Sacho and M. Turner. Escort: the application

of causal knowledge to real-time process control. Ezpert Systems,

3i(1):22, January i986. +

John A. Stankovic. Misconceptions about real-time computing:

a serious problem for next-generation systems. IEEE Computer,

21(10):10, October 1988.

Marc Vi!ai n _dHe _ Kautz. Constraint propagat!on algorlthms

for temporal reasoning. In AAAI, pages 377-, 1986.

Show-Way Yeh; Chuan-lin Wu and Chaw-Kwei Hung. Solutions to

time variant problems of real-time expert system. In AISA, page,

1988.

[Stag8]

[VK86]

[WH88]

u

m

g

W

I

In

llm

+ . I

III

am

I

am

u

m

I

i +

109

[WH89]

[WinT9]

[WL83]

[Wo187]

Richard Washington and Barbara Hayes-Roth. Input data man-

agement in real-time ai systems. In IJCAI, pages 250-255, 1989.

P.H. Winston. Ariti.fidal Intelligence. Addison Wesley, Reading,

Massachusetts, 1079.

Frederick Hayes-Roth; Donald A. Waterman; and Douglas B

Lenat. Building Ezpert Spsterns. Addison-Wesley, Reading, Mas-

sachusetts, 1983.

A. Wolfe. An easier way to build a real-tlme expert system. E/e_-

troniea, 0:71-73, March 1987.

Naoyuki Yamada and Hiroshl Motoda. A diagnosis method of dy-

namic systems, using the knowledge of system description. In IJ-

C*AI, pages 225-229, 1983.

t__

i

x

L_

=

L£

=

i

i

i

i

i

U

US

i

i

i!

N

im j

[]

