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ICE SYSTEM:
INTERRUPTIBLE CONTROL EXPERT SYSTEM

Abstract
By

JAMES M. VEZINA

The ICE (Interruptible Control Expert) System, is based on an architec-
ture designed to provide a strong foundation for real-time production rule
expert systems. Three principles are adopted to guide the development of
ICE. A practical delivery platform must be provided, no specialized hard-
ware can be used to solve deficiencies in the software design. Knowledge of
the environment and the rule-base is exploited to improve the performance
of a delivered system. The third principle of ICE is to respond to the most
critical event, at the expense of the more trivial tasks. Minimal time is
spent on classifying the potential importance of environmental events with
the majority of the time is used for finding the responses. A feature of the
system, derived from all three principles, is the lack of working memory. By -
using a priort information, a fixed amount of memory can be specified for the
hardware platform. The absence of working memory removes the dangers of

garbage collection during the continuous operation of the controller.
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Chapter 1

Terminology and Concépts

1.1 General Environmental WTgl"minology

A coarse description of the system is needed before discussing the philo-
sophical question of “veal-time.” The “whole world” is considered the En-
vironment, as can be seen in the illustration, Figure 1.1. This includes
the machinery, sensors and control parameters. The medium used to send

information between the environment and control computer is called the

..., communications channel. The real-time software runs on the hardware
platform (or simply, platform). The software will be considered as the '

= : _controller.

38z

)

v:5 - Events occur in the envirbnment,; They include everything that does

~.or does not happen. One sensor value changing, and another remaining

constant, are both considered events. Information about an event is sent
to the controller. Information or data can represent the event itself (the

- affect), or be comprised of the effects of another event. If the environment
. groups data it transmits to the controller, then information is considered

- to be in a report. For example, due to limitations of the communication

channels, remote locations in the environment may only send reports. As
well as receiving data, the cqgtféllgr responds to particular events, or sets of
events. A response alters the current environment in some way. The amount

of time between an event occuring and the environment receives a response

" is called the response time.

The controller processes the environmental data with various tasks, lead-
ing to a response being issued. A dependency path, or bf path, is the order

of tasks from the data representing an event to its response.
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Figure 1.1: Model of the World

1.2 Model of_the Environment and Controller

The model of the environment is shown, without the controller, in figure 1.2.
The interface handles communications with the controller. The system

"’ gtate contains all the information of the environment, which is sent to the

controller as a report when triggered by the internal clock. The triggering
rate is set to be very fast, representing continuous data. Commands are
received and placed into the command queue. If the command queue Is
full, new commands are accepted and discarded. It is the responsibility of
the controller to be sure the environment can carry out a command. A STOP
command is provided to empty the queue. In an emergency situation, the
controller clears the queue so new actions can be carried out to correct the
problem.

Three types of objects simulate the characteristics of the environment.

Active Controllable Agents [Geo86] can be directly controlled by the ex-

pert system. These agents act upon the Passive Agents [Geo84|, which
cannot be directly controlled. The last set of agents are the Active Uncon-
trollable Agents [SH88|. This agent can act upon both the passive and

active controllable agents. Consider the power system of the space station as

i 1
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a.n example [Kus88|[Dol87]. The breakers, active controllable agents, direct
bbwer flow over the transmission lines, which are passive agents. The last,
active uncontrollable agents, are included in the environment. In this exam-
ple there are two active uncontrollable agents are: experiments running in
the space station {considered as black boxes with only their power require-
ments known), and small meteors bombarding the station. Both of these can
greatly affect the operation of the power distribution system.

The controller can be implemented in many software architectures, some
of which are presented in the following chapters. Regardless of the actual
architecture, the controller must perform the following functions.

Figure 1.3 shows the controller also has a interface utility, the I/O Co-

ordinator. It receives and processes the data from the environment. Com- |

mands sent to the environment must be managed to ensure that a response is

not lost. Monitor verifies the operation of the environment. Planning was

I\
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divided into two parts. The Planner handles the typical, long term, plan-
ning for the environment. A second module, Emergency Planner, is added
to handle the critical situations where a fast response must be issued with-
out being concerned with all aspects “of the system. Emergency rules can be
made to respond to specific events. After stabilizing the environment, longer
term planning restores productivity. The thesis concerns the software ar-
chitecture implementing the controller, and uses the term controller when

refering to the architecture. .

1.3 Real-Time Systems

“Real-time” is often exaggerated and misused. It is used incorrectly to refer
to “fast” systems, where fast can be as slow as seconds or minutes. This
thesis, however, considers seconds as an upper bound, with milliseconds be-
ing used as the basic time unit. The response time is always a significant
issue in definitions of real-time [KR88] [Sh187] [Ber88| [Moo86]. One def-
inition [Ben84] concentrates on the environment controlling the actions of
the software, while stressmg the importance of continuous operation. Hard
real-time [OC85] requires the software to respond within a designated time
period. Too fast a response can be just as disastrous as one too slow.

. There is a common denominator to the definitions. The software must re-

B spond to events m sufﬁc1ent time to keep the envu'onment runnmg smoothly

. be many sxtuatlons where the env:ronment is in a fatal state, and it is up to

the controller to gracefully shut down the maclunery to minimize any fur-

ther damage The software will Econtmually be bombarded with data about

i ,varlous events The controller must dxstmguxsh between possnbly crltlcal and

non-crltlcal events, ‘and -determlne an appropnate plan of action. Planning

must always consider the importance of a timely response.
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1.3.1 Data Processing

The ‘environment is generally able to provide a continuous value for each

datum, for example an analog sensor. Discrete computers must sample the

3 -

signal in order to convert it to a digital value. Continuous sampling generates
an enormous amount of data. The controller must use a scheme to decrease
the data, while not effecting its integrity. There are four basic methods used:
variable sampling rate, fixed sampling rate, fixed thresholding and dynamic
thresholding. Figures 1.4 through 1.8 demonstrate the effect of each of these

methods. The signal received from the environment is shown as the graph,

while the points reflect the samples taken by the controller.

The first figure uses the variable sampling method [Kuo82|, common to
many expert systems. The data is accessed after the controller processes the



Frrr X rr il e

.6: Fixed Thresholding
Thresholding with a Hysteresis Loop

Figure 1
Fixed
Figure 1.8: Variable Thresholding

iy &

- Figure 1

| I I A | l 1l 1 1) S b b HEDWY D =1



previous samples. In this way, all of the accepted data can be considered. As
the environment moves into a more dynamic or critical state, the controller
requires more time to process the data, therefore the sampling rate decreases.
Critical states may produce more data to be processed and the sampling
rate again decreases. The controller can be literally blinded by the warning
conditions of the environment and not see future fatal events.

By fixing the Sitir;biing rate, the controller is less iikiely to miss receiving
the fatal events. Unfortunately the figure demonstrates how this situation
can happen. A fixed sampling rate can still present the controller with
much more data than it can handle. Figure 1.4 shows the rate at which the
controller can'process the data, while figure 1.5 provides much more than
can be handled. A controller must then be able to distinguish which data
are least important and ignore it. Another option is to retain all of the data
until such time as the controller can process it, however the data validity
is decaying. 7V§iidity decay is influenced b); the elapsed time and responses
issued by the controller. A response may invalidate the data entirely. If the
controller processes data faster than the sampling rate, then it will remain
inactive until new samples are received.

Thresholding provides a promising method to reduce the amount of in-

significant data. As a data item remains in the current state (based on its

value, trend or other aspects), it is considered to be constant and the new
data is ignored. Upon entering another state, the controller recognizes the
transition and the data is processed. The data is still initially received by
one of the sampling techniques, but is processed by this thresholding method.
This generally reduces the amount of data more than the previous two ap-
proaches alone, but the controller must still be able to cope with too much
new data. Although fixed thresholding does generally reduce the incoming
data, figure 1.6 provides a contradictory example. As data oscillates around

a va.luei each pzss across the threshold genz;atés a new item to be processed .

by the controller. If the cycling rate and sampling rate are small, the con-
troller receives a practically continuous signal. A similar problem arises in

digital hardware as a signal changes state. The state transition is never clean,
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and a certain amount of oscillation always occurs. One approach to alleviate
the problem is to give the signal enough time to settle before accessing its
state. Since the goal of real-time systems is to respond quickly, additional
time to process data is not desired. Instead of defining the threshold as a
single value, it can be defined as a band around the value, hysteresis loop.
In order for the signal to move into a hlgher state, it must cross the higher
threshold level. Correspondmgly, to enter a lower state, the signal must cross
the entire band. Oscillations can still occur, but their amplitude must now

~ be greater than the threshold band. The technique is demonstrated in figure

1.7 ,

. The last approach uses dynamic thresholding [WH89], 1.8. Instead of
defining the threshold as a single value or even a range, a band surrounds
the latest accepted data value. In doing so, a more accurate picture of the

data can be seen, while avoiding oscillation problems. As the controller

..... requires more processing time for a set of samples, the thresholds around

data values can be expanded. In this way, the controller filters more of the

s:scew data. As more data can be processed, the thresholds are contracted.

, Unfortunately the problems associated with variable sampling rates appear.

.. = While the problem may not be as prevalent, the controller can still lose
-.:»valuable data. This is most evident at the worst time, when a critical event

is described by a tremendous amount of data. In this case, the controller

- > must be its fastest, and be able to handle an unusually large amount of data.

- ---- With all these methods, the controller must still be capable of determin-

ing the importance of incoming data. As less data can be processed, the
unimportant and redundant information must be removed.

It is appropriate to consider the method used by production rule systems
to determine the states of the data. Most rulw map the data into one of

" several states. An engmeer ‘classifies a state as a range, usually with some

error either way. For example, water boils over 212 degrees Fahrenheit. Due
to the thermometer used and atmospheric conditions, the actual temperature
might be plus or minus five degrees. Because the rules already define the
thresholds of most states, the fixed thresholding method with hysteresis,
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seems most logical. While variable thresholding has advantages, it does not
consider the rules that are using the data. Also if a variable range grew too

large, it may combine several states into one.

1.3.2 Interruptablhty

Async}ironous operatxon is xmportant when consxderlng data procwsmg An

interrupt generally indicates a severe event in the environment, the controller
must focus on a response. 'A-binary signal may alter its state and interrupt
the controller. State transition, particularly in the fixed thresholding ap-

proach, also causes an interrupt. The software must be capable of accepting

" " and processing these interrupts.

1 3. 3 Rééporiding to the Critical Event

Events are continuously occuring in a real world environment. The moni-

toring sensors will be providing the controller with a representation of the

~.:=_events. The software must identify the possible events depicted by the data.
3=~ The response to the most critical event is the primary concern of the con-

troller. The approach can be better explained by using an example from

+ - the planned space station Freedom, a sponsor of this work. In considering

-~ the space station, an astronaut might be aggravated by the lights not im-

: .- mediately returning. However he would be dead if the life support system

restoration was delayed. Based on this scenario, the less important tasks are

truly trivial as compared to the critical tasks.

1.3.4 Practical Issues

There are a few practical issues that need to be addressed by a real-time sys-

tem. The software must be able to run continuously (at least as long as the

environment is in operatxon) There are sophisticated real-time expert sys- .

tems that perform well on specialized hardware (e.g. Lisp machines) [ST86]
[OD87] [KM85] Unfortunately, they cannot run continously. This limita-

tion is inherent in single processor systems that must garbage collect. A

] ni I 1] (I I L ml ne om0 W ] [
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controller cannot ignore the environment while garbage collecting. The abil-

ity to interface to the environment and to conventional software is the next

practical issue. This is especially true for an expert system attempting to be
real-time. Knowledge is important, but so are the traditional algorithms in
use today.

Guaranteeing response times is briefly mentioned in every description of

i

real-time software. However there is never a practical solution to the prob-

lem and software. Real-time programmers will typically “hack” in assembly

1]

language until the software satisfies the given test conditions or current prob-
- ‘lem. Industry generally defines the requirements of real-time software, by
= ) aeﬁning a set of tests. If these tests are satisﬁek‘i,"trhe' systém is said to be
verified and validated (V & V).

- 1.4 Expert Systems

1.4.1 Typical Prototype

This section briefly describes data driven production rule expert systems

#7727 |[WL83]. Each rule is made up of antecedents (IF-parts) which must be

proven true, for the consequences (THEN-parts) to be executed, or fired.

- The input data (describing the events in the environment) is accepted by

- 74 the expert system. The raw data is then processed and represented as facts.
These facts lead to a rule firing in two ways.

" 4% 55 The first method matches the facts to the antecedents of every rule. If all

" “the antecedents of a rule are true, the rule is then placed (scheduled) into an

-agenda (queue). This is called activating a rule. The activated rule with

ﬂuww
Lbjld por it

the highest priority in the agenda is fired. If any new facts are created, the

£
=
o
o
©
L ]
[*]
(2]
2
[7-]
w
-
4]
g~
1]
o
o
1]
R
o
o
=~
o
.1\
z
w
o
ey
=3
o
g,
2
£,
o
el
|1
o+
&y
@®
g:
o,
=]
(=%
®
&
[
[/
[ BE
.
-3
=2
o

Rete algorithm is the most common approach and will be described below.

The second method does not initially do the matching. It determines the

rules that “might” be activated. These are initiated, placed into the agenda.

The antecedents of the first initiated rule are attempted to be proven. If

i /_‘\II
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Environment

commands data

Inference

Scheduler

(-‘ Figure 1.9: Typicai Real-Time Production Rul. Expert System
SLiIVA TR s
. successful, the rule is immediately fired. Any new generated fact begins the
.. cycle again.
. _Production rule systemns, real-time or otherwise, follow the same basic
- . architecture [SC88| [Ruo88|. Data is received from the environment or a user,
and accepted by an Interface Manager, as seen in figure 1.9. This manager
handles all communications with the environment. Processing incoming data
includes one of the sampling or thresholding techniques from the previous

7sre7ctﬁi§xjxith6ugh sampling may be done closer to the hardware level. The

manager can also prompt for information from a user or scftware package, a
database for instance. The environmental data must minimally be converted
into data structures used by the expert system, such as facts.

The system considers the new data in the light of the previously a.na.lyzed-

data and determines the proper response. The Event Manager determines all
possible avenues to pursue. The Scheduler, in turn, orders these possibilities.

[

i [ (TR |
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The Inference Engine reasons about the most probable rule. Upon consider-
ing the rule, new information or facts may be created. These are passed to
the Event Manager directly or through the Interface Manager. A necessary
response is sent to the Interﬁfgfcgfl\iapager and appropriately directed to the
environment. A common variation is to exclude the Interface Manager from
receiving data while the current data is being analyzed. The manager can be
activated by a timer, a comm;,nd, or after finishing with the current data. In
many cases, the interface manager accepts data based on a command from
a rule firing in the Inference Engine. A command is issued after the current

-data is considered in enough detail to warrant the need for new data.

¢ " Event Manager

As stated, the Event Manager determines all possibilities to consider. This
entalls using all of the facts and activating the appropriate rules. As new facts
are asserted, new rules may be activated. There are many variations on the '
s.ingle theme, the Rete algorithm [For82], described in the following section.
Matching time is minimized by remembering all previous matches and partial
- matches. New assertions are compared with the minimum number of rules
. and previous facts. The variations generally tend to alter the amount of
previous comparisons stored. The TREAT algorithm [Mir87] considers the
Rete algorithm to use too much memory for the increase in performance, and
therefore it saves less of the comparisons. Oflazer’s algorithm [LG89] finds
___the two algorithms much too conservative, and requires more information to
_.be recorded. Although much more memory is used, the performance should
increase.

Matching is eonsidered to.iec—lﬁ‘i}e the bmo'srt eighiﬁceht- e.mount of process-
(Gup86). It is also one of the major obstacles in enabhng an expert system
to be interruptable. The system cannot be interrupted while a fact and all

"its effects are being matched to the antecedents of the rules and the previous
facts, this will become clear when the discussion of the Rete algorithm is

“ presented.
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Scheduler

. The activated rules are scheduled into an agenda, waiting to be fired by the
inference engine. The ordering is based on a priority given to each rule. Some

~ architectures group the rules into worlds [Fil8§]. Each world is concerned
V thh a dlﬂ'erent aspect of the envxronment Only the rules in the current

Inference Engine

This manager is also fairly straight forward. The first rule, with the highest

priority, is taken from the agenda and its consequences fired. Firing cre-

ates new facts and respondes to the environment. Execution moves to the

_interface or event manager.

~ This discussion has concentrated on what is called Data Driven, or
Forward Chaining, production rule expert systems. This means that the

data or facts dictate all of the rules to be activated and fired. In general,

" this is the appropriate approach for control expert systems. Goal Directed,

% or Backward Chaining, is another approach A goa.l is determined to be

i
solved, or proven. The goa.l is a ¢ consequence of one or more rules If the

© " antecedents of one of these rules is proven true, then the goal is true. The

antecedents of all these rules now become goals, and the process continues

1% recursively. Goal driven expert systems are often used for diagnosis. Given

information, the system determines why something will not work (the initial

. goal). This appears similar to controlling an environment, except the system

" is not informed of a problem, it must determine if one exists. Determining

unknown faults is a problem for data driven expert systems.

1.4.2 The Rete Algorithm

The Rete algorithm [For82] is designed to minimize the total amount of -
matching time in a production rule expert system by avoiding unnecessary
comparisons between facts and antecedents. The algorithm assumes the

system contains a single set of rules and the facts remain relatively constant

Y (/R T TR | T |
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throughout the course of a consultation. A consultation consists of starting
the system and continuing until finished.

. Each antecedent is made up of a number of elements. When compiling
the network, each antecedent of every rule is broken down into its various
elements. By combining similar elements, the amount of matching can be
decreased. The algorithm can be better described by using the example in
figure 1.10. Both antecedents of Rule 1 are similar to antecedents in Rule 2.
Consider the network generated by Rule 1, shown in figure 1.11. The first
antecedent is broken down into its elements: “a”, “value”, “?X” (assume
a question mark denotes a variable that must be matched). The network
is made a single path begining with “a” and ending with the variable X.
The second antecedent generates a similar path. In this case however, the
X variable must be matched to the same variable of the first antecedent.
The combination of the two paths made by matching creates a join. The
remaining element is then verified, to insure its existence. Upon reaching this
point, the rule is activated. The power of the algqrithm can be appreciated

by turning our attention to Rule 2. The first and second antecedents are

1. already mapped from Rule 1. The path of the last antecedent is similar
i%..-- to the one created by the second antecedent, except for the last join. Now
. the last element of this antecedent (the variable Z) can be joined against its

corresponding element in antecedent “b”, after the first join. The sets of

- facts that pass the new join activates Rule 2.

- At each step, figure 1.11 shows the facts that currently match all of the

> constraints. Their addresses, or indexes, are stored in buckets. Vﬁpan con-

sidering the fact, (a value 1) , the first element matches the “a” bucket and
is recorded there. Its second element matches “value” and it contains a third
element. It is recorded in both buckets. Upon reaching the join, the corre-
sponding bucket from the “b” path is empty so no further processing can be
done. The next fact also matches the “a” bucket and is recorded. Its second
element is not “value”, and therefore is abandoned. Fact three is matched
and recorded to the first three buckets until reaching the join. There is a

matching fact in the corresponding bucket and the join is successful. Now
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Rule 1: Rule 2:
if it
(a2 value 7X) (a value 7?X)
(b local ?X ?Y) (b local 7X 72)
(¢ local W 72)
then then S
{ fire Rule 1 } { fire Rule 2 }
Facts , o
B i: (a value 1) iv: (c local 2 2)
0. ii: (a local 3) . v: (b local 1 7)

iii: (b local 1 2)

Figure 1.10: Example System for the Rete Algorithm

BT R

both the first (a value 1) and third facts (b local 1 2) are recorded together,

> ' designated here by the set that contains them. The next bucket in the path
- verifies that the “b” fact has a fourth element. Since it is true, the two rules

> -+ are recorded in the bucket, and Rule 1 is activated with this fact set.

The fourth rule is recorded into all of the buckets that it matches against.
It is then joined against fact sets in the last bucket, which has activated Rule

- 1. The fact set is considered, and the last element of the “b” fact is joined.

The “c” fact is recorded, with the previous set, in the next bucket. Rule 2
in now activated.
Assuming there were no more facts to consider, the rules (scheduled when

activated) in the agenda can now be fired. After firing the first rule, assume

a new fact is created, or rather asserted. Before the next rule is fired, the

fact must be placed into the compiled network. The new fact (b local 1 7),
is now matched and Rule 1 is again activated in the same manner as with

the previous “b” fact. The path continues to join 2, against “c” facts. In

r
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local] ¥
(74 1.7
?Y W

join

2

L 2 |iEwN
I Bl |
activate: Rule 1 {i,ii) _ activate: Rule 2 {1, i, iv}
activate: Rule1 {1, v} ,

--Rule Activations

;Rﬁleriz {1, 114 }
Rule 2: { i, iii, iv)
Rule 1: { i, v}

Figure 1.11: Network Generated by the Rete Algorithm




18

this case, the latest fact set does not match against any of those recorded in
the other bucket. Now the next activated rule is fired. This continues until
there are no more rules to be fired.

The network created by compiling the rules will fill a given amount of
rheniory; Each node has a pointer to an area in memory serving as the
bucket. A bucket can be dynamically increased or decreased. The memory
used for the buckets is called working memory. A memory manager must
distribute the available space from one bucket to another that needs it. It
most likely frees the available memory from bucketsr, that were decreased
in size. The freed memory is placed into a pool that can be used for a
bucket overflowing with new fact pointers. If the pool becomes too low,
more stringent measures can be made in freeing memory. If all memory is
being used in the buckets of the network, then the system is in deadlock and
must halt. The memory manager here is analogous to garbage collection
utilities in other systems.

It is evident that the total number of matches is minimized. The network
generation must have a fixed set of rules to generate the data flow network,
the first assumption in the algorithm. The second assumption, a relatively
constant set of facts, is necessary due to a major drawback in the approach.
While asserting a new fact fits nicely into the mechanism, retracting (re-
moving) a fact does not. Upon retracting a fact, all-possible combinations
generated by the fact must be checked and dﬁy rules that have been acti-
vated must also be retracted. A large complex network would be unwound,
and the buckets updated. The agenda also has to be searched for the rules
to be removed. If a value in a fact was modified, the previous fact must be
retracted and then the new fact can be asserted. Although the algorithm can
handle a dynamic fact base, it is generally expected to remain fairly static.

Network compiling is not a trivial task. While the network generated by
the two rules was simple, a large number of rules is much more complicated.
The-algorithm defines the type of network structure, but the exact graph
is implementation specific. Each graph may produce dramatically different

results.
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The algorithm possess a more serious flaw when considering a real-time
system. The fairness given to the facts is not appropriate. All facts {or data)
are given the same weight. An important fact cannot preempt the matching
of a less important fact. Before the critical fact is matched, it must wait
until all possible combinations of a previous trivial facts are checked. All of
the later facts must also be matched before any rule is fired. This forces a
controller to execute the largest portion of its time before any response can
be generated. Therefore the matching of an insignificant fact will postpone
an important response. ‘The first section of the results chapter shows this

effect as compared to the ICE system. The second section demonstrates the

-z results of this inefficiency.

- 1.4.3 Working Memory and Garbage Collection

ALIERE

v

L e <

'Systems using working memory, like the Rete algorithm, reclaim used mem-

ory, garbage collection. Memory must be meticulously search for unused

elements. There are technlques developed to make the job less painful, and

) “allow the expert system to control the initiation of ga:bage collection. Prac-

’.'

tncally speaking, memory will be scarce while the environment is in a fatal

state When the envu'onment is in dire need of a response, the expert system

ls forced to hibernate until the garbage collector recovers enough memory

" to continue. This is a worst case scenario, but one that easily occurs. A

" “reclamation facility.

real-time expert. system should be desngned to avond the need for a memory

Allowmg the facts to be contmuously asserted and retracted, the memory
quxckly becomes fragmerlv_ted The”decrea.se in performance due to fragmenta-
tion may be solved with a memory reclamation utility. The time for garbage
collection is already very expenslve and i 1ncreasmg the processing time is not
wise. To compensate for the potentla.l problems, an arbltranly large amount
of memory is provided with the hardware platform. 7

" Large amounts of data'eorrﬁ.;ounds memory problems As the amount of
the data received from the environment increases, the need for memory man-

agement also increases. To lessen the chances of disastrous effects of garbage
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collection during a crisis, more memory is arbitrarily added to the hardware
platform. If the increase in memory is inadequate, then more is added. A
particular prototype [HW89] uses 24 megabytes of memory to insure garbage
collecting will not occur at an inopportune moment. By eliminating the need
for a garbage collection facility, the controller has the additional advantage

of being able to more accurately specify its requirements.

1.5 Parallel Architectures

Specialized hardware or parallel computers tremendously increase the cost
of delivery and do not guarantee a definite improvement in performance.
The controller becomes more complex on a parallel platform and various
contention problems arise. Tasks are scheduled and managed across multiple
queues and computers. Queue contentlon in a dyna.m:c envxronment soon
' becomes evident. V

Activated tasks are distributed across multiple computers. As concurrent

- processors are generatir.g new tasks to be scheduled, each processor must

~" wait for the master queue manager to accept and schedule these tasks. Many

g

~

A

processmg cycles will be lost because of scheduling. Similarly, a task may
"be forced to wait for the results of a pending task on another processor.
Refermg to figure 1.12, tasks T and 7} are needed by task T.. Initially, task
1}, needmg much processing, is ‘scheduled to run on processor P;; similarly,
task T;, requiring little computation, is sent to P,. T, is then scheduled to
run on the third processor. As the first two processors are executing their

" respective tasks, P; is waiting for tasks T, and T; to finish. To improve this

scenario, T, is also sent to P1 and scheduled after T,. Since T, requires much
more processing than T;, T, should finish much later. If T, is preempted or
unexpectedly took a long time, T, again waits.

Increasing the number of processors also increases the amount of time
necessary to manage and coordinate the system. At a certain point, adding

another processor actually degrades performance. Beyond that point, adding

M
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Task

Dependencies P2 Processors

Figure 1.12: Task Dependency and Multiple Processor Example

AT adadatss

more processors drastically decreases performance to being practically dead-
locked by processor management. Improving the techniques used in the

......

" controller is a more promlsmg solutxon to the problem

FE IR IS

e

1.5.1 Basic Approaches

.

The controller may be distributed across multiple machines. Each computer
is responsible for one aspect of the software: Interface Ma.nager, Event Man-

it

ager, Scheduler or Inference Engine, each is mdependent This approach is

..a common step in increasing performance and does not have as many of the
;.:i- previous contention problems. Unfortunately the bottleneck of the systems
may not be affected. Production rule expert systems use approximately
w2 85% of their time in the Event Manager, matching facts and antecedents.
If the four managers were on separate computers, performance will not be

. improved by more than 15%, because the matching process holds up the rest

of the processors. As new data is added, it will spend 85% of its time in

i

[

i

=
it

!

- the computer handling the matching process. The actual gain is lessened

RN

by the additional control needed to coordinate the four computers and the

communication delay, to name only two. Later we will see that network

communications can unexpectedly add minutes to communications delay to

a system that must respond in only a few minutes.

o~

i

ol
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1.5.2 Contention

Contention may arise as multiple processors access data in shared memory.
As expected, one waits as the other accesses the data. Similar tasks access
similar data, so it is likely that memory contention would arise many times.
Read access does not contribute any constraints in resolving this problem;
however updating the data would. For example, task T, reads data D; at the
same instant as T, requests to update the information. Task T, reacts much
differently depending on if it was allowed to access the data before or after
Ti. If T, wished to update D; instead, then the final data value depends on
which task was allowed to write last. Not only does memory contention need
to be managed, but much more importantly, truth maintenance becomes a
critical issue. 7 7

" If a hardware bus is shared by more than one pl;ocessor (as in many
parallel computers) then contention arises again. A processor may wait to
access data or control communications. The same problem occurs as multiple

processors attempt to access the same device.

T

LY

= 1.6 Scheduling

[P

* - Although data may be properly received and validated, the time to issue all

_ responses will most likely be much more than what is available. A critical

issue is deciding which events and possible responses to pursue. An in-
significant maintenance response may only take a millisecond to issue, while
potential disaster recovery could involve hundreds of milliseconds. The quick
response to the first event is unimportant. It is the second response that is
important. The difference could be preventing a catastrophe. If the con-
troller receives a report, the response time of the disaster recovery response

is the time to consider. To complicate matters further, it may take several

tasks (modules) or steps along a path [RS80] to reach a specific response. ‘

At a given time there will be many possible tasks to perform, and each is at

a different stage in the development of a response.
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Fairness, in operating system terms, gives each process (or set of tasks)
an equal opportunity in computing time. However, fairness does not apply
to real-time systems [Sta88]. A non-critical event should not interfere with
the computing of a critical response. Unfortunately, it is hard to determine
which is the most critical event. A path of steps leads to the highest priority
response, but it may prove to be unnecessary. This could be the hardest
aspect of programming real-time software.

Granularity, or size of a task, is as important as scheduling the next

task to execute. Task granularity being too large might waste computing

~ time by being involved with an unimportant task. On the other hand, very

small steps consume resources because of the system overhead to plan and

schedule the next task to execute. Some systems use parallel processing in

. an attempt to solve this problem, but it does not decrease the magnitude of

the problem. Depending on the architecture of the hardware and the number

- of processes added, it could actually make the problem worse.
Upon processing the data, the software must determine the new tasks to

- be activated and schedule them along with those tasks that are stll pend-

ing. While there are many scheduling techniques for a given (static) situ-
ation, dynamic environments are much more complex and requires the use
of heuristics to schedule in a near optimum manner. Time is the trade off

between using heuristics to optimally generate a schedule versus a simple

‘method. While the simple method may not be optimal, it provides much

more time for rea.somng A complex scheduler must also ana.lyze the data

“to determme its lmportance lemg prlormes to the data states and tasks,

' _ may enable a snmple methodr to progiuce satlsfactory results. The scheduling

" mechanism also is constrained by the type of architecture used and will be

presented with the different architectures.

1.6.1 Task Scheduling

To make a task perform in real-time, many single queue expert systems rely
on improving the scheduling algorithm. Perhaps the reason is the simple

method initially used. Each rule or group of rules is given a priority. The
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activated rules are sorted by their priorities and merged with the existing
agenda. Variations appear in ordering rules with the same priority, either
oldest first, newest first, or undetermined ordering.

Multiple queues scheduling cannot be generalized as easily. Some systems
give each agenda a priority or range of priorities [Gut88|. The tasks are
placed into the agenda with the equivalent priority. The Inference Engine
looks to the highest priority agenda for a task. If none are present, then it
continues with lower priority queues until a task is found.

Schedulihg Qﬁéues of mﬁltiple processors is much more complicated. The
strategy executes the most likely critical tasks in parallel. The sets of tasks

leading to the critical responses are spread across the processors. From

. . before, figure 1.12 showed T, requlrmg the results of T, and T;. So tasks
, .. T, and T, are each scheduled on different processors. If there were a similar

task dependency for an alternate response, then its initial task is scheduled
on the third processor. The queues should be dynamic enough to reschedule
the tasks to take advantage of task completions. If all the tasks T, depended

;. upon were completed and a processor was free, then T, is scheduled to run
.ion the free processor.

Pl o — e

. 1.6.2 Best Guess

" Time plays an even more integral part of the searching method. Here we

consider the data leading down various paths, where each path has a different

‘response (responses similar to the previous method). A path is chosen based

“on the probablhty of being the best response and the time to determine if the

response can be proven true or false. Using the previous example, the first
operator had two choices: search for the cause or do an immediate shutdown.
He determined it requires too much time to prove the corrective action. An
immediate shutdown was a less optimal response, but could be accomplished
in an acceptable time frame.

" There are two basic approaches designed to respond in a given amount
of time. They are a2 Best Guess [Kor87)[Sor85], and searching based on
the time available [PD88|[Kai88]. A set of events invokes various responses

f
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and one of these two methods are commonly used to determine which is the
appropriate response.

In the course of discovering the optimal response, the controller continu-
ally updates the “best guess”. When the allotted time is finished, the system
uses the current (best guess) response. This can be illustrated by an exam-
ple. Upon entering a smoke filled computer room, one operator may allot a
small portion of time for the response and immediately shutdown all of the

.computer systems. Another operator may allot more time to discover the

solution and look for the cause of the smoke. If the cause is quickly found,

- it is corrected, otherwise he too shuts down all of the computer systems.

-~ The example shows how necessary it is to correctly predict the amount of

Iy

‘time to allocate for a response. While pursuing an optimal response, the

ETS 50cK

;.environment may become unrecoverable, but responding too quickly may

ST A

be ineffective or yield an inappropriate action. It should also be noted that
there will be other important responses that must be determined at the same -
time. These other tasks might need to preempt the current path of tasks.
Cha.ngmg the focus of attention is necessary. By following a path to its

e} =t

i completlon, a response to a more critical event may be prevented.

B B
PO
iy

- :1.7 Reasoning

-

Time is an important aspect in data analysis. Assuming the data is valid
at the time it was sent to the controller (although faulty and noisy data

“ 'Must also be processed) as time passes, the validity of data may drastically

“decrease. The rate may be dependent on other factors in the system The

RS 5 Al =E

actual value may also change ;n the next mbmeht Nonmonotonic reasoning
[Sho88] [MD80] [LR83] is necessary in this situation. It initially maka some
assumptions (which include the validity of the data), but might revise its
beliefs during reasoning about the event. The revision may be because of:
data that follows, decaying data validity, or logic internal to the software.
Monitoring a temperature gauge is a helpful example in explaining this con-

cept. Monotonic reasoning has the operator record the temperature and
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then go to his office to decide if the machine is working properly. There is no
consideration that the gauge may have drastically increased or is continually
fluctuating. Nonmonotonicity considers the changing value while reasoning.
Temperature increases, or decreases, are an important trend, just as how it
may fluctuate. The knowledge that the temperature tends to be lower at
night and even lower during the winter months, can also put the value or
trend into proper perspective. Temporal Reasoning [VK86] [HA87] [MF86]
considers the aspect of the data changing with respect to time. The order
of events is considered. The order can be sequential or events can overlap.
Event A and B can occur during event C, but A and B may be sequential.
" __ Past events may appear in a different light when new events occur. If the
73 temperature gauge increases slightly, it might be ignored. However, if the
machinery suddenly breaks down, overheating is diagnosed based primarily

" on the previously ignored sensor.

e ST E B L

1.7.1 Truth Maintenance

R N

Ti;: Aseco:;u:ii,' more ‘iirxtrric;'t.éi,vl:i"ﬁth m&i'x{aﬁ;;ceiproblem is much harder to
solve. There are three basic methods to handle this situation [WH88|: For-
ward Tracing, Backward Tracing and Dynamically Setting Censors. Given

the example in figure 1.13, assume that T; started the execution, with T}
and Ts now being the current tasks. If an antecedent of T} now becomes

i fals_e, then the two current tasks need to be deactivated.

- In Forward Tracing, the system chases through the paths, setting the
 tasks to false until deactivating the current tasks. By giving this function
the ability to preempt all other processing on a single computer, the tasks
can be properly deactivated. This, of course, slows the system down. If the
prbblem is before a long trivial chain, the critical tasks are preempted for
quite awhile. The importance of the chain cannot be determined from its

root. Ty gngyl)g yrrilrimprbrtant, but it may lead to a problem that can cause '

a major catastrophe.
The second method is invoked when a rule is about to fire. Backward

traciﬁg checks the antecedents of all the rules leading to the current one.
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Figure 1.13: Example of Task Dependency

In cases where a response must be issued immedia.tely, backward tracing
is ignored. While this may produce an inaccurate response, it is the best
choice within the given amount of time. To further enhance this approach,
both methods can be used simultaneously. Forward tracing is not given the
ultimate priority, it shares the processing time with the tasks. As it moves
down the path to the rule to be fired, backward tracing moves in the reverse
direction. Rules that are no longer valid are determined much faster, with
the combined effort.

The preceding approaches to truth maintenance take time and are very
cumbersome. Matching occurs again and again. Dynamically setting
censors [MW86] [Had86] overcomes this problem, although it is not as ac-
curate. As a rule fires, a particular censor may be set. If the rule then
becomes invalid, the censor is updated. Rules farther down the path check
the censor to determine the validity of the preceeding rules. The censor could
also be represented as a fact. A sensor value may initiate a reasoning process
and also serve as the mechanism for validity of pursuing the problem. While
the sensor is in an abnormal state, the event should still be explored. The -
accuracy of the method is entirely determined by the censors choosen, and
even then it may not be valid in every circumstance.

Tracing is geared for finding incorrect rules. A rule that is no longer
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valid can be proven much faster than an invalid one. Censors allow the valid
responses to be generated in the least amount of time. A censor is analo-
gous to checksums used to determine data validity on a hardware platform.
The checksums do not ensure that the is perfectly correct, but give a high
probability of accuracy. The censors represented by the data from the envi-
ronment are already present in the Data Table. chger;c,ensgrs can encode a
much more complicated value, these are placed into the System State Table.
The approach can be seamlessly added to a system designed with the ICE
System architecture.
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Chapfer 2

Related Work

2.1 Parallel Implementations

When discussing real-time software, high performance is always required.
Unfortunately current technology is unable to perform satisfactorily in a
complex environment. Lockheed is developing one of the most well known
real-time expert systems, Pilot’s Associate [LG89] [LP87]. It is comprised of
..+ a Digital Equipment Corporation VAX-11/780 networked, via ethernet, with

~ ... three Symbolic Lisp machines (more computers are being considered). The

.. --- order of hundreds of milliseconds. However, this is reported as two to three

-5i%i3 orders of magnitude too slow. A clear solution to the performance problem

~~-help. Another approach is improving upon one of the techniques used in the

. system, task scheduling for instance.

5.2 i8 not clear, and it is hoped that the addition of more processing power will

| Objective | Response Time |
Pilot Modeling — 450 msec
Determining Pilot Intent 50 msec
Defining Threat Objects 100 msec
Assessing Target Value 500 msec

450 msec

Generating Plans

Table 2.1: Performance Réquirérﬁénté of Lockheed’s Pilot’s Associate

29




s B

[

30

(defrule RuleName "comment string"
(first antecedent)
(other antecedents)
=>
(first consequence)
(other consequences))

Figure 2.14: Rule Structure Used in the CLIPS Expert System Shell.

2.2 Productlon Rule Expert Systems

2 2.1 CLIPS NASA’s Expert System Shell

NASA developed the C Language Production System, CLIPS, [GR89]
[Gia87a] [Gia87b] to provide a forward chaining production rule system based

~ on the Rete algorithm. It is designed to be a low cost, highly portable plat-
... form to develop and deliver expert systems. The low cost is accomplished by
i+, developing the shell internally, thus eliminating profit margins and subsidiz-
- ing the development costs with NASA funds. Easy integration with external

systems is the third design criterion, enabling it to be embedded in appli-
cations. Although the previous section describes the matching algorithm,
there are a few other points that must be mentioned

used in CLIPS The rule structure is very simxlar, as can be seen in fig-
ure 2.14. Each rule is delimited by defrule and must have a unique name.
The arrow (=> ) separates the antecedents from the consequences. The an-
tecedents are matched against the fact base. Each consequence performs
some kind of action. The action could assert/retract a fact, interact with
the user or perform a user defined function, to name a few.

Each rule has a priority, but most use the default of zero. The priority is

used to schedule an activated rule into the agenda. The rules with the same

priority are scheduled as last in first out, a LIFO queue.

0
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By carefully organizing the antecedents of the various rules, different ef-
fects can occur. If a rule is intended to process only one of a group of facts,
the antecedent order would determine the order of the rule activations. If we
further assume that the first rule fired would deactivate the other rules, then
the antecedent order is very important. Consider the example of deciding
on a formal outfit. If first you choose the tie to wear, then the rest of the
apparel is limited. However, deciding a shirt would reversely limit the ties
that can be worn. In choosing a tie to wear, a number of possibilities arise,
and each would activate thé“}hle. After firing one of the rules, the tie is

selected and all pf the other rules are deactivatgd.

2.2.2 TREAT

The TREAT algorithm [Mir87] was designed to increase the performance of
the Rete approach, by improving on the method used to retract invalid facts.
The Rete algorithm saves all of the successful joins in buckets throughout
the network. Retracting a fact must traverse through the network for all
the possible matches the fact may have. TREAT does not save all of the
comparisons. The facts are initially separated and stored. The matching
process proceeds in the same manner, but only the end results are saved.

An example can demonstrate the approach. Figure 2.15 shows a network
created by the Rete algorithm. B); adding another fact, A2, to the network,
the results are shown in figure 2.16. As can be seen, it moves to the first
join and is compared to the three ‘B’ elements. The successful matches are
compared to the ‘C’ facts in the second join. When removing the fact, the
system traverses the network removing all instances involving A2.

The intermediate buckets are not saved in the TREAT algorithm. The
example of its network is shown in figure 2.17, only the initial and final re-
sults are stored. When adding the fact to the system, two steps occur. The
first generates a network for that fact in the same manner as the Rete algo-
rithm, shown in figure 2.18. Figure 2.19 represents the state once matching
completes, the intermediate steps are lost. A simpler process occurs when

removing the fact, figure 2.20. The fact is removed from the initial ‘A’
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Figure 2.15: An Example Rete Network
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(A1) (B12) (C2)
(C3)

(A1):(B12)
(A2);(B23)
(A2);(B24)

s | (A2); (B23): (C 3)

Figure 2.16: Adding a Fact to the Rete Network
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A1) (812) (C2)
(823) (C3)
(B24)

RESULTS: (A1), (B12);(C2)

Figure 2.17: Example TREAT Network

bucket, and the results are search for an instance of the removed fact. The
appropriate results are removed and the network returns to its original state.

The amount of matching necessary to retract a fact is drastically de-
creased. Memory is not needed to save all of the intermediate matching
stages, 30 it too is decreased. The flaw in the method is handling new facts.
A new fact requiréc matching to occur again. Consider a new ‘C’ fact is
added to the example system. Not only does matching need to occur, but
it must also backtrack to discover the previous matches. The matching time
for new facts is considered to be decreased by converting the algorithm to a
parallel machine.

Before leaving the discussion on the TREAT algorithm, the reference pro-
vides results of compa.rmg it to the Rete algoiiihm. Three of the results are
presented here in figure 2.21. The bars have been normalized to the Rete
algorithm. The black represents the matches necessary for adding facts, and

the white refers to the matches necessary for removing facts. “T'1” and “T2"

rgfer to two different searching strategies used by the TREAT implemen-
tations. The first uses lexical order when searching, while the second uses
seed-ordering. The three benchmarks are briefly described as:

ni e 1
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(B12)
(B23)
(B24)

(C2)
(C3)

FACT
PARTITION

(A2):(B23)

o | (A2);(B24)

RESULTS:

(A2);(B23);(C3)

(A1);(B12);(C2)

Figure 2.18: Adding a Fact to the TREAT System
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Figure 2.19: Updated TREAT Network, by Adding a Fact
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(A1) (B12) (C2)

- | B23 (C3)
| Bz N

i

AF".“I—;II—I";:.I.C;;‘ll;.l.’.‘...---.....-.I-

DELETE =~
. FACT (A2)
PARTITION

RESULTS: | (A1):(B12):(C2)

“** Figure 2.20: Removing a Fact from the TREAT System
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1.0

RT T2 RTI T2 RTI T2
__ MAB WALTZ  MAPPER

Figure 2.21: TREAT Results

1. MAB - 13 rules with 34 antecedents - the familiar monkeys and bananas
problem [Bea85).

2. WALTZ - 33 rules with 130 antecedents - performs Waltz constraint
propagation [Win79].

3. MAPPER - 237 rules with 771 antecedents - assist travelers using
public transportation in Manhattan, New York. The system contains
most of the bus and subway information.

These results may be encouraging for using a Rete-type algorithm on a
parallel machine, but do not overcome the problems of using this approach

[} I

f
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for real-time systems. All of the facts are still matched activating all the

rules to be fired, including those for the insignificant events.

- 2.2.3 YES/MYVS

YES/MYVS [Gea84], Yorktown Expert System for MVS operators, ! is a con-
- tinuous real-time production rule expert system to continuously maintain

a large IBM mainframe. The system is to dynamically maintain the main-

1
i

frame by adjusting internal processing parameters to prevent a system crash.
While monitoring the computer, it is also capable of analyzing performance
and make recommendations. An experienced operator can perform these

" tasks, such operators are hard to come by and are not always available.
The system, shown in figure 2.22, is networked to the mainframe in
qﬁétioh so that it cran>run as independently as possible. The MCCF, MVS
~ Communications Control Facility, receives the filtered information from a
- separately developed facility called the CCOP. This external utility handles
- all direct communications with the mainframe being monitored and filters
- the messages for the expert system. Upon receiving the data, the MCCF

‘ alters the format into a fact structure.

. The Operator Interface provides an operator with status of the mainframe
i "and makes recommendations. The operator can then approve or cancel the

recommended actions. If canceled, an explanation is requested. Other com-

1!

'mands can be given to YES/MVS to send to the computer; an explanation

i

would also be expected. The purpose of this module is to enable the operator
to validate the expert system. Once a type of action is certified, YES/MVS

i

would automatically carry it out. After proving the operation of the expert

system, the operator interface would be removed.
The heart of the system is the Expert Machine. OPS5 |Bea85] is the
architecture of this module. The software was ported to the IBM com- ‘

puter in Lisp, with some interesting enhancements. Other improvements are
presented as YES/OPS [LT86|. While modifications have been made, the

1T

'YES/MVS was developed by the IBM T.). Watson Research Center in Yorktown
Heights, New York.
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Figure 2.22: Architecture of YES/MVS
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architecture follows the previous discussion, including using the Rete algo-

__rithm. These enhancements point out further deficiencies and solutions with

using the Rete algorithm in a dynamic environment. However, some of these

- problems can only be partially solved.

When reasoning in a real-time situation, a plan will generate several re-

_sponses that must be sent to the environment at specific times. On several

computers, one can be dedicated to handling this, but the problem had to be "
solved on a single processor. The result was a new consequence command,
TIMED-MAKE, and a Timer Queue. As a rule generates a command

_,.or other assertion, it could either be immediately sent to the environment,

asserted or placed in the timer queue with the TIMED-MAKE instruction.

- The command, time to execute, and other parameters would be placed into

z T
LT I

the timer queue. At the appropriate time, it would be asserted into the

- _fa._q:_iba_se. If it was a command, a rule would be activated to send it to the

environment.

_ Rules in the system are each given a priority and are associated with
a task. The task also possesses a-priority. When deciding the rules to

.., be scheduled, and executed, the rules in the highest priority task would

%

... be considered first. These rules would then be ordered by their individual

., priority. In this way the system can easily change its focus of attention,

,While limiting the number of rules to be focused on. To further enhance the

performance of the system, the consequences of each rule are also compiled,
.a8 is done in OPS83 [For85] and YAPS [All87]. Functlona,]ly the consequences
are not changed, they are just not interpreted.

.. There have also been changes to matching of antecedents in the rules.

Modifying a fact is one of the most glaring inefficiencies with the Rete algo-

... Trithm in a dynamic environment. A sensor value changing first retracts the
f)rr_VeAViOt-xs fa‘ct‘containing data and then asserts a new fact with the current
~ value. Rules that do not use the element of the fact that is being altered,
7_,,wggld be deactivated and immediately reactivated. YES/OPS allows facts

to be modified. The process would follow the path of the invalid fact until

reéching the bucket of the altered element. Parsing continues removing the
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fact index from buckets that use the previous element but cannot use the new
value. Rules that were activated by these are now deactivated. "However, if
the new value is also valid in the bucket, then nothing is changed. All of the
rules that may be effected are left activated. The new value may also follow
other paths and activate new rules that were previously not used. In this
manner, there would not be any unnecessary deactivations or activations. A
point to note is a side effect produced in the original method, by deactivating
and then activating a rule. If rules A and B have the same priority, then the
newer rule, A, would be scheduled ahead of B, the older one, Now if B is

removed and scheduled because of a modified fact, B would now be younger

.. than A. The order of the two rules would be reversed in the agenda.

While matching the antecedents of a rule, a searching method could be

useful. A rule may select the highest, or lowest, value of certain sensors. The

_ original algorithm would compare every fact to every other, searching for the

extreme case. YES/OPS has implemented a mechanism to perform this type
of search. The set of facts being considered is defined and the maximum or

., minimum would be returned.
+ _The ordering of the antecedents in rules could impose redundant com-
;- parisons. Consider the first three rules in figure 2.23, each letter refers to

antecedent. In Rule 1 and Rule 2, the ‘a’ and ‘b’ are mapped together as

_one. Unfortunately, Rule 3 cannot take advantage of the fact that its first
- two antecedents, ‘c’ and ‘d’, cannot be mapped with those in Rule 1. The

reason follows from the discussion of the Rete algorithm. The data flow
network would be created by parsing each antecedent of each rule, one at a
time. Antecedents ‘a’ and ‘b’ would be matched, and their results are used
to match the last two, ‘¢’ and ‘d’.

The antecedents can be defined in the YES/OPS system by the last three
rules in the figure. Here we specify that ‘c’ and ‘d’ should be mapped in-
dependently of ‘a’ and ‘b’. The results of the two mappings would then be
joined together. In this way, Rule 3 can take advantage of the matching
caused by Rule 1. The method follows the philosophy of the Rete algorithm,
it is only building the data flow network that differs.
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Antecedents of Rules in OPSHE

Rule 1: IF a, b, ¢, d THEN
Rule 2: IF a, b, e THEN
Rule 3: IF ¢, d, ¢ THEN

Antecedents of Rule in YES/OPS
Rule 1: IF a, b, (c, d) THEN

Rule 2: IF a, b, e THEN
Rule 3: IF ¢, d, ¢ THEN

Figure 2.23: Antecedent Matching Problems in the Rete Algorithm

The problems with garbage collection systems have been brought out
before. Any system using the Rete algorithm must provide some utility to
handle these problems. It is done here by defining a task of three rules that

. would initiate and execute the garbage collecting processes. That task would

... When the system has no tasks to evaluate, the focus of attention would

‘turn to garbage collection. A rule would initiate the process, and another
would actually carry the process out. The third and last rule terminates
“memory reclamation when finished. This task would be preempted by any
other activated task in the system. '

The approach should proceed smoothly with enough memory, and the

ability to quickly respond to all of the data. A critical event occuring in

the environment, would generate many alarms. These alarms would literally
flood the controller with data. Even if the controller were able to reépond
immediately, the effect of the response would be delayed as the environment
carries out the command. While this is going on, the controller would con-
tinue to be flooded with data. YES/OPS could be deadlocked if there were
any task to be executed (other than garbage collecting) and no 'vv}orking mem-
ory available. The highest priority task could not execute, because of the

lack of available memory. The garbage collection task would not be executed
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because it would be scheduled to run after the current task.

The deadlock would be solved by allowing the garbage collection task
to preempt any other task, if the available working memory was below a
certain value. However this would greatly delay the response time to the
critical event. Assuming that the amount of mformatxon is proportional to
the severity of the event, then the memory reclamatzon task would be most
likely to preempt the most critical tasks. To make matters worse, the task
would have the most to do when it preempted the other tasks, and therefore
take the longest time. To aid this situation, after interrupting the system, the
garbage collection task could continue until reclaiming a specified amount of
memory and then returning to its dormant state. This last approach would

' only lessen the harm of garbage collection.

2.3 Blackboard Systems

Data processing and raponse'has always been the primary aspect in dis-
- -cussing real-time expert systems. Production rule expert systems using a
... data driven, or forward chaining, engine follow this a.pproach Blackboard
, architectures follow a snmllar approach and are also used in developmg real-

5. time systems [CHS87.
LA blackboard is the common area for information, but there are specific
sections where the information can be posted. A problem would be broken
. down into loosely coupled subproblems, and each of these would be a section
in the blackboard. In general, sections are ordered into layers, constituting
intermediate solutions to the problem. Tasks are associated with each sec-
tion, or rather, information within a section. A task would be a specialist
in the section it was associated with and also be independent of the other
specialists. While it may need information from another section, the actual
operation is independent. In blackboard terms, these tasks are known as
KS or Knowledge Sources. A KS can alter the data, post new data into the
section, or post new data into another section. When new data is posted

into a higher layer, the current layer is said to have provided a solution to

T
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Figure 2.24: Koala in its Natural Habitat

its subproblem. The higher layer would use this sol:ﬁtion in determining an
answer to its sub-problem. Flexibility of the archxtecture allows a KStobe a

procedural component or a set of rules. A controller mechanism is necessary
to determine which KS should be activated.

- An example will be used to descnbe the archltecture in more detul Con-

- sider the problem of finding and classlfymg a koala [CH87] The koala has

specific physmal characteristics a.nd habits. It ha.s the basic look of a teddy

‘ bear, the four hmbs, head, their orientation, ete. Figure 2.24 shows the

"pa.rtxcula.r look of the koala i in its norma.l ‘habitat, The koalas prefer to sit
i in the crook of branches and move up or down the tree depending on the
" “time of day. When looking for one of the little animals, an observer would

e:plore an area where they have been seen and look 30 to 50 feet in the
trees. When seeing an animal, the observer must then classify it as a koala
or not. While only a few would take their computer along and look for any

~ animal in the trees, the problem is sunple and can 1llustrate how blackboard
= -gystems operate. }

The blackboard would be divided in the manner displayed in figure 2.25.
The top layer determines if a koala is in the scene. The lower layers determine
aspects of the animal. The points in the area represent information in a -
section, while the lines show how a KS uses one fact to determine another.
The different KS illustrate how new facts can be created from information

of a section. The new facts can be in the same section, as in the Color KS
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Blackboard Knowledge Sources
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Figure 2.25: Basic Blackboard Architecture

or into a higher level as in the ch KS. When looking into an area of a
" view in the forest, a partial shape of an animal can be extracted by color.
A patch of color can be dzstmgmshed as separate from the trees, and then

N

[1

'°P%" associated with the animal in question. If a patch of the right color and

¥ Torientation is determined, a specialist would place the information into the
‘i *~ leg section. This new information would be processed and determined if it
indeed was a leg. The ﬁgure subtly shows ‘how the different sections and KS
are independent. The body speciahst does not have to know how the arm
specialist determined that something is an arm, the fact that it is an arm is

' enough

Now that the basic functlomng of the blackboard is seen, the question
arises on how a KS is activated, and which one should be executed first?
Each specialist knows how it contributes to the solution of the problem and
what information i is needed for it to be useful. A KS can be considered as

a very large rule, and its antecedents (pre-condntxona) must be met before it

is activated. Controllers are added in ﬁgure 2.26 to our previous example.
The dotted lines refer to the flow of mforma.txon, while the solid lines refer

to the flow of control. The controllers monitor the new data entering the

Nl
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Bfackboard Knowladge Sources
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Figure 2.26: Blackboard with Controllers

blackboard and also the KS being executed. This information is then used
in determining the plan of action.

- - In determining the solution to our problem a control plan would provide

*." the basic direction to pursue. Based on the current information in the black-

board, a specific subproblem may be addressed. On the other hand, a new

"> piece of information may influence the plan to change direction. From our

example, the plan may suggest looking for anything that does not resemble a
tree. Upon spotting a patch of color, the plan may be directed at analyzing

- the color or determining if it belongs to the head, limb or torso of a koala. A
" new direction may be decided upon based on the KS currently being used.

While the color may influence the color KS to be activated, the color KS

~ ¢could then influence the control plan to include the vleg KS. When working

on one particular aspect of a problem, other aspects may naturally follow.

If a new piece of information is the reason for the next action, then a
KS is chosen to process the data. Once chqsen, the_ information and the KS
are instantiated, paired, and executed. This is known as event-centered
scheduling. Determining if a black spot was an eye of the koala would be
an example. - -
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When a KS is the cause of the current plan, an information object must be
selected as its context. The two are instantiated using knowledge-centered
scheduling. After deciding the black spot was indeed an eye, now we can
proceed in trying to decide if the area around the spot is the head.

Both the new information and a KS may provoke the scheduler to choose
them. In this case, the scheduler would instantiate the data as the context
of the KS and proceed. While looking for the head, if a leg was seen, then

we could proceed in searching for an arm or the torso.

2.3.1 The Guardian Syst_:em

The Guardian system [HS89b] [WH89) is a typical example of a blackboard
architecture being used as a real-time system. The purpose of the system is
to monitor patients who have recently had major surgery on one or more of
their vital organs. Life-support systems provide the fundamental function of
the failing organs. The machines must not only keep the patient alive, but
also allow the person to be weaned from the device. If a patient uses a life-
" ';upi)ort system for too long, the ailing organs will never recover. Guardian’s
' mission is to adjust the llfe-support machines to the patient’s current needs,
whlle following the weamng plan. Each patient would have his or her own
" unique comphcatlons, so Guardian must be aware of general care and of the
~ patient in question.
- Each life-support and patient sensor (total of fifteen) is polled every twenty
- seconds. Two example sensors are breaths per minute and gas pressure. Lab
test data is given as another five values. The lab tests are requested by
Guardian, and after an appropriate amount of delay, their value is returned.
~ Guardian s would present a user with the current scenario and advice on al-
tering parameters of the hfe—support machines. While Guardian could run
autonomouisilyi,xlt currently only provides advice.
The platform of the system covers several TI Explorer Lisp machines, each
- with a unique function, as can be seen in figure 2.27. The lowest level ma-
chine simulates the environment, this would not exist in a real scenario. The

next processor provides the interface to the environment. It transmits the



(.

(el

Il

P "o

1

49

commands, and accepts and preprocesses the data, by the variable thresh-
olding method mentioned earlier. The communications processor handles
the coordination of incoming (preprocessed) data and outgoing commands.
The commands may have already been issued and held until the appropriate
time. The reasoning mechanism is then freed of the task of managing the
already planned responses. The Lisp processors for the user interfaces pro-
vide a detailed picture of eve};ihing going on in Guardian. This includes the
internal perspective of the environment, the current plan, possible solution,
etc. Each user would only be presented with the appropriate information on
their individual work station. The remaining processor is the major concern
here. It is the reasoning system, which has been adapted from the dy-
namic control architecture [Hay85| implemented as BB1 [CH87], blackboard
architecture. With the processed data, the reasoning system determines a
plan to analyze the data, does the analysis, and responds in a timely fashion.

The reasoning system has three major processes, the Agenda Manager,
Scheduler, and the Executor. These follow the basic blackboard strategy
presentud in the previous section. The events include the data from the
environment and the information generated by the reasoning process. The
Agenda Manager analyzes the new information and provides an agenda of
possible operations. The Scheduler in turn uses the current plan of action,
or control plan, and determines the focus of attention, the next operation.
The Executor would execute this operation and generate more events. These
events include altering the current control plan. The average time of one of
these cycles is fifteen seconds, based on running the system over a forty-five
minute run. - -

The control plan includes the aspect of the environment Guardian is con-
cerned with and the reasoning process to use. Associative and Model-
Based Reasoning are the two basic mechanisms. Knowledge base reason-
ing would be used by the first to quickly provide a response, on the order of
seconds. A designer would spell out the method to determine the cause of
anticipated events and appropriate responses. This is similar to production

rule systems, except here the reasoning is not very deep. It is intended to
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Figure 2.27: Architecture of Guardian
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provide a fast response to an immediate problem. Model-based reasoning
would require much more time, on the order of minutes, and attempt to
determine the cause of an unknown event. This method compensates for
unfamiliar problems and can also be used to correct previously wrong asser-
tions by Guardian. The approach would be more appropriate for problems
requiring a long term plan of action.

Guardian dnstmgulshes between reasoning about the envu-onment and de-

’ termining the control plan. The two are interleaved so that the system can

take as much advantage of the current state of the blackboard as possible.

The control plan may use either an associative or model-based response, or a

cornbmatxon of the two. In this way the system has the capability to respond

: very fast while also being able to consider the whole env:ronment over time.

Depending on the reasoning process being used, various aspects of the
knowledge base would be used. Because of this, the knowledge of the envi-
- ronment is modularized into three types: Reasoning, Domain, and First-

principles. The first, reasoning knowledge, contains information on the ac-

-~ tual reasoning processes and the various options available to a control plan.

.....

* This would present the case for one of the reasoning methods. Associative

“reasoning uses the domain knowledge to determine a problem in the envi-

J“ronment. The domain also handles the specific environmental information,

like the breathing rate. The basic model of a general envnronment would be

':placed into first-principle knowledge It is the text book scenario of how var-

ious aspects of the environment operate. This is independent of the specific
case, but can provide a model for the corresponding environment. By mod-
ularizing the knowledge in this manner, a module can be altered to better
serve its function without affecting the rest of the knowledge base. Another

__reasoning scheme can be added to the system without affecting the domain

and first-principle knowledge.

Guardian provides a promising direction for a real-time expert system
:elrcliliecture. The system contains task planning over time and data com-
pression mechanisms. The parallel platform allows interruptability and sim-
plifies the design of the various processes in figure 2.27. Unfortunately, the
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computer network also provides transmission delays, reaching into the or-
der of minutes [WH89]. These delays occur because of unforeseen network
communications. Network transmission, no matter how fast, also slows the
changes to data thresholding. As the reasoning process is overrun by new
data, the change to limit new data will not go into effect immediately. Con-
versely, as the system can process more data, a delay would occur again.
Some reported aspects of Guardian, such as model-based planning, have not
- yet been implemented. Other properties, such as temporal reasoning, are
. deemed necessary although have not been addressed.

=« 2,4  Commercial Real-Time Expert System
" Shells

" There are several expert system shells that are marketed as being real-time,
but unfortunately this is more of a sales ploy rather than a reality. A typical

o 'Vp"rbduction rule expert system is OPS-832. The cobipany boasts third-party
“**benchmarks showing OPS-83 running faster and in less memory than other
*""leading expert system tools. Compiling the consequences of the rules does
""increase the speed of tl';esystem It is not recommended for autonomous
~ control, rather it is meant for traditional consulting systems and as an aid

*“ to operator monitoring. Although it may be faster than many of the other
products available, it is not real-time.

2.4.1 Gensym’s G2

The most well known real-time expert system shell in the United States
market is G2 [Wol87], by Gensym in Cambridge, MA. The product appears
to be geared toward process engineers, rather than computer engineers. It

enables the user to create a model of a real-time environment and simulate it

20PS-83 was cfeated by Dr. Charles Forgy, who worked in the development of Digital
Equipment Corporation’s OPS5. It is a product of Production Systems Technology, Inc. in
Pittsburg, PA. -
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in non-real-time. It also has many built in capabilities for creating impressive
graphical prototypes of controllers.
The user defines objects to represent various aspects of the environment
using an object orlented approach. Before continuing with this package, a
~ brief description is necessary on the standard object oriented environment.
A class has a description of the attributes and methods, functions. Objects
in a class all share the same types of attributes and methods, but each can
be tailored. For example, a class may be a model of automobile. One of
the attributes may be the color of the body and a method could be jts
accelerating capabilities. An object of the class could be a black car. If
the black car is accelerated for two minutes, it is said that the method,
‘n."accelerate, receives the message accelerate for two minutes. It then responds
——=2with a given speed and distance. Another object in the same class may be
red and/or accelerate slower.
"*=+ These methods can be defined using heuristics or in a more traditional

- approach. Rules are associated with a class of objects and may also be

=" associated with related classes. The system focuses its attention on a class

zes7 of objects or a problem type (a.lthough the distinction is unclear). Rules

@2 are inferenced in a data-driven, forward chaining, approach. Although the

" literature gives the option of backward chaining, goal driven, it is most likely
" done by defining the rules in a reverse manner. This same technique, and
sales pitch, is common among commercial expert system shells. The data
received by the system is time-stamped and the period in which it is valid.
 The system can also schedule alarms at various intervals. These intervals
are based on number of seconds, and there is no guarantee when the task
will be acted upon, only that is should be scheduled at the given number of
seconds.

The software is targeted at a very high level. The system assumes that
there would be low level controllers to compensate for the performance lim-
itations. It also appears to be more of a process monitoring system. Rather

than autonomously control the environment, it would present a higher level
description to an operator.
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The software does enable an engineer to prototype a real-time expert

system and simulate the test environment. ~The graphxcs ca.pabxhtles also

present an impressive demonstration. The software would be very useful in

specifying the requirements of an autonomous expert system, and perhaps

simulate the knowledge base using its modeling capabilities. It would be even

more useful to internally sell the concept of a real-time expert system. Even

though the product can be used to specify and sell the concept, it would
- probably not meet the demands of controlling an environment.

2.4.2 NEMO from S,0

oGy 7
. The Parls, France company SgO is now marketing their product in the United
200"
: States NEMO is meant to approach the solution of real-time expert systems.
ad rz
It generates decision support systems that can possess some of the aspects of

__ areal-time, similar to G2. The product has many built in graphic capabilities
" and is useful for high level monitoring. Temporal and nonmonotonic reason-
=0 opel

mg can be embedded into these rules and compiled into a tree-structure. The

7 "inference engine operates by forward chaining through the groups of rules.
The product also hasr primitives to build user interfaces, access databases,

“and ‘perform data acquisition. Although it may be satisfactory for the types

of solutions it is being marketed to, it cannot autonomously control a com-

plex environment.
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""" important responses.

‘Chapter 3
ICE System

3.1 Design Principles

The primary goal of the ICE System, Interruptible Control Expert System,
" is to design a production rule expert system architecture for control while
maintaining a practical approach. Minimizing the Tesponse time of the most

cntlcal event is of utmost 1rnporta.nce As we have seen in other systems,

" a more general architecture was used and the rule prlorltles gmde the sys-

tem toward the critical events. Systems based on the Rete algorithm will
genera.lly minimize the response time for all of the events, including the less
lmportant ones. Minimizing the response time of the most cntlcal event was
desngned into the architecture of the ICE System, at the expense of the less
The ICE System follows a different matchmg strategy Instead of mini-
mizing the total number of comparisons, it attempts to minimize the com-
T piarﬂ'rsons before responding to the most critical event. The approach assumes
‘the more vital the response, the less available tlme The usual approach min-
“imizes the time for all of the resp;nsa “The first r&ponse is actually issued
later, as can be seen by the results. For a given set of responses, the ICE
System responds much faster to the initial responses, but the last responses
may be slower. The results show that the other enhancements to the system
increase performance to the pomt where all responses are lssued much more

qulckly

The desxgn allows the envnronment to mterrupt its opera.tlon Interrupt-

S

ability was deemed necessary for a controller to be able to quickly respond
to the env:ronment One or more alarms will genera.lly indicate a fatal event

in the environment and the expert system must 1mmed1ately be made aware

55
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of the situation. If polling the environment, the sampling rate is added to
the reéoonse time of the controller. Even if a polllng controller was able
to immediately respond to an event, the environment does not receive any
commands until the expert system requests the information. By allowing

the alarms to preempt the current reasoning process of the expert system,

the response is issued that much faster. The time difference may be the

difference between a valid response and a catastrophe.

While striving to minimize the response time, practical issues were al-
ways kept in mind. An autonomous expert system controller is active for
an extended period of time. ICE can run continuously for any period of

:Atlme, as long as the hardware platform is running. To insure contlnuous
f operatlon, working memory was not a design option. When using working

~ memory, there is a point where the amount of free space must be increased

_ and a garbage collection utility is run. The memory reclamation places the

controller off-line, unable to respond to environmental events, or at least

_delaying the necessary reasoning process. In a critical situation, the expert
“;system will be bombarded with data from the environment. When decid-

i ing the proper response, memory may quickly become a premium. Garbage

collectlon is used to recover memory. In this situation, the response time

dramatlcally increases.
A fixed memory size leads into the next design criteria, deliverability. To

overcome the above garbage collection scenario, some systems use specialized

hardware and massive amounts of memory. Neither may be necessary or able

'7 to satlsfy the control requxrements of an environment. Fxxmg the memory
size and usmg a single processor were consldered the hardware platform of
”chmce A la.rge amount of memory may be necessary, but a ceiling can be
'placed on the system requu'ements rather than an arbltra.nly large size. The

single processor was adopted because of cost considerations and portabil-

ity. Before designing a massively parallel architecture, a more general, and -

cheaper, processor must be considered. If the performance is inadequate,

then specxa.llzed hardware ‘may or may not solve the problem

By not using specxahzed hardware, the ICE System can more easily be

I

([
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embedded into an environment and access traditional algorithms. To truly be

- - capable of integrating with the environment, a real-time expert system must

be able to use functions that were written in traditional languages. These

routines may be used to communicate with the environment, or analyze the
‘data, to name only two examples the code can provide.

"= - - When discussing real-time software, speed always comes to mind. Pure

performance may be inadequate to satisfy the environmental constraints, but

" it is usually necessary. ICE had to be fast. The results examine the overall

f!

performance of the system, but more importantly the time necessary for criti-

cal responses. If the rate of polling is increased, a controller will be receiving

- much more data from the environment. The increase in data might over-
> whelm the expert system and cause the response time to increase. Instead
of only designing the system to be fast, ICE also minimizes the amount of

time necessary for a response. Another system of equal speed performance,

may not be able to respond in the same amount of time. The results chapter
- compensates the CLIPS implementation for the speed difference, and shows
-z s_the response time will still be in favor of the ICE System.

Ay spant

- 32 Archite'cture‘

R

- ¢ The ICE System uses rules and forward chaining like other production rule
- expert systems. However, there have been modifications to the typical ap-

~~=-; proach, enabling ICE to respond to a real-time environment. Figure 3.28

i

: ‘represents the basic architecture of the software, briefly described below.

The following sections explore each of its components.

rinn

The Interface Manager accepts and processes the incoming data, into
the Environmental Data States. An item from the environment is en-

ITer

coded into one or more states, or several pieces of data combine into a single

- state [Pau88|. Most systems match the new data against the rule antecedents -

i

and 'previous facts, a very costly process. Instead, the ICE System deter-

mines, a priori [FP88] all of the rules a state will influence. Rules are
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grouped into tasks, and these tasks are associated with the states. When en-
tering, exiting or remaining in a state, the appropriate tasks are initiated.
An initiated task may preempt the current task or wait for the Scheduler
to place it into the Agenda. '

The Inference Engine analyzes the rules of the highest priority task.
Antecedents of each rule are verified and fired. The firing of a rule results
in responses to the environment via the Interface Manager, or initiating an-
other task. A rule can also alter an internal state, Systemn States. These
states reflect aspects of the reasoning process that are in addition to the
environmental data. System States operate in the same fashion as the Envi-

-.3»  ronmental Data States. The two are considered separately because of their
3. nature, external and internal aspects of the environment. Encoding a system
o~ -~ state also initiates tasks.

ALY 5 S 51

3.3 Interface Manager
PN G
All communications with the environment are the responsibility of the In-
terface Manager. Not only must it access data, it must also coordinate the
responses to be sent out. The prototypes, described in the results chap-
ter, insure a message is sent and properly received. The interface does not
vironments can only accept a small subset of the commands making up the
long term plan. The Interface Manager will send any number of commands
at a time, and the environment will accept the messages, but is unable to
record the command to be carried out. The reasoning process, rules and
system states, coordinates the number of commands that the environment
can carry out. These are given to the interface to be transmitted.
Environmental data is accessed in two ways: by polling or allowing the
environment to interrupt its operation. Polling is a common approach to -
monitor the environment. The test systems use a variable polling rate, a
simpler implementation. A specific rate can be chosen that provides the

controller with enough information to accurately reflect the environment.

bl i 1 1 i | I i
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Events are able to interrupt ICE, typically these are related to catastrophic
events. Expert systems that use an approach based on the Rete matching
algorithm cannot realistically be interrupted. Interruptability is another
benefit of using the ICE architecture.

Polled data is either kept or discarded by using fixed thresholding with
hysteresis. By further limiting the environmental data, more time is left for
the reasoning process. The thresholds and their range is defined by the data
states. Each state has a method, or function, that converts raw data into a
state. The conversion process eliminates some of the unnecessary data. The

next Secpiqn provides a detailed description of this process.

" 3.4 The Facts of the System

The environment may have surprising behaviors, but the data sent to the
controller is from specific sensors. Therefore the type of data is specificied,

~ only the rate and values cannot be provided for all cases. Likewise, the rules

7 of the controller, once verified and validated, are also fixed. We can assume
© " _'that new rules will not be added to the knowledge base while the expert

_’'system is in operation. Based on these assumptions, the amount of memory

[ R . Y

~ for incoming data can be precisely determined.

© Assume the environment only possesses a sensor with a single value, and

kthe controller has three rules. One rule determines the environment is in a
critical state and must be stopped. The next confirms the environment is
operating normally. The last rule analyzes the previous three ﬁlua of the
sensor to determine the trend of the environment. To specify the amount
of memory necessary in the expert system, we consider our single piece of
data with respect to therkhrowledge base. Two rules define the thresholds

for a state as normal or critical. The last rule uses the trend of the sensor,

it must have the previous three readings and the state of the current trend.

Summing up our requirements: one memory element for the state, and four
for trend analysis. Therefore, five memory elements satisfy all of the data

requirements of the rules. A critical or normal state change initiates the

IR ul il
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corresponding rule. The state of the current trend will initiate the last rule.
New environmental information can quickly be converted into its appro-
priate states. By associating rules with data states, the initiated rules can
be quickly determined. A state and initiated rule are coupled together when
being sent to be scheduled. In blackboard terminology, the state is the con-
text of the rule. While the rule may not be valid, the ICE system is made
aware of possible problems in the environment. Attention may be focused
on the new information or not. This will be brought up in later sections.
The encoding methods replace some of the matching computation, allow-
ing ICE to quickly determine initiated rules. In a typical system, only the
data value is stored, and the lengthy matching process determines the data

. state. As new data is added, the memory containing old values has to be

. reclaimed, garbage collected. Ignoring the need to garbage collect, the de-

sign trade-offs are between memory and processing time. The challenge in

* real-time systems is to respond quickly, hence time is a motivating factor.

Therefore, memory should be used to replace as much processing time as

‘possible. While the amount of memory may be large, it is fixed. In deliv-

ering a system, specifying the necessary amount of memory is preferred to
guessing an amount that may satisfy all situations. On an autonomous space

station, the cost of memory is insignificant compared to the possibility of the

.. controller stopping due to a lack of resources.

Each object has an associated method to convert the raw data into the
appropriate states. The method uses thresholding to determine the state of
the raw data value. Multiple values can be combined into a single state.
In the case of remembering previous values of the sensor, a simple circular
queue is provided. Methods can do further analysis, even use neural networks
to process the data. The purpose is to quickly provide the rules with the
environmental data in as usable a form as possible.

The intent is not to run long computations on every new value. The
purpose is to convert a raw value into a state that reflects one or more an-
tecedents. A rule, in a real-time controller, typicaily determines if a value

(represented as a fact) is within a certain range (also represented as facts).
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Instead of considering the state of the data a number of times in the matching
process, it is only determined once. Each rule now has to consider a single
state value rather than comparing, matching, several values and ranges. In-
stead of initially performing a sophisticated function, using resources that
might serve a much more critical rule, processing should be as simple as
possible to determine the direction to proceed. When time is scheduled for

this rule, the more sophisticated algorithm can continue. It may be even

more advantageous to break down the processing further and only take steps
toward the final solution. The long processing can be verified along the way.

~ This depends upon the situation.

e
L

Rules are associated with the various data states. Upon updating a state,

‘the method also initiates rules. Initiation occurs on entering, leaving or

"' remaining within a state. Combinations of the three also exist. Since rules

JO B Dt

are used to create the states, the states in turn, know which rules they might

cause to fire. In one step, their respective tasks are sent to be scheduled.

- . This replaces the lengthy matching process found in other systems. The
‘more trivial data takes a miniscule amount of time to initiate their tasks.

The critical tasks, also quickly recognized, can immediately be acted upon

by preempting the currently executing rules.

""" Expert systems use facts other than those representing the environmental

data values. These can likewise be represented as System State Objects.
Created in the same fashion, it has all of the functional characteristics of

environmental data objects. The only actual difference between the two is

“access by the Interface Manager. Both can be accessed and updated dur-

ing inferencing, but only the Data Table can be updated by the Interface
Manager. The distinction follows from the nature of the data.

3.5 Rules

A set of rules are grouped as a task. These rules are related by the states
that initiate them. The rules are ordered in a list and do not need a specific

priority. Individual rules can belong to any number of tasks. Previously we

n
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have referred to groups of rules, being initiated for example, actually tasks

— - - were being discussed.
The number of rules in a task is dependent on the environment and the
- ' task in question. The granularity, or size of tasks [MS83][Hob85], has a few
trade-offs. Few rules per task closely controls the inference process. A small

invalid task completes very quickly, thus allowing the next task to start. Very

{

large invalid tasks generate a long delay before the next response. However,

" small tasks create much more overhead, than a few large ones. A general

£l

heuristic in defining tasks, is to create groupings that seem natural. While
- _ - this may not produce the optimum configuration, it is much easier to develop
' ' and maintain. 7

The rules are functions in the C programming language which verify all

eerl

“of their antecedents before firing the consequences. Most of the necessary
"matching is accomplished by the data and system state objects. An an-

tecedent has the option of performing additional analysis on the information.
The antecedents and consequences are able to perform user-defined functions.

1,

‘Phiere are no convoluted “hooks” in which to call a given procedure. It is a

2127 "normal function call.

g

The consequences generally alter various states in the System State Ta-

ble. When altering these values, the associated method is used in the same

1

" manner as by the interface manager. While the method is processing the up-

!

date, it will initiate other tasks. A new task can even preempt the currently
- executing task. - -
An antecedent may need to find a related fact. The state that initiated

the task can be used to directly reference other information. A sensor value

m

'y

indicating a dangerous level tells the controller a device must be shutdown.
The state and task are initiated and inferenced upon. While inferencing, the

mr

device to halt must be found. In Rete algorithms, the device configuration

is compiled into the data flow network, and found by matching against the

43
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corresponding bucket. In the ICE System, the sensor and device configura-
tions are known a priori and therefore directly associated. Given a sensor,

the rule can immediately reference its device.

om0
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A second searching and matching problem occurs within a rule, and was
examined by the YES system. For a given éituatioh; a rule finds it necessary
to obtain the greatest, or smallest, value of a specific type. For example,
in assigning a job to a processor, it is generally sent to the one least used.
There is no direct relationship between the job and processors. A search
must occur to discover the least active computer. In the Rete algorithm,
all of the processor activities are compared to each other to discover the
minimum. The YES system implements a special searching mechanism to
handle the situation. The same mechanism is used here in ICE.

Matching might also look for an element that must satisfy criteria based
on the initiating element. A data flow network generally has done much

. of the matching, and the answer quickly determined. The same solution to

__the previous problem is used here. Instead of searching for a minimum, the

search looks for an element satisfying the given constraints. To speed up the

process, one or more most likely choices can be associated with the state.

... These choices are checked first. Failing to find a solution, the rest of the

..possibilities areexamined. -

When inferencing on rules in any type of real-time expert system, truth
maintenance becomes an issue. Because the environment is nonmonotonic,

_ the received data may change at any moment. The data validity is also
. decreasing as time goes on. If not processed in a specific amount of time,
- the data may be invalid. There are two cases where this will cause problems.

The first considers the individual rules. A rule might be correctly activated.
Before it is fired, one of the antecedents changes and invalidates the rule.
The rule may fire before the system deactivates it. The second problem is
much more intricate. A task can invoke other tasks to be inferenced upon.
A dependency path of tasks is made. If one of the previous tasks becomes
invalid, then the current task must be deactivated.

_A rule that is ready to fire, but whose antecedents are not true, is par-

.ticularly a problem with multiple procasors; ‘The rule may be on a given

processor, while another computer discovers the error. The Rete algorithm

on a single processor solves the problem by having a mode to handle all
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matching, activations and deactivations. No rule will fire while the matching
mode is executing. The ICE System has the rules verify their antecedents
immediately before being executed. A fact might correctly initiate a rule,
but become invalid before the rule is inferenced upon. When the rule is
ready to fire, the fact is checked. If true, the rule fires, otherwise the rule is
abandoned. ,

Maintaining the integrit; of a dependency path of tasks is much harder.
Dynamic censors were previously discussed, and can be used within the ICE
architecture. The censors are presented as system states and can be refer-
enced, and de-referenced, at any time. This is currently used on a limited
scale. A task initiates other tasks by using the system state objects. When
these new tasks are inferenced, the state is verified by each rule. By using
the state as an antecedent of rules further down the dependency path, high

level truth maintenance can be maintained.

. 3. 6 Scheduling the Agenda

LA §

"The scheduling is broken down mto two processes, as seen in figure 3.29.

[ Tt -
HFER

The Initial Scheduler accepts the initiated task and state, and determines

its priority. A new task will preempt the execution of a lower priority task.
Otherwise, it is placed in the temporary queue. The highest priority task

is allowed to execute with the minimum amount of interference from the
~ other tasks. The current task is only slowed down by receiving new data

“and determining its priority. If a new task is more critical, then it becomes

the current focus of attention of the mference engme Falrness as mentloned

earlier, is not appropriate for rea tune systems “When in outer space, if the

lights have been off for a long time a.nd the hfe—support only recently failed,
the lights are stxll low pnonty An astronaut can live in the dark.

It 1s necessary t to use the lmportance of a state along w1th the priority -

of the ta.sk determmmg how v1tal their combmatlon is. A number of com-

binations are posmble, but the current prototypes sum the two priorities.

These systems were ﬁrst developed in CLIPS, Wthh only gives a priority to
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Figure 3.29: ICE System Agenda

individual rules. In transfering the system into the ICE architecture, certain
data states were given a priority to fine tune the scheduling mechanism. The
simple summation is the fastest method to combine the priorities and pro-

ivided' a satisfactory solution. Other techniques are possible, but the intent
1.; to have a very quick determination of the task/state priority.

- _In the YES/OPS architecture, both tasks and rules were given a priority.

) 7“ ICE uses the task priority to determine the world, or rules to use. All of these

rules are scheduled together. The ICE System uses a finer granularity when

~ defining the tasks. The rules, in a task, can be ordered a priori. Two rules

with the same importance can be placed in an appropriate order, otherwise

" the order does not matter. Scheduling time is therefore saved in determining

proper responses to the environment.

The Initial Scheduler places a priority on a task/state pair, and the
current task priority is checked. A critical event can thus preempt the con-
troller and alter its focus of attention. There is no complex scheduling, the
two values are simply, and quickly, compared. Less important tasks are also
che(:l:céd,ia.na?passed onto the temporary éueue. This mechanism provides a
rapid procedure to allow the controller to change its focus at any moment.

* The temporary q;ueue is a FIFO, first in first out; queue. By using a

“ ‘H
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FIFO list for the temporary queue, the age of the tasks is implicitly stated.
When the scheduler executes, the first element of the temporary queue is
placed into the agenda queue, a prioritized list. The highest priority task
is the first to be considered by the Interface Engine. Tasks with the same
priority place the younger first.

The younger tasks are considered before older tasks with the same priority.

This choice is dependent on the environment and the tasks used to control

‘it. Due to the validity decay of the data, older states are less likely of being

true than younger states. CLIPS also uses this method of conflict scheduling
and was another reason to adapt the approach for similar results.

Scheduling can be done in a number of ways. A typical approach sched-

" ules after a specific number of task executions, it may be after each task. The

current prototypes inference all of the tasks in the agenda before reschedul-
ing. The scheduler can be started based on a command from a task, or the
priority of the current task. If task response was not critical, the scheduler
has time to merge the two queues. Scheduling can take place immediately,

regardless of the priority, but that drastically conflicts with the philosophy

... of the ICE System to respond to the most critical event.

Another metht;d considered in the design of the ICE System invokes

. scheduling based on the priorities of the waiting tasks. There can be a
... slot to hold the value of the highest priority task in the temporary queue.

Tasks are added in the same fashion, but also compare their priority with
the highest one in the queue. The value is updated appropriately. Before the
Inference.Engihe bégiﬁé bfocasing the next task, it compares the priority
to the highest priority in the temporary queue. If a higher priority task is
waiting, rescheduling takes blace. The purpose of this method allows the

_ higher priority tasks to execute without waiting for less important tasks to

be scheduled. While it is currently not implemented, it is a useful feature
for future systems. -

Before leaving the discussion on the a.génda and scheduling, an important
point in memory management needs to be addressed. While the ICE System

has removed the need for working memory, it still must have a pool of nodes
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to use in scheduling the tasks. Each node is made up of pointers to the state
and initiated task, along with the combined prioriy. These are needed in
any real-time software, for task scheduling, be they rules or procedural code.
The pool of elements is a fixed size, and therefore a contingency plan must
exist, in case the pool emptied.

The issue becomes which task/state nodes to remove, forget. The least

significant nodes are the most likely candidates, but are spread across the

two queues. Since the agenda is already prioritized and its elements are more
likely to be older than those in the temporary queue, the last elements would
be used for new higher priority task/data elements. If the system is to the
point of losing tasks in the agenda, then an effort must be made to schedule
the elements in the temporary queue. A possibility is to schedule tasks more
important than the last element in the agenda. The other nodes are freed

for new initiations:

3.7 Inferencing

The Inference Engine considers the first, highest priority, task in the Agenda.
The rules in the task are sequentially executed. A rule function verifies its
antecedents and is responsible for executing the consequences. The verifi-
cation process can check states, combine states or perform other types of
processing (i.c. searching). The execution of the consequences generates
responses and alters states within the controller. The commands are sent to
the environment via the Interface Manager. States are updated with their
respective methods and might initiate other tasks to execute, just as if the
data came from the environrhént.

The approach allows the system to be interrupted at any time. Matching

algorithms used in other systems do not perform well in an interruptable en-

vironment. While these systems may be interrupted outside of the matching-

process, it is not worth the effort. The matching process consumes so much
of the execution time, the left over time only allows a very small window for

interrupts to appear. In processing ICE rules, the matching is done locally.

L]
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If the rule was interrupted, it can restart the matching of its antecedents.
The time lost is fairly insignificant. Interrupting in the prototypes is disabled
during rule execution and only allowed between the rules. This enables the
system to finish its current “thought.”

The latency period is the amount of time between the environment sending
an interrupt signal and being accepted by the controller. The worst case is
the environment generating a signal the moment after inferencing began on
a rule. The average amount of time to process a rule is the average worst
case latency time. The absolute worst case considers the rule requiring the
longest time. As is the norm, rules are fairly quick and therefore the latency
period will be acceptable. In cases where a rule consumes too much time,
interrupting may be left enabled.

Common approaches either use interrupting between rules or not at all. In

cases where an interrupt signifies a highly critical event, the ICE architecture

_is capable of always allowing interrupts. The interruptability scheme depends

on the environment. With the space station Freedom, data is received as re-

~ ports from a sophisticateﬂ power distribution system. If interrupts are pos-

sible, they would only indicate life or station threatening situations. These

. must be responded to immediately and therefore their interrupts are always
- allowed.

Only a minimal amount of processing time is taken away from the most

. critical réé.soning. If the resulting response was necessary, the system is

performing perfectly. Unfortunately, it may not be the case. An alarm
may incorrectly point to a catastrophic event, and the controller determines

the error while a valid response is waiting. This point is unfortunate, but

_necessary.

The greatest strength and weakest link of the ICE System is in initiating
tasks. The approach provides the minimum response time for the critical
events in the environment. The least important event is not guaranteed a fast
response. The weak aspect occurs because invalid tasks are being initiated
and other tasks becoming invalid. In both these cases the Inference Engine

uses the precious processor time to iterate through the rules and determine
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that they are invalid. This presents a case for using small, fast, rules and
fine granularity when creating the tasks. The time loss is the greatest for
the least important tasks. In designing the system, this was seen as an
unfortunate side effect of quickly generating vital responses. However, the
critical response time is considered to be more important than minimizing
all of the response times, including the trivial ones. A point to notice in
the results is that the system performance is high enough to respond much
faster to all of the events, as compared to the more traditional production

rule system done in CLIPS.

3.8 Knowledge Engineering

== There are several stages in developing an expert system in the ICE archi-

tecture. The first stage defines and validates all of the rules in the system.

These can be created using a commercial expert system shell, which usually

provide many developement features.

The second phase builds the rules, the environmental and system states
of the ICE System. For any given rule, the user specifies which antecedents
‘"can initiate the rule, or the hot antecedents. When a hot antecedent enters
(or remains, or leaves) a state, the rule is initiated (sent to be scheduled).
The antecedents that are not hot will still be checked during inferencing, but
cannot initiate this rule. After deciding on at least one hot antecedent for
each rule, the environmental data and system states can be determined by
" the rules. The states will reflect those used for comparisons in the rules. A
function must be defined to convert the raw data (a boolean, single value, or
many values) into it corresponding state. To illustrate this point, consider
a rule has an several antecedents stating a sensor is in its warning state,
and another antecedent is concerned with the past history of the machine.

Assume further, that the knowledge engineer has elected to only use the

sensor fact to initiate the rule. By knowing the range defining the sensor
in the warning state, the state tables can be built. The rules can also be

defined in the C programming language, with respect to the states in the

i
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various tables.

The more antecedents selected to invoke the rule, the greater the chances
of the rule being initiated multiple times. This also leads to the possibility
of using all of the scheduling memory pool. However, by not using enough
of the antecedents, the rule may not be initiated as often as the user would
like. These points are very specific to the problem, and the best solution is
not always easy to determine.

The last phase specifies the sets of rules, which are the tasks. To further
increase system performance, rules are grouped into sets or tasks. When the
hot antecedent wishes to fire a particular rule, it actually fires the task, (a
small set of rules). These are usually broken down by the initiating states.

If a sensor state intiates five rules, then these five rules make up a task. This

does not have to be the case, for a faster response the knowledge engineer

may elect to break the rules down into two tasks, those with higher and lower
priority (priorities will be discussed shortly). A rule may be included in a
task because it is always fired after the current set of rules. In this manner,

- the new rule does not have to be initiated to fire. However, a user must be

cautioned, a system state should be used to insure that the rule should fire,
the initiated rules may not be true.

In determining the tasks, the rules within the task can be prioritized. The
inference engine sequentially tests and fires each rule in the task. The task

is therefore an ordered list of rules. The ordering is of the discretion of the

_user, T B Tt T oo CToommmEmEm e m e T

The tasks and data states must each be given a priority. The higher the
priority reflects the more critical the task or data is. There are several meth-
ods to combine these prioritieé, currently the two are simply added. Consider
the following illustration, there is a breaker going to a life support module in
the space station, and another handling the lights within another module. A
rule states that if a breaker will potentially fail, the other redundant breaker-
must be used to insure continuous operation. This rule is given a priority,

as in many expert system shells. If both breakers fail, the rule is initiated
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thce, but the breaker gomg to the life support system is much more impor-

tant than the other, controlllng the hghts By giving each breaker state the

appropriate priority, this can be reflected in prioritizing the task-state pairs.

By using two priorities, the knowledge engineer has a great deal of flexi-
bility and power in ordering the tasks and states. With these features also
comes more complexity. The knowledge engineer must be very careful of un-

expected effects in the system. In the test prototypes, most data states were

‘given a zero priority, so that only the task priorities were really considered.

For tasks that handled both high and low critical tasks, the critical states
were given a priority. Even by using this simple scenario in developing a
large system, problems may still arise unexpectedly.

A last point for the knowledge engineer to determine is the size of the
scheduling memory pool, the problem also occurs in many other types of
software systems. The pool must be large enough to handle any situation.
Some systems will crash if the pool is emptied, which may be fine for their

situation. A continuous controller cannot be halted because of a shortage of

' memory. ‘Here the pool size is determined to be more that is expected. A

contmgency plan must be devised for a situation where the pool is emptied,
so that the controller can still operate. The plan depends upon the imple-
mentatlon but a few methods were mentioned earlier while discussing the

“scheduler a.nd the agenda. =~ =m0 o onimEm e e o

As in any system, care must be taken to prevent unexpected events. For
real-time controllers, contingency plans must be determined for every possi-
ble flaw in the design, the scheduling pool problem for example.
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Chapter 4

Results

The ICE System is compared to a typical expert system based on the Rete

i algorithm, we have used CLIPS. There are faster systems on the market, but

it is readily available and able to provide an adequate medium of compar-
ison after compensating for the overall performance differences. Two sets

of tests are used to analyze ICE. A smaller knowledge base, of 17 rules,

:55- . tests the general concepts of the thesis. The performance difference between

the two systems is found along with an analysis of how time is used to dis-
cover the proper responses. The second system, of 80 rules, provides a more
sophisticated environment to further scrutinize the response times of the
architectures.

“The following sections describe the test bed environment and an analysis

. of the results. The appendix contains specific information on the tests.

Both have been executed on a Digital Equipment Cdrﬁoratiéﬁ VAX com-

puter running the VMS operating system. 'Iﬁ‘rinilfeiisf measured in ten millisec-

_ond units of processor time, but presented as milliseconds. Because of the

basic time unit, time measurements less than ten milliseconds will be more

. sensitve to noise.

4.1 Test System 1: Machine Monitoring

A machine monitoring problem [GR89] determines the difference in speed
and the response time, due to the matching algorithms. An abstract view of
the environment is shown in the figure 4.30. There are four devices, each

with one or two sensors, for a total of six. Every sensor has unique ranges

 indicating the device state:

1. critically high
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2. high warning level
3. normal condition
4. low warning level

5. critically low.
The two critical states indicate the machine will soon fail and must be im-
mediately shutdown, to prevent any further damage. A normal condition
defines the safe, expected, operation of the machine. Warning states can be
entered for short periods of time, with no effect on the system. An operator

must be notified of any machine leaving the normal operating conditions.

The sensor will remain in a warning state for a period of time while the

operation of the machine is degrading. If a sensor remains in a warning state
for a specific amount of time, the machine is shutdown to correct the problem
before any damage is done. - ' e

The initial startup time (e.g. compiling the rules into the Rete network)
is not considered when comparing the two systems. One hundred of the one

hundred and sixty cycles are considered, and averaged over one thousand

runs of the environment. The other cycles compensate for startup time and

~ validate the operation of the system. A cycle starts by retrieving prede-

fined data from each of the sensors. The data is analyzed and acted upon

“accordingly. After all of the responses are issued, the cycle repeats. Both

systems operate in the same manner, i.e. the ICE System is not allowing
any interrupts. This presents an accurate comparison of the overall speed
performance of the two systems.

The first test analyzes the difference in the cycle speeds between the ICE
System and the typical approach. In the first case, the environment is oper-
ating normally without any unexpected Situatiﬁns. All sensors remain in the
warning state during the one hundred test cycles of the second case. Table
4.2 presents the average cycle times. A dramatic difference can be seen. At
this point, the increase is primarily attributed to writing the rules in the
C programming language. The average of the speed differences is used to

compensate the second set of test results.
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Typical p—
800 -System ICE

Figure 4.31: Benchmark: Response Times for the 6 Warning Responses

‘The typical system shows a relatively small increase in the cycle time when

handling all of the warning states. Trhréitybical approach performs all of the

matching for both cases, and therefore the time period is similar. ICE, on
the other hand, quickly recognizes a sensor has remained in the normal state
and does not initiate any tasks. The raw data is only placed into its proper
stﬁte, normal. The warning states initiate tasks for inferencing. Scheduling,
inferencing and responding constitute the five millisecond increase.

During the second test, all of the samples remain in the warning state.
The validity periods of each of the sensors was greatly increased to allow the
devices to remain operating. Warning messages are issued for each of the
sensors. Again a dramatic difference is seen in the speed, show in table 4.31.
After examining the first table, the speed increase is expected.

The more interesting point is the difference in performance due to the
matching algorithm. Because Rete initially matches all of the available data,
it requires much more time at the begining of the cycle. The first response is

then delayed for a long period of time. Figure 4.32 plots the response times

as the percentage of the total cycle time, sihowrixig”the processing time used
to accomplish each of the responses. The implemented typical approach uses
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Figure 4.32: Benchmark: Percentage of Time Used for Each Response

85 percent of its time in responding to the first event. The exciting aspect
of the tests is the response times of the ICE System. Less than 45 percent

of the processing time is used to respond to the first event.

Included in the initial response time, is the time used to simulate the
devices and sensors. The simulation involves accessing data report tables
and presenting the sensor data for all of the currently operating devices.

The other five responses already have all of the data available and processed.

* These responses only require a confirmation of their actions, the same amount

of work, and therefore show a constant increase in Tesponse time.

T

The typical system performs very qmckly for the later responses, because

mall of the matching has already been ar.comphshed The gra.phs represent

a major aspect of the ICE a.rchxtecture The system spreads the matching
herefore more time is needed for the later

process over the whole cycle,

” responses The ﬁgure also showsj ICE not only outperforms ‘the typnca.l ap-

proach in the first response, but all of the other responses as well.
Other expert system shells based on the Rete algorlthm may be much
faster than the CLIPS software, and may not show as dramatic a difference

in the pure speed aspect of ICE. Because these systems are based on Rete,
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they exhibit the same effect when comparing the percentage of time used to

accomplish the various tasks.

4.2 Test System 2: Monkeys, Bananas and
Zombies

The next set of tests separate the environment from the controller. A simu-
lation process was created to handle the generate data reports and process
the commands received from the controller process. The two communicate
through a data channel, termed a mailbox in the VMS operating system.
The environment is described in terms of the model presented in the con-
cepts chapter. The analysis of the results is then presented, specific test

information can be found in the appendix.

4.2.1 Monkey, Bananas and Zombxes Descrlptlon

The monkey and bananas problem is used to benchmark many expert sys-

rtems The monkey represents an actlve controllable agent and the boxes, to

be stacked  reflect the passive agents . The active uncontrollable egents were

not present in the scenario. “Zombies” were added to fulfill this feature.

A Zombie will appear in the environment, and wander about thr room for
a period of time. The monkey must stay away from these monsters. The
procedure is given with the description of the test.

A room contains many boxes, as demonstrated in figure 4.33. A number
of these must be stacked in a tower, under the banana.s, for the monkey
to reach the bananas on the cenlmg The controller determines a long-term
plan to stack the objects and manages the commands sent to accomplish the
mission. There are four tests based on variations to this system described in
the following paragraphs.

The first is the standard situation for all of the tests. A dozen, or 3o, boxes
are stacked to reach the bananas, without anything going wrong. The mon-

key is monitored to determine the completed commands, then an appropriate

| 1 g mron
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number of new commands can be sent.

The next test represents a flaw in the active controllable agent. The
monkey cannot lift the heavy boxes and has no warning alarms to indicate
the failure. The controller must monitor the tower construction to determine
the error. Once a box is found to be too heavy, the current plan must be

augmented to accomodate for the missing object.

The third test simulates passive agent failures. Some of the boxes are

unable to support the weight of the monkey. The monkey, and the controller,
are unable to determine this characteristic until after the failure has occured.
The long-term plan is updated for the broken objects.

Active uncontrollable agents, zombies, are considered in the last type of
test. To allow the two systems to be compared, the zombies appear based
on objects the monkey picks up. Certain boxes, unknown to the controller,
will trigger the appearance of the zombie. The monster at one end of the
room has no effect on the actions of the monkey. When it is too close to the
monkey, the controller must initiate a plan to move the monkey far away.
Once the monkey has been frightened, it does not continue with the tower

construction until after the zombie leaves. After the disappearence of the

mdnster:the lohg-term plan is continued at an appropriate place. If the two
are within a warning area, the monkey has time to place the box on the floor,
and move away from the monster. The box is placed on the floor so boxes
lower in the stack can still be accessed without trigger the appearance of the
zombie. As the two active agents become very, critically, close to each-other,
the monkey drops the box as soon as possible and runs. If the monkey is
currently on the top of a stack, the box is left on the top. This results in all
of the boxes in the stack not being accessible. When the abandoned box is
not placed on the tower, the controller must update the plan to compensate
for the lower tower height. After the disappearence of the monster, the
long-term plan is continued.

Boxes are dropped in the previous test situation so the monkey can run
from the zombie. The monkey can walk while carrying an object, but can

run at faster pace, when its hands are free.
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4.2.2 Test Results

Each of the three agents generate important and insignificant events. The
monkey, an active controllable agent, is momtored to determine the time
and number of commands to be sent. A change in the carrying state of the
monkey reflects either a box has been picked up or put down. The events
can be mapped directly to the corresponding command in the currently sent
subset of the long term plan. When the controller determines the monkey
has nothing to do, standing still, it assumes all of the sent commands are

completed. The maximum number of new commands the environment can

__accept is determined and sent one at a time.

: The passive agents, boxes, can fail and be used to diagnose a failure of the
active controllable agent. Both of these events represent a problem with the
current plan of the tower construction, and an update must be added. There
are no explicit responses sent to the environment. This case only determines
recognizing the event. Because the ICE system is interruptable, replanning
takw place over several cycles and is often preempted by more critical events.

" The zombies, active uncontrollable agents, present another complication

, to the scenario. If a zombie is currently in the room and close to thefmonkey,

EAs g EE

the controller must first send the STOP command to the monkey, to free up

" the command space. Planning a solution to the problem begins and the

o 'respondmg commands are sent. In this test, planning takes place after the

first response.

The responses to events in the test cases are broken down into four seg-

" ments: receiving the data, recognizing the events, the initial response to the

7""evenf. and subsequent responses The controller does not a.nalyze all of the

continuous data, instead it consxders samples ta.ken from the signal. The

‘average rate the software accepts data is the average worst case delay in

receiving the data of the most critical event. The time to recognize events
from the data report, and issue the proper responses are dependent on the

event and controller. To determine these tnmes "the controller records the

- actions with a time stamp. The timing of the subsequent responses are also

recorded with a time stamp. Many of the events require multiple commands
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" Architecture Report Acceptance
Typical 2,502.0
ICE | 50
Compensated ICE 75.0

~ Table 4.3: Average time between accepting reports

for a complete response, and therefore it is important to know the expected
amount of time delay between the commands. After recognizing an event,
the reasoning process determines a set of commands for the response. Time

for the first command to be sent includes the planning time for the following

" commands. Hence the first response is considered separately from the other

” commands making up the response.’

" Delays in Accepting Data Reports

Both controllers require at least a minimal amount of time to process a

_report. Table 4.3 shows the average time between accepting reports for all

, the tests. Even when compensating for the speed performance of ICE, a

~ dramatic difference is still seen. The reason for this affect is interruptability.

The ICE system allows the environment to interrupt with new data. In-

. terrupts are enabled after the tasks in the agenda are inferenced, only a few

tasks are typically in the agenda at a time. The rational allows the inference

_engine to complete “its current thought” before new data enters the system.

By decreasing the time to accept a report, the rest of the response times will
be increased. The increase is due to more data entering the system and less
available time for scheduling and inferencing. However the controller must
accept as much data as possible to ensure a minimum amount of time to

respond to the most critical event.

| Ré&ééhizingffgéﬁgsj and the Initial Résproiisé

To respond to the most critical event, the controller must first recognize the

events represented in the data report, table 4.4. The further processing of

Kl

bl



e

e

I

1
1
i

Wi — e

il

83

Event Typical ICE
Actual | Compensated

Object Dropped 1,373.5 5.1 76.5

| Object Picked Up | 961.8 5.1 76.5
Monkey Still 1,073.9 5.2 78.0
Object heavy 1,599.9 8.5 127.5
Object Broke 1,575.1 5.7 85.5
Zombie Too Close | 905.3 2.6 39.0
Zombie Gone 1,691.5 9.2 138.5

Table 4.4: Times to Recqgnize the Events

p—— - - - — ———

Event Typical ICE

Actual Compensated i
‘Object Dropped 51.4 7.3 109.5
Object Picked Up 52.7 7.3 109.5
Monkey Still 62.1 6.3 94.5
Zombie Gone 285.0 5.2 78.0

Table 4.5: Times to Respond to the Events

the events can then be ordered and the proper responses determined, table
4.5. The matching algorithm plays a significant role in the difference in these
times. Since the system size has increased, the Rete algorithm has more data
to match with more rules, and therefore the time increases. The ICE system
event recognition time increases  due only to the data, it does not match the

data against all of the rules.

After the event is recogmzed the typlca.l system issues the response faster
than the compensated ICE time. Because most of the matching in the typ-
ical approach has taken place, durmg the recognition phase, it can respond
quickly. The ICE system however, verifies the antecedents of the rules mak-
ing up this phase. The passive objects do not issue a response to the envi- '
ronment, replannmg is done. The zombie becoming dangerously close to the

monkey represents a slightly different problem and is discussed separately.
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Recognizing and responding to events are considered together, because
matching occurs in the different phases. Figure 4.34 and 4.35 demonstrate
the combined effect as a percentage of time from receiving the data to issuing
the response. As demonstrated, the typical system uses practically all of its
time recognizing the event, while ICE uses less than half. After recognizing
the most significant event, the ICE system strives to respond to it and only
matches the rules in the path toward a response. For this reason, the second
phase of the graph is not more sxgmﬁcant The rest of the matchmg, for the
less significant events, is done after the r&ponse This matchmg increases
the txme to receive a data report. The degradatlon is lessened by allowing
the envrronment to mterrupt tBe mferencnng process

This is the major problem with using Rete types of algorithms in a dy-
namic environment. As the complexity of the environment increases, the
amount of data and rules increase. The response time of the typical ap-
proach is increased by the new data and their combination with all of the
rules. The ICE architecture does not possess this drawback, it need only be
concerned with the additional duta. Only rules added to the path to a given

event will influence the particular response.

Recognizing and Responding to the Zombies

As mentioned, the monkey will run if the zombie gets too close. The con-
troller recognizes if the zombie is too close to the monkey. When it occurs,
the first response is to stop the monkey so fthe situation will not degrade
and to free command queue of the environment for the new commands. The
controller then determines an emergency pl;n of action for the monkey to
escape from the monster. The second re;por;se time includes this planning.
The average response times for the phases are presented in table 4.6, and
figure 4.36 represents the percentage of time used for each phase until the
second response. The same pa.ttern occurs again, a majority of the typical

approach uses most of its time for the initial matching while the ICE time

is used to plan the escape.
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Event Typical —ICE
Actual | Compensated
Recognized Zombie | 905.3 2.6 39.0
STOP Response 3.5 0.6 9.0
Escape Response 196.0 10.7 160.5
Response Time 1,104.8 13.9 208.5

Table 4.6: Rgpqnge {time of controller to the zombie

Figure 4.36: Percentage response time of the zombie
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Event Typical T ICE
Actual | Compensated
Intermediate Command 46.5 1.3 19.5
Initial Planning 1,638.5 9.1 136.7

Table 4.7: Time to send next command

Other Results

Two other time periods have as yet not been presented. The first is the time
between sending commands. The time, for the controller to determine a set
of commands can be sent to the environment, is discovered by the time of
the first command sent. Table 4.7 presents the average time to send the rest
of the commands. Also found in the table are the initial planning time of
the two systems. The planning time period begins after the expert system
receives the first report from the environmental simulator. The period ends

with the first command being sent to the monkey.

The effect of compiling the rules, into C functions impacis on the these
figures. When planning and finding the next command to send, the typical
approach performs its general search over the data for a specific fact. ICE
rules can perform a more specific search, this approach was found earlier in
YES/MYVS and OPS-83. These two systems found significant improvement
by compiling the consequences and using special searching strategies.

Consider the first entry in the table, sending the next command. The
typical system knows the index of the next command, but must search every
command for that index. Commands will be searched after the correct com-
mand is found, there is no mechanism to stop this search. The ICE system
uses the index to directly retrieve the next command.

The second set of figures represents the initial planning phase. Here again
the special searching mechanism is used to find boxes for the tower. The -
typical system searches all of the boxes looking for an appropriate one. This
activates the rule to find a suitable box with all of the possible boxes, after

firing with the first instance, all of the other instantiations are retracted.
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Much time is spent on performing all of the initial matching, and then more
time is needed to retract the fact that looks for a box from the data network.
By retracting this fact, all of the rule instantiations are also retracted. The
extra overhead consumes much more time than was saved by recording the
matches to prove a box is valid. The ICE system search considers each box
until it finds an appropriate one. Once found, the system continues with
the consequences of the rule and continues. No overhead is present, only the
search. If searching is very complex, special mechanisms can be used.
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Chz;pter 5

Conclusions and Future Directions

5.1 Concluding Remarks:

The prototypes show the advantages of ICE over CLIPS in controlling the
dynamic test environments. The comparison can be generalized to include
expert systems based on types of the Rete algorithm. The fundamental
problem of systems, like CLIPS, for real-time control is the matching process
handles all of the data from the environment before reasoning on the most

important response. The ICE system shows it is able to quickly recognize

‘the potential events from the data and can therefore direct the reasoning

process much faster.

" The data processing method of fixed thresholds with hysteresis is a sound

'approach in converting the raw data into its associated states. By using the

~ antecedents of the rules to determine these thresholds, the data states not

used by the controller will be immediately discarded. The point is readily

“demonstrated by the first test of the sensors and devices prototype. The

normal sensor condxtxons were not needed in any of the rules and was dis-

" carded, prov1dmg a much faster cycfe time. The same ‘point can be made on

the Rete approa.ches but it would not be as evndent toa developer

The prototypes proved the concept of not usmg workmg memory in a
data-driven production rule expert system. The delivered system is able to
specify the exact amount of memory necessary for the expert system This
may be a large number but is s the absolute cerlmg for contmuous operation.

The ICE system architecture shows great potential in delivering an em- -
bedded real-time expert system. Those systems using a form of the Rete
algonthm must overcome the initial matching problem, changing data val-

ues (so as not to contlnually retract and assert facts) and dynamlc memory

89
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management. Some of these other systems have developed features used in
ICE, but it was deemed worth abandoning Rete for a new architecture. The
Rete algorithm is a natural approach for off-line systems. Stretching its lim-
its to meet the demands of a dynamic environment appears to be building a

real-time system on a weak foundation.

5.2 Future Directions

The ICE system represents a first step in providing an architecture for real-

“time expert systems. There are many directions that can be taken, internal

_mechanisms for the delivery system and those to aid in the development of

a system I oo S ,

The first lnternal mechamsm presented uses dynamlc censors to aid in
truth maintenance. A developer already can use the system states and

' his/her rules to aceoniplish the same result, but a more automatic approach

is highly desirable.
An external clock for scheduling tasks needed after a specific time. The

clock is used to solve a number of problems in real-time software, initiating

a polling cycle for instance. Real-time clocks are often interfaced to the

hardware platform to achieve the desired effect. Another approach takes
* advantage of the defined tasks to be used as a clock. Knowing the time for a
task to complete and its start time, the time when the task finishes is easily
- determmed Thxs knowledge and by modnfymg the schedulmg mecha.msm, a
Vta.sk can be scheduled torun at a pa.rtlcular tlme, without mterruptmg the

The a pr:or:u
several times when referring to building a controller with the ICE architec-

ture. Obviously a compiler to generate an ICE system from another system

~ designed for the development process [HS89a]. The compxler must allow the .

developer influence over the sizes of the tasks, prlormw and other features

more specific to the problem.

The development can use an existing commercial expert syste shell, or one
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designed specifically for developing real-time expert systems. In either case,
a modelling utility to simulate the environment allows the developer an easy
mechanism for testing various scenarios. This point may be obvious, but
the modelling facility should not be converted over to the delivery system
[YM83]. If the controller must model the environthent, a catastrophe may
take its toll before the model determines its existence.

In discussions on future work of real-time systems, a few points usually

- surface. The first is defining a precise mechanism for implementing real-time

software rather than ad-hoc attempts to solve an instance of an environmen-

tal problem. However the same discussions are echoed in building expert

~ systems. A strong issue in real-time software is the ability to guarantee a
~ satisfactory response withing a specified time window. Perhaps automatic
. program verification is the first step in solving this last issue.



 Appendix A

Sensors and Devices Test

The tests on monitoring sensors and devices [GR89] is comprised of four

devices with one or more sensors. Table A.8 and A.9 contain all of the sensors
and their associated device and thresholds. Below the “Low Critical” level,
the device is said to be in a critical state and must be immediately shutdown.
The warning state Is between the two low thresholds, meaning a potential
" problem may exist. If the device is in this state for a short time, it is not
considered a problem. After a fixed period of time, shown in table A.10, the
device is considered unstable and is shutdown. The normal operation of a
device is between the two warning thresholds. No action needs to be taken
by the controller. The “High Warning” and “I;Iii'ér};er'iti'cal” states operate
in the same manner as their corresponding low states.

Data from both the tests is found at the end of this section. Cycles 3 to

103 are used to compare the two systems in the results chapter.

Sensor | Device ~ Low High
Critical | Warning || Critical | Warning
1 1 60 70 80 130
2 1 20 40 85 180
3 2 60 70 85 130
4 3 60 70 85 130
5 4 65 70 85 125
6 4 110 115 85 130

Table A.8: Ranges for Testing Normal Operation
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Sensor { Device Low High
Critical | Warning || Critical | Warning
1 1 60 70 120 130
2 1 20 40 160 180
3 2 60 70 120 130
4 3 60 70 120 130
5 4 65 70 120 125
6 4 110 115 125 130

Table A.9: Ranges for Testing Warning Operation

Sensor | Device | Warning Period |
 Normal | Warning
1 1 3 120
2 1 5 120
3 2 4 120
4 3 4 120
5 4 4 120
6 4 2 120

Table A.10: Ranges for Warning Period
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143 : 100 100 100 100 100 120
144 : 100 100 100 100 100 120
- 145 : 100 100 100 100 100 120
146 : 100 100 100 100 100 120
- 147 : 100 100 100 100 100 120
148 : 100 100 100 100 100 120
~ 149 : 100 100 100 100 100 120
160 : 100 100 100 100 100 120
- 161 : 100 100 100 100 100 120
162 : 100 100 100 100 100 120
— 163 : 100 100 100 100 100 120
164 : 100 100 100 100 100 120
. 166 : 140 85 90 90 123 120
166 : 100 100 125 110 123 120
157 : 90 100 125 100 123 120
:_ | 168 : 100 200 90 100 100 100
S 189 : 101 100 90 100 100 100
- T 160 : 100 100 00 100 100 100




- Appendix B

Monkey, Bananas and Zombies Tests

The environment of the monkey, banana a.nd zombies tests, described in
" the results cha.pter, is pl;esented here. The env1ronment uses a euclidean
coordinate space of 150 by 150 to record the location of each agent. The
bananas are always found at locatxon (25, 25) at a helght of 20 units. The
monkey always starts on the floor at (30 31) and not holdmg a box. It can

" walk, while carrying a box, at a speed of 2 units per step nd run empty

"“"handed at 8 units per step. Each step takes one simulation clock cycle. To
climb up or down a single box requires a full clock cycle of the monkey,

regardless of whether it is carrying anything.

- The 19 boxes of the environment are specified in table B.11, and shown
in ﬁgure B.37. These are the initial conditions of the boxes for all four of
the tests. The tower construction is initially the same for the tests, but the

CLIPS and ICE systems generate a slightly different plan.

Some of the boxes have slightly different attributes in each of the tests,
table B.12. Table B.13 shows the extra boxes added to the tower. In the
faulty box test, the boxes break when the monkey stands on them, their
height becomes zero. Re-planning must add boxes to replace the lost height.
In the heavy box case, the heavy boxes are replace along with all of the
covered boxes. The heavy object 7 is on top of box 1, thus making the later

box inaccessible to the monkey.
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Box | Location | Height [ On | Under
X| Y
0 7| 50 2 floor | nothing
1 1 2 3 floor 7
2 | 25]100| 5 | foor | nothing
3 65 | 140 1 floor | nothing
4 [[100]100] 1 11 5
5 100 | 100 2 4 nothing
6 1] 2 1 7 | nothing |
7 1 2 2 1 6
8 ||145 95 1 floor | nothing
9 100 | 100 2 15 11
10 75 3 1 floor 16
11 100 | 100 3 9 4
12 | 60| 67 1 floor | nothing
13 107 | 20 1 floor 14
14 || 107 | 20 1 13 | nothing
15 || 100 | 100 1 floor 9
16 75 3 2 10 | nothing
17 0| 71 1 18 | nothing
18 70 71 3 floor 17

Table B.11: Box Characteristics

| Box || Faulty | Heavy | Zombie [

2 * * *
7 *
12 '
16 *
==l 17 *

. Table B.12: Boxes for the Last Three Tests
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19 -
]
5
4 -
6 11 .
7 17|16 9 |14
of [2 12| 3] [18]f10 15{|13 |8
=
Figure B.37: Picture of the Monkey, Bananas and Zombie World —
L -
Faulty Heavy
CLIPS | ICE | CLIPS | ICE B
13 1 13 | 1 -
10 | 4 10 | 4
18 10 18 10 ;
11 11 11 11
1 13 1 13
9 -
Table B.13: Additional Boxes Needed for the Tower =

i
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