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MULTI-STAGE DECODING FOR
MULTI-LEVEL BLOCK MODULATION CODES

SHU LIN TADAO KASAMI

Abstract

In this paper, we investigate various types of multi-stage decoding for multi-level block modula-

tion codes, in which the decoding of a component code at each stage can be either soft-decision

or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is an-

alyzed for a memoryless additive channel based on various types of multi-stage decoding, and

upper bounds on the probability of an incorrect decoding are derived. Based on our study

and computation results, we find that, if component codes of a multi-level modulation code

and types of decoding at various stages are chosen properly, high spectral efficiency and large

coding gain can be achieved with reduced decoding complexity. In particular, we find that the

difference in performance between the suboptimum multi-stage soft-decision maximum likeli-

hood decoding of a modulation code and the single-stage optimum decoding of the overall code

is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for

a block of 10~6 . Multi-stage decoding of multi-level modulation codes really offers a way to

achieve the best of three worlds, bandwidth efficiency, coding gain and decoding complexity.



1. Introduction

Multi-level method is a powerful technique for constructing bandwidth efficient modulation

codes [1-7]. This method allows us to construct modulation codes systematically to achieve

high spectral efficiency and large coding gain from component codes (binary or nonbinary,

trellis or block) in conjunction with proper bits-to-signal mapping through signal set parti-

tioning. If the component codes are chosen properly, the resultant multi-level code not only

has good minimum squared Euclidean distance but is also rich in structural properties such

as: linear (or regular) structure, phase symmetry, and trellis structure [4, 7, 8].

A major advantage of multi-level modulation codes is that these codes can be decoded in

multiple stages with component codes decoded sequentially stage by stage and with decoded

information passed from one stage to the next stage. Since the component codes are decoded

one at a time, it is possible to take advantage of the structure of each component code to

simplify the decoding complexity and reduce the number of computations at each decoding

stage. As a result, the overall complexity and the number of computations needed for decoding

a multi-level modulation code will be greatly reduced. Decoding of a component code at each

stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance.

If component codes and the types of decoding at various stages are chosen properly, high

spectral efficiency and large coding gain (or high reliability) can be achieved with reduced

decoding complexity. Multi-stage decoding for multi-level modulation codes really offers a

way to achieve the best of three worlds, bandwidth efficiency, coding gain and decoding

complexity.

In this paper, we investigate and analyze various types of multi-stage decoding for

multi-level block modulation codes, particularly the multi-stage soft-decision maximum likeli-

hood decoding, multi-stage hard-decision maximum likelihood decoding, multi-stage bounded-

distance decoding and hybrid multi-stage decoding. The organization of the paper is as fol-

lows. In Section 2, we provide a general formulation for multi-level block modulation codes

in terms of component codes over substrings of labeling symbols. In Section 3, soft-decision

maximum likelihood, hard-decision maximum likelihood and bounded-distance decodings for

a component code of a multi-level modulation code are devised. In Section 4, the error per-

formance of multi-level block modulation codes for a memoryless additive channel is analyzed

based on various types of multi-stage decoding, and upper bounds on the probability of an
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incorrect decoding are derived. Finally, error performance and coding gain of some specific

bandwidth efficient multi-level modulation codes are computed and simulated for various types

of multi-stage decoding. From our computation and simulation results, we find that multi-

stage decoding for multi-level modulation codes provides an excellent trade-off between error

performance (or coding gain) and decoding complexity.

2. Multi-Level Block Modulation Codes

Construction of multi-level modulation codes consists of six basic steps: (1) selection of a

signal set S; (2) labeling of signal points by strings of labeling symbols through signal set

partitioning; (3) segmentation of signal labels into sub-labels; (4) selection (or construction)

of component codes over the sub-labels; (5) combining component codes by concatenating the

sub-labels to form a multi-level codes; and (6) label-to-signal mapping to form a multi-level

modulation code.

Consider a signal set (or constellation) S with 2e signal points where t is a positive integer.

Suppose the signal points in S are labeled by binary strings of length t through a proper set

partitioning process [7,9-11]. Then the label set L for S is of the form:

L = { a i a ^ - - - a ( : a, € {0,1} for 1 < i < (}.

Let <r(-) be the mapping defined on L such that <r(a1a2 • • • a/) gives a unique signal point s in

5. The labeling (L,a) (or simply L) is said to have t levels or length t.

For v and v' in //, let d(v, v') denote a distance measure between two signal points, s and

5' in S, labeled v and v' respectively. The distance measure is assumed to have the property

that d(v, v') = d(v', v) and d(v, v') — 0 if and only if v = v'. For a positive integer n, let Xn

denote the set of all n-tuples over a set X. We extend the domain of d as follows: For two

n-tuples, v = (wi, «2, • . . , vn) and v' = (v{, v 2 , . . . , v'n) over L, define

^v.v'^E^-.rj). (2-1)

For a nonempty subset C of Ln, define the minimum distance of C with respect to measure

d, denoted D[d, C], as follows:

7] = min{<f(v,v ;) : v, v'6 C and v^v '} . (2.2)
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(If \C\ = 1, then D[d,C] is defined as infinity.) For simplicity, we use D[C] to denote D[d, C]

whenever there is no ambiguity.

Suppose a labeling L of t levels for a signal set S and a distance measure d are given. For

constructing a general multi-level code over L, we must segment the labeling into sub-labelings

and choose the starting symbol position of each sub-labeling. Let m be a positive integer not

greater than t, and let ji,ji, . . . , jm+i be m -f 1 integers such that

1 = ji < >2 < • • • < ;'m < Jm+i = t + 1- (2-3)

For 1 < » < m, let ^0 be defined as

*° = >*!-*,

and let L^, called the t'-th sub-labeling, denote the set of substrings from the j'.-th symbol to

the (ji+i — l)-th symbol of strings in L, i.e.,

! = <** €{0,1} for ;,- < h< ji+l . (2.4)

Concatenating L^ to L^m\ we obtain

L = L(l)L™ • • • L(m).

Consider an n-tuple v = (t^, vj, . . . , vn) over L. For 1 < j ' < n, the j-th component Vj of

v can be expressed as the following concatenation of substrings in L^ to L^ :

(1) (2) (m)
Vj = Vj 'Vj • • • V j

where Vj € L^ for 1 < t < m. For 1 < t < m, we form the following n-tuple over L^:

v(i) = (^)
)4'),...,4t')). (2-5)

This n-tuple v^ is called the t'-th component n-tuple of v, and v is denoted as follows:

v_ v(i)v(2)...v(m) (2.6)

For 1 < t < m, let C, be a block code of length n over I(l). From Cl} C2, . . . , Cm, we

form a block code of length n over L as follows:

C = C\ Ci • • • C

: v ( i )€C,- for ! < » ' < m . (2.7)
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Such a code C is called an £-level code with m components, and C,- is called the i-th component

code of C. If each component of a codeword in C is mapped into the corresponding signal

point in the signal constellation S, we obtain a multi-level block modulation code.

For a distance measure d on L and 1 < t < m, let d^'\v^\ v*l)) with v^ and v^ in L^

be defined as follows:

v(j) € id) with ; = 1, . . . , i - 1, i + 1, . . . , m and

with ; = ,' + i, . . . , m.. (2.8)

For any distance measure d, a lower bound on the minimum distance D[d, C] of a multi-level

code C is given by (2.9) [7] , which unifies the previous bounds [1, 2, 4, 6, 12],

D[d,C]> nun IP^.C,-]. (2.9)

The equality in (2.9) holds if the following conditions (2.10) and (2.11) are satisfied:

(1) For any v^ and v^ in L^ with 1 < j ;. < m and any positive integer t not greater

than m,

= d(w<l). . . w^^V'V1'41^ . . w^ t;'0)...^1'-1^''^^-1-1)...^"1)) (2.10)

and

(2)

^\v(i\ v'V) = min{rf(t/(l>. . . v(i-l)v(iW+1\ . . v<m\ v(1\ . . v^WW^. . . v(m)

: t;^ € IU) with j = 1,... ,i - l,i +l , . . . ,m}. (2.11)

From (2.9), we see that to maximize D[d, C], we need to form a labeling L for the signal set

5 which maximizes D[ct'\ C,-] for all i.

For any i such that £(l) = 1, the i-th sub-labeling is i(l) = {0,1}. Then, for any two

n-tuples u and v over I(l)(= {0, 1}),

,v) = ^(O.ljrfjftu.v), (2.12)
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where <f//(u,v) denotes the Hamming distance between u and v. Hence, for fl^ = 1, C, is a

binary code and

^d] = ^(O, I)*,-, (2.13)

where £,- denotes the minimum Hamming distance of C,.

Consider the special case for which m = t. Then for 1 < i < i,i(i) = 1 and £<•'> = {0, 1}.

Consequently, an £-level code C is formed from t binary component codes, Ci, C2, • • • , and

CV For ! < » < £ , define the t-th distance parameter rf,- of Z. as

4 = ^(0,1). (2.14)

Let 5, be the minimum Hamming distance of component code C, for ! < » ' < £ Then it

follows from (2.9), (2.13) and (2.14) that the minimum distance of an ^-level modulation code

C with t binary component codes satisfies the following lower bound:

D[d,C] > min Mi-
!<!</

Since rf,- < df+i for 0 < i < /, we need to choose the component codes such that 8; > 6,-+i.

Therefore, C\ is the most powerful component code in terms of Hamming distance and Cf

is the least powerful component code. An £-level code with t components is called a basic

multi-level code. Most of the known block modulation codes [2,3,5,6,13] are basic multi-level

codes.

Let M denote the integer 2/. For an A/-QASK or Af-PSK signal set, the squared Eu-

clidean distance is used as the distance measure. For an Af-QASK signal set, a binary labeling

L of length t is chosen in such a way [9-11] that for 1 < i <t,

di = 24.!. (2.15)

This labeling is denoted -£M-QASK- For a binary string a\a^ • • • aj, let /(a^ • • • a,j) denote the

integer £i=i o,-2'~l (for the null string A, /(A) = 0 ). For an A/-PSK signal set with unit

energy, the signal point in a 2-dimensional space labeled by a binary string u of length t is

given by (cos(27r/(«)/A/),sin(2n7(u)/Af )), denoted s(u), and the distance measure d between

two binary strings u and v is given by the squared Euclidean distance between s(u) and s(v),

that is,

d(u tv) = 4sin2(A/- l7r(/(u)-/(t;))). (2.16)
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This labeling is denoted Z/Af-PSK- It can be easily shown that if either » = m or ^ = 1, then

for u and t; in L

^\u,v) = 4sin2(2J>1-';r(/(u)-/(t;))). (2.17)

Hence the i-th distance parameter </,- of £A/-PSK *s &ven by [9],

di = 4sin2(2t'-|-/7r). (2.18)

Figure 1 shows an 8-PSK signal set with unit energy. Every signal point is labeled with a

string of three bits, aia2a3. The distance parameters of Z-S-PSK are: di = 0.586, d? = 2, dz = 4.

Let C be a block code of length n over L which represents either an M-PSK or M-QASK

signal set. If each component of codeword v in C is mapped into its corresponding signal point

in the 2-dimensional M-PSK or M-QASK signal set, we obtain a block M-PSK or M-QASK

modulation code. The effective rate of this code is given by [9],

R(C] = ^log2|C|. (2.19)

3. Multi-Stage Decoding

Let L be the labeling for a A-dimensional signal set S with 2l signal points. Let C =

CiC-i • • • Cm be an ^-level code of length n over L with m component codes where C, is a

code over the sub-labeling L^\ In multi-stage decoding of C, component codes are decoded

sequentially one at a time, stage by stage. The decoded information at each stage is passed

to the next stage. The decoding process begins with the first component code C\ and ends

at the last component code Cm. The decoding of a component code at each stage can be

either soft-decision or hard-decision, maximum likelihood or bounded-distance decoding. As

a result, there are four types of multi-stage decoding:

(i) Multi-stage Soft-decision Maximum Likelihood Decoding — each stage of decoding is

a soft-decision maximum likelihood decoding;

(ii) Multi-stage Hard-decision Maximum Likelihood Decoding — each stage of decoding

is a hard-decision maximum likelihood decoding;

(iii) Multi-stage Bounded-distance Decoding — each stage of decoding is a bounded-distance

decoding based on a certain distance measure, e.g., Hamming distance; and
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(iv) Hybrid Multi-stage Decoding—mixed types of decoding are used among the stages.

In the following, we first describe a multi-stage decoding procedure and then formulate

various types of stage decoding.

A Multi-stage Decoding Procedure

Suppose a codeword in C is transmitted and z = (z l f za, • • •, zn) is the received sequence at

the output of the demodulator, where 2,- is an A-tuple of real numbers. At the i-th stage of

decoding with 1 < t; < m, the following process is carried out:

For 1 < i < m and 1 < j< i, let v^ be the decoded codeword at the j'-th stage

decoding for Cj. Based on z, v^ , • - •, Vp (z for t=l), the decoder performs a decoding

procedure for d which is to be discussed later. Different kinds of decoding procedure

may be used at different stages. If the decoding is successful, the decoder puts out a

decoded codeword v# which is in C,. Otherwise, stop the overall decoding and report

that an uncorrectable error has been detected (this is a decoding failure). AA

If every stage decoding is successful, then the decoded codeword v/j in C is given by

VD = vgM?-..^. (3.1)

Otherwise, an uncorrectable error has been detected and the decoder raises a flag.

Now we consider the decoding procedure at each stage. For 1 < i < m and v(1M2^ - • • v^"1^

in CtC2 • • • C,_i (the null string A for » = 1), let C,-[v^>v(2) • • • v*1'-1)] be denned as the following

set of vectors over L:

£.[v(i)v(2)... v(i-i)j ^ |V(DV(2)... V(.-DV(0 ... vm .

v ( V ) € C V and vu) € {Iu)}n for i < ; < m}. (3.2)

It follows from (2.1) (2.2) (2.8) and (3.2) that for any distance measure d, the minimum

distance of C^v^M2) • • • v^1"1^] is lower bounded as follows:

D[d,Ci[y(^v(:i)---y(i-l)}] > D[^\d]. "(3.3)

where the equality holds if (2.10) and (2.11) are satisfied. In the following, we will show that

the i-th stage decoding is a decoding procedure for Cj[v(1M2) • • • v^'"1^].

Hereafter we consider a memoryless additive channel and assume that every codeword

of C is equally likely to be transmitted. For t> € L, let s(v) denote the signal point in RH
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represented by v, where R* denotes the set of all j-tuples of real numbers. For v € ^

s(v) is given by (cos(21~/7r/(v)), sin(2 l~ /7r/(t'))). For an n-tuple v = (i^, v2, • • •, "n) over L,

let s(v) denote the n-tuple (s(t'i), s(v^), • • •, s(vn)) over 5. For v 6 L and z 6 Rh, let pr(r|v)

be the conditional probability that z is received given that the elementary signal represented

by v is sent. Instead of pr(z|v), we use a norm ||z — s (v ) \ \ such that

lnpr(zH = 7||z-*HI|2, (3.4)

where 7 is a negative constant real number and In denotes the natural logarithm. For an

AWGN channel, we use the Euclidean distance in Rh as the norm. When AM-PSK is considered,

the channel is assumed to be an AWGN channel.

For an n-tuple x = (ii,z2, • • • xn) over Rh, let ||x||2 denote £"=1 ||zj||2- Hereafter we

take the distance measure d such that for u and t; in L,

(DM)

d(u,v) = \ \ s (u ) - s (v ) \ \ \ (3.5)

Soft-Decision Maximum Likelihood Decoding at the i-th Stage

Now we present a soft-decision maximum likelihood decoding at the i-th stage. The decoding

is carried out as follows:

Let z = (zt, Z2, • • •, zn) be the received vector at the output of the demodulator. Find a

codeword v in C,-[v*lM2) • • • v^1"1*] for which the norm ||z — s(v)||2 is minimized. Then

i-th component n-tuple of v is the decoded codeword v]p € C,- for the t-th decoding

stage. A A

To carry out the above soft-decision maximum likelihood decoding at the i-th stage, it

is desirable to choose the i-th component code C,- with a simple trellis diagram so that the

Viterbi decoding algorithm can be used to reduce the number of computations. In this case,

the metric for a branch labeled v^ € L^ corresponding to the g-th input symbol for 1 < q < n

is given by

ue{Q rni_n+i+i ||z, - 3(v™v% • • • v^v^u)\\9
t (3.6)

where j,+i is defined in (2.3).

Consider the soft-decision maximum likelihood decoding for the i-th component code of

a multi-level A/-PSK modulation code with M = I1. In this case, L = XM-PSK- The signal
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points in an M-PSK signal set 5 are labeled in such a way that the set of signal points whose

labels have the same prefix a^ • • • a i t , denoted Q(a.\ai • • -a/,), forms a M2~fc-PSK signal

constellation (see Figure 1). This structure can be used to simplify the decoding. For z € R2

and a binary string v, let Tv(z) denote the point in R2 which is obtained by rotating z around

the origin by 360/(v)/A/ degree clockwise, where /(v) is an integer defined in Section 2. For

an n-tuple z = (zi} z-i • • •, zn) over R3 and an n-tuple v = (t^, «z, • • •, vn) of binary strings, let

Tv(z) denote the n-tuple (Tw,(2i),Tv,(s2), • • •, TVm(zn)) over R2. Let C,- denote the following

code over LMJ-PSK:

c.- = c.-ynyn---Vn, (3.7)
/-J.+l +1

where M,- = M2~Ji+1 and V"n denotes the set of all binary n-tuples. Let z = (zi, z2, • • •, £n)

be the output of the demodulator and vj-/ = (t/jjj], v^, •• •, *>£>„) be the decoded codeword

in Cj at the j-ih stage for 1 < j < i. Then it follows from the structure of M-PSK signal

set that the i-th stage decoding based on z and v^, , v^/, • • •, v^~ is reduced to decoding

T (i) en 0-0(z) for the M.-PSK code C,-. AA
VD -VD ••"•VO

Hard-Decision Decoding at the t-th Stage

Suppose a signal point from a signal set 5 is transmitted. Let z € Rh be the correspond-

ing received point at the input of demodulator. The demodulator makes a hard decision

(quantization) as follows:

For the given received point z and decoded sub-labels v^ € L^ with 1 < j; < i, find the

label v = v^v™ • • • v(i~l)vw • • • v(m} in L with t^V2) • • • v(i~V as a prefix such that the

norm \\z — s(v)\\ is minimized. The i-th sub-label v^ of v is the hard-decision output

of the demodulator. AA

Let the hard-decision output of the demodulator at the i-th decoding stage be denoted

by H;(z, t/^V2) • • • v('~^) (Hi(z, A) for i = 1). Now we formulate a hard-decision maximum

likelihood decoding at the i-th stage as follows:

For 1 < > < i, let v^} = («£}, »JJJ, • • •, »j£) be the decoded codeword in Cj at the ;-th

stage. For the output z = (z l5 z2, • • •, zn) of the demodulator, let #,-(z, v^ , \$ , • • •, v^~ ')

denote the n-tuple over Z-^ whose g-th element is
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^ ( « , v , v , . . . , v - ) (3.8)

into a codeword vg in C, such that a t l ')(J5r,-(»,vg),vg),...>vg- l)),vg)] is minimized

where the distance measure <fl^ is defined by (2.8).

Bounded-Distance Decoding

Let 8 be a real number such that
(3.9)

where A,- is the least real number such that for u, v and w in £W,

A.̂ 'H", w) + <ti](w, v)) > d<«>(u, v).

The bounded-distance-6 decoding at the i-th stage is defined as follows:

For a received n-tuple #,-(z,Vp ,vg' ..... v^~1}) over I(l), if there exists a codeword v

in Ci such that

J-tyH-lv v(li v(2) v('~lh vl <- */9« l"tVzivD ' VD ' • • • > VD ; » v J S t ) / ^

(v is unique), then decode //.-(z, vg' , vg\ . . . , VD *) mto v- Otherwise, declare a de-

coding failure. AA

In the case for which L(i) = {0, 1},C, is a binary code. It follows from (2.12) and (2.13)

that the hard-decision maximum likelihood or bounded-distance decoding at the i-th stage

can be done in terms of Hamming distance for which A^ = 1.

Consider the case where L = Z-M-PSK *'ith M — I1. For : € 7?2, let J(z) denote the

integer j such that 0 < j < 1M and

where <? is the angle of the polar co-ordinates of z. Then it is readily seen [14] that the

hard-decision #,(r, »<» V*> - - - v ( i~ l )) can be determined by 7(r), i and t.(1>v(2) • • • v(-1). Once

J(z) is stored, c itself is unnecessary to be stored unless soft-decision decoding is used at a

later stage. This reduces decoder complexity.

So far we have presented three basic types of decoding at a stage in a multi-stage decoding

for a multi-level modulation code. Now we like to know under what conditions the decoding

at a specific stage is correct. This is answered by Lemma 1 which follows from (2.1). (2.8),

(3.3) and (3.5). This type of lemma was first given in [1] and then in [4] for some classes of

multi-level codes.
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Lemma 1: Suppose tha t (i) the sequence 5(v) of elementary signals represented by a code-

word v = v (1)v (7) • • • v(m) in C is sent, ( i i ) z is received, and (iii) for 1 < i < m, the decoding

at every stage prior to the i-th stage is correct. Then the decoding at the i-th stage is correct

if one of the following conditions is met:

(1) For soft-decision maximum likelihood decoding at the i-th stage,

(2) For hard-decision maximum likelihood decoding at the i-th stage,

(3) For hard-decision bounded-distance-6 decoding at the i-th stage,

HZ - *(v)||2 < a/s,
where 0 < 6 < D[^\ C,]/A,-. AA

The three basic types of decoding presented above can be used at various stages to form

various types of multi-stage decoding for a multi-level modulation code as we pointed out at

the beginning of this section. A drawback of a multi-stage decoding is the error propagation

effect caused by passing incorrectly decoded information from one stage to the next stage.

As a result, the multi-stage soft-decision maximum likelihood decoding is not optimum even

though the decoding at each stage is optimum. It is a suboptimum decoding. However,

the error propagation effect can be made negligibly small, if the first few component codes

(mostly the first component code) are powerful and decoded with the soft-decision maximum

likelihood decoding. Based on our computations in next section, we find that the difference

in performance between the suboptimum multi-stage decoding and the optimum single-stage

decoding of a multi-level modulation is very small, only a fraction of a dB loss in coding gain.

However the multi-stage decoding reduces the decoder complexity tremendously.

4. Performance Analysis for Multi-Stage Decoding

In this section, error performance of the multi-stage decoding for multi-level modulation codes

is analyzed for a memoryless additive channel, e.g., an AWGN channel. For an /-level code

C = C lC 2 - - -C r a of length n with m component codes over L, we consider the i-th stage

decoding with 1 < i < m. For a codeword u of C;, let /^''(u) be the probability that every

stage decoding prior to the i-th stage is correct but the i-th stage decoding is erroneous for
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a received block when u is transmitted, and let P# (u) be the probability that every stage

decoding prior to the i-th stage is correct but a decoding failure occurs at the t'-th stage for

a received block when u is transmitted. We assume that every codeword is equally likely to

be transmitted. Let p^ and p^ denote the average of Pj'^(u) and that of Py (u) over all

codewords, respectively. Let /£ (u) and p£ be defined as

Let pe denote the probability that a received block is erroneously decoded by the overall multi-

stage decoder, and let p,-c denote the total probability that the overall multi-stage decoder fails

in decoding a received block correctly (if there is no decoding failure, the former is equal to

the latter). Then we readily see that

Pic = >!?. (4.2)
i=l

Clearly the probability p,-c can serve as an upper bound on the probability pe.

First we present a sufficient condition for a code over LM-PSK that p^ = P^\u) and

Pq = P<jf(u) for any codeword u, where M = 2l. A code over IA/.PSK is said to be closed under

component-wise modulo-M addition, if and only if for any codewords u = (MI, u2, • • • , un) and

v = (vi, v2, • • • , vn)) there is a codeword v' = (v[, v^, • • • , v'n) such that for 1 < j ' < n

/(wj) = /(«_,) -1- I(Vj) ( modulo M). (4.3)

Then the following lemma holds.

Lemma 2: Suppose that C = C\C-i • • • Cm is a multi-level code over Z-A/-PSK- For 1 < i < m,

if (1) the component code (7,- considered as a code over L^ pSK is closed under component-

wise modulo- 2* ' addition where ^ = j,-+i — j,-, and (2) the soft-decision or hard-decision

maximum likelihood decoding or the hard-decision bounded-distance decoding is used at the

i-th stage, then it holds that for any codeword u in C1,,

rf° = ^°(u), (4-4)

P? = /4V). (4-5)

- 13-



Proof: It is easy to show that C, is closed under component-wise modulo-2^° addition if and

only if d defined by (3.7) is closed under component-wise modulo-M,- addition. Then this

lemma follows from (2.16). AA

It follows from Lemma 2 that if fi1^ = 1 and C,- is a binary linear code, then (4.4) and (4.5)

are satisfied.

Next we evaluate Pe
(l)(0) and PJf(0) for an /Mevel code over L. For simplicity, we will

consider the case where ^ — 1. Suppose that the all-zero n-tuple 0 over L is sent and every

stage decoding prior to the j'-th stage is correct. Let z = (z\, 23? • • •, zn) be the output of the

demodulator.

Soft-Decision Maximum Likelihood Decoding

Consider the soft-decision maximum likelihood decoding at the i-th stage. In this case, there

is no decoding failure, that is, pjj? = PJf(Q) = 0. Let (H denote the n-tuple ((H, O7, • • •, O7),

where O7 denotes the string of j zeros. For 1 < i < m, let £/,• denote £('+1).£('+2) • • • //m)(=

{0,1}'-^1+1) and U? denote the set of all n-tuples over U{. For v € L^\= {0,1}) and

« G Uf, let Si(vu) denote s((H>'~1t/«), where s(u') is the signal point represented by «' 6 L.

If L = LM.PSK, then 5,-(w) is the Af,-PSK signal point represented by u € LM^PSK- For an

n-tuple u = (u i ,u 2 ) - • • , « „ ) over L^^t/,- (the concatenation of I/') and t/i), let s,-(u) denote

(5,-(ui), 5,(?/2)> • •' > s i(un))- Then the decoding at the j'-th stage is correct if for any nonzero

codeword v^ = (v[ , v% , • • •, v^) in C*,-,

min ||z - s,-(v(>)u)H2 > mjn ||z - 5,-(Ou)||2. (4.6)
t

This inequality can be rearranged as follows:

{min Hz,- - 5,-(lu)||2 - min ||z; - 5,-(0«)||2} > 0. (4.7)
u *ki fft "eU| o€t/'j such that »vj=i

A codeword v = (v1? ̂ 2, • • • , vn) in Cj is said to be "nondecomposable" if v cannot be expressed

as a component- wise integer sum of two or more nonzero codewords in C,-. It is readily seen

that only nondecomposable codewords of C,- need to be considered in (4.6) or (4.7). For a

positive integer u;, let qi(w) denote the probability that the sum of w independent identically

distributed random variables

min ||z - 5,.(1«)||2 - min ||z - *,-(0«)||2 (4.8)
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is not positive, where z is a random variable with conditional density function p(:\0l) and

p ( - j - ) is the channel symbol transition probability. From (4.7) and (4.8), the probability that

the decoded codeword at the j-th stage is a specific nonzero codeword of weight w is upper

bounded by qt(w). For a positive integer w, let A'w denote the number of nondecomposable

codewords with Hamming weight w in C;. Then, /£(0) is upper bounded as follows:

U> = 1

To compute the upper bound on /<c (0) given by (4.9), we need to evaluate </,•(«') for

1 < w < n. The parameter q^(w) can be evaluated in the following ways. Let E_ denote the

infimum with respect to t of the moment generating function E(t) of the random variable

(4.8). Then the following upper bound on ?,•(«>) holds:

q;(w)<Ew . (4.10)

This upper bound [16] is useful for relatively large w. For LM.?SK with M = 2{ and an AWGN

channel, let z = (i, y) <E R2, and A/; = 2/~J'i+l with 1 < t < m. Then, minu6l/i ||z - 5,-(lM)||2 -

linugc/,. \\z — 5,-(Ou)||2, denoted £, is lower bounded as follows:

(1) If y > 0, then

(4.11)

(2) if y < 0, then

£ > \\z - «,-(l'-^«+l)||8 - ||z - 5,-(0<-^'+2)||2. (4.12)

A proof of the above bounds is given in Appendix A. It follows from (4.11) and (4.12) that f

is lower bounded by

2x(l-cos^)-2|y|sin^. (4.13)

Let q\(w) be the probability that the sum of w independent random variables (4.13) is not

positive. Then

It is easier to evaluate ql(w) than qi(w). The following upper bound on q'i(w) holds (see

Appendix B for the proof).

for i<m (4.15)
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where rf,-. is defined by (2.18), p = 2R[C]Eb/N0, and

Q(x) = -±=re-'J"dt. (4.16)
V-7T Jx

If i = m, then M; = 2 and

Hard-Decision Bounded-Distance Decoding

We consider the hard-decision bounded-distance-^ decoding at the i-th stage, where

« = 2rf^, (4.18)

2<+ !<$,-, (4.19)

where rf,-,. is the j.-th distance parameter of L defined by (2.14) and 6,- is the minimum Hamming

distance of C,-. To derive upper bounds on P^'\Q) and Py (0), we consider the following

decoding problem: Decode

ff.-OMH'-1) (4.20)

with bounded-distance-5 decoding, where Hi is defined in Section 3. Note that for 1 < q < n,

the g-th bit of ^-(z.O*-1) is #,-(*„ D"'1). The probability that #,-(*„ D*"1) = 1 is <7,-(l).

Let P^\ P^ and P^r be the probabilities of a correct decoding, an erroneous decoding and

a decoding failure of the above decoding problem, respectively. We assume that C,- is linear.

Then it holds [21] that

pi° = ^. E ftdr^i-^i))"-*-', (4.22)
tu=*i w-h+j<t \n/ \ J /

P^ = 1 - P(° - P^. (4.23)

In the derivation of the above formulas, it is disregarded whether for a given z, the decoded

codeword at the j-th stage with 1 < j < i is 0 or not. Consequently, the following

inequalities hold:

/*•>(<)) < P(
e°, (4.24)

< Pg}, (4.25)

= 1-P(
C°. (4.26)
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The equalities in (4.24) and (4.25) hold for i = 1. For the case where hard-decision bounded-

distance decoding is used at each previous stage, explicit formulas for p^\ p^ and py have

been derived in [14, 15] and that for p,c is shown in Appendix C.

In Figures 2 to 6, the error performance of various types of multi-stage decoding for several

block multi-level modulation codes listed in Table 1 are shown. The channel is assumed to be

an AWGN channel. In Table 1, the following notations are used:

(1) Pn denotes the binary (n, n — 1) linear code which consists of all the even-weight binary

n- tuples.

(2) RM.-j denotes the j-th order Reed-Muller code of length n = 2*.

(3) BCH,-j(i denotes the binary primitive BCH code of length 2' — 1 and designed distance d.

(4) For a code C, ex-C denotes the extended code of C by adding an overall parity bit.

(5) D,- denotes D[df-'\ C-] and d, denotes the i-th distance parameter.

(6) In the column of decoding type, for example, (3s) means that m = 1, ^ = t = 3

and single stage soft-decision maximum likelihood decoding is used. (5,5,5) means that

m = 3, ̂ l) = &•"*} = fi^ and soft-decision maximum likelihood decoding is used at each

of the three decoding stages; (s,A (3 ,5) means that m = 3, ^l^ = £^ = ^3) = 1 and

soft-decision maximum likelihood decoding at the first and third stages, hard-decision

bounded-distance-(2<2 -f 1) decoding at the second stage are used. "Ao" indicates no

decoding.

(7) In the column of complexity of trellis diagram, the i-th number means the number of

states of a 4-section trellis diagram which is available at the i-th stage soft-decision

maximum likelihood decoding. For a case where hard-decision bounded-distance decoding

is used at the stage, "-" is marked.

In Figures 2 to 6, the following notations are used.

(1) pic [decoding type] denotes the probability that the multi-stage decoder specified by the

decoding type fails in decoding a received block correctly.

(2) pic>, [decoding type] (or Pic,,(Q) [decoding type]) denotes the simulation result on

Pic [decoding type] (or Pic(0) [decoding type]).

(3) /7,c[decoding type] denotes an upper bound on p,-c [decoding type] derived from (4.2) by

replacing p^ with its upper bound p-'e. If the soft-decision maximum likelihood decoding
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is used at the i-th stage, p^ is given by the right-hand side of (4.9) where g.-(u') is upper

bounded by the minimum of the right-hand sides of (4.10) and (4.15) or (4.17). If the

hard-decision bounded-distance decoding is used at the i-th stage, p-^ is given by (4.26).

?ic(0)[(3s)] denotes an upper bound on />c(0)[(3s)] given by (4.11) in [7].

(4) For 1 < 8 < n, let p'i'Cil(&) denote the value of the right-hand side of (4.9) where qi(w)

with 6,- < w < 8 is evaluated by simulation results on (4.13) and g,-(w) with 8 < w < n

is evaluated by the minimum of the right-hand sides of (4.10) and (4.15) (or (4.17)). In

Figures 2 to 4, ̂ [decoding type] denotes ^(*i) + P^.to) +?L3).

(5) pe [decoding type] denotes an upper bound on the probability that a received block is de-

coded erroneously by the hard-decision bounded-distance multi-stage decoding specified

by the decoding type. The upper bound is computed by a formula in [14].

In these figures, the error performances are compared with those of some uncoded reference

modulation systems for transmitting the same (or almost the same) number of information

bits.

Figure 2 shows the error performance of the basic 3-level block 8-PSK modulation code

Ci = RM5ilRM5>3P32 with various types of decoding: single-stage soft-decision maximum like-

lihood decoding (optimal), 3-stage soft-decision maximum likelihood decoding (suboptimal),

and 3-stage hard-decision bounded-distance decoding. Code Ci has effective rate almost equal

to one, minimum squared Euclidean distance 8, and a 4-section trellis diagram with 512 states.

It achieves 6 dB asymptotic coding gain over the uncoded QPSK system with the soft-decision

maximum likelihood decoding. To carry out the one-stage optimal decoding with the Viterbi

algorithm, a decoder of 512 states is needed, which is quite complex. From Figure 2, we see

that, with the one-stage optimal decoding, the real coding gain of Ci over the uncoded QPSK

system at the block-err or-rate of 10~6 is 5 dB: We also see that the difference in error per-

formance between the 3-stage soft-decision maximum likelihood decoding and the one-stage

optimal decoding is quite small. At block-error-rate of 10~4, the difference is only 0.3 dB

(based on simulation results). The difference should be less than 0.3 dB for lower block-error-

rates. Even based on the upper bound for p,-c, we see that the difference is less than 0.5 dB for

block-error-rates below 10~6. This says that with the suboptimal 3-stage soft-decision maxi-

mum likelihood decoding, the loss of coding gain compared to the one-stage optimal decoding
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is small. With the 3-stage soft-decision maximum likelihood decoding using the Viterbi algo-

rithm, three small Viterbi decoders are required, a 16-state Viterbi decoder at the first stage,

a 16-state Viterbi decoder at the second stage, and a two-state Viterbi decoder at the third

stage. The overall 3-stage decoder has a total of 34 states compared with 512 states for the

single-stage decoder for the overall code Ct. We see that there is a tremendous reduction in

decoding complexity by using multi-stage decoding. This big reduction in decoding complex-

ity represents an excellent trade-off for the small loss in coding gain. From Figure 2, we also

see that even the 3-stage hard-decision bounded-distance decoding of C"i, denoted (/i7, /H, hQ),

achieves very good error performance compared with the single-stage optimal decoding. There

is a loss of 2.2 dB at the block-error-rate of 10~6, but there is still 2.7 dB coding gain over

the uncoded QPSK system. With the 3-stage hard-decision bounded-distance decoding, the

decoding complexity is further reduced (note that the first-level and second-level component

codes of Ci are Reed-Muller codes which are majority-logic decodable).

Figure 3 shows the error performance of the basic 3-level 8-PSK block modulation code

C-2 = RM6i2RM6i4P64 with the 3-stage soft-decision maximum likelihood decoding and the

3-stage hard-decision bounded-distance decoding. This code has effective rate R[C^} = 1.11

and minimum squared Euclidean distance 8. It does have a 4-section trellis diagram but

with a very large number of states. Decoding this code with the single-stage soft-decision

maximum likelihood decoding using Viterbi algorithm is prohibitively complex. However, with

3-stage soft-decision maximum likelihood decoding, the code achieves a 4.4 dB coding gain

over the uncoded QPSK system at the block-error-rate 10~6 with a big reduction in decoding

complexity. In fact, this coding gain is achieved with bandwidth reduction. With the 3-

stage hard-decision bounded-distance decoding, denoted (/IT, hi, ho), the code also achieves

significant coding gain over the uncoded QPSK system with bandwidth reduction. There

is a 2.2 dB loss in coding gain compared with the 3-stage soft-decision maximum likelihood

decoding, however the decoding complexity is greatly reduced.

Figure 4 shows the error performance of the basic 3-level 8-PSK block modulation code

C3 = RM6ilRMe,4P64 with the 3-stage soft-decision maximum likelihood decoding. This code

has effective rate almost equal to one and minimum squared Euclidean distance 8. The code

has a 4-section trellis diagram with 2048 states. The single-stage soft-decision maximum

likelihood decoding using Viterbi algorithm may be too complex to implement. With the 3-
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stage soft-decision maximum likelihood decoding, the code achieves a 4.3 dB coding gain over

the uncoded QPSK system at the block-error-rate 10~6 with almost no bandwidth expansion.

Using Viterbi decoding algorithm at each stage, the overall decoder consists of three Viterbi

decoders, a 32-state Viterbi decoder at the first stage, a 32-state Viterbi decoder at the second

stage, and a two-state Viterbi decoder at the third stage. The total number of states for the

3-stage decoder is 66 compared to 2048 states for the single-stage decoder for the code. Note

that the code achieves a 6 dB asymptotic coding gain over uncoded QPSK system with the

single-stage optimal decoding. Since the number of states of trellis diagram of the code is too

big, simulation of the error performance of the code with the single-stage optimal decoding

using Viterbi algorithm is very time consuming and hence is not being carried out. The

real coding gain of the code over the uncoded QPSK system is unlikely more than 5 dB at

block-error-rate of 10~6 with the single-stage optimal decoding.

Figure 5 shows the error performance of the basic 3-level 8-PSK block modulation code

C± = RM6iiex-BCH6,7P64 with the hybrid 3-stage decoding in which the first stage and third

stage decodings are soft-decision maximum likelihood decodings and the second stage decoding

is hard-decision bounded-distance decoding. The second component code of €4 is an extended

BCH code of length 64 which has a very complex trellis diagram. Therefore we choose hard-

decision bounded-distance decoding for this component code. From Figure 5, we see that with

the 3-stage hybrid decoding, the code achieves a 4.4 dB coding gain over the uncoded QPSK

system at block-error-rate 10~6 with 10% bandwidth expansion.

Figure 6 shows the error performance of two basic 3-level 8-PSK block modulation codes

with 3-stage hard-decision bounded-distance decoding. Both codes consist of BCH codes as

component codes and both achieve more than 4 dB coding gain over the uncoded QPSK system

at block-error-rate 10~6 without bandwidth expansion (code C6 needs a little bandwidth

expansion).

5. Conclusion

In this paper we have investigated various types of multi-stage decoding for multi-level block

modulation codes. Analysis of error performance for these decoding schemes has been carried

out. Based on our computation and simulation results for some bandwidth efficient multi-level
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block modulation codes, we have found that the multi-stage decoding provides an excellent

trade-off between error performance and decoding complexity. The multi-stage soft-decision

maximum likelihood decoding achieves an error performance close to that of the single-stage

optimal decoding but with a great reduction in decoding complexity. We have also shown that

hybrid multi-stage decoding should be used for those multi-level codes in which some compo-

nent codes are too complex to decode with the soft-decision maximum likelihood decoding.

Our conclusion is that multi-stage decoding of multi-level modulation codes offers the best of

three worlds, spectral efficiency, error performance (or coding gain), and decoding complexity.

Even though the various types of decoding are formulated for multi-level block modulation

codes, they can be readily modified for multi-level trellis modulation codes.
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Appendix A

Proof of (4.11) and (4.12)

Let z = (x ,y ) 6 -R2 and y> = tan-1(y/x). Let j be the nonnegative integer less than A/,- such

that

For simplicity, s,(u) with u 6 LM _psK ls denoted by <r(/(u)). Then,

£ (= minugtf, ||2 — 5,-(lu)||2 — minu€ty, \\z — s,-(0«)||2) can be expressed as follows:

If j is even,

(A.2)

and otherwise,

t = \ \ z - f f ( j ) \ \ * - \ \ z - 0 ( j + l)\?. (A.3)

By symmetry, it suffices to prove (4.11), and therefore, j is assumed to be less than Mi/2.

The left-hand side of (4.11), denoted £0> can be expressed as

(A.4)

If j = 0, then f = fo- We consider the remaining case where

1 < j< Mi/2. (A.5)

For Zi and z^ in .R2, (z\ ,zi) denotes the inner product of z\ and z^. It follows from (A.2) to

(A.5) that

£0-e = 2(z, «r(0) -<T(l)±(erO') -*(;

= 2||z|| cos 9 - cosfa - ) ±

or - 8 | | z | | 8 i n - c o 8 ( v > - ) s i n . . (A.7)
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Inequalities (A.I) and (A.5) imply that

0<^<?-^<£<f. (A.8)Mi Mi Mi 2

It follows from (A.6), (A.7) and (A.8) that

AA
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Appendix B

Proof of (4.15)

Note that ql(w) is the probability that the following inequality holds:

-), (B.I)

where Xj and yj with 1 < j < w are independent Gaussian random variables with zero mean

and variance ^- where p = 2R[C]Eb/N0. For a w-tuple e = (e1( e2, • • • , £«/) over (1, —1}, let fe

denote the following random variable:

27T, . 27TA v-, ,w, -x . - -_^ ^g_2 j

Then, fe is a random variable with zero mean and variance wdjj(2p), and therefore, the

probability that ft < —w(l — cos j£) = —wdjjl is given by

(B.3)

Assume that i < m. Then sin j^ > 0. Since the left-hand side of (B.I) is equal to

mingg^i,-!}*./e, ql(w) is equal to the probability that at least one of fe with e G {!,— 1}™

is less than or equal to —w( l — cos |^), which is upper bounded by 2tuQ(y^-^) [Bonferroni's

inequah'ty, 25].

AA
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Appendix C

For 1 < t < I, /3 = 6^2- • •6 , - € {0,1}' and 7 = c^ • • • c,-_! 6 {0, I}1'"1, let p ( u ) denote

the probability that Hh(z,c lc2 • • -CH-I ) = &/,, for 1 < h < i. For simplicity, let p^ denote

P^CO'), where O7 denotes the string of j zeros.

For u € £2<-psK> 1^ f denote the phase of the received z € P? when signal s(u) is sent.

For 0 < ; < 2/+1 - 1, let q, denote the probability that 2~'irj < <f>-2~ t+lirl(u) < 2~ tir(j+l).

For t = 3, the following equalities hold:

Po!i(U) = 90 + ?3 + ?4 + ?7 + q& + ?ll + ?12 -I- ?15,

Pi!i(«) = 9i + 92 + 9s + 9e + 99 + ?io + ?is -I- 9H,

Poo!o(«) = 90 + ?15 + ?7 + 98,

Poo!l(") = 90 + 93 + 78 + 911,

Pooo,oo(") = 9o -f 9is,

(w) = 9i+9i4)

C") = 913 + 9H- (C-1)

It follows from the rotational symmetry of the signal points of £2'-PSK ^ follows that for

U — UiU-2 • • -U( € £2<.PSK an<^ ft — ^1^2 • • • ̂ i € {0, I}1,

(«) = OO, (C.2)

where © denotes modulo-2 addition.

Suppose that C = C(l)C(2)- • • C(t) is a basic Mevel code of length n over L and that

(2ti + l)-bounded-distance decoding is used at the i-th stage with 1 < i : < I. Let u =

U (DU (2) . . .U (0 = ( U l ) U 2 ) . . . « n ) be a codeword in C, where n< fc> = («iM, 4h), • • • . «i,*}) for

1 < /i < / and Uj ; = «J.l)«5s) • • • u^ for ! < > < « . For 1 < j < n and 1 < h < /, let «}llh) and

- 28-



un-A) denote «j-l)uJ2) • • • tij-fc) and u(1)u(2) • • -u (h\ respectively. Suppose that s(u) is sent and

z = (21, :2, • • - , 2n) is received, where z, € /?', and that for 1 < h < t, the /i-th stage decoding

is successful (correct or erroneous). For 1 < h < I, let v(fc) = (v[k\ v%H\ . . . , v^h)] denote

the decoded codeword in C<*> at the /i-th stage. Let v = v^M2' • • • v«> 6 C(1)(?(2) • • • C(t\

Vj ± v?\f)...vy, v(l'h) ± t^rf.-.zf and v^ £ yCOyW . . . V(M for l < h < t and

1 < ; < n. For 1 < h < t, let «JM = ffk(*j, wj1^-2 } • • • »j* "^ with 1 < j < n, u'(^ =

(u;(M, «}*>, . . . , «<*>) and u' £ u^u'W • • • u'«> ^ «, ^, . . . , <) where «; = ajl >«f } • • • tif }.

The condition that u'^^ is decoded into v^ at the /i-th stage for 1 < h < I is as follows:

dtf (u<fc), v(h>) < tk) for 1 < /i < /, (C.4)

where d// denotes the Hamming distance. For an n-tuple v = \(l)\W • • • v^ over £2'-PSK>

let F/,']3>.. t /(v) be defined as the set of n-tuples u' = u/(1)u'(2) • • • u'(/) = (u(, u'7, . . . , «'B)'s over

Z-2/.pSK which satisfy (C.4). Let Q^(u, v) be the probability that when s(u) is sent, a received

n-tuple over K2 is decoded into v^ at the A-th stage for 1 < h < t. Then it follows from the

definition of Pp\(u] and (C.4) that

Q (0(u,v)= £ n^.(M-,>(«,-). (C-5)
(»'i.«i ..... •'-)€<?,, ..... ,/v) J = 1 '' '

Suppose that for a codeword u € C, s(u) is transmitted. Then, let pc(u) denote the

probability of correct decoding for all the t stages. It follows from (C.5) that

For /? = b i b f - - b h and 7 = C!C2- - - c / , in {0, 1}A, let fi 0 7 denote (^ ® 0^(62 ® c2) ••• (^®

, and for n-tuples /? and 7 over {0, l}fc, let j3 ® 7 = (& ® 7!,/?2 ® 72, • • • , & ® 7«). The

following lemma holds.

Lemma C.I : For //S'.PSK and u € C, it holds that if C contains the zero word 0, then

Pc(u) = Pc(0) (C.7)

(Proof) It follows from (C.2), (C.3) and (C.6) that for u € C,
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= Pc(0). (C.8)

AA

This lemma implies that for £2<.psK>

ftc = l-7>c(0). (C.9)
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Fig. 1. 8-PSK signal set.



•8
JQ
O

f-l
O

pe[(h7,hi,h0)]

uncoded QPSK

(62-bit block)

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Eb/N0(dB)
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Table 1:

Some multi-level block modulation codes for which the error performances are evaluated for single-stage or

multi-stage decoding

Notation

Cl

Cl

Cl

C2

C2

C3

C4

C5

C6

Signal

Set

8-PSK

8-PSK

8-PSK

8-PSK

8-PSK

8-PSK

8-PSK

8-PSK

8-PSK

Definition

of Codes

(RM5,iRM5,3P32)

RM5,,RM5,3P32

RMSilRM5,3.P32

RM6i2RM6,4P64

RM6i2RM6,4P64

RM6,iRM6,4.P64

RM6ilex-BCH6>7/>64

BCHr^sBCHy^ 80117̂

BCH7|47BCH7i7BCH7i3

n

32

32

32

64

64

64

64

127

127

R[C]

63/64

63/64

63/64

142/128

142/128

127/128

115/128

255/254

248/254

Di,D7,D3

4<f2

le^,-*^^
I6di,4d7,2d3

IGdi, Ad^lds

IGdi^d^ldz

32^,4^2,2^3

32(f1,8<f2,2d3

43^,7^, 3d3

47d\, 7d-2,3d$

Decoding

Type

(35)

(s,s,s)

(/i7, AL/IQ)

(5,4,5)

(hi, h\, h0)

(5,5,5)

(s,h3,s)

(h?i ,h3,hi)

(h-23,h3,hi)

Complexity

of Trellis Diagram

29

2 4 , 2 4 , 2

) i

210,25,2

~» ~1 ~~

25,25,2

2s - 2* > , f

~i ~ i

~» ~i ~




