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TECHNICAL MEMORANDUM 

EMPIRICAL PREDICTIONS OF HYPERVELOCITY IMPACT DAMAGE 
TO THE SPACE STATION 

1. INTRODUCTION 

There are many engineering applications where predictions of the behavior of a physical 
system must be made based on a data base of experimental results. In these instances, either 
the phenomenon is too complicated to treat analytically or numerically, or the funding, expertise, 
or time required to do so is not available. Empirical approaches of this nature have always played 
a fundamental role in engineering design. 

The purpose of the project described in this report was to develop a DOS microcomputer- 
based computer program to empirically predict hypervelocity impact damage to the Space Station 
Freedom from space debris. The main goal was to predict damage to 'the multilayer insulation 
(MLI). However, to extend the usefulness of the program, damage to other copponents of the 
space station wall can be predicted as well. The program is intended to be an easy-to-use 
design tool for trade studies on debris protection strategies for the Space Station Freedom. The 
predictions are made based on a data base of experimental results. 

Marshall Space Flight Center (MSFC) has a light gas gun that can launch 2.5- to 12.7- 
mm projectiles at speeds of 2 to 8 km/s.l Work is currently in progress at MSFC to qualify the 
orbital debris protection system under development by Boeing Aerospace and Electronics for 
Space Station Freedom. A schematic of the protection system is shown in figure 1. It is based on 
the classical sacrificial bumper approach first suggested by Whipple.2 The purpose of the bumper 
is to breakup or ideally vaporize the projectile (space debris or micrometeoroids) so that the 
pressurized spacecraft behind the bumper is impacted with a cloud of fine particles rather than a 
single large particle. 

I 
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Figure 1. Schematic drawing of impact specimen. 



The parameters associated with the impact data are illustrated in figure 1. The projectiles 
were initially spherical and were typically constructed of 1100-0 aluminum. The bumper and the 
pressure walls were usually made from 6061-T6 and 2219-T87 aluminum, respectively. Some 
tests have been run with different materials. 

There are seven computer programs that were developed for this project. Details of how 
to use the family of programs are provided in section II. A main program called NLIBLAST 
serves as a shell to run the other six programs. Programs called DATABASE, DBASEDEL, and 
DBASEOUT are provided to assist the user in creating and maintaining data base files of exper- 
imental results. 

The remaining three programs provide predictions of impact damage to the bumper, the 
MLI, and the pressure wall plate. Program INVRMETH uses a unique prediction technique, 
called the inverse R method, that was developed for the purposes of this project. The theoretical 
basis of this method is described in section HI. 

As described in section IV, program POLYMETH makes predictions by fitting simple 
polynomials through a subset of data points. A more sophisticated forrri of polynomial prediction 
technique using the isoparametric formulation of the finite element method (FfsIM) as a basis 
was also attempted during the course of this project. This FEM-based software was found to be 
somewhat unreliable for making predictions from the impact data that is currently available and 
so it was not included with this software. The interested reader can consult reference 3 for a 
discussion of this method. 

The last prediction program, NONDIMEN, makes predictions based on nondimensional- 
ized functions that were developed by others and extended by the authors for application here. 
These functions are described in section V. The relative accuracies of these three prediction 
schemes are compared using an actual impact data set in section VI. 

Lists of conclusions and recommendations derived from this research project are given in 
section VII. A listing of the Microsoft BASIC source code for the MLIBLAST family of programs 
can be obtained from the second author at the Structural Development Branch of MSFC. 

II.  SOFTWARE USER GUIDE 

The software developed for this project was written in Microsoft QuickBASIC for DOS. 
Approximately 0.5 MB of hard disk space, an EGA or VGA graphics card and monitor, and an 
Intel 80286, 80386, or 80486 CPU is required to run the software. A math coprocessor is desir- 
able, but not required. The software is provided on two 5.25-in, 360K computer disks. A listing of 
the contents of the computer disks follows: 

DISK 1 

DATABASE.BAS - source code for the data base creation program (ASCII). 

DATABASE.EXE - compiled version of the data base creation program. 

DBASEDEL.BAS - source code for the data base record deletion program (ASCII). 
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DBASEDEL.EXE - compiled version of the data base record deletion program. 

DBASEOUT.BAS - source code for the data base viewing program (ASCII). 

DBASEOUT.EXE - compiled version of the data base viewing program. 

INVRMETH.BAS - source code for the inverse R method damage prediction program 
(ASCII). 

1NVRMETH.EXE - compiled version of the inverse R method damage prediction 
program. 

MATERIAL.DAT - a typical data base file of material properties which is used by the 
INVRMETH program (ASCII). 

MLI.DAT - a typical data base file of experimental results (ASCII). 

MLIBLAST.BAS - source code for the main program that runs the other programs 

MLIBLAST.EXE - compiled version of the math program. 

(ASCII). 
I 

DISK 2 

NONDIMEN.BAS - source code for the nondimensional function damage prediction 
program (ASCII). 

NONDIMEN.EXE - compiled version of the nondimensional function damage prediction 
program (ASCII). 

POLYMETH.BAS - source code for the polynomial function damage prediction program 
(ASCII). 

POLYMETH.EXE - compiled version of the polynomial function damage prediction 
program. 

The software is installed by first creating a subdirectory on the hard disk and then copying 
all of the files from the two computer disks supplied into that subdirectory. If disk space is a 
problem, the source code files (fiZename.BAS) need not be copied. The program is started by 
typing MLIBLAST and following the prompts. More details on the program prompts are given 
below, but fiist the data base files MATERIAL,.DAT and MLI.DAT will be discussed. 

The MATERIAL-DAT that is provided on the program disk is an example of a typical 
materials data file. Any valid DOS name can be used for this file. Thus, the user may have 
several of this type of data file in a directory for different purposes, A file of this nature is required 
while running the inverse R program. The materials data file is an ASCII file that can be created 
and modified using any standard text editor. The format of the file is as follows: 
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material property I name string 
material property 2 name string 

LISTING OF NAMES OF MATERIAL 

(25 CHARACTERS MAX) 
> PROPERTJES TO BE MODELED (MAXIMUM OF 10) 

material property M name string 

material I name string 
material property I for material I 
material property 2 for material I 

{ 

> TYPICAL DATA RECORD 

material property M for material I 
1 

* ANY NUMBER OF DATA RECORDS MAY BE USED 

A material data file provided on the computer disk is called MATER1AL.DAT'and is reproduced 
below: 

Density (lb/inA3) 
Elastic Mod. (Ib/inA2) 
Ultimate Strgth (1b/inA2) 
Sp, Heat (BTU/(lb-deg R)) 
Melting Temp (deg R) 
{ 
1100 

9.78OE-2 
1.000E7 
1 .600E4 

I .680E3 
2.14OE-I 

1 
I 
221 9-T87 

I .  03OE-I 
1.050E7 
6.300E4 

I .680E3 
2.05OE-I 

I 
i 
6061 - T6 

9.8OOE-2 
9.900E6 
4.2OOE4 

1.68OE3 
2. I OOE-I 

I 
4 



The MATERIAL.DAT file listed above is set up to model the material properties: density, elastic 
modulus, ultimate strength, specific heat, and melting temperature. Other physical properties can 
be used to a maximum of 10. The units do not have to be included in the material property name 
string. MATERIALDAT contains three records of material data for materials: 1100,2219-T87, 
and 6061-T6. The material names are treated as string variables and thus can be any combina- 
tion of numbers and letters. Any number of records of material data may be included. The order of 
the material properties must be the same in every record and must be ordered as the material 
property name strings are listed. For instance, referring to file MATERIALDAT, the specific 
heat of material 2219-T87 is 2.050E-1. 

The purpose of the material properties data base file is to provide an efficient, yet very 
flexible scheme for inputting material property data into the inverse R method computer program. 
The user can easily change the material properties to be modeled without disturbing the data 
base file of experimental results. If the materials used for the projectile, bumper, and pressure 
wall do not vary in the data base, then the contents of the material properties data base file will 
have no effect on the damage predicted by the inverse R method program. The polynomial func- 
tion method program assumes that the material properties do not vary in the data base. The non- 
dimensional function method program assumes that the material properties of the projectile and 
pressure wall do not vary in the data base and inputs material properties assbciated with the 
bumper directly. 

The other data base file required for running the programs of MLIBLAST is associated 
with the experimental data. This file can be created (and enlarged) by running the data base 
maintenance programs from inside MLIBLAST, or it can be created using any standard text edi- 
tor since it is an ASCII file. This file can be given any valid DOS file name. Currently, up to 100 
data records can be placed in this file. The format for this file is as follows: 

I 
Test Number String 
Test Agency String (SOURCE OF DATA) 
Test Date String 
Bumper Material string (SAME FORMAT AS IN MATERIAL DATABASE FILE) 
Bumper Thickness 
Bumper Stand-OR 
Pressure Wall Material (SAME FORMAT AS IN MATEMAL DATABASE FILE) 
Pressure Wall Thickness 
Projectile Material (SAME FORMAT AS IN MATERIAL DATABASE FILE) 
Projectile Diameter 
Impact Angle 
Projectile Velocity 
Bumper Hole Maximum Diameter (Major Axis) Dimension 
Bumper Hole Minimum Diameter (Minor Axis) Dimension 
MU Mean Hole Diameter 

Pressure Wall Hole Maximum Diameter (Major Axis) Dimension 
Pressure Wall Hole Minimum Diameter (Minor Axis) Dimension 

MLI MQSS LOSS 

1 

> AS MANY AS 99 MORE DATA RECORDS 
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MLI.DAT is an example of an experimental data base file. This file is provided on the computer 
disks. It contains information on the specimens recently used for thermal testing in the Sunspot 
Thermal Vacuum Chamber of MSFC. To help understand the format information given above, the 
first record of MLLDAT is presented below for comparison: 

I 
1012 
MSFC 
05/08/90 
60dl-Td 
.08 
4 
221 9-T87 
.125 
1100 
.3I 3 
0 
6.72 
.729 
.729 
2.2 
.938 
.6 
.15 

I 
An overview of the menu choices available to the user of MLIBLAST will now be dis- 

cussed. The program is started by typing MLIBLAST. The user is then provided with three 
options: 

1. Add data to, remove data from, view data, or create a new experimental results data 
base file. Selecting this option will cause data base maintenance family of programs 
(DATABASE.EXE, DBASEDEL.EXE, DBASEOUT) to run. 

2. Make a prediction. This option involves running one of the three prediction programs: 
INVRMETH, NONDIMEN, or POLYMETH. 

3. Quit MLIBLAST. 

The steps associated with running each of the programs will now be considered. 

enu Picks Associated With the Data Base Family of Programs: 

1. Add Data to the Data Base (This executes program DATABASEEXE) 

Step I - Enter the name of an experimental results data base file. Any valid DOS name 
can be used. If this file already exists, then the new data records will be appended to the end of 
it. MLLDAT is an example of an experimental results data file. This file was provided on the 
computer disks. 
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Step 2 - Enter the appropriate data at the prompts. Press ENTER after the data have 
been typed in. If you make a mistake, then press the F10 function key and then the ENTER key 
to redo the data input. 

Step 3 - You will be prompted as to whether to write your previously entered data record 
information to your data base file. This provides another way of not saving a data record with 
errors. You will also be prompted as to whether to enter another data record. A response of n 
will cause you to exit from the data base program. Note - the data base file created is an ASCII 
file which can be edited with a standard text editor. Additional data records can be added to the 
experimental data base file using the text editor (instead of program DATABASE) if so desired. 

2. Delete Data to the Data Base (This executes program DBASEDEL.EXE) 

Here the user enters the experimental results data file name, and the test ID and data 
source of the data record to be removed. 

3. Inquire About Data in the Data Base (This executes program DBASEOUT.EXE) 

Here the user enters the file name of the experimental results data file to be viewed, and 
then presses the space bar to page through the data records. 

4. Return to Main Menu 

This menu choice will return the user to the main menu of MLIBLAST. 

Program INVRMETH (See section 111 for more details on program INVRMETH) 

Step I - Input the names of the experimental data base file and the material data base file. 
The program will then read these files and present a summary of their contents on two computer 
screens. These summary screens are intended to help the user determine if the contents of the 
data base file are appropriate for the desired prediction. 

designed to make predictions for bumper hole maximum and minimum hole dimensions, MLI 
average hole diameter, MLI mass loss, and pressure wall maximum and minimum hole dimen- 
sions. 

Step 2 - Select the quantity for which a prediction is to be made. This program is currently 

Step 3 - Input the impact parameters (such as projectile diameter) associated with the 
desired prediction. Default values are provided in square brackets for all inputs here except for 
impact angle. A default value is selected by simply pressing ENTER. The magnitude of the input 
impact parameter relative to the data base average is indicated in round brackets. For instance, if 
the projectile velocity for the prediction is twice that of the average projectile velocity in the 
experimental data base file, the number 2 would appear in round brackets. Ideally, prediction 
parameter values should be close to the data base average if reliable predictions are to be made. 
The round bracket numbers are intended to help the user assess the reliability of the prediction. 

Step 4 - Review the results of the prediction. Here, the value for the prediction is given, 
and the location of the prediction point along the prediction vector (see section 111) is indicated. 
Information on the polynomial fit through the 10 interpolation points (see section III) is also 
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provided. The user can also review the results of the prediction graphically. Here, the variation of 
the function to be predicted along the prediction vector is illustrated to assist the user in assess- 
ing the reliability of the prediction. If the function being predicted varies in an erratic fashion along 
the prediction vector, the prediction may be unreliable. 

Program POLYMETH (See section IV for more details on program POLYWIETH) 

Step I - A warning screen is displayed indicating that the program only models the 
parameters: bumper thickness, bumper standoff, pressure wall thickness, projectile diameter, 
projectile velocity, and impact angle. All other system parameters are assumed to be essentially 
constant in the experimental results data base file. 

Step 2 - Input experimental results data base file name. No material data fide name is 
requested since it is assumed that material types will not vary in the data base. The program will 
then read in the contents of the experimental results data base fide and display a summary of this 
data on the screen so that the user may assess its suitability with respect to the required 
predictions. 

f 

Step 3 - Select the desired prediction such as MLI hole diameter. 

Step 4 - Input the impact parameters (such as bumper thickness) associated with the 
prediction. 

Step 5 - The program then attempts to fit a linear polynomial through subsets of the data 
as described in section IV. 

Program NONDIMEN (See section V for more details on program NONDIMEN) 

Step I - Input experimental data base file name. No material data base file name is 
required because it is assumed that material types will not vary in ‘the data base. 

Step 2 - Input bumper elastic modulus (equal to 70E3 MPa for aluminum) and input the 
mass density of the bumper (equal to 2,710 kg/m3 for aluminum). After these values have been 
input, information summarizing the contents of the experimental data base file will be shown on 
the screen. 

Step 3 - Parameters for the nonlinear function coefficient optimizer are input. The purpose 
of these parameters and recommended magnitudes are displayed on the computer screen. 

Step 4 - At this time, an iterative procedure is invoked to adjust the prediction function 
coefficients such that the coefficient of determination (R2) is maximized. During this process, the 
R2 values are printed on the screen so that the user can assess the suitability of the functional 
form of prediction equations for fitting the experimental data. Functions that fit the experimental 
data well will have R2 values that approach unity. 

Step 5 - On completion of the optimization process, the function coefficients and R2 values 
are displayed on the screen to further assist the user in assessing the goodness of fit between 
the functions and the experimental data. 
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Step 6 - Input prediction parameters (such as bumper thickness) and make predictions. 

In the next three sections, more details on the prediction schemes are presented. In sec- 
tion VI, the three prediction schemes are compared using an experimental data set associated 
with impact specimens that were recently tested in the Sunspot Thermal Vacuum Chamber of 
MSFC. 

111. THE INVERSE R PREDICTION TECHNIQUE 

The usual procedure for making predictions from experimental data is to assume some 
form for the equation relating the independent variables to the dependent variable. A function of 
this nature is described in section V of this report. The equation typically contains empirical 
coefficients, the values of which are determined from a fit to the experimental data.4-9 The 
method of least squares (maximizing the coefficient of determination, RA2) is an example of a 
popular technique for obtaining the coefficients from the experimental data. The final result is a 
closed-form equation for making predictions. 

This approach has been found to work very well for many engineering applications, how- 
ever there are some disadvantages. A suitable form for the prediction equation must be devel- 
oped. This is often difficult. Incorporating additional independent variables in an existing equation 
can pose problems. Usually, a well-defined procedure for taking into account new experimental 
data is not put in place. Generally, a single set of empirical coefficients are used to make 
predictions over a fairly wide range of values of the independent variables. Thus, the best data in 
a data base for making a prediction with a particular set of independent variables may not be 
used to best advantage. Also, it is usually difficult to assess the accuracy of a particular 
prediction. 

In this section, a new method (called inverse R method) for making empirical predictions 
based on experimental data is discussed. The method uses a very general form of prediction 
equation that can be applied in the same manner to all problems. Thus, the user is not required to 
develop a suitable form for the prediction equation, and additional independent variables can be 
easily incorporated. The new method is designed to work off a data base that can be continuously 
updated as new experimental data becomes available. The method automatically takes advan- 
tage of the most appropriate data in the data base for a given set of independent variables. The 
method provides diagnostics for assessing the accuracy of the prediction. 

The new technique consists of four main steps which will now be described. 

1. N o ~ a l ~ z e  the Independent Variables 

In general, the independent variables will vary greatly in magnitude. In hypervelocity 
impact work, dimensions can be of order 10 and velocities of order 106. The new technique 
requires that all variables be of the same order of magnitude. This was accomplished by scaling 
the independent variables such that their mean value was equal to unity. Other scaling methods 
could perhaps be used to improve the accuracy of this technique. For instance, the variables could 
be scaled such that the predicted values of points in the data base more closely match the 
measured values. This scaling technique was not tested. The dependent variables need not be 
scaled. 
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This technique works off a data base that can and should be kept updated with the latest 
experimental data. Thus, the scaling factors will change as time progresses and the size of the 
data base increases. 

Step 2. Select a Series of Points in the Data Domain for Interpolation 

Two general requirements for prediction schemes are: the method should be capable of 
smoothing the data to (hopefully) cancel out the random scatter typically present in experimental 
measurements, and the technique should allow for making reliable predictions outside the domain 
of the measured data. Here, these requirements are satisfied by using the data to make 10 inter- 
polations from within the domain of the data, which are then used for predicting the dependent 
variable at some point of interest. The 10 "interpolation" points should provide for sufficient 
smoothing of the data and also capture the trend characteristics of the data for extrapolation pur- 
poses, if an extrapolation is required. The number of interpolation points to use was selected on 
the basis of trial and error. Note, in some cases extrapolation can produce misleading results 
regardless of the extrapolation technique used. 

Figure 2 provides an illustration of how the interpolation points are selected for a hypo- 
thetical case with two independent variables. An identical approach is used for the case of an 
arbitrary number of independent variables. In figure 2, the independent variables are in the plane 
of the page, and the dependent variable takes the form of a surface out of the plane of the page. 

NDEPENDENT 

LEGEND 

D POINTS WHERE THE 
8 =DEPENDENT VARIABLE 

rn 

HAS BEEN MEASURED 

POINT WHERE A 
OPREDlCTlON IS REQUIRED 

(TARGET POINf)  
.INTERPOLATION POINTS I AMIN/MAX POINTS 

INDEPENDENT VARIABLE 1* 

Figure 2. Technique for selecting interpolation point locations for the case of two 
independent variables. 

First, a prediction "vector" is drawn from the origin through the point in the domain where 
a prediction of the dependent variable is required, which is called the "target" point. Then the 
"min" and 3nax" points (fig. 2) are located on the prediction vector by considering the intersec- 
tion points of perpendiculars from the data points to the prediction vector. The closest intersec- 
tion point to the origin defines the minimum point, and that of the farthest, the maximum point. 
Ten equally spaced points (interpolation points) on the prediction vector between the minimum 
and maximum point are then used for the next step in the prediction process. If the target point 
lies between the minimum and maximum points, an interpolation is required, otherwise an 
extrapolation is required. 
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Step 3. Estimate Values of the Dependent Variable at Interpolation Points 

Next, values for the dependent variable must be estimated at the 10 interpolation points. 
This is done as indicated in the following equation: 

The distances, Ri, are determined by the usual formula for determining the "distance" between 
two points in an N dimensional space: 

where Xj,i and X~,,INT are the jth coordinates (bumper thickness and so on) of the data point and 
the point to be predicted, respectively. The need for scaling the independent variables is evident 
from considering the form of equation (3.2). 

The form of equation (3.1) will now be considered. It is assumed that if all measured data 
points are the same "distance" R from an interpolation point then all the measured data should be 
given equal weight. This situation is illustrated for the case of two independent variables (N = 2) 
in figure 3. This can be interpreted as saying that each data point has some "characteristic length 
of influence," S, that subtends an angle 8 = SLR = SLRN-1 as indicated in figure 3. The 8 can be 
taken as the weighting factor. For the constant R case shown in figure 3, all data points would be 
given the same weight. Figure 4 illustrates the case for which the data points are considered to 
be equally valid (same S), but are located different distances from the interpolation point. Here, 
the weighting factors will be of the form 8i = SRiN-1, and thus data points closer to the interpo- 
lation point will be given a higher weight. The value of the dependent variable at the interpolation 
point can be estimated from D = Z8iDJZ8i which leads to equation (3.1) and, hence, this tech- 
nique is given the name inverse R method. Note that a value for S is not required as it cancels out 
of the equation. 

The three-dimensional (three independent variables) application of this procedure leads 
to equations identical in form to those used for determining view factors in the field of radiation 
heat transfer.1° The method described herein can be interpreted as follows. The measured data 
points are "radiating" information to the interpolation point. The farther the data point is away, 
the weaker the "radiation" (lower weight given to the information). In principle, the method can 
easily be extended to any number of independent variables, N. 
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Figure 3. Interpolation scheme for equally spaced data points. 
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Figure 4. Interpolation scheme for unequally spaced data points. 
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Step 4. Fit a Polynomial Through the Interpolation Points and Make Prediction 

The final step in the process involves fitting a polynomiaj through the 10 interpolation 
points and then using the polynomial to make a prediction of the dependent variable at the target 
point. The polynomial describes how the dependent variable behaves as a function of distance 
along the prediction vector. By trial and error it was found that a fourth-order polynomial worked 
well for this application. The polynomial could be used for interpolation or extrapolation depend- 
ing on the location of the target point. There would, of course, be considerably more uncertainty in 
the prediction for the case of extrapolation. Errors in the 10 interpolation points tend to get 
smoothed by the polynomial. 

Reliability Diagnostics of the New InterpolatiodExtrapolation Technique 

The inverse R method proposed herein provides diagnostics to help assess the accuracy 
of the prediction. The computer program provides the user with averages of the independent 
variables of the data currently in the data base. If the independent variables associated with the 
target point are close to the data base averages, the user can expect a more reliable result to be 
produced. The coefficient of determination of the polynomial fit through the 10 interpolation points 
is presented to the user to assess the scatter in the data. Finally, as shown schematically in 
figure 5, the 10 interpolation points, the polynomial curve, and the prediction are graphically illus- 
trated on the computer screen to show how the dependent variable behaves as a function of 
distance along the prediction vector and also indicate the location of the target point along the 
prediction vector relative to the minimum and maximum points. If the dependent variable oscil- 
lates wildly, then unreliable predictions can be expected, particularly for the case of extrapolation. 
In most cases, target points located approximately halfway between the minimum and maximum 
points produce the best results. 

DEPENDENT 
VA R I AB LE 
MAGNITUDE 

LEGEND 

- POLYNOMIAL CURVE 

n INTERPOI,ATION POINT 

- 
DISTANCE ALONG PREDICTION VECTOR- 
Figure 5. Schematic of prediction reliability diagnostics. 
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Testing the New InterpolationLExtrapolation Technique 

Because of its uniqueness, the inverse R method was tested to ensure it would provide 
reliable predictions. A consistent data base was created using a known function so that the 
reliability of the prediction could be assessed. The form of the function used was: 

A set of 15 random numbers, rn#, was required-three for each of the five independent variables 
used to generate a data set. The random numbers were held constant during the data set creation 
so that a consistent set of dependent variables were generated. The intent here was to develop 
an unbiased, sophisticated, and consistent set of data to provide an objective test of the interpo- 
latiodextrapolation technique. 

The values of the independent variables used were obtained from an actual hypervelocity 
impact data set (table 1). This data set was selected for two reasons. First, it seemed desirable 
to use a set of actual engineering data to provide a realistic test of the technique. Secondly, as is 
discussed below, the inverse R method did a poor job of predicting the behavior of some of the 
experimentally measured dependent variables of table 1. Accordingly, it was of interest to deter- 
mine if the nature of the data or the prediction technique was at fault for the poor predictions. 

Equation (3.3) was used with two sets of random numbers to generate two sets of 
consistent data. An analysis was done with each set of data as follows. Each record (data point) 
was temporarily removed from the data base, a prediction was made for the independent 
variables associated with that record, and then the record was returned to the data base. This 
was done for all of the 35 records in the data base. Thus, all predictions were made with the 
actual data point of interest removed from the data base. 

A typical set of results is shown in figure 6, where actual data values are plotted against 
their corresponding predictions. The dashed line in the figure is a linear least-squares fit through 
the data of the form y = mx+b, where y is the prediction, x is the actual function value, and rn and 
b are parameters to be fit. The coefficient of determination of this fit was 0.937. Assuming a func- 
tional form of y = x produced a coefficient of determination of 0.934. Similarly, the other consistent 
data set produced coefficients of determination of 0.961 and 0.959, respectively. Ideally, the pre- 
diction, y, should exactly equal the actual value, x, which would result in a coefficient of deter- 
mination of unity for the line y = x. 

These results seem to be quite good considering that the dependent variables were 
reasonably complicated functions of 15 random coefficients with 5 independent variables. 

Applying the Inverse R Method to Hypervelocity Impact Data 

Personnel at MSFC provided the authors with a set of experimentally obtained hyper- 
velocity impact data (table 1). These impact tests were made with the MLI placed directly 
against the pressure wall as is illustrated in figure 1. The bumper plate was placed approximately 
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Table 1. Experimental data from hypervelocity impact tests. 

227A 
227B 
333 
334 
221c 
221B 
221A 
336 
201B 
201c 
203B 
203A 
003A 
338 
337 
203F 
339 
21SB 
218C 
230B 
230A 
30 1 
205A 
205B 
205c 
209B 
209D 
207A 
207C 
0028 
211B 
210B 
210D 
303B 

0.8 1 
0.8 1 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.02 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 
1.60 

Bumper Pr. Wall Proj. Impact Proj. Bump. Bump. MLI MLI Pr.Wall Pr.Wall 
Test Thick. Thick. Diam. AngIe Vel. Maj.Ax. Min.Ax Pen. Per/Chr Maj.ku. Min.Ax. 
ID Tb(mm) Tpw(mm) Dp(mm) Hdeg) V(km/s) (mm) (mm) (an-2) (cm"2) (mm) (mm) 

9.65 1.60 6.35 
1.60 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
4.78 
4.78 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
3.18 
4.06 

6.35 
4.75 
4.75 
4.75 
4.75 
4.75 
6.35 
6.35 
6.35 
7.62 
7.62 
7.95 
7.95 
7.95 
8.89 
9.53 
8.89 
8.89 
4.75 
4.75 
6.35 
6.35 
6.35 
6.35 
6.35 
6.35 
7.62 
7.62 
7.95 
8.89 
8.89 
8.89 
7.95 

45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
65.00 
65.00 
45.00 
45.00 
45.00 
65.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
65.00 
65.00 
65.00 
65.00 
45.00 
45.00 
65.00 
65.00 
45.00 

~ 

5.52 
7.12 
2.88 
3.61 
4.57 
5.89 
6.36 
4.47 
5.5 1 
7.21 
3.67 
6.45 
6.5 1 
6.98 
7.00 
3.04 
6.49 
6.40 
6.76 
3.23 
4.41 
2.95 
4.11 
4.59 
5.30 
6.40 
7.40 
5.86 
7.08 
6.39 
5.85 
5.70 
6.80 
4.34 

15.24 
15.24 
10.16 
10.16 
11.43 
13.72 
12.19 
13.46 
13.46 
13.46 
22.10 
23.85 
19.30 
21.34 
19.56 
24.89 
21.08 
20.32 
21.34 
11.94 
12.19 
13.72 
15.49 
16.5 1 
15.24 
22.10 
19.56 
22.35 
25.91 
20.57 
21.84 
28.70 
35.56 
18.03 

11.a 3226 
10.92 64.52 
7.62 1290 
7.87 8.39 
9.14 19.35 

10.67 1290 
10.16 12.90 
10.67 64.52 

6.35 16.13 
11.94 2258 
13.46 29.03 
13.72 32.26 
14.48 83.87 
13.21 61.52 
12.45 13.55 
17.53 129.03 
15.24 51.61 
14.99 70.97 
9.14 3-87 
9.91 6.45 

10.92 4.26 
12.19 11.61 
12.45 24.52 
12.70 16.13 
13.21 5.16 
14.48 19.35 
14.99 11.61 
16-26 103.23 
15.75 129.03 
17.27 l7.42 
16.76 41.94 
17.27 45.16 
14.4S 32.90 

10.92 61.52 

51.61 
425.8 1 
32.26 
63.23 
51.61 

141.94 
14S.39 
129.03 
135.4S 
161.29 
290.32 
232.26 
129.03 
58.06 
90.32 

270.97 
258.06 
453.87 
270.97 

6.45 
45.39 

118.32 
116.13 
335.45 
83.87 

193.55 
206.45 
329.03 
174.19 
77.42 

122.58 
96.77 

212.90 
362.26 

13.46 
25.40 
0.00 
0.00 
0.00 
0.0 
0.00 

14.99 
13.21 
2.54 
0.00 
0.00 

76.20 
25.40 
27.94 
0.00 

50.80 
18.29 
30.73 
0.00 
0.00 
0.00 
5.08 
5.08 
7.62 
0.00 
0.00 
4.06 
0.00 
5.59 

27.94 
3.18 
5.M 
0.00 

12.70 
0.00 
0.00 
0.00 
0.00 
0.00 
6.35 

11.68 
2.54 
0.00 
0.00 

38.10 
17.78 
12.70 
0.00 

38.10 
15.49 
10.16 
0.00 
0.00 
0.00 
5.08 
5.08 
7.62 
0.00 
0.00 
4.06 
0.00 
5.59 

13.70 
3.18 
5.U 
0.00 

303 1.60 4.06 7.95 45.00 4.59 18.54 14.73 17.03 166.S4 0.00 0.00 

100 mm in front of the pressure wall plate. For this series of data, the pressure wall was 
unstressed. As listed in table 1, the dependent variables measured included the major and minor 
axis dimensions of the bumper hole, the area of the hole clean through the MLI called the pene- 
tration area, the area of MLI outside the penetration area obviously damaged by the impact 
called the perforatedcharred area, and the major and minor axis dimensions of the pressure wall 
hole. Some comments will now be made on the characteristics of these dependent variables. 

The bumper plate hole typically takes the form of a single, well-defined, relatively smooth, 
elliptical hole. The greater the impact angle, the more elliptical the hole. It is not surprising that 
the bumper plate hole data are the most consistent of all the data given the relatively simple 
nature of the damage. 
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Figure 6. Plot of actual versus predicted values using consistent data. 

3 

The remainder of the dependent variables are much more affected by characteristics of the 
fragmentationhaporization process of the projectile than the bumper hole is. Launch loads 
typically cause the soft aluminum projectile to deform into a variety of nonspherical shapes. This 
effect, and the inevitable presence of a random assortment of microscopic flaws in the projectile 
and bumper, can cause large variations in the nature of the particles (from both the projectile and 
the bumper) that leave the back face of the bumper after the bumper-projectile impact. Thus, 
similar testing conditions can produce significantly different damage to the MLI and the pressure 
wall. 

There is a great deal of inconsistency in the MLI data. In addition to the random pro- 
cesses discussed previously, the inconsistency could be partly due to the difficulty in visually 
measuring the areas of damage (penetration and perforatedkharred) because of the rough, 
irregular shapes of these areas. 

Damage to the pressure wall typically consists of a large number of craters of various 
sizes, and possibly some penetrations. The craters and penetrations are typically distributed 
over a relatively large area as can be seen in the photographs of reference 4. The data in table 1 
give the dimensions of the largest penetration in the pressure wall, which would essentially 
depend on the largest fragment that results from the bumper-projectile impact. As has been 
discussed, apparently identical test conditions could produce a large variation in the size of the 
largest fragment and, hence, the size of the penetration. This leads to scatter in the pressure wall 
data. 

The procedure described previously that was used to test the inverse R technique with 
the consistent data was also used with the experimental data of table 1. Each record (data point) 
was temporarily removed from the data base, a prediction made for the independent variables 
associated with that data point, and then the data point was returned to the data base. The 
predicted versus actual data are shown in figures 7 through 12. Also drawn on these figures are 
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Figure 7. Plot of measured versus predicted data for the major axis of the bumper plate hole. 
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Figure 8. Plot of measured versus predicted data for the minor axis qf the bumper plate hole. 
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Figure 9, Plot of measured versus predicted data for the MLI penetration area. 
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Figure 10. Plot of measured versus predicted data for the MLI perforatedcharred area. 
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Figure 11. Plot of measured versus predicted data for the major axis of the pressure wall hole. 
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Figure 12. Plot of measured versus predicted data for the minor axis of the pressure wall hole. 

19 



solid lines indicating the ideal case of "predicted" = "measured." The coefficients of of deter- 
mination associated with these predictions are given in table 2. As can be seen from table 2, the 
predictions for the bumper plate are acceptable. The predictions for the pressure wall are mar- 
ginal, although figures 11 and 12 are somewhat pessimistic looking since a large number of good 
predictions were made for data located near the origin of the plots (no penetration case). The 
predictions of MLI damage are poor for penetration area and terrible for perforatedkharred area. 

Table 2. Coefficients of determination for predictions. 

Coefficients of Determination 
(y = prediction, x = measured) 

Data Set Line of Form y = mx +b Line of Form y=x 

Bumper Major Axis 0.815 0.811 

Bumper Minor Axis 0.774 0.773 

MLI Penetration Area 0.322 0.289 

MLI PerforateWCharred Area 0.042 -0.445' 

Pressure Wall Major Axis 0.541 0.538 

Pressure Wall Minor Axis 0.575 0.566 

Since the inverse R technique produced acceptable results for both the consistent test 
functions of equation (3.3) and the bumper plate data of table 1, the poor predictions of MLI and 
pressure wall damage are probably due to the scatter in the data produced by such effects as the 
distortion of the projectile during launch and the apparently random assortment of microscopic 
flaws in the projectile and the bumper. The inverse R interpolatiodextrapolation technique 
appears to be a useful tool for engineering design work. 

IAL FUNCTIO 

In this section, the polynomial function prediction technique is described. This method is 
based on the concepts associated with the FEM. In FEM, relatively low-order polynomials are 
used to interpolate the functions of interest (such as displacements, temperatures, and velo- 
cities) over a small portion of domain where the function is active (called an element). The 
coefficients of the polynomial are derived from known values of the function of interest at points 
called nodes on the boundary of the element. For this application, the nodal values of the func- 
tions of interest (bumper hole size and so forth) were measured experimentally and are thus 
known quantities. This technique involves selecting a sufficient number of experimental data 
(node) points and then determining the coefficients of the polynomial from this data. 

During the course of this project, a more sophisticated polynomial interpolation approach 
was attempted using the isoparametric function mapping technique of FEM. This approach in its 
current state was not found to be suitable for engineering trade study purposes. The interested 
reader can consult reference 3 for more details on this approach. 
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Ideally, the nodes "closest" to the prediction point in impact parameter space should be 
used to evaluate the polynomial coefficients and thus make a prediction. However, the set of 
closest nodes may not form linearly independent sets of data, making it impossible to solve for 
the polynomial coefficients. Thus, remoter nodes must be considered in an attempt to find a 
linearly independent set of data. The technique used for selecting remoter nodes is discussed 
below. 

In general, the impact parameters will vary greatly in magnitude. In hypervelocity impact 
work, dimensions can be of order 10 and velocities of order 106. This polynomial function 
approach requires a reasonable scheme for determining "distances" between data points in 
impact parameter space. This is accomplished in the program by scaling the impact parameters 
(bumper thicknesses and so on) such that their mean value is equal to unity. Of course, the 
dependent variables, such as bumper hole size, need not be scaled. Having scaled the indepen- 
dent variables, the usual formula for determining the distance, Ri, between two points (experi- 
mental data point and the prediction or interpolation point) in a multidimensional space can be 
used: 

where Xj,i and X~JNT are the jth coordinates (bumper thickness and so on) of the data point and 
the point to be predicted, respectively. The need for scaling the independent variables is evident 
from considering the form of equation (4.1). 

The form of the polynomial will now be considered. ??EM theory dictates that a "complete" 
polynomial should produce the best results.'l Here one has six independent variables (bumper 
thickness and so forth), Xj,i 0' = 1 to 6), associated with the ith experimental data point to 
consider. It was decided to use kj,i (= Xj,i - X j , m )  values in the polynomial equation to simplify 
the calculations. The lowest order complete polynomial for this case is: 

(4.2) 

Seven linearly independent data points, Di, are required to determine the seven polynomial 
coefficients, Ci. Equation (4.2) allows for linear variation in damage along each coordinate axis in 
the design space. Obviously, allowing for a quadratic variation in the damage would provide a 
much better fit to the data. Unfortunately, a "complete" quadratic function with six variables 
would require too many linearly independent experimental data points to be of practical use. 

Coefficient C1 is the prediction of the damage at the point in the design space where the 
prediction is required, since this is the value of the polynomial (equation (4.2)) when all k j , i  are 
set equal to zero. If one or more of the prediction parameters, such as bumper thickness, does not 
vary in the experimental data base file then program POLYMETH will sense this and auto- 
matically take that variable or variables out of equation (4.2). If one impact parameter does not 
vary, only six polynomial coefficients need be determined, and thus only six linearly independent 
data points are required. 
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The method used to select the linearly independent set of data points from the data base 
for determination of the function coefficients, Ci, of equation (4.2) will now be discussed. For 
illustration purposes, assume that three independent variables are active and, thus, four linearly 
independent data points are required to fit coefficients C1 through C4. First, the four closest data 
points are selected and tested for linear independence. If they are linearly independent, then the 
coefficients can be determined and the prediction made. If the four closest data points are not 
linearly independent, then groups of four data points (the closest data point plus three others) 
are selected from the closest five data points and tested for linear independence. The first linearly 
independent set of data points found is used for coefficient determination. If a set of suitable data 
points is not found, then sets of four data points are selected from the closest six data points and 
so on. 

The number of ways to chose r items from n items, C(n,r), is given by the following 
equation: 

From equation 4.3, there are 20 ways to choose 3 items from 6 items. Thus, as shown in table 3, 
20 sets of data would have to be tested for linear independence when selecting four point data 
sets (the closest plus three other data points) from the closest seven data points. Note in table 3 
that the closest data sets are tested first and data point 1 is always used. 

Table 3. Scheme for selecting four data point sets from the closest seven nodes 
for damage function coefficient determination. 

Order In Which 
Data Sets 

Are Tested For 

Data Points Selected To Form Set Of Four 
(Ordered From Closest To Prediction Point To Farthest) 
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V. THE NONDIMENSIONAL PARAMETER PREDICTION TECHNIQUE 

In many applications it has been found that empirical functions are best represented in 
terms of nondimensional parameters. Reynolds number is an example of a nondirnensional 
parameter that has found widespread use in empirical equations of fluid mechanics. Program 
NONDIMEN uses a series of empirical functions based on nondimensional parameters of the 
form given in reference 12: 

Bumper Hole Minimum Diameter: 

Bumper Hole Maximum Diameter: 

MLI Hole Diameter: 

Pressure Wall Average Hole Diameter: 

The function coefficients were determined using an optimization routine to adjust the 
values of the coefficients so as to maximize the coefficient of determination (R2) of each of the 
functions. Thus, the nondimensional functions were adjusted to match the experimental results 
as closely as possible in a least-squares sense. This approach to coefficient evaluation is suit- 
able for any form of prediction function-linear or nonlinear. The nature of the optimization 
routine will now be described. 

The magnitudes of the function coefficients can vary by several orders of magnitude. To 
avoid numerical problems, it is advisable to work with percentage changes in the function coeffi- 
cients. This approach also provides a simple way of controlling the amount of change in the func- 
tion coefficients from one optimization iteration to the next. If the maximum allowable percentage 
change is too large, the optimizer could thrash back and forth around the optimum design point 
without ever converging to it. Alternatively, if the maximum allowable percentage change is too 
small, then it could take an impractical number of iterations to get to the optimum design point, Qr 
the optimizer could get “stuck in a local maximum of the coefficient of determination function 
before getting to the global maximum. 
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The maximum allowable percentage change in the nondimensional function coefficient 
magnitudes is called the "search domain parameter" in MLIBLAST. This is a user-controlled 
input parameter. A value of 1.0 (equivalent to a 100-percent change) is recommended. The opti- 
mizer is designed to reduce the magnitude of the search domain parameter as the optimization 
process proceeds. The final value will be M O O  of the initial value. The idea here is to allow large 
changes in the design variables initially, to quickly get into the vicinity of the global maximum in 
the design space, and then use finer steps to precisely locate the global maximum. The user is 
free to change this parameter to attempt to improve optimization efficiency. 

The initial values of the function coefficients are set equal to zero. Optimal values of the 
function coefficients could be positive, negative, or zero. 

The method chosen here for search vector selection is based on Powell's method.13 This 
is a first order method that does not require the calculation of the gradient vector. Here, Powell's 
method was modified as follows. Initially, a number of search vectors equal to the number of 
function coefficients are created. The components of these vectors are random numbers between 
-1 and +l. The components of each random search vector are then scaled, such that the largest 
component has a magnitude of unity. These vectors are stored as columns of a "search matrix." 
Next, the coefficient of determination is evaluated at the current point in the design space and at 
design points given by +/- the search domain parameters times the first column of the search 
matrix. If either of the + or - design points has a coefficient of determination greater than that of 
the current design point, then the design point corresponding to the highest coefficient of deter- 
mination will become the new design point. Otherwise, the design point does not change. The 
search vector multiplier (+/- search magnitude parameter or zero) used with the search vector is 
stored for later use. This procedure is then repeated with the remaining columns of the search 
matrix. 

A new search vector is created after using all of the search vectors in the search matrix. 
This new vector is created by vectorially adding together all of the search vectors times their 
search vector multipliers. The new search vector is a vector sum of previous successful search 
vectors since unsuccessful search vectors have search multipliers of zero. Thus, the new search 
vector represents (stores) the trend of the optimization process. The new search vector is scaled 
such that the magnitude of its largest component is unity and then is used to replace the first 
column of the search matrix. The procedure is repeated, a new search vector is determined, and 
then used to replace the second column of the search matrix, and so forth until only the last 
column of the search matrix remains untouched. Then an entirely new search matrix is created 
using the random number generator, and the process continues. 

If at any time in the iterative process a new search vector has a magnitude of zero 
(implying all current search directions are not beneficial), then a new random search matrix is 
created immediately. The random number generator uses a seed based on the number of seconds 
from midnight on the computer's clock. Each successive run of the optimizer will use a different 
set of search vectors. Currently, the program runs the optimizer three times (each time using 
different sets of random search vectors) to help ensure that the global maximum of the coefficient 
of determination has been located in the design space. 

The number of search matrices generated is governed by a user input parameter called the 
"iteration parameter." The number of random search matrices generated is equal to the number of 
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design variables times the iteration parameter. The recommended value for the iteration parame- 
ter is 20. 

As can be seen from the test runs of table 4, the optimizer produced very consistent 
coefficients of determination for all four prediction equations (equations (5.1) to (5.4)). It was 
noted that virtually identical coefficients of determination could be produced by prediction func- 
tions having very different coefficient magnitudes as is illustrated in table 5 for equation (5.3) 
(MLI hole diameter). This is a typical characteristic of nonlinear equations. 

After the prediction function coefficients have been determined and displayed on the 
screen, the user will be prompted for the impact parameters (such as bumper thickness) associ- 
ated with the desired predictions. Multiple predictions can be made from the same set of predic- 
tion coefficients. 

Table 4. Prediction function coefficients of determination for several runs 
of the optimizer. 

Prediction 
Function 

Bumper Hole 
Minimum Dia. 

Bumper Hole 
Maximum Dia. 

MLI Hole 
Diameter 

Pressure Wall 
Hole Dia. 

Coefficients of Determination (R 2) 
Run 1 Run 2 Run3 Run4 Run5 

0.9946 0.9951 0.9960 0.9945 0.9960 

0.9949 0.9947 0.9956 0.9952 0.9956 

0.9809 0.9809 0.9805 0.9815 0.9814 

0.8292 0.8290 0.8242 0.8290 0.7740 

Average Std. Dev. 

0.9952 0.0006 

I 

0.9952 0.0004 

0.981 0 0.0004 

0.8171 0.0232 

Table 5. MLI hole diameter prediction coefficients for several optimizer runs. 

Optimize 
Runs 

Run 1 

Run 2 

Run 3 

Run 4 

Run 5 

Prediction Function Coefficients 
c11 c12 C13 C14 c1s C16 

2.860 0.463 -0.390 0.061 -0.356 0.854 

2.097 0.570 -0.472 0.042 -0.464 2.100 

1.769 0.557 -0.513 0.111 -0.430 1.781 

2.697 0.699 -0.489 -0.176 -0.615 3.401 

2.690 0.829 -0.552 -0.289 -0.767 4.043 

R"2 

0.981 

0.981 

0.981 

0.982 

0.981 
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VI. A COMPARISON OF THE ACCURACY OF THE PREDICTION TECHNIQUES 

The accuracies of the three prediction techniques discussed in this report were compared 
with respect to a common impact data set (table 6). This is the same data set that was recently 
tested for insulation damage in the Sunspot Thermal Vacuum Chamber of MSFC. These data are 
also provided on the computer disks as experimental data base file MLI.DAT. These specimens 
had the MLI mounted next to the bumper during impact testing. Reference 12 contains more 
general details on the impact testing. 

The accuracy of each prediction technique was tested by first removing a data record from 
the experimental data base file, and then using the remaining data to make a prediction for the 
impact damage associated with the impact parameters of the removed data record. This was 
repeated for all of the 19 data records of table 6. The results of this accuracy check are shown in 
tables 7 to 9 for the three prediction techniques. To compare the accuracies of the three prediction 
techniques, average percentage differences and coefficients of determination (R2) were calculated 
for each of the four prediction functions. These are summarized in table 10. Here, average per- 
centage difference is the average magnitude of the difference between the predicted and mea- 
sured values divided by the average magnitude of the measured values, times' 100. Thus, rela- 
tively high average percentage differences indicate that the prediction function did a poor job of 
predicting the damage. 

The following observations can be made about table 10: 

1. The poorest predictions by far were made for the pressure wall hole diameter. 

2. The best predictions were made for the minimum bumper hole diameter. 

3. The inverse R and nondimensional functions did an acceptable job for engineering trade 
study purposes (average percentage differences c 20 percent) for predicting the bumper hole size 
and the MLI hole diameter. 

4. The nondimensional function technique did the best job overall of predicting impact 
damage. 

The nondimensional functions did the best job of predicting the data of table 6. However, 
different data sets could produce significantly different results. The nondimensional function 
approach may not work as well if the prediction parameters (such as impact velocity) cover a 
greater range in the data base. The inverse R method has the advantage of being able to easily 
incorporate additional impact parameters. The other two prediction techniques are not as flexible. 
For instance, the inverse R method would be the method of choice for the case where different 
materials are used for the bumper in the same experimental results data base file. 
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Table 10. Comparison of the accuracy of the prediction techniques. 

Method 

Inverse R 

Polynomial 

Nondimensional 

Bumper H o I r  
Min. Diameter 

0.74 

Max. D 
ive. % Di 

15.2 

12.2 

6.2 

P 

VII. CONCLUSIONS AND RECOMMENDA~IO~S 

As a result of this study the following conclusions were reached: 

0 There is a large amount of scatter in the hypervelocity impact damage data. It is doubtful 
f 

that very high prediction accuracies can be obtained regardless of the prediction technique used. 

0 There is not a'great deal of data available for any given set of impact conditions (such as 
the case with MLI against the bumper). Lack of data prevents higher order prediction functions 
from being used. 

0 The inverse R method is the most flexible prediction scheme. Any number of impact 
parameters and any size of data base can be treated. 

The nondimensional parameter functions seem to do the best job of predicting impact 
damage over a relatively restricted range of impact parameters. , 

Based on this study the following recommendations are made: 

0 If possible, all three prediction techniques should be evaluated to determine the best 
possible prediction technique for a given data set. 

0 The nondimensional parameter scheme should be used to make impact predictions from 
data sets for which the impact parameters have a relatively small range. 

0 The inverse R prediction technique should be used in applications where there are a 
large number of impact parameters (different bumper materials in a single data base file for 
instance) or where the impact parameters vary over a wide range. 

0 Numerical simulation results (hydrocode) or approximate analytical results for high 
velocity (10 to 15 k d s )  should be placed in the "experimental" results data base file so that 
realistic predictions for on-orbit impacts can be made with the software. There are, of course, 
some uncertainties associated with these high velocity predictions. 
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