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Abstract

In both the ionospheric barium injection experiments CRIT I and CRIT II, a long-duration

oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of

about one second. A model for the phenomenon which was proposed for the CRIT I experiment is

here compared to the results from CRIT 1I which made a much more complete set of

measurements. The model follows the motion of a low -0 ion cloud through a larger ambient

plasma. The internal field of the model is close to antiparallel to the injection direction v i but

slightly tilted towards the self-polarization direction Ep = - v ixB. As the ions move across the

magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron

currents from the ambient ionosphere, drawn by the divergent: in the perpendicular electric field.

These currents give a perturbation of the magnetic field relatec to the electric field perturbation by

AEIAB = VA . The model predictions agree quite well with the observed vector directions, field

strengths, and decay times of the electric and magnetic fields in CRIT II. The possibility to extend

the model to the active region, where the ions are produced in this type of self-ionizing injection

experiments, is discussed.
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1. Introduction

In the ionospheric injection experiments CRIT I from 1987 and CRIT II from 1989, which were

designed to study the Critical Ionization Velocity (CIV) mechanism by means of fast jets of neutral

harium in the ionosphere, a long-duration oscillation with close to the barium ion gyro frequency

was observed. In the following we will call these the barium oscillation. These barium oscillations

had a time duration of 2 - 4 full cycles with decreasing amplitude and followed after the passage of

the fastest and densest part of the jet, where most of the ionization and also most of the

higher-frequency wave activity was observed. The CRIT I data from 1987 was sufficiently detailed

to permit the formulation ; e barium swarm model for the phenomenon (Brenning et al., 1990x),

which will be briefly described below. However the data set from CRIT I was limited; it did not for

example contain reliable magnetic field measurements, density measurements, or ion flux

measurements. For this reason the observational support for t'--e model had to be patched together

using measurements made by the CRIT I payloads, optical observation, from ground, and

ohservations from the earlier Porcupine experiment. There was also a competing model

(Providakes et al., 1990) which explained the barium oscillations in CRIT I as a kinetic Alfven

wave.

The CRIT II rocket which was launched from Wallops Island on May 4, 1989, produced a much

more complete data set, and the barium swarm model using this data actually becomes

over-determined to a high degree. The purpose of the present paper is twofold: first we will apply

the barium swarm model to the observations of the long-duration barium oscillation in CRIT 11 and

show that it agrees very well with the observations. This will give us some confidence that we

physically understand the electric, current, and magnetic field patterns around a cloud of heavy ions

which moves in a non-turbulent and orderly fashion through the ionosphere. The se_,:ond step is to

investigate to what degree we can apply this understanding also to the quasi-dc electric and

magnetic fields observed in the fast pan of the barium jet, which is the period of most interest in

these experiments. We will call this the active region; it was in CRIT II characterized by rapid

ionization, strong magnetic-field aligned electric fields, and strong wave activity, all of which

makes it difficult to construct a theory. The barium swarm model will give us the expected quasi-dc

electric and magnetic field in the absence of these complications, which is a useful basis for further

development.
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2. Description of CRIT I and CRIT II

The geometries for the CRIT I and the CRIT II experiment were very similar. Both experiments

consisted of two separate shaped-charge releases of barium in fast streams with 14 degrees full

opening angle and peak velocity 13 km/s, made at about 4(x) km altitude. The geometry for the

CRIT If experiment is shown in Fig. 1, which also defines the magnetic coordinate system to be

used later in tiie text (from Swenson et al., 1990a). The injections were at 57 degrees angle to the

magnetic field and were aimed directly at the main payload which made plasma density

measurements with high time resolution, vector measurements of the electric and magnetic fields,

and measurements of the ion and electron particle fluxes in the range 1 - 1(100 eV/q. The ion spectra

were taken in ten different look directions (Torbert et al., 1990). A sub payload was positioned a

few km above from the main payload close to the same magnetic field line, and measured a similar

but somewhat smaller data set.

The puipose of the CRIT experiments was to examine the CIV hypothesis by Alfven (19.54), which

states that an anomalously efficient ionization process should be expected when the perpendicular

velocity component of the neutral barium atoms is high enough to make ionization energetically

possible. For this reason the releases were made in shadow to exclude photoionization. Due to the

angle between the injection direction and the magnetic field, the ions continued upwards along the

field, past the sub payload and into the sunlight, where an inventory of the ion production was

made by ground-based optical observations (Stenbaek-Nielsen et al., 1990).

Apart from minor geometrical differences (and a much smaller data set from CRIT I), there was as

far as we know only one significant difference between the experimental conditions of CRIT I and

CRrr II: both the neutral oxygen and the plasma density were higher in CRIT II than in CRIT I, the

plasma density with as much as a factor 10-20. Probably as a result of this density difference,

CRIT II ignited to a much more efficient fashion, and produced a region of high ionization

extending 40-50 km from the injection point. The electric field measurements of the payloads

showed both a similarity and a difference: the long-duration barium oscillations were similar in

CRIT I and CRIT 11, with electric field amplitudes in the range 10-60 mV/m and a time duration of

1-3 cycles. The electric field inside the stream in the active region on the other hand was much

different: in CRIT 1 there were quasi-dc electric fields with 800 mV/m amplitude in burst 1 and 2(x)

mV/m in burst 2, which have been described by Kelley et al. (1990) and are discussed by Brenning

et al. (1990b). The term quasi-dc here refers to an electric field which vaned on the comparatively

slow time scale of the neutral barium stream, as opposed to the waves in the active region which

had higher frequencies. In spite of the much stronger ionization, the corresponding quasi-dc fields
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in CRIT II were a factor 5-20 weaker (Swenson et al., 1990a,b).

3. The Barium Swarm Model

The physical idea behind the barium swarm model of Brenning et al. (1990x) is that the barium

ions will have some phase and density correlation when they leave the barium stream and therefore

collectively spiral up the field lines in a swarm as illustrated in Fig. 2. The barium oscillations are

seen when this swarm repeatedly (on the ion gyro frequency) crosses the field line of the payloads.

A good phase correlation of the ions can be expected if the time duration raowe of the active region

(where the ions are produced) is short compared to the ion gyro time 1/52. In burst 1 of CRIT lI

this is the case, racti,cf2,i = 1.2. A second reason for good phase correlation is if the width W of

the barium stream is small compared to the barium gyro radius rKi . This quantity depends on the ion

velocity; if the ions keep the neutral velocity after ionization, then W /rXt = 1.2 in burst 1. In burst 2

racave 2 - = 2.4 and W /rKj = 3, and the phase correlation should be less good.

Due to their large gyro radius, typically a few hundred meters, these phase-correlated ions

constitute a cross-field ion current which is closed by magnetic-field aligned currents i ll from the

ambient ionosphere. In the barium swarm model this current i ll is drawn by an electric field pattern

which is maintained ny the ion motion across B and which launches Alfvdn waves in both

directions along the magnetic field. The motion and the electric and current pattern around such a

cloud of heavy ions is studied under the simplifying assumptions that the cross section of the cloud

across B is a circular cylinder, and that the ions are all perfectly in phase. The model is shown in

Fig. 3. In reality the barium swarm must have a more complicated cross section across the magnetic

field, and also some velocity and phase spread, but for a physical understanding of the process

such a simple model is useful. The ma ; n result of Brenning et al. (1990a) is that the cloud motion is

characterized by the K parameter (in MKS units)

An e µo VA L, ,
K=

4B

where An is the density in the barium swarm, VA is the velocity in the ambient ionosphere,

and L ; , is the extent of the ion cloud along B. Fig. 4 illustrates cloud motion for dense,

intermediate and thin clouds, where he separation between these types is based or the K value. For

a dense cloud K >> 1, and the ions continue "skidding" in the original direction of motion a

distance about L kid =Kra,,, where raj 13 the barium ion gyro radius. The ambient plasma in the flux

tube through the cloud is dragged with the rretion, and the internal field in the cloud is close to the

well-known self-polarization field of a dense cloud, E P = - V i xB. For a cloud of intermediate
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density K = 1 and the ion motion is rapidly stopped, on a time scale T«oP = 1/f2j , where Vi is the

barium ion gyro (angular) frequency. For a thin cloud K << I and we have the collective spiral

motion of the ions illustrated in Fig. 4c. This case is closest to tLe GRIT ti barium oscillations.

The electric field inside the flux tube which goes through the cloud is given by an expression which

t, valid for all values of K,

K B	 K`
E l = V i peril K 	 Vi 

rem XB
1 + K ` 	1 +K`

where V
1
 perpp is the ion's velocity component across the magnetic field. The velocity component

along the magnetic field does not influence E i . For a thin cloud as we will discuss for CR1T 11 the

internal field has a strength

I F. I I = I/i pe,r B	
K 

12'	
(3)

(1 + KZ)

and is directed close to antiparallel (at and angle a = arctan(K)) to the V i perp direction. The cloud

continually looses energy to the Alfvdn waves Iaunched along B and therefore the electric field

decays with a decay time constant which is longer for a thinner cloud,

TDecay —
K 

f^` 	 (4)

Finally the magnetic and electric fields outside the cloud obey the relation:

8Ex8B _± B
	

(S)
ISBI2

i.e., SB is perpendicular both to B and to SE, and the r.-,ative amplitude of the perturbations is

SE/6B = VA . The sign in Eq. 5 depends on whether the observation is made above or below the

cloud because the Poynting vector in an Alfvdn wave is directed along the energy flux, v,hich here

is away from the cloud.

4. Application of Barium Swarm to GRIT II

Our aim here is to use the barium swarm model to explain the barium oscillations using only the

initial conditions. The only required inputs into the model are the geometry of the experiment (1=1g.

1) Lnd the density increases in the two burst (Fig. 5) which combined with Eq. 1 determine the K

values. Because K is the most important single parameter here we will discuss in some detail how

it is obtained for the two bursts. The magnetic field strength was 4.3xIO -5 T, and the ambient

(2)



Alfven velocity was about 300 km/s. We are going to evaluate the data at the time of the first return

pulse and therefore we should ideally have values of Lil and An at that time. However, K contains

only the product Anj-,,,. This quantity is independent of the expansion of the cloud along the

magnetic field, and we can instead choose the time of the active region when AneL11 is easier to

estimate. At this time the ions had not yet moved out along B from the neutral barium stream and

L ; , is given by the width of the stream in the direction along B, L, I = 500 m in burst 1 and L

=12(X) rn in burst 2. For An we use the density measurements shown in Fig. 5. An ambiguity

arises because the density decreases after the passage of the active region, with denity minima at

times 0.2 seconds in burst I and 0.5 seconds in burst 2. According to Swenson et al. (1990a,b) the

reason is that the ambient oxygen ions in the active region are pushed out from the beam and

replaced by barium ions. The density minimum is then formed when the barium ions, whim have

velocities much above the ambient ion acoustic velocity. leave the region faster than the ambient

ions can return. If the oxygen ions were initially pushed out slower than the rise time to the density

maxima in Fig. 5 then we should calculate the density increase An from the level prior to the burst,

but if it was faster we should calculate An from the minimum density after the burst. The

alternatives are shown in Fin. 5. We keep this question open and use both values, which gives the

following limits on K:

Burst 1: 0.07 < K < 0.18

Burst 2: 0.05 < K < 0.08

Clearly, both bursts corresponded to the "thin cloud" version of the barium swarm model. Apart

from K, we need V i perp for the calculation of Ej. ' .'e use the perpendicular component of the

neutral stream velocity, at the time when the main payload was in the centre of the active region.

This neutral velocity is obtained from the time of flight from the explosion point, and also agrees

with the ion energy observed by the ion detector 3CD which looked towards the explosion (Torbert

et al., 1990).

These K values together witn the injection velocity vector V i prrp, put into the barium swarm

model, completely determine the SE and SB vectors in amplitude, vector direction, frequency of

oscillation, and decay time. However a complete comparison between these theoretical fields and

the observed fields is complicated: Eq. 2 gives E i only inside the magnetic: flux tube which passes

through the interior of the barium swarm, and the swami performs a collective gyration and sweeps

past the payloads only once per revolution. Between these times the payloads would see the

fringing fields outside the swarm, which are shown to the right in Fig. 3. Although these fields

also are determined by the model (Brenning et al., 1990) they are more complicated to extract.
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Alin, the payloads had a non-negligible net velocity with respect to the ambient ionosphere which

introduces an effect related to Doppler shifts. We therefore have made only one evaluation of bE

and 8B, at the time when the payload was inside the first return of the barium swarm and I q.s _'

and 3 can be directly applied.

We start with burst one. The bottom panel in Fig. 6 shows the output from the 5AB ion detector em

the main payload which measured ions with velocities close to perpendicular to B. There were at

least three retcrns of the barium swarm at close to integer multiples of the barium gyro time 0.2 s.

(Unfortunately this black-and-white reproduction does not show this as clearly as the colour

original). Bect;use these ions returned "on the beat" counted from the time of the active region, we

call them on-beat ions. There are also crescent-shaped structures between the on-beat ions in Fig. 6

which we will return to below. The small time spread in the on-beat ions indicates very gocxf phase

correlation, probably due to the small values rarrives2Ai = 1.3 and W/r j = 1.2 as discussed above.

The on-beat ions in Fig. 6 are spread out in energy over at least 40-50 eV; the peak energy is about

1(X) eV which was a typical neutral energy in the active region. Everything indicates that the on-heat

ions were produced and spread downwards in energy in the active region, and then performed a

collective gyration as in the barium swarm model. The upper six panels if Fig. 6 show that there

were both magnetic and electric perturbations in correlation with the on-beat ions. We have

evaluated these fields at the first on-beat, which is marked by a vertical line. A point should be

made here, however: if the ions had retained their magnetic-field-aligned velocity component they

would have moved along B completely away from the main payload during the first gyro period.

Already their presence at the main payload therefore indicates that the ions produced in the active

region have been scattered in parallel velocity. However an unknown expansion of the cloud in the

direction along the magnetic field does not limit the applicability of Fq.s 2-3 for the electric field,

since it would not change the product AneL I.

A comparison between the observations in burst I and the expectations from the barium swarm

model is shown in Table I. The observed frequency is taken from the time spacing between the

on-beat pulses on the ion detector. There is a small downshift in frequency from the expected

barium gyro frequency 4.8 Hz to 4.6 Hz. This is probably a Doppler shift effect due to the motion

of the payload with respect to the ionospheric rest frame. The electric field strength in the second

row of Table I is the root of the sum of the squares of the observed electric field comlxments. The

values, 54 mV/m at the main payload and 60 mV/m at the sub payload, lie within the expected

theoretical range 30-80 mV/m. The magnetic field perturbation is evaluated in the same way and

gives Sh:llB = 280 km/s at the main payload and SEIM = 290 km/s at the sub payload. This is in

fair agreement with the ambient Alfvzn velocity L A = 320 km/s. The SE vector direction for K <<
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I according to Eq. 2, be close to the direction - v
i
 pCrp , which in our coordinate systec -.

means the -x direction. This is the case at our chosen time of evaluation as can be seen in panels

4-6 of Fig, b. The magnetic vector should then, according to Eq. 5, be perpendicular both to SF.

and 13, i.c , lie in the v direction. This is also the case as can be seen in panels 1-3 of the same

figure. Finally, the cross product SExSB should be directed along the energy flux, away from the

centre. of the barium swarm. When the swarm has moved up along the field lines as indicated in

I•ig. 2, SExM should point down along the magnetic field towards the payload, in the -z direction.

'llik is also the case.

The decay time constant in 'fable 1 was obtained from the decay to the magnetic field perturbations;

the measurements from the sub payload are shown in the top three panels of Fig. 7. The barium

oscillations are here made observable by rotating the measurement into a coordinate system with

one axis approximately parallel to the Earth's magnetic field. Intpe.fections in the rotation show up

as large scale trends with periods of 0.5 seconds or more (Swenson et al., I970a). We have

estimated the time constant by fitting an exponential to the amplitude of the barium oscillations, and

obtained 
TDc^n^ _ 0.24 s. In view of the fast decay of the oscillations such a fit must necessarily he

rather crude, but still it lies in the expected range 0.19 to 0.47 seconds.

The results from burst 2 are summarized in Table II. They were obtained in the same way as in

burst 1, except that the period here was deduced from the electric and magnetic fluctuations which
in this burst gave better accuracy than the particle detectors. Again, the frequency of oscillation, the

6E16B ratio and the decay time agree quite well between theory and observations. The only

disagreement is the amplitude of the oscillations, which in burst 2 was a factor 3 below the

theoretical.11is low amplitude probably was due to the poorer phase correlation in burst 2, which

can be seen in the ion detector s.iown in Fig Y as a large time spread in the retuming barium swarm.

The poor phase corn°lation in burst 2 was probably due to the larger values of t-acriwef2gi = 2.4 and

11' 'r^^ = 3.

Apart from the absolute values of the quantities shown in Tables I and i! there is also the trend of

ch.-nge between the two bursts. In burst 1 the injected ion density was a factor 3-5 higher than in

burst 2. in agreement with the mode!, both th-: frequency of oscillation and the ratio bEi &3 were

independent of this change. On the other hand there are very clear trends in the expected direction,

both in the wnplitude and in the decay time, which can be seen directly in Fig. 7. In agreement with

Eq^s 3 and 4 the amplitude was higher in burst 1, while the oscillations had longer time duration in

burst 2.
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Aithough the banum swarm model agrees very well with several features of the barium oscillations,

it is still highly idealized. In reality there is neither a perfect correlation ir velocity nor a simple

c y lindrical geometry. The ion detector signal on the bottom of Fig. 6 gives a more realistic idea of

the velocity distribution in burst 1. Between the narrow on-beat pulses there are several

crescent-shaped structures that we will call "off-beat" although they are spread out considerably in

time (a pure off-beat would come precisely between the on-beats). A tentative explanation to the

off-brat ions is shown in Fig. 9, which shows the consequences if the ions were scattered both

backwards and forwards in the active region. One half gyro period after the ionization, the ions

which were scattered backwards would arrive from the direction of the burst with some upper

energy limit given by the gyroradius and the width of the beam. This would be the off-beat ions;

the reason for the spread in arrival time in Fig. 6 could be that they arc not purely scattered

backwards but have some spread in angle. Half a gyro period later the on-beat ions would arrive

without an y constraint in energy. The pattern would then repeat periodically.

It is interesting to speculate how the existence of two such populations of ions, scattered mainly in

opposite directions, would change the barium swarm model. One should certair ly expect some

magnetic and electric perturbations both the on-bears and on the off-beats, but it is not certain that it

would be a simple superposition of the fields from the two individual barium swarms. Fig. 10

shows the total magnetic field perturbation 8B in burst 1, which gives a clearer resolution of the

osciliations than the individual vector components shown in the earlier figures. Both the on-beat

and the off-beat magnetic perturbations can be resolved as indicated by arrows in Fig. 10. 'Mere is

even the "barium swarm type" of anti-correlation between the amplitude and the decay time: the

on-beat pulses which start out with higher amplitude decay faster than the off-beat pulses,

analogous to the difference between burst 1 and burst 2 shown in Fig. 7.

5. T1:^ Active Region

One reason for this study of the barium oscillations is that it can shed some light on the interaction

during the active phase, which is the time of most interest in these CIV injection experiments. The

electric field fluctuations in the active region cover a broad spectrum from quasi-dc up frequencies

above ten kliz. The term quasi-dc here is used for fluctuations on time scales comparable !:) the

time variation of the density and the velocit y in the neutral barium stream, which is t ypically 0.1 s.

It is usually assumed that the quasi-dc and the higher frequencies have different roles in the CIV

process (e.g. Haerendel, 1982, Brer ;n ig et al., 1990b). The higher frequencies are probably

associated with nucroinstabilities which tap the directed energy of the ion beam and transfer some

fraction of the energy to the electrons. In the process the ions become scattered in energy and the
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electrons become energetic enough to ionize more barium. This aspect of the CRiT 11 experiment is

treated in the companion parrs by Torhert et al. ( )990) who discuss the ion scattering and electron

heating, -+nd by Swenson et al. (199)a,h) who discuss the high frequency fluctuations in the fields.

We w111 here discus, the quasi-dc fields. Nobably these fields are assckiated with a current system

which exchanges momentum between the ionized beam and the surrounding ionospheric plasma.

This process is as fundamental for the ionospheric CiV experiments as the microinstabilities

b%:causc energy can onl y be released if momentum is exchanged between these two pl'tsmr ► s.

'litree different models h.,vc-. been proposed for the quasi-dc electric fields: the mass loading model,

the barium swarm model and the current lim^iation model. The main differences between the

m(Kiels arc (1 ! if the rate of ionization is zero or not, (2) if the new ions arc picked up immediately

or not, (3) if the charge separation in the direction along the beam is included or not. and (4) if the

magnetic- field- all gncd electric field is %ro or not. As a consequence of these different assumptions

they differ both in the direction and in the strength of the expected electric field. Apart from these

three mo lcls there are also computer simulations by Machida er al., (19,98) Ind Goertz et al. (1910

which also produce quasi-dc electric fields. We will not discuss them here hccause the electric

ficl& seen in these simulations arc difficult to compare quantitatively to a real ionospheric

expenrent.

in the mass loading model (Hat rendel, 1982; Torbert, 1987) the rate of ionization is included but

not the absolute value of the density increase, or the charge separation along the beam. The new

ions are immediately picked up by the pl.-.sma in such a fashion that they get a comtncn

perpendicular velocity with the ionospheric plasma inside a magnetic flux tube which extends out to

the Alfv6n wave fronts. The r: agnetic-frrld-aligned elmoic fields are z; ro. Momentum conservation

within the flux tube gives an electric field which is perpendicular to the injection direction and

proportional to the rate of ionization,

Et, ' %' s.xK	 m	 (6)
1 + ^m

Nhcre the ma:,s loading factor is

do
tr.,' meo

Cat	
^ ur, ^',A

and p,,, rs the mass densit y of the amblerit plasma.
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The mass loading model can be applied to CRIT II using the rate of density increase in Fig. 5. This

gives an electric field (in the coordinate system defined in Fig. 1) E v = -50 mV/m in `,urst I and E.

_ - 40 mV/m in burst 2. In the mass loading model, E X = 0.

In the barium swarm model of this paper the ionization rate is zero, while the absolute density

increase is included as well as the charge separation in the direction of the beam. The ions are not

assumed to be picked up immediately as in the mass loading model but lose their velocity relative to

the ambient plasma on the slower time scale given by Eq. 4. The electric field which is given by

Eq. 2 has components directed both against the beam and across it, but not along the magnetic

field.

We would expect the barium swarm model to apply rather well in CRIT II because the quasi-dc

fields in the active region have an amplitude which seems to smoothly decrease into the barium

oscillations (see e.g. Fig. 7). If the barium swarm model holds, the amplitude decays

°xponentially. We can therefore extrapolate the barium oscillations back into the active region and

use both the observed electric field strength and the observed decay time. This gives the amplitude

of the electric field IEi activel at the time 
tactive

IE	 I = IE(f I ex t t"li.^.utive	 ^ p---`

rDecay

where IE(t)I is the amplitude of the barium oscillations at time t. In burst 1, Eq. ;; using the main

payload data gives IEi ^ecriveI = 120 mV/m, and the sub payload data gives IEi,acrive l = 130 mV/m.

We take an average of 125 mV/m and use Eq. 3 to calculate the corresponding value of K, which

turns out to be 0.29. The angle a between E i and - Vi peril from Eq. 2 becomes a = arctan(K) =

16 degrees. In the active region new-born ions should dominate and we can assume that the vector

Vj peril points in the x direction. This gives the following electric field components: EX= - 125

cos(160) = 120 mV/m, and E V _ - 125 sin(160) _ - 34 mV/m. A similar calculation in burst 2

gives EX = 14 mV/m and Ey = 0 mV/m.

In the current limi4ation model finally (Brenning et al., 1990b), the rate of ionization is included but

the momentum exchange along the magnetic field is limited by magnetic-feid-aligned electric fields.

As a consequence the ion current across the magnetic field cannot be closed by field-aligned

currents and the perpendicular electric field increases until it stops the charge se paration. This give

an electric field which is antiparallel to the flow direction and pror*rtional to the ionization rate:

(g)
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do
mBa	 Ba'

Ra ne a dt

In CRIT I the plasma density was not measured, and Eq. 9 was actually used to estimate the

ionization rate from the ver y strong quasi-dc electric fields observed in that experiment. In CRIT II

we ( an insert the measured ionization rates from Fig. 5 in Eq. 9. This gives the electric fields E x =

-b';) mV/m in burst 1 and Ex = - 170 mV/m in burst 2. In the current limitation model, E y = 0.

Fig. 11 shows the electric field vectors in burst 1 according to the three models a,)ove, together

with the observed electric field in the active region. The values used for the observed field are

marked with dashed lines in panels 4 and 5 of Fig. 6. It is immediately obvious from Fig. 11 that

the current limitation model does not appiy. The probable reason is that the ionosphere here was

able to supply the magnetic-field-aligned current required to short-circuit the field of Eq. 9. The

situation could have been much different in CRIT I where the ambient plasma density was a factor

10-20 lower. The mass loading model gives the perpendicular ( Ey) electric fields which agrees best

with the observed, while the barium swarm model gives an E  field with the correct sign but half

the observed strength, and an EX field component which agrees quite well with the observed.

We can not make a similar comparison for burst 2 because the vector direction of the electric field in

that burst is not yet evaluated. However, it is clear that also in this burst the electric field according

to the current limitation model is much higher that the observed.

6. Discussion

Concerning the barium oscillations we feel confident that w- understand the basic plasma physics:

on short time scales (compared to the gyro time) the barium ions move as individual particles

through the ambient plasma with gyro radii of several hundred meters. The ambient ionosphere

does not follow in this motion but only feels a minor ripple in the form of weak Alfvdn waves

emitted in both directions along B. However these AlMn waves are essential to the process: they

deliver just the right amount of magnetic-field-aligned current to maintain space charge neutrality

which otherwise would be threatened by the barium ion motion across B. The electric field in the

Alfven waves also determines the rate of energy loss of the ions on a longer time scale, and thus the

decay time of the barium oscillations. Although the barium swarm model uses the idealized

ge ,:)rietry of a circular cylinder with uniform density, it seems likely that the approach can be

(9)
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be generalized to more complicated phenomena.

Concerning the quasi-dc fields in the active region the conclusions are not yet so clear. From one

point of view, the mass loading and the barium swarm models represent two extreme assumptions

concerning the influence of microinstabilities on the ion motion. Such instabilities act as a frictional

coupling between the beam of newly produced barium ions and the local plasma. If this "instability

friction" is very efficient the ions can be stopped quickly, as assumed in the mass loading model,

and part of their directed kinetic energy can be transferred to the electrons. This is precisely the

energy transfer process in most theories for CIV. A very rapid stopping of the ions would also

reduce the charge separation in the direction of ?he beam and give a low Ex field component, again

as in the mass loading model. If the "instability friction" is weak on the other hand, the ions would

move through the ambient plasma as in the barium swarm model. If this is the case no energy is

available for electron heating because it all goes to the Alfven waves. The quasi-dc fields would be

a passive response to a given amount of ionization, without the feedback of energy to the ionization

process which lies in the heart of the CIV mechanism.

Although both models are very simplified, one should thus expect the mass loading model to apply

better when CIV interaction is efficient, and the barium swarm model to apply better when ions are

produced in the absence of CIV. The observations in CRIT II actually support both models to some

extent. The perpendicular (Ey) field could, within the uncertainties of the models and the

observations, agree with either model. The Ex field was in good agreement with the barium swarm

model but disagreement to the mass loading model where Ex = 0. On the other hand there were

several indications of efficient CIV interaction, which should support the mass loading model: there

was both rapid electron heating (Torbert et al., 1990) and lots of electron impact ionization

(Stenbaek-Nielsen et al., 1990; Swenson et al., 1990a,b). Also, the observed ion energy loss in the

active region (Torbert et al., 1990) was much faster than the decay time 0.2 - 0.7 seconds

according to the barium swarm model.

It seems most likely that the real situation lies somewhere between the barium swarm and the mass

loading models, and that an improved understanding of the quasi-dc fields would give valuable

insight into this type of injection experiments. We believe this can be obtained if the physical

assumptions behind the barium swarm model are generalized to include both a variable ionization

rate and a more realistic geometry. We plan to develop a two-dimensional computer model along

this line. The difference between the real field and the the field in such an exteWed barium swarm

model should be directly related to processes which tap the ion beam energy and transfer the energy

to the electrons.
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In both the ionospheric barium injection experiments GRIT I and CRIT 11, a long-dur;ition

oscillation was seen A ith it frequency close to the gyro frequency of barium and it time duration of

about one second. A model for the phenomenon which was proposed for the CRiT I experiment

is here compared to the results from CRIT 11 which made a much more complete set of

measurements. The model follows the motion of a low -P ion cloud through a larger anthient

plasma. The internal field of the model is close to antiparallel to the injection direction v, but

slightly tilted towards the self-polarization direction E P = -v I xB. As the ions move across the

magnetic field, the space charge is continuously neutralized by ragnetic-field aligned electron

currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field.

"These currents give a perturbation of the magnetic field related to the electric field perturhation by

AEIAB = Vq. "Ihe model predictions agree quite well with the observed vector directions, field

strengths, and decay times of the electric and magnetic fields in CRIT 11. The possibility to extend

the model to the active region, where the ions are produced in this type of self-ionizing injection

experiments, is discussed.

k.	 v► ord : Critical Velocity, Critical Ionization Velocity, Active ionospheric Experiments.
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