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ABSTRACT

Whether the statistics of primordial fluctuations for structure formation are Gaussian or
otherwise may be determined if the Cosmic Background Explorer satellite (COBE) makes

a detection of the cosmic microwave-background temperature anlsotropy ATcMB/TcMB.
Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar

fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the

resulting Sachs-Wolfe temperature fluctuations at large angular scales (> 30). In the long-
wavelength approximation, one can confidently determine the nonlinear evolution of quan-

tum noise with gravity during the inflationary epoch because (1) different spatial points are
no longer in causal contact, and (2) quantum gravity corrections are typically small-- it is
sufBcient to model the system using classical random fields. If the potential for two scalar

fields V(¢1, ¢2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An ex-

plicit model is given where cold spots in ATcMs/TcMB maps are suppressed as compared
to the Gaussian case. The fluctuations are essentially scale-invariant.
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1. INTRODUCTION

With the decline of the Cold Dark Matter scenario, it is imperative that theorists propose
alternative models which can be compared with the observations. Here, I describe a varia-
tion of the inflation model which yields non-Gaussian primordial fluctuations. Tiffs model
may be tested in the near future if the Cosmic Background Explorer satellite I (COBE)

measures the cosmic temperature anisotropy.

Even with the difficultiesin accountingforlargescalestructure,itisstillreasonable
to retainthe inflationaryscenario.RedshiftsofIRAS galaxies_ and theirinferredpeculiar

velocities indicate that the Universe is at critical density, a,4 ft = P/Pe_,i_ = 0.8 =[=0.3. This
result gives support to inflation whose most outstanding prediction was that fl = 1. How-
ever, one must attempt to modify or improve the scenario so as to produce a set of initial
conditions that axe richer than scale-invariant Gaussian. Here, I will describe a chaotic
inflation model that gives non-Gaussian fluctuations which are basically scale-invariant, s,6

There axe three essential ingredients to the inflationary scenario. Firstly, a scalar field
with potential V(¢) models the decay of the cosmological constant. Secondly, gravity is
crucial in order to account for the expansion of the Universe. Finally, scalar field quantum
fluctuations are necessary to produce in.homogeneities that will eventually produce structure
in our Universe. One should view the inflation model as a microscope that magnifies
quantum fluctuations at the smallest imaginable distance scales (less than the Planck length)
to scales that are cosmologically observable. One of the problems with linear perturbation
theory was that there was no short distance cutoff. This gave the illusion that one could
extrapolate to arbitrarily small distances. However, nonlinearities must be important at
some scale.

Non-Gaussian fluctuations wo_d be the signature of nonlinearities 7 in the inflationary
scenario. Their calculation is problematic because one requires a formalism that governs
the evolution of quantum noise with gravity, ideally, one needs a quantum theory of the
gravitational field. In order to bypass this very severe difficulty, I will use three tricks:

(1) The classical nonlinear evolution of long-wavelength scalar fields and gravity is tractable, s,9
When the wavelength of a fluctuation exceeds the Hubble radius, different spatial points are
no longer in causal contact, and they evolve as independent homogeneous universes. One
may safely neglect second order spatial gradients in the action for scalar fields and gravity.
Nonetheless, one must carefully join the independent spatial points to make one Universe.

(2) Long-wavelength quantum noise behaves classically, and it may be described using clas-
sical random fields in a process termed stochastic inflation, l°'s Using the Wheeler-DeWitt
equation, one may show that quantum gravity corrections are typically small, s

(3) The long-wavelengthequationsmay be solvedcompletelywhen the logarithm of the

scalarfieldpotentialislinear,° InV(_b#)= _'_kakCk, where the al,are constants. More
complicatedpotentialsmay be approximated by joiningvariouslinear!nV potentialsto-

gether.In thisway, one may produce models thatyieldnon-Gaussian fluctuationsthatare

consistentwith currentmicrowave background anisotropylimits.



2. LONG-WAVELENGTH FIELDS:
GENERALIZATION OF HOMOGENEOUS MINISUPERSPACE

The long-wavelength system is an elegant extension to inhomogeneous fields of homoge-
neous minisuperspace, s'_ They enable one to construct non-Gaussian models for structure
formation.

Given some initialconditions,Iwilloutlinehow tosolveforthe classicallong-wavelength

evolutionof scalarfields¢#(t,z) with potentialV(¢#) interactingthrough gravity.It will
be assumed that the metrichas the form,

ds2 -.- _N2(t,z)dt 2 ÷ e2_(t'=)(Cdzt) 2 % (dzn) 2 % (dz3)2), (2.1)

which describesan isotropicUniverse with inhomogeneous scalefactore°(t,=).The lapse
function N is determined when one decidesthe time hypersurface,although an explicit

choiceis not necessary. In what follows,H(t,z) =_-&/N isthe IIubbleparameter and

_r_i(t,z) = e3_¢#/N are the momentum densitiesofthe scalarfields.

All second order spatial gradients in the Lagrangian of Einstein gravity with scaiar
fields will be neglected. It is necessary to retain first order spatial gradients otherwise one
returns to homogeneous minisuperspace. The energy constraint,

and the evolution equations are valid at each comoving spatial point, and they are the same
as those for homogeneous flat cosmologies. The new ingredient is the momentum constraint,

which joins together the independent spatial points to make one Universe:

4_

H,i = -  rn'-r ¢#,,. (2.2b)

The solution of this equation is familiar to those who study fluid mechanics. The Hubble
parameter is assumed to be a function of the scalar fields, and the momentum densities are
given by partial derivatives with respect to the scalar fields,

H -_ HCCj), re i _ m,_e3 a 0// (2.3)

When theseare substitutedintothe energyconstraint,one obtainsthe separatedHamilton-
Jacobiequation,

H'= ''_ _. ,alZ,_ 8_v(_)+ (2.4)
J

This self-containedequation forthe Hubble parameter governs the non£1neardynamics of
the long-wavelengthgravitationalsystem.It iscovariantin that isdoes not refereitherto

the time hypersurfacenor to the spatialcoordinates.



In a significant improvement for calculations based on Harnilton-Jacobi methods,9, s I

gave an complete analyticsolutionof the SHJE for two scalarfields(_I,_2) interacting
with gravitythrough an exponentialpotential,11

v(¢1, ¢2;p,a) = V0exp[- _ (- ¢lsine.,_+¢2cose)]. (2.6)

The couplingparameter p controlsthe steepnessofthe potentialwhereas 0 isthe angle that
surfacesofuniform potentialmake with the _I axis.The complete solutionforthe Hubble

parameter depends on two arbitraryparameters,b and rn,

H _=H(4,, O2;p,0; b,m), (2.7)

and itis shown in Fig.(1). Surfacesof constant Hubble parameter are plottedas solid

curves in Fig.(1)for the case rn = 1, 0 = 0. The family of orthogonal linesare the

physicaltrajectories.All solutionsof the SHJE with potential(2.6)may be derivedfrom
thissolution.
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Fig.(1): The complete solutioxi,H(_bj;b,rrt;p,O),of the separatedHarnUton-Jacobi equa-

tionisshown fortwo scalarfieldsinteractingthrough a linearInV potential,eq.(2.6).Here,
themixing angle8 vanishes,and the constantparametersare chosentobe b = 0 and m = 1.

Surfacesof constantpotentialarejusthorizontallines.The broken linesare trajectoriesof
the fieldswhich move up the page; they are orthogonalto the surfacesof constantHubble
parameter (solidlines).



The completesolution(2.7)generatesa transformationto newcanonicalvariables,b,
rn, with conjugate momenta, _rb and _rTM, given by differentiation of the Hubble parameter,

m 2 aH m s _H
_.b = _..2__e3o__ _r_ = _-2-_e_w (2.8)

4_r ab ' 4_" 8rn"

The new canonical variables (b,m,_rb, r "n) are constants in time, although they may be

spatially dependent. They completely govern the evolution of the system. However, they are
not all independent because they are constrained through the new version of the momentum

constraint,
0 = rbb,i _- Ifrnm,i, (2.9)

For a single scalar field, 12's when the wavelength of the perturbation is larger than the
Hubble radius, the system is characterized by a constant of integration, _ _ _(a, ¢). It is the
quantity of primary interest for adiabatic models of structure formation. For example, in
the Cold Dark Matter Model, microwave background arfisotropies at angular scales greater

than ,,, 3° are directly proportional to -_,

ATcMB/TcMB = -(/15. (2.10)

This is just the Sachs-Wolfe relation. For multiple scalar fields, eq.(2.10) may be taken as
the definition of (, and using eqs.(2.7,2.8), one may write down an exact expression which
is a function of the initial values of the fields, 9

- (2.11)

The initialconditionsof the long-wavelengthproblem are generatedfrom shortwave-

lengthquantum fluctuationsthatare assumed to begin in the ground state(Bunch-Davies
vacuum). The fluctuationsexpand beyond the Hubble radius,and they become a part of

the long-wavelengthbackground.

3. NON-GAUSSIAN MODEL CALCULATIONS

One can obtain non-Gaussian fluctuations on cosmologically observable scales from a po-
tential createdby joiningthreelinearInV regionsas shown in Fig.(2).Itisassumed that

our patch of the Universe began homogeneously in the lower half-plane,region1, where

the potentialparameters are given by PI = 20, 81 = -50 °. (For a justificationof the ho-

mogeneous startingpoint,see Salopek and Bond.s) Short wavelength quantum noise then
generatesGaussian initialconditionsfor the variousfields.The broken curvesin Fig.(2)

depictthe subsequent evolutionof the scalarfieldsat severalspatialpointsin a 643 lat-
ticecalculation.When they rollover the variousinterfacesin the potential,non-Gaussian

fluctuationsare generated.

The Hubble function,H(¢j), in regioni istaken to be the attractorsolution,

_8_r 170 exp[- 4]_j(-¢lsingt + ¢2cos8,)] (3.1)Hat_(¢j) = 3m_ 1 - 1/(3pl) V PI rnp



correspondingto b = -oo and m = 0 in (2.7) having homogeneous values. The new
momentum constraint (2.9) is then satisfied at early times, and the evolution equations
guarantee that it will be satisfied at late times. In region 1, the fields then evolve in time

a according to,

(3.2a)

re_(=,a)= _'P e3_'H,.d(_Asine_, =_'(z,,'.)= m_' e3_'H.,.(_j)cosex. (3.2b)
V'4r_ " "" V'4_'Pl -

The initial values of the scalar fields, _i0(z), are classical Ganssian random fields with power
spectrum

k 3 (Ho_2 _-2/0,_-1)_,o(k) - _ < l,_,oCk)l_>= "_-4" ( ) '

whose amplitude is determined by the value of the Hubble parameter Ho when the lattice
size exceeded the Hubble radius. Here, H0 = 10-am;, is chosen to give results consistent
with current temperature anisotropy llmits. The arnplitudes of the homogeneous k = 0
Fourier modes are arbitrary.
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Fig.(_-): (a)Non-Gaussian fluctuationsconsistentwith CMB limitsmay be generatedwhen

the scalarfieldspassoverseveralinterfacesin theirpotential.The lightsolidcurvesarelines
of uniform potential,whereas the heavy linesare the interfaceswhich continuouslyjointhe

3 regionswith linearinV(¢1, _2)- Ifthe scalarfieldtrajectories(broken lines)beginning
at the bottom of the diagram pass sui_cientlynear the origin,then non!ine_ effectsat

long wavelengths become important. For a 643 latticesimulation,the histogram of the

resultingfluctuationsin _ are shown in Fig.(b).The distributionofmicrowave background

fluctuationsat largeangularscalesisfound by reflectingthe distributionabout the vertical
axis: ATCMB/TCMB = --(/15. For comparison, a Gaussian distribution (smooth curve)
with the same mean and dispersionas the histogram isalsoshown.



If the trajectories pass into the upper right hand area, region 2 (82 = 0°)_ they receive
an upward kick from the potential, which later forces them into region 3 (83 = -300). (If
this diagram were extended, one would find that trajectories actually cross into region 3.)
The angles of the interfaces starting with the lower right and proceeding counterclockwise
are, Xl_ = 10°, X2s = 390 and Xsl = 1580. The resulting distribution of _ is plotted in

Fig.(2b). For the parameters shown, it was found that non-Gaussian fluctuations can arise
if the fields passed sufficiently near the origin_ which can be arranged through the arbitrary

choice of the homogeneous mode amplitudes in eq.(3.2). The calculations are performed
using the analytic expression for (eq.(2.11).

A 2-D sliceofthe 643 latticesimulationisshown inFig.(3).Large positiveexcursionsof

C are heavilysuppressed(i.e.negativeexcursionsofAToMs/ToMs are suppressed).With

some furtheranalysis,thisplotcouldbe interpretedas a largeanglemicrowave background

map. The power spectrum for the full3-D simulationisgiven in Fig.(4).Itisessentially
flat.
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Fig.(3): Sachs-Wolfetemperature fluctuationsare shown on a 2-D planar slicefor the

non-Gaussian model consideredin Fig.(2).The shaded areas are 20"deviationsfrom the
mean forATcMs/TcMB. The solidlinescorrespondto 1,00"contours,whereas the broken

linesare -10. deviations.The most significantfeatureof thisplot isthat cold spots in
the temperature anisotropyare suppressedover the usual Cold Dark Matter model with

Gaussian primordialfluctuations.In fact,thereareno -20.fluctuationsofATcMs/TcI_s
in this643 latticecalculation,a resultwhich isexpected from the distributionfunctionof

Fig.(2b).



4. SUMMARY AND DISCUSSION

The distributionof temperature anisotropiescould serve as a valuablediscriminatorof

variousmodels ofthe earlyUniverse.For example, itcould indicatethat nonlinearitiesin

inflationmodel were important. Itcouldeven determinewhat was the initialquantum state
of the Universe (see,forexample, Hartle13).

The resultingstructureformation scenarioforthe proposed non-Gaussian model can

be describedqualitatively.Sincethe nonlinearitiesdid not change the shape of the primor-

dialfluctuationspectrum in the Newtonian potential(seeFig.(4)),itisnaturaltoassume

(atleastin the firstapproximation) thatthe normalizationof the spectrum usingthe two-
point correlationfunctionof galaxieswould be the same as the standard Cold Dark Matter

model i4 with Gaussian fluctuations.For example, the varianceof temperaturefluctuations

< (ATcMB/TcMB) 2 :> would be the same. (In fact, the initial value of the Hubble param-
eter, H0 = 10-emT,, given in Sec. 4 was chosen for this reason.) Differences from standard
CDM would appear in the distribution of the fluctuations. Cold spots in the tempera-
ture fluctuations would be suppressed as shown in Fig.(3). In addition, I expect that high
positive density excursions in the density field will be suppressed.
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Fig.(4): The power spectrum,7)¢(k)- ks < [_*j_>/(27r_),forthe variable( iscalculated

by takingthe Fouriertransformofthe 64s latticesimulationdescribedininFig.(2).Nonlin-
ear erectsdo not change the shape of the flatspectrum whose amplitude isapproximately
Pc(k) ._ 10-s-S.The comoving wavenumber k = i isthe largestmode that can fitin the

lattice.The slow monotonic decreasefor increasingvaluesof k is a consequence of the



Hubble parameter decreasing in region 1. The larger the potential parameter Pl of region 1
is chosen, the flatter is the fluctuation spectrum. The spike in the last bin is not significant;
it arises because the number of modes in the last bin is small, leading to large shot noise.

There are problems with non-Gaussian scale-invariant fluctuations, or at least with the
simple-mlnded picture adopted above. It is difficult to account for the excess power in the
two-point correlation function of galaxies as indicated by the APM survey. Is However, one
should not be overly eager to reject this model because there are observational uncertainties.
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