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TWO AIWEI_IATIVE WAYS I.'OR SOLVING THE COORDINATION PROBLEM
IN MULTILEVEL OPTIMIZATION

.laroslaw Sol)icszczanski Sohicski

August 1991

Summary

The paper describes two new techniques for formulating the coupling between levels in multilevel opti-
mization by linear decomposition, proposed a.s improvements over the original formulation, now several years
old, that relied on explicit equality constraints which were shown by application experience as occasionally
causing numerical difficulties. The two new techniques represent the coupling without using explicit equality
constraints, thus avoiding the above difficulties and also reducing computational cost of the procedure. The
old and the new formulations are presented in detail, illustrated by an example of a structural optimization.
A generic version of the improved algorithm is also developed for applications to multidisciplinary system not
limited to structures.

Notation

A vector of cross-sectional areas*, Ai

Ci cumulative constraint of ith beam

DISi vector defined by cq. (22)*

gk vector of constraints* for a beam, e.g., stress limits, and local buckling, k = 1... NGB,
partitioned in subsets of lengths NGBi, each subset corresponding to ith beam

Gk vector of constraints* for the assembled structure, e.g., displacement limits, k = 1... NGA

I vector of cross-sectional moments of inertia*, Ii

Li length of ith beam

NE number of beams in a framework

N i vector of the end forces* for ith beam

NP i length of vector Pi

NSS number of subsystems

NX length of vector X

Pi vector of parameters* in optimization of ith beam, comprising elements Pq, q = 1... NPi

Pqi qth clement of vector Pi

SA system analysis

SI input vector of length NSI into SA*

SO output vector of length NSO from SA*

SSAi ith subsystem black box analysis

{SSC} vector of geometrical* variables determining the structure overall shape

SSI i input vector of length NSSI i into SSAi*

SSOi output vector of length NSSOi from SSAi*

TOL tolerance paramctcr set by user



W weight, equivalent to volume in a homogeneous structure

X vector of design variables* at the system level (assembled structure) in optimization by
decomposition

)_ vector of design variables* in ith beam optimization problem

Z vector of design variables* in optimization without decomposition

*{ ) brackets identifying vectors are omitted where possible without causing ambiguity.

U and L with X, Y, Z, e.g., XU, XL, denote upper and lower bounds on these variables; other symbols are
defined where first used.

Introduction

Large sealc optimization problems benefit from decomposition into a set of smaller, more manageable,
concurrently-solvable subproblcrmq. In a hierarchic decomposition method, the subproblems form a pyramid
with the system problem on top and subsystem problems in the horizontal layers below. These subproblems
are coupled through the solution of a coordination problem. A particular procedure for optimization by
decomposition introduced in reference 1 solved the coordination problem by enforcing a set of equality
constraints between the optimization levels and by using an optimum sensitivity analysis formulated in
rcfcrenccs 2 and 3. That procedure, referred to as Optimization by Linear Decomposition (OLD), was
formulated for two-levels in reference 1 and was demonstrated using a framework as a test case in reference 4
representing a class of skeletal, redundant structures. It was subsequently generalized to an arbitrary number
of levels in reference 5. The OLD is a generic method applicable to any system that is amenable to a hierarchic
decomposition, e.g., multidisciplinary applications reported in rcfcrences 6 and 7.

Practical expcricncc with the procedure, and its examination in reference 8 point to the enforcement of
equality constraints as the source of numerical difficulties that occasionally make this procedure slow to
converge. This observation is consistent with the opinion generally held among the developers and users
of optimization methods that addition of equality constraints to an optimization problem tends to make the
solution numerically more difficult.

Motivated by the above, and by two new techniques for satisfying equality constraints that were recently
introduced in refcrcncos 9 and 10, this paper defines two alternative modifications to the OLD procedure. Either
alternative removes explicit equality constraints from the procedure while, still, achieves their enforcement
implicitly.

The two alternative techniques will bc introduced by generalizing from an example of the framework
structure that was a test case in references 1 and 4. To this end, the framework analysis will be discussed first,
followed by the framework optimization problem formulated in a standard manner without decomposition.
Next, an abridged description of the OLD will bc given, limited to a two-level, structural optimization of the
framework test case. With this as a reference, two new alternative modifications to the OLD algorithm will be
introduced.

Original Reference Procedure

Analysis

The framework is shown in figure 1. We limit the framework analysis to a two-dimensional case by allowing
only in-plane displacements under the action of static loads. The static analysis of this structure may be
formulated in two levels by using either a substructuring approach where each of the three beams in the
framework is regarded as a separate substructure, or a finite element method in which each beam is a single
finite clement. Choosing the finite clement formulation, the analysis of the assembled framework requires an
input and generates an output as defined in table 1.

2



The (leriw,tivcs such a.s the di,_placement U with respect to the cross-sectional area Ai, OU;0-AT,exist because
U = f(A, I, SSU), Ni = f(A, !, SSC), and Li = f(SSC). These derivatives arc obtained by finite differencing
or by a qua_i-amdytical sensitivity analysis embedded in the framework analysis.

Selected data from the above output arc entered as input into a local strength analysis of the ith beam.
The level of refinement of that analysis is immaterial for the purposes of this discussion, e.g., it might be a
finite clement analysis whereby the beam is divided into numbcr of finite elements, or an elementary strength
of materials analysis. In either case, the input and output arc as defined in table 2.

The above approach suggests decomposition of the framework analysis into the assembled framework
analysis (system level analysis) and the beam analyses (subsystem level analyses). This decomposition forms
a hierarchy in which the former is a parent and the latter are the daughters. The parent-daughter relationship
is hierarchic bccansc the information flows from the parcnt to each daughter and no information is directly
transmitted from one daughter to another. Since the daughter analyses are mutually independent, they may
be executed! concurrently.

To make the system and subsystem level analyses consistent, one has to acknowledge that Ai and I i are
functions of the beam cross-sectional dimensions (Y}i. Therefore, when prescribing the values for Ai, Ii, and
{Y}i, we must satisfy the consistency equations

Ai = fA ({Y}i) ; li = fl ({Y}i), i = 1... NE (1)

Keeping these equations satisfied in a multi-level optimization is a part of the so-called coordination problem,
and the analysis by decomposition will bc exploited to establish a corresponding optimization-by-decomposition
scheme that will bc described later.

Optimization Without Decomposition

The optimization problem to be solved is

"find Z such that F(Z) is at minimum subject to constraints" (2)

Gj (Z) < 0, j = 1... NGA; (2a)

gk(Z) <_O, k = 1... NGB (2b)

ZL < Z < ZU (2c)

In the static problem at hand, the design variables may include the elements of the {SSC} and some, or
all, of the cross-sectional dimensions of the beams, {Y}i- The constraints Gk comprise the assembled structure
displacements and elastic stability, and at the beam cross-section level the gk constraints entail the allowable
stress, beam column buckling, and local buckling.

Optimization by Linear Decomposition (OLD)

The above problem is decomposed into a single problem solved for the assembled structure (system level
problem) and NE separate problems solved for each beam (subsystem level problems). It is convenient to
describe the subsystem level problem first. The equation underscoring indicates which parts of the formulation
will bc changed by the two new techniques formulated in this paper.

Subsystem level.

At the subsystem level, an optimization problem for the ith beam is independent of the other problems at
that level, hence the beam optimizations may bc executed concurrently. The ith beam problem is, taking into
account eq. (1):

"find {Y}i such that Ci({Y}i, {P}i) is at minimum subject to constraints" (3)

3
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Ai - fA ((Y}i) = 0, (3a)

Ii - fl{Y}i = 0, (3b)

(YLh _<{Yh -<(YVh; (3c)

where {YL}i and {YU}i are the lower and upper side-constraints on {Y}i. The {P)i is a vector of parameters
comprising Ai, Ii, Li, and {N}i that are output from the analysis at the system level as defined in table 1
and are passed as input into the beam analysis as shown in table 2. These parameters stay constant in the
process of the beam optimization. Hence, for ith beam

{Pq}i = {Ai, Ii, Li, {N}i}, q = 1... N]_ (4)

The scalar Ci is a cumulative constraint representing the degree of satisfaction, or violation, of the subset
gk({Y}i), k = 1... NGBi, pertaining to the ith beam, of the entire set of gk that appears in cq. (2b). The
cumulative constraint may be cvaiuated as in references 4 and 5 by means of the Kreisselmeier-Steinhauser
(KS) function(rcf.11):

Ci(gk) = KS(gk)= (l/p)In (k_ exp , k = 1...NGBi (5)

where p is a user-controlled coeicicnt that governs the distance between the KS and max(gk). An alternative
KS-formulation that avoids generation of |argc values of the cxponcntial function is

C,(gk)=max(gk)+l/p) ln(_kexp(p(gk--max(gk)))),k=l...NGB , (5a)

The KS function is diffcrentiable and has the property that

max(0k) < KS(gk) < max(gk) + In NGBi/p, k = 1... NGB i (6)

approximating the nondiffcrcntiable max(gk) with an error dependent on p (the larger p is, the smaller the
error is. However, optimization may be more difficult numerically).

The optimization in eq. (3) alters {Y}i to enforce the consistency cq. (1) by means of the equality constraints
in eqs. (3a) and (3b), and to achieve a minimum of Ci equivalent to a minimum of max(gk). This optimization

produces an optimal solution comprising of Cimin and {Y}iopt" It is followed by an optimum sensitivity analysis

oc,- •(ref. 2) to obtain the derivatives of Oimin and {Y}iopt with respect to {Pq}i, denoted _ and u,-q_ •

Syatem level.

In the system level problem, the design variable vector X contains Ai, Ii, i = 1... NE, and the elements
of{ssc}

{X} = {Ai,Ii, {SSC}}, i = 1... NE; (7)

At this level, thc assembled structural analysis whose input is defined in table I is carried out. The objective
function in this case is the structural weight which for a homogeneous material may be replaced with the
material volume

NE

F(X) = W(X) = E AiLi (8)
i
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The problem formulation is

"find X such that F(X) is at minimum subject to constraints" (9)

Gk(X ) < O, k = 1...NGA; (9a)

Ci(X ) < TOL, i = 1... NE; (9b)

{__Yl/}i< {Y}i < {YU}i, i= 1...NE; (9c)

XL < X < XV; (9d)

where TOL is a suitable tolerance parameter.

The constraints Gk(X ) pertain to tile assembled structure behavior, e.g., displacement limits and overall
elastic stability. The Ci(X) is approximated by extrapolation

_j _q OCimin OPqi "Ci(X) = Cimin + . OPqi -_j (Xj - Xjo),

i = I...NE, j = 1...NX, q = 1... NPi (10)

OC" "

where Pqi is defined by cq. (4). In the above, Cimin and _ are transmitted from the subsystem level
optimization and optimum sensitivity analysis, and the derivative product terms constitute a chain rule

differentiation necessary since some of the parameters Pq depend on Xj as noted in discussion of table 1.
OP."

Since Xj is an clement of {P}i, we will have _ = 1 for the coincidences (Pq)i = Xj that occur in the
summation. The values of (Xj)o are those for which the assembled framework analysis was carried out prior
to the current optimization.

When Ci is expressed by a KS function as in eq. (5) or (5a), the extrapolation error in eq. (10) may be
significantly reduced, or shown in references 4 and 5, by extrapolating each constraint function gk that enter
Ci

gk(x)=gko+ ogkoPq
j q opq oxj (xj- Xjo),

j = 1...NX, q = 1...NP i (10a)

and, then, computing in extrapolated 6"/by means of either eqs. (5) or (5a). This technique removes that part
of the extrapolation error that in eq. (10) would be caused by the curvature of the logarithm and exponential
functions embedded in the KS function.

An extrapolation similar to eq. (10) is used to approximate {Y}i in eq. (9e):

0Yi°pt OPqi Xjo),
Yi(X)--- Y/opt + _ _ Opqi -_j (Xj-j q

i = 1...NE, j = 1...NX, q = 1...NP i (11)

XL < X < XU

Finally, XL and XU, are, respectively, the lower and upper limits on X. These side constraints include the
move limits guarding against excessive extrapolation errors in cqs. (10) and (11).



O'oerall proct'd'urc.

The overall OLD procedure is

1. Initialize the overall shape data in {SSC}, and the beam cross-sectional dimensions {Y}i;

2. Enter {Y}i into cqs. (3a) and (3b) to initialize A and 1;

3. Execute the assembled structure analysis (table 1);

4. For each beam execute a subsystem level optimization per eq. (3), that refers to the beam analysis per
table 2, and carry out the optimum sensitivity analysis with respect to parameters defined in ecI. (4);

5. Execute optimization at the system level per eq. (9);

6. If termination criteria set by user are not satisfied, reset X and Y to the new values and repeat from
step 3, otherwise exit.

To conclude the description of the OLD procedure at two levels, one should point out that the individual
optimizations at both levels are coupled by means of eqs. (3a), (3b), (9b), (9e), (10), and (11). These equations
represent the coordination problem which is solved by virtue of converging the overall procedure.

Shortcomings of the OLD Procedure in Need for lmprovemenL

In the subsystem level formulation in cq. (3), there is a possibility of a conflict between the equality
constraints in eqs. (3a), (3b), and the side constraints in eq. (3e). Specifically,it may not be possible to find
a feasiblesolution to the subsystem level problem while satisfying both sets of constraints. To alleviate that
conflict,the system levelformulation above includesapproximate representation of the sideconstraintson {Y}i,
eqs. (9c) and (11), to keep the system level optimization from imposing on the ith beam such combinations of
the Ai and Ii values that cannot be attained with the physically realizable {Y}i. The above potential comrliet
is one disadvantage of using the equality constraints in eqs. (3a) and (3b).

As mentioned in the Introduction, the other disadvantage is the increased difficulty of solving the
optimization problem of eq. (3) brought about by the presence of the equality constraints, as pointed out in
reference8. Hence, the two alternative modifications are introduced next, primarily, to removethese equality
constraints.

Proposed Modifications

Two alternative modifications whose introduction is this paper purpose are defined herein. The common
fcature of both modifications is removal of the equality constraints in eqs. (3a), (3b), (9b), and (9c), and
an indirect fulfillment of these constraints by reformulating the subsystem optimization problem. The two
modifications differ in the details of that reformulation.

Modification 1

The first modification is based on a technique for locating simultaneous roots of a set of functions using the
KS function as described in reference 9. Specifically, if a set of NF functions Fi(Y) = 0 for Y = Yo, then a
KS function comprising the positive and negative Fi(Y) has a minimum at Yo. Formally,

If Fi(Y) = 0, for Y = 1Io, then KS(Fi(Y) - Fi(Y))

is at minimum for Y = Yo; i = 1... NF (12)

The above property of the KS function may be used to satisfy the equality constraints in eqs. (3a) and (3b).
For brevity, we define nondimensional functions

FAi = (Ai - .fA({Y}i))/Ai, i = 1... NE

Fti = (Ii - ft({Y}i))lIi, i = 1... NE (13)



_nd consl, rnct a conmposil,c I'uncl, ion

Q ({Yh,{Ph)= Ks - - F.)

(_ ) 'n (exp (pFAi) + exp (-pFAi) + exp(pFli) + exp(-pFli) ) (14)

By virtue of eq. (12), this flmction is a minimum at {Yo}i where FAi and l"ti also vanish. We will seek

{Yo}i as {Y}iopt in an optimization that entails Ci({Y}i, {P}i) defined by cq. (14) as the objective function.
This approach was shown to be effective in reference 12, although the details of the function formulation and
of the overall procedure defined in that reference were different.

The subsystem level optimization of eq. (3) for the ith beam will now change to the following one in which
Ci is defined by eq. (14):

"find {Y}i such that Ci({Y}i , {P}i) is at minimum subject to constraints" (15)

gk({Y}i) <_O, k = 1... NGB i (15a)

{YL}i < {Y}i <- {YU}i (155)

The subsystem level optimization satisfies the local constraints, eqs. (15a) and (15b), and comes as close to
FAi = 0 and Fti = 0, that is fA = Ai, fI = Ii, as possible. However, in contrast to cqs. (3a) and (3b), it is not
required to nullify these quantities completely, if that is not yet possible in the process of iterating between
the levels in the overall procedure. Hence, the potential conflict among the constraints eqs. (3a), (3b), and
(3c) described in the preceding section has bccn removed. Consequently, the constraints in eq. (ge) that were
needed to alleviate that conflict are now deleted from the system level optimization. As a result of the deletion

of cq. (9c) from the system level optimization, the derivatives _ become unnecessary. Consequently,Orqi

the optimum sensitivity algorithm from reference 2 may be replaced with the computationally less expensive
algorithm from reference 3 for a significant reduction of the computational cost of the entire procedure.

The system level optimization change is limited to deletion of cq. (9c), and to redefinition of 17i from the
one given in eq. (5) to that set by eq. (14). The new definition of Ci must also bc used in eq. (10).

Even though the equality constraint such as those in cq. (3) do not appear directly in the above subsystem
optimization, they are eventually brought to satisfaction within tolerance TOL, indirectly, by virtue of eqs. (14),
(15), (15a), (15b), and (9b), when the overall procedure converges.

Modification 2

An algorithm introduced in reference 10 for the purposes of fitting an empirical function to a set of
experimcntai data points may be adapted as a formulation of the subsystem level optimization problem. The
algorithm requires augmentation of {Y}i by an additional independent variable, LIMi, that also doubles for
the objective function in a following formulation of the subsystem problem for the ith beam

"find {Y}i and LIM i such that LIM i is at minimum subject to constraints" (16)

gk{Y}i <_O, k = 1... NGB i (16a)

-LIMi <_FAi < +LIM i (16bl)

-LIMi < Fli < +LIMi (1652)

{YL}i <_{Y}i <- {YU}i (16c)

LIMi > 0 (16d)
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The above problem solution produces the values of LIMi,nia and {Y}iopt- The LIMimln is eventually
reduced to TOI, owing to the following changes in the system level optimization of eq. (9): deleting eq. (9c),
a._ in Modification 1 above, and replacing Ci with LIMi which changes eqs. (9b) and (10) to

LIMi < TOL, i = 1... NE (17)

V" 0-L/Mi'_ aPqi(xj - xjo),LIMi(X) = (LIMi)min + _ _ OP • OX"
j q q_ 1

i = 1...NE, j = 1...NX, q = 1...NP i (18)

As in Modification 1, the optimum sensitivity analysis that follows the solution of cqs. (15), (15a), and
(15b) may be carried out using the algorithm from reference 3 iustcad of reference 2. Neither Modification 1
nor Modification 2 change anything in the step-by-step prescription for the overall procedure OLD described
previously.

Extension to a Generic System

The above algorithm lends itself to a complete generalization by replacing the variables and terms specific
to the framework example with their generic counterparts, while leaving the organization of the decomposed
optimization and the formulations of its elements unchanged. This section explains the substitution of
the variables and terms in each of the system and subsystem level analyses, subsystem and system level
optimizations, and the ovcraU procedure.

System Level Analysis

System Analysis, designated SA, is regarded as a black box that converts an input vector {,5'I} of length
NS[ into an output vector {SO} of length NSO. Vector {SI} contains as a subset the vector {X} of length NX
that comprises the system level design variables. Vector {SO} also contains {X} as a subset (passed through
SA). By definition of SA

SO = f(SI) (19)

assumed differentiable up to the first derivatives. Consequently, a Jacobian matrix of the first derivatives exists

= [OSIj J' i = 1...NSO, j = 1...NSI (20)

Equations (19) and (20) form a functional statement that is a very general one and includes two important
special cases: the first derivatives in the abovc Jacobian, cq. (20), degenerate to zero wherever a particular

SO i is not influenecd by a particular Sift and the derivatives default to unity wherever, for a particular pair
ij, there is SO i = SIj = X k.

The Jacobian matrix, cq. (20), is obtainable by finite differencing on SA or by quasi-analytical sensitivity
analysis embedded in SA. In either case the Jacobian matrix is rcgardod as an additional output from SA,
separate from SO.

The input defined in table 1 is an example of SI, while the subset of A's and I's in that input is an example
of X. The output dcfincd in that table is an example of SO, and the A's and I's present in that output are
examples of X as a subset of SO that is being passed through SA unchanged. The derivatives 8N[OA defined
in table 1 constitute an example of the elements of OSO/OSI.

Subsystem Level Analysis

It is assumed that there arc NSS black boxes representing the next lower level of subsystems. As daughters
of the SA parent black box, they receive their input in part from the systeni levet'and, in part, from the outside
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world, but not from each other. Therefore, the subsystem black boxes are mutually independent and may be
executed concurrently. The ith black box is designated SSA i. It converts the input vector {SSI}i of length
NSSI i into an output vector {SSO}i of length NSSOi.

Vector {SSI}i contains selected elements of {SO}, some of which may be the elements of X. It includes
also thc vector of the subsystem level design variables {Y }i-

At this point, it is convenient to define a vector {P}i, i = 1... NPi, as a subset of those elements of {SSI}i
which arc fimctions of X. Naturally, this includes the elements of X, if any arc present in {SSI}i. An example
of such a subset is eq. (4).

We now assume that for the elements of {P}i, the {SSA}i contains a functional relation,

{P(X)}i = f({YIi) (21)

An example of the above relation is illustrated by eq. (1). However, eq. (20) is more general than eq. (1)
since it recognizes that not only the elements of X but also other data in SSIi, selected from SO, may be
computable as functions of {Y}i.

For the ith subsystem optimization, it will be useful to define a "discrepancy" vector {DIS}i defined as

{DISj}i = ({Pj}i - l({Y}i))/{Pj}i, j = 1... NP i (22)

Examples DIS) are FA i and FI i in eq. (13). The SSA i output {SSO}i contains {DIS}i and other behavior
variables of interest.

Subsystem Level Optimization

SSOPT i is an optimization of subsystem i. It can be defined by either one of the two alternative ways,
consistent with Modification 1 (cqs. (15), (1ha), and (15b)) or Modification 2 (eqs. (16), (16a--d)).

In the first alternative, corresponding to eqs. (15), (1ha), and (15b), the design variables are the elements
of {Y}i, and the objective function C i :is

Ci({Y}i, {P}i) = KS({DISj}i,-{DISj}i)

=(1/p) ln(_(cxp(p{DZSj}i)+cxp(-o{DISj}i))), j--1...N_ (23)

In this alternative the optimization problem comprises' the above Ci as the objective function and its
formulation is as follows:

"find {Y}i such that Ci({Y}i, {P}i) is at minimum subject to constraints" (24)

gk({Y}i) < O, k = 1... NGSSi (24a)

{YL}i <_{Y}i _<{YU}i (245)

In the second alternative, consistent with cq. (16), the design variables are the elements of {Y}i and an
additional variable LIMi. The latter doubles for an objective function so that the optimization problem is

"find {Y}i and LIMi such that LIM i is at minimum subject to constraints" (25)

gk({Y}i) < O, k = 1... NGSSi (25a)

9



-LIMi <_ {DIBj}i <_ q-LIMi, j = 1...NPi (25b)

{YL}i < {Y}i < {YU}i (25c)

LIM i > 0 (25d)

In both cqs. (24) and (25), the constraint functions gk arc evaluated using the data in SSOi. The SSOPT i

output is {Y}iopt and, dcpcndcntly on the choice of cqs. (24) or (25), Fimin = Cimin or _bqmin= LIMimia ,
rcspcctively.

Optimum Sensitivity Analysis and Extrapolation of the Minimum of the Objective Function

The Optimum Sensitivity Analysis, OSAi, uscs the algorithm of reference 3, applied as a post-processor to
SSOPTi, to yicld for each subsystem i a vector of the dcrivativcs of the minimum objcctive function Fimia with

SOF.- i
rcspcct to the parameters P. The vector of these derivative.s, (_ ], has the length NPi. The definition of
P (see discussion preceding cq. (21)) and the functional relationship defined by eqs. (19) and (20) imply that

{Pj}i = f(Xk), J = 1...NPi, k = 1...NX (26)

and that the derivatives 0{_ exist. These derivatives default to unity for those pairs jk for which Pj = X k.

Using the above, one may cxtrapolatc Fi by means of thc chain rule as an approximate function of X

0_imin (Xj- Xjo), i = 1...NSS, j = 1... NX, q = 1...NP i (27)fi= f mi,,+ OPq OXj

where (Xj)o is the X for which the systcm and subsystcm analyscs wcrc carried out prior to the subsystem
optimization. For an example of cq. (27), scc eqs. (10) or (18).

System Level Optimization

Equating F i either to Ci computed from eq. (23), or to LIM i defined for eq. (25), dependently on the
choice of Modification 1 (cq. (15)) or Modification 2 (cq. (16)) for the SSOPT formulation, the system level
optimization, designated SOPT, may bc formulated so as to accommodate both alternatives. Defining an
objective function FS(X) and the vcctor of constraints G(X), both computed from the elements of SO, the
SOPT formulation is as follows:

"find X such that FS(X) is at minimum subject to constraints" (28)

ak(X ) <_O, k = I....NGS (28a)

_(X) _<TOL, i= I...NSS (28b)

XL <_X <_XU (28c)

consistent with cq. (9) modified as described in the discussions of the Modifications 1 and 2.

In the above optimization problem, Fi in cq. (28b) is extrapolated by cq. (27), analogous to the extrapolation
of Ci in eq. (10) or LIMi in cq. (18).

Initialization

It is a recommended practice to initialize the entire optimization procedure by first setting the values of
{Y}i, i = 1... NSS, and then computing X from eq. (21), recalling that, by definition X is a subset of P.
This guarantees starting in SA at the system level with the X values that are physically realizable in SSOPTi
by {Y)i within the YL and YU limits. This operation is abbreviated INIT.
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Generic Two-Level Optimization Procedure

The procedure is the same as the one described previously for the framework example, restated in the
generic terms defined in this section.

1. Execute INIT;

2. Execute SA;

3. Execute SSOIYFi, followed by OSAi, i = 1... NSS, concurrently, if desired and if the computing
equipment permits;

4. Execute SOPT;

5. If termination criteria set by user are not satisfied, reset X and Y to Xop t and Yopt and repeat from
step 2, otherwise EXIT.

The procedure output is the optimal data for X, Y, G(X), g(X), and FS(X). Owing to the formulation
of SSOPTi in eq. (23) or (24), the optimal values of X and Y will satisfy eq. (20) within TOL. The procedure
flowchart is depicted in figure 2.

Concluding Remarks

Two new techniques are presented for coupling the levels in optimization by decomposition. The
techniques constitute improvements of a previouMy published algorithm for two-level Optimization by Linear
Decomposition (OLD). The OLD algorithm has been summarized and illustrated by an application example
to show how the new techniques are implemented by local modifications in that algorithm. The resulting two
alternative formulations improve OLD by removing the potential for numerical difficulties that occasionally
were caused in the original algorithm by an explicit handling of the equality constraints which constituted

: the key coupling between optimizatious at two levels. Both alternative formulations eliminate the explicit
presence of these constraints while satisfying them indirectly. The alternative formulations allow the use of a
variant of the optimum sensitivity analysis that does not require second derivatives of behavior and, therefore,

! is computationally less expensive than the variant used in the original algorithm. Thus, an additional benefit
: expected from the modified algorithm is a reduction of its overall computational cost. It is shown that the
: improved algorithm may be generalized to multidisciplinary system applications.
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Table 1. Input and Output of Assembled Framework (System Level) Analysis

Input

Ai, l i cross-sectional area and moment of incrtia for ith beam (i = 1...NE, the
number of elements in the example is NE = 3), both assumed constant along
the beam length

{SSC} vector of the structure shape coordinates in a reference coordinate system that
defines locations of the frame support and corner points

{Q} vector of loads Qj, j = l ... NDOF, applied coincident with the structure
unsupported degrees of freedom whose number is NDOF

E the material Young's modulus

Output

{U} vector of displacements Uk, k = 1... NDOF

{N}i, i = 1... NE vector of the end-forces on the beam, at each end there are three such forces:
axial force, transverse force, and bending moment

L i length of the ith beam

Ai, Ii, and E as an input passed through the analysis to output;

Derivatives: D(U,A), D(U,I), D(U, SSC), D(N,A), D(N,I), D(N, SSC), D(L, SSC)

Table 2. Input and Output of ith Beam (Subsystem Level) Analysis

Input

NAL and SAL normal and shear allowable stresses, respectively

Input selected from the Output in table 1:

Ni, i = 1...NE vector of the end-forces on the beam

Li length of the ith beam

Ai, Ii, and E;

{Y}i veetor of the beam cross-seetional dimensions Yk, k = 1... NYi, shown in the
inset, Fig. 1.

Output

{SN}i and {SS}i vectors of the normal and shear stresses, respectively, at judiciously chosen
points on the end cross sections

{UB}i beam displacements in the beam local coordinate system

{NCR}i and {SCR}i vectors of the normal and shear critical stresses, rcspeetively, for evaluation of
the beam column and local buckling constraints
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