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Summary

A new technique for locating simultaneous roots of a set of functions is described. The
technique is based on the propcrty of the Kreisscimcier-Steinhauser function which descends
to a minimum at each root location. It is shown that tim ensuing algorithm may be merged
into any nonlinear programming method for solving optimization problems with equality
constraints.

Introduction

The problem of locating function roots, and the related problem of satisfying equality
constraints, arises often in engineering numerical analysis and optimization. In multi-
function, multi-variable applications this problem tends to cause numerical difficulties,
detrimental to both accurac3, and computational efficiency. It is, therefore, of interest to note
a new alternative for solution of the above problcm based on the properties of a function
that became known as the Kreisselmei'er-Stcinhauser function after it was introduced in
refcrencc 1. The present paper defines the new, altcrnative algorithm and describes its
applications as a tool for finding the function roots, and for solving nonlinear programming
optimization problems with equality constraints.

The KS Function and Its Properties Useful for Root-Finding

The algorithm is based on the Kreisselmeier-Steinhauser function (KS function). The KS
function is a differentiable cnvelope function for a set of functions of the form Y = Fk(X),
k = 1 ... NK. It is assumed that each of the above functions is continuous in X, but not
necessarily continuous in its derivatives with respect to X, The KS function is expressed in
two alternative but completely equivalent formats

KS(Fk)=(i/p )ln(_ k exp(pFk)), k=l ... NK (1)

KS(Fk) = Fmax+ (l/p) In cxp(o(Fk - /max)) , k= 1 NK (2)

The format in equation (2) is recommended if the standard format in equation (1) generates
too large values of the exponential function.



The KS function has a property that

Fmax <_KS(Fk) <_Fmax + ln(gK)/p, k = 1 ... NK (3)

where p is a user-controlh,'d l,aramctcr.

Example of the KS fimcti,,n is plotted in tigurc 1 tbr one independent variable and a set
of three functions. As implied by equation (3), tile user may draw KS closer to Fmax by
increasing the value of parameter p and vice vcrsa. In other words, the p parameter is a means
for controlling how close the KS follows the piecewise envelope of the set of functions Fk.
The KS function is a differentiable equivalent of the non-differentiable "selective" function
MAX(Fk) available in many high-level programming languages.

The KS function derivatives may also be expressed in two ways, corresponding to
equations (1) and (2), respectively,

/= exp(pFk) (4)k

- + exp(p(Fk-Fmax))'5-_iil _ exp(p(Fk-Fmax)) (5)k

The KS function may be used as a tool for root finding because it has the following property,
defined using Z as a generic, single independent variable:

"If a function Fk(Z) has a root Fk(Z) = 0 for Z = Z_, the KS function of Fk and
--Fk is at minimum at Z = Zr for any value of nonzero and nonnegative p."

The above property is illustrated in figure 2 and may be proven as a theorem as
follows. The property requires that the first derivative of KS(Fk(Z), -Fk(Z)) -=
(l/p) In (exp(p Fk) + exp(-p Fk) ) with respect to Z vanish at Z = Zr. Considering that

O(-Fk) OFk- (6)OZ OZ

differentiation of KS (Fk,-Fk) yields

Ofk ,, ,OFkOKSoz= exp(p Fk) _OZ - exp(-p rk)--_-_-j Fk) +exp(--p (7)

Since at Z = Zr, Fk = 0 so that exp(p Fk) = exp(-p Fk) = 1 regardless of the value of p,
it follows that

OKS

0-27=0 (8)
which proves the theorem. Generalization of the above to a function with several roots shows
that the corresponding KS would have multiple minima.

Extension to a set of functions Fk(Z), k = 1 ... NK, in a hyperspace of NN dimensions
(Z is then a vector of length NN) is straightforward owing to the property represented by
equation (3). The previous theorem extended to the above general case is:



"The KS function of a function set made up of the original set of Fk(Z) functions
and their negatives, --Fk(Z), (mirror images),

{
KS(Z) KS(FI(Z), -FI(Z), F2(Z),

\

(9)N

-F2(Z), ... Fk(Z), -Fk(Z), ... FNK(Z), --FNK(Z))

has a local minimum at each point in the Z hyperspace where all the functions
Fk(Z) attain zero value simultaneously."

The above can be proven by observing that differentiation of KS in equation (9) yields
a derivative expression similar to equation (7) extended to include derivatives of all the
(+Fk, --Fk) pairs, while equations (6) and (8) hold for each pair of derivatives. Thus, each
point where KS attains minimum defines a solution Zr to a set of simultaneous equations

Fk(Zi) = O; k-1 ... NK; i = l ... NN; (10)

Numerical Example

A numerical example illustrating the above is a set of two functions of two variables u
and v:

fl =-1+(u-3) 2+(v-2)2;

f2 = -1 + (u- 2)2 + (v- 1)2;

whose root locus plots in the u, v plane, shown in figure 3, are circles centered at the points
(3,2) and (2,1), respectively. One solution of the set of two simultaneous equations fl = 0,
f2 = 0 is ttle intersection point of the two circles at (2,2). The values of KS at that point
and four neighboring points, (1.9,2), (2.1,2), (2,1.9), and (2,2.1), are given in table 1 for
p = 50:

Table 1. The KS values for p = 50 at, and in,
the neighborhood of the intersection point (2,2)

u 1.9 2.0 2.1
1)

1.9 .2225386 .1900034 .1938629

2.0 .2100012 .0277259 .1900034

2.1 .2338629 .2100012 .2225386



Table 2 shows similar data for the other solution point, tile intersection point (3.0, 1.0).

Table 2. The KS values for p -- 50 at, and in,
the neighborhood of the intersection point (3,1)

u 2.9 3.0 3.1
V

0.9 .2225386 .2100012 .2338629

1.0 .1900034 .0277259 .2100012

1.1 .1938629 .1900034 .2225386

Both tables show well-defined minima of KS, the underscored values, at both solution
(intersection) points.

The Root Finding Algorithm

Given the above KS function theorem, one may find a root of a set of functions Fk(X )
by solving the following unconstrained optimization problem

"find X such that the objective function KS(Fk(X), --Fk(X)), (11)
k = 1 ... NK_ is at minimum"

Solution of the above problem will identify an X = Xo that renders all Fk(Xo) = O,
k = 1 . . NK, simultaneously. This problem may be solved by any technique of Nonlinear
Mathematical Programming (NLP). The caveat is that a single execution of such technique
will locate only one of, possibly, many different roots as a local minimum of the KS function.
Fortunately, in engineering applications, the interest is usually limited to a few roots, and the
subdomains containing these roots may be estimated by conjecture. Consequently, repetition
of the optimization in equation (11) starting from initial points judiciously chosen in each
such domain may be used to locate all the roots of interest.

Satisfaction of Equality Constraints

A standard optimization problem with inequality and equality constraints may be written
as

"find Xop t such that objective functionf(Xopt) (12)
is at minimum subject to constraints:

gj(Xopt) < O, j = 1 ... MG; (12a)

hp(Xopt) = O, p= 1 ... MH;" (125)

Using the KS theorem introduced in the aforegoing, one may convert the above problem
into one that includes only the inequality constraints



"find Xop t such that objective function I(Xopt) (13)
is at minimum subject to constraints:

gj(Xopt) <_O, j = 1 ... MG; (13a)

(hp(Xopt) , - hp(Xopt) ) < TOL, p = 1 ... MH;" (13b)KS

where TOL is a suitably small, positive tolerance. Any NLP technique may be used to
determine Xop t in the above problem that is, in general, easier to solve than the one in
equation (12) because it includes no equality constraints.

One may note that the KS function in equation (13b) is an extension of a cumulative
constraint concept that was successfully used in conjunction with inequality constraints in
many applications, e.g., reference 2, whereby a single KS function represented a number of
constraints. Extending that concept further, both the inequality and equality constraints
may be blended into one cumulative constraint, so that equation (13) transforms into

"find Xop t such that objective function f(Xopt) (14)
is at minimum subject to constraints:

KS (gj(Xopt), hp(Xopt), -hp(Xopt) ) g TOL, (14a)
j= l ... MG, p= l ... MH;"

Again, the presence of h-constraints in the above may add to the number of the local
optima that might already be present in the same problem with the inequality constraints
only. Under the present state-of-the-art, there is no guaranteed way for locating the global
minimum in this class of problems, except to repeat the optimization starting from several
judiciously chosen initial design points.

Conclusions

A particular property of the Kreisselmeier-Steinhauser function known for its use as a
cumulative constraint was identified as useful for locating roots of a set of functions. Based
on that property, an algorithm was formulated for solving a general, nonlinear programming
problem with inequality and equality constraints by transforming it into one with inequality
constraints only. The transformed problem may be solved by any NLP technique capable of
solving inequality constrained problems.
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