NASA Technical Memorandum NASA TM-103552

MULTIPLEXING READOUT CHANNELS IN PROPORTIONAL COUNTERS

By James Caristi

Space Science Laboratory
Science and Engineering Directorate

August 1991
(NASA-TM-103552) MULTIPLEXING READOUT
N91-31606
CHANNELS IN PROPORTIONAL COUNTERS (NASA)
25 p
CSCL 14 B
Unclas
G3/35 0040109

National Aeronautics and
Space Administration
George C. Marshall Space Flight Center

1. AGENCY USE ONLY (Leave Dlank) $\begin{aligned} & \text { 2. REPORT DAYE } \\ & \text { August } 1991\end{aligned}$	3. REPORT TYPE AND DATES COVERED Technical Memorandum
4. title and subtitle Multiplexing Readout Channels in Proportional 6. AUTHOR(S) James Caristi	ars 5. FUNDING NUMBERS
7. Performing organization name(s) and adoress(es) George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, D.C. 20546	10. SPONSORING/MONITORING aGENCY REPORT NUMBER NASA TM-103552
11. SUPPLEMENTARY NOTES Prepared for Space Science Laboratory, Science and Engineeri the summer 1991 NASA/University Joint Venture (JOVE) Pro Computer Science, Valparaiso University, Valparaiso, IN 463	Directorate while author was in residence at MSFC during m on leave from the Department of Mathematics and (B. Ramsey/ES65/Science Advisor)
12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified--Unlimited	12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Proportional counters are important instruments used in sensing "hard" x rays. This document describes the possibility of doubling the number of readout channels in the detector without increasing the electronics needed to amplify channel signals. This suggests that it should be possible, conversely, to reduce the number of amplifiers, thereby reducing the weight and energy budget of the instrument. Various numerical multiplexing schemes are analyzed, and a computer program is presented that can reconstruct multiplexed channel outputs with very good accuracy.

14. SUBJECT TERMS			15. NUMBER OF PAGES 33
Hard X-Ray Measurement and Imaging, Multiwire Proportional Counters			16. PRICE COOE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION Of THIS PAGE Unclassified	15. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

TABLE OF CONTENTS

Page
PROBLEM STATEMENT 1
DIFFICULTIES WITH MULTIPLEXING SCHEMES 1
ASSUMPTIONS AND REQUIREMENTS 2
NUMERICALLY BASED MULTIPLEXING SCHEMES 2
TECHNIQUES FOR RECONSTRUCTING ACTUAL CHANNELS 4
ELIMINATING SPURIOUS TWO-CHANNEL CLUSTERS 4
alleviating cluster enlargement 5
AMPLITUDE AMPLIFICATION 6
RESULTS 6
APPENDIX A: Distribution of Absolute Differences 9
APPENDIX B: File Formats 13
APPENDIX C: Fortran Program 17

MULTIPLEXING READOUT CHANNELS IN PROPORTIONAL COUNTERS

PROBLEM STATEMENT

Proportional counters for x-ray astronomy under development at MSFC can use improved cathode planes constructed through a photolithographic process. Consequently, there is the opportunity to double the number of readout channels without incurring significant cost. The signal from each channel must still be amplified before it can be processed. The problem is that there is no convenient way to make a corresponding increase in the number of amplifiers used in the instrument. This report describes and illustrates an idea for multiplexing pairs of channels into amplifiers, which allows the determination, with high degree of confidence, of the channel numbers and amplitudes that caused the signal. The instrument under consideration will have 140 readout channels and 70 amplifiers in each of the x and y directions.

DIFFICULTIES WITH MULTIPLEXING SCHEMES

No multiplexing scheme can be completely successful. For example, suppose that an x-ray event interacting with the gas in the detector causes two distinct clusters of channels to produce signals, where one cluster consists of four adjacent channels (labeled using X's below) and the other consists of two adjacent channels (labeled using Y). Each wire must be multiplexed with another wire in the array. The following situation can therefore occur. One of the wires in the four-channel cluster is multiplexed as shown:

The channel after A, B, must be multiplexed somewhere. If it is multiplexed with one of the wires from the two-channel cluster,

XXXX

it may be impossible to determine whether a photoelectron caused a two channel cluster $A B$ or the legitimate two-channel cluster containing Y. Any multiplexing scheme is subject to this problem involving the creation of spurious two-channel clusters.

Besides the occurrence of spurious two-channel clusters, multiplexing schemes are subject to two additional problems. A legitimate cluster can be enlarged when a channel adjacent to an
endpoint of the cluster is multiplexed with a channel that is part of another cluster. Also, the amplitude of a channel that is part of a cluster can be increased if the channel is multiplexed with a channel that is part of another cluster. Both problems lead to error in the determination of the position of the event. In summary, any multiplexing scheme must face three problems:

1. Spurious two-channel clusters
2. Cluster enlargement
3. Amplitude increase

ASSUMPTIONS AND REQUIREMENTS

Before describing the proposed multiplexing scheme, assumptions and requirements are given, as well as the general procedure for "decoding" the amplifier outputs. It is assumed that a legitimate x-ray event induces signals in two clusters of channels, where each cluster has width between two and five (although some clusters may be larger than five channels). We assume that if there were a continuum of channels, a cluster would appear as a Gaussian curve. In the detector within a single time slice (microseconds), one, two, or (rarely) three clusters of channels may produce signals. It is important to identify those situations where two clusters are activated.

The general idea in reconstructing the actual channel clusters and amplitudes from the amplifier outputs involves first determining all the possible channels that might have been activated. Any channels that are "isolated" can be eliminated from further consideration ("isolated" means that neither adjacent channel was possibly activated by the event). For this idea to work, it is necessary that adjacent channels NOT be multiplexed with adjacent channels. Furthermore, channels that are multiplexed together must be separated by at least five channels. Otherwise, even a single cluster cannot be unambiguously reconstructed, as the following example shows:

If A and B are both possible active channels that are multiplexed together, it is impossible to determine whether a five-channel cluster starts at A or ends at B.

NUMERICALLY BASED MULTIPLEXING SCHEMES

There are many approaches to obtaining a multiplexing scheme that will be good enough to allow the reconstruction of at least single clusters. The simplest idea is to multiplex channels in the first half of the array with channels in the second half of the array according to some numerical pattern. In this way, it is easy to guarantee separation of multiplexed pairs. With 140 channels in the array numbered from 0 to 139 , we can consider the following scheme:

Given channel I for I between 0 and 69, multiplex channel I with channel $k * I(\bmod 70)+70$.

If k is chosen to be any integer relatively prime to 70 , then the set of multiples of $k(\bmod 70)$ will cover all of the integers between 0 and 69 (since k is invertible in the integers mod 70 if and only if k is relatively prime to 70). Note also that in this multiplexing scheme with k relatively prime to 70 , given channel I for I between 70 and 139, the channel multiplexed with I is given by $I^{*}(1 / k)(\bmod 70)$. For example, if $k=9,1 / k=39(\bmod 70)$, so the channel multiplexed with channel 88 is $88 * 39=2(\bmod 70)$. Good choices for k are discussed below.

The quality of the choice of k can be assessed using two measures. The first measure is the maximum number of consecutive channels in half of the array, which, if activated, can still be unambiguously reconstructed. This maximum unambiguously differentiable length (MUDL) is the number of "consecutive multiples" of k or $1 / k(\bmod 70)$ that can be written in the integers $\bmod 70$ without obtaining any consecutive integers. For example, if $k=9$, the progression of multiples

$$
0,9,18,27,36,45,54,63,2,11,20, \ldots
$$

does not possess any consecutive integers until the 39th multiple, 1 , is obtained. Notice, however, that for the multiples of $1 / 9=39(\bmod 70)$, the progression proceeds

$$
0,39,8,47,16,55,24,63,32,1, \ldots
$$

Thus for $\mathrm{k}=9$, in channels 0 through 69 MUDL is 39 , while in channels 70 through 139 MUDL is 9 . The MUDL is not simply k or $1 / k(\bmod 70)$. For example, if $k=41$, then $k=1 / k(\bmod$ 70) and it turns out that MUDL is 29.

The other measure of quality for \mathbf{k} involves determining the maximum number of consecutive channels spanning the center of the array, which, if activated, can still be unambiguously reconstructed. This central unambiguously differentiable length (CUDL) is simply

$$
\min \{b-a:(a, b) \text { is a multiplexed pair and } a<b\} .
$$

For example, when $k=9$ CUDL is 14 because (63,77) is a multiplexed pair. For $k=41$, CUDL is 10 since 65 and 75 are multiplexed together. Use of the value computed for CUDL should perhaps be tempered by the determination of how many multiplexed pairs have the same CUDL and the next highest minimum separation. For example, though CUDL is 10 for $k=41$, only one multiplexed pair is separated by 10 . The next highest separation is 20 . In contrast, for $k=29$, CUDL is 14 with three pairs $(58,72),(63,77)$, and $(68,82)$ having the same separation, and the next highest separation is 28 .

In the schemes with k chosen to be 9 or 29 or 41 , it is easily verified that any single cluster of width less than 9 can be unambiguously reconstructed from amplifier outputs. The best choice of
k to deal with pairs of clusters depends on characteristics of the detector's operation. For example, if most clouds land near the middle of the detector, it would be best to use $k=9$ and arrange to have channels 0 through 69 centered around the middle of the detector (since MUDL in that region is 39). If instead, clouds land in all portions of the detector with equal likelihood, it would be better to choose k to be either 29 or 41 , because in each case $k=1 / k(\bmod 70)$ and MUDL is 29. Then depending on the expected separation of clouds, a choice could be made based on CUDL.

TECHNIQUES FOR RECONSTRUCTING ACTUAL CHANNELS

With any of the numerically based methods described above, the reconstruction of actual channels and amplitudes involved in the event requires more than eliminating isolated channels. If we assume that triple events involving two-channel clusters are rare, it is possible to eliminate all occurrences of spurious two-channel clusters. The problem of cluster enlargement can be dealt with using a kind of smoothing.

ELIMINATING SPURIOUS TWO-CHANNEL CLUSTERS

The program called RECON.FOR in the appendix contains two subroutines used to eliminate spurious two-channel clusters. ELIM2A is invoked when a two-channel cluster is detected with two larger clusters. If both channels in the two-channel cluster are found to be multiplexed with channels that are part of the larger clusters, the two-channel cluster is eliminated. The reasoning is that triple events are rare to begin with, and the probability is remote that a triple event would occur with a two-channel cluster having both channels multiplexed into larger clusters. In fact, using actual data from a prior flight, we can obtain an empirical probability of 0.00518 for triple events. We can combine this with the probability that a channel will be multiplexed into one of two, four-channel clusters ($8 / 138$). Thus we obtain an estimate less than 0.00002 for the probability that a triple event has taken place and both channels of a two-channel cluster are multiplexed into the larger clusters. (This estimate should be reduced by the currently unknown conditional probability that one of the clusters of the triple event has width 2.)

The subroutine ELIM2B is invoked when there are at least three clusters, at least two having width 2, and at least one having larger width. To handle this situation, we have the following result:

If a channel in a two-channel cluster is multiplexed under a numerical scheme as described above with $k=41$ or $k=29$ or $k=9$, and its multiplexed pair is part of a cluster of width 3,4 , or 5 , then the multiplexed pair of its neighboring channel cannot be adjacent to any of the other channels of the larger cluster or their multiplexed pairs.

This situation is illustrated as follows:

The claim is that X cannot cause a spurious two-channel cluster with the multiplexed pairs of the larger cluster. So, if there are spurious two-channel clusters, then any legitimate two-channel cluster would be multiplexed into only spurious clusters. Thus when invoked, ELIM2B eliminates all two-channel clusters containing a channel that is multiplexed into a larger cluster.

The result described above can be proved by considering cases. One case is presented here; the others are similar. Suppose $\mathrm{C}>69$ is part of a two-channel cluster and is multiplexed (using $\mathrm{k}=$ $41)$ with A, a channel that is part of a five-channel cluster. Then $A=41 C(\bmod 70)$, and the channels multiplexed with $C+1$ and $C-1$ are $(\bmod 70) 41(C+1)$ and $41(C-1)$, respectively. Clearly, neither of these can be equal to $A+i$ or $A-i$ for $i=1,2,3$, or 4 . Also, the channels multiplexed with $C+1$ and $C-1$ are less than 70 , while channels multiplexed with $A+i$ and $A-$ i are greater than 70 (unless one cluster contains channel 70). Hence the multiplexed pairs of the channels in the two given clusters cannot be near each other to form a spurious two-channel cluster. (The case where one cluster contains channel 70 is verified by exhausting all the possibilities.)

ALLEVIATING CLUSTER ENLARGEMENT

To deal with the problem of cluster enlargement, subroutine ZAPEND identifies endpoints of clusters that have larger amplitudes than their neighbor channels. When a large amplitude endpoint is discovered, subroutine EXTRAPOLATE is called to determine what the expected endpoint value should be. This predicted value is computed by calculating the center of the cluster omitting the endpoint, looking at the amplitudes on the opposite end of the cluster, and using a linearly interpolated value. Exploiting the symmetry of the data in this way leads to a highly computationally efficient routine as well as excellent accuracy. The extrapolation subroutine was tested separately on a large set of clusters by comparing the actual cluster centers with the centers obtained using EXTRAPOLATE on those same clusters with an endpoint removed. The absolute difference between the predicted and actual centers of clusters had a mean of 4% of a channel width, and a standard deviation approximately equal to the mean. The maximum absolute difference was 46% of a channel width. A histogram showing the
distribution of the absolute differences is given in the appendix. Over 99% of the predictions are within 20% of a channel width of the actual center. Further testing results are given below.

AMPLITUDE AMPLIFICATION

The problem of amplitude amplification was not directly addressed. If the amplitude of an endpoint of a cluster turns out to be increased sufficiently, subroutine ZAPEND will adjust it appropriately. Errors in endpoint amplitudes have the largest significance in the computation of the event position. An amplitude increase caused by multiplexing in a central channel of a cluster obviously has negligible influence on the computation of the center of the cluster. But errors in multiplexed channels that are neither central nor on the end of a cluster lead to some error in the computed position of the center. Future work may involve assessing the magnitude of this type of error empirically, and perhaps designing a broader form of Gaussian smoothing to reduce the error.

RESULTS

The multiplexing scheme using $\mathrm{k}=41$ was tested using data derived from a previous balloon flight and randomly generated data. Single events were always correctly reconstructed, so they are not included in the results below. In addition, the program also correctly reconstructed the event state (single, double, or triple event) in all cases.

The detector in the previous balloon flight used 70 readout channels. The data from that flight were adjusted slightly to make it appear as if they came from a detector with 140 channels. This was done by doubling the beginning channel number of each cluster and building new clusters with the same widths as the old ones, but starting at the doubled locations.

Testing was done by using existing MSFC analysis software to determine the centers of the events. Centers were first obtained for the actual data and placed in file CENTERSA. Then the actual data were supplied to a program that created file CODED consisting of the multiplexed amplifier outputs (file formats are given in the appendix). The reconstruction program, using only file CODED, built a file, PREDRAW, that contained the predicted channel numbers and their amplitudes. The analysis software was then run on file PREDRAW to obtain file CENTERSP. Finally summary statistics and a histogram were generated from the differences between CENTERSA and CENTERSP. One channel width on the 140 channel detector is 2 mm .

Using the 54 double events in the file from the previous balloon flight, 216 computations of cluster centers were made in each of CENTERSA and CENTERSP. The results are given below:

$$
\begin{aligned}
\text { Mean absolute difference } & =0.024 \mathrm{~mm} \\
\text { Standard deviation } & =0.126 \mathrm{~mm} \\
\text { Maximum absolute difference } & =1.28 \mathrm{~mm} \\
\text { Number of overestimates } & =12 \\
\text { Number of underestimates } & =11 \\
\text { Number of exactly }\left({ }^{*}\right) \text { correct estimates } & =193
\end{aligned}
$$

(*) to the limit of single precision arithmetic
The file of simulated data contained 934 double events scattered uniformly on the detector. This gave rise to 3736 computations of cluster centers in each of the files CENTERSA and CENTERSP. The results are as follows:

$$
\begin{aligned}
\text { Mean absolute difference } & =0.026 \mathrm{~mm} \\
\text { Standard deviation } & =0.103 \mathrm{~mm} \\
\text { Maximum absolute difference } & =1.28 \mathrm{~mm} \\
\text { Number of overestimates } & =179 \\
\text { Number of underestimates } & =231 \\
\text { Number of exactly }(*) \text { correct estimates } & =3326
\end{aligned}
$$

A histogram shows these differences to be quite concentrated in the first 0.1 mm range:

Bin Range (mm)	Number of Observations
$0-0.1$	3456
$0.1-0.2$	82
$0.2-0.3$	91
$0.3-0.4$	30
$0.4-0.5$	24
$0.5-0.6$	19
$0.6-0.7$	21
$0.7-0.8$	4
$0.8-0.9$	0
$0.9-1.0$	5
$1.0-$	4

Evidently multiplexing readout channels will not lead to significant error in the computation of x-ray event locations.

APPENDIX B

File Formats

RAW and PREDRAW
Each event is associated with five records:
(1) number of x channels number of y channels
(2) x channel numbers active (range 1-140)
(3) x amplitudes corresponding to active channels
(4) y channel numbers active (range 1-140)
(5) y amplitudes corresponding to active channels

CODED
Each event is associated with one record containing: number of x amplifiers active x amplifier numbers active \mathbf{x} amplitudes corresponding to active amplifiers number of y amplifiers active y amplifier numbers active y amplitudes corresponding to active amplifiers

APPENDIX C

```
$DECLARE
    PROGRAM RECOM
    INTEGER MAXCHAM
    PARAHETER(HAXCHAN=140)
    INTEGER PX,PY,XOUT,YOUT,MX,NY,PSUBX,PSUBY,NXCLUMPS,HYCLUMPS
    INTEGER XSTART,YSTART, XHIDTH,YMIDTH,XSUH,YSUH,I,J,N
    DIMENSION PX(0:69),PY(0:69),XOUT(0:MAXCHAN-1), YOUT(0:MAXCHAN-1)
    DIMENSIOK PSUBX(50),PSUBY(50)
C
C Reconstruct events in raw for: froe events passing through the
C preasplifiers and coded in file CODED. .The prograe proceeds by
C assigning the observed amplitude fron a preanplifier to both of
C the channels eultiplexed to it. Then all isolated channels are
C elisinated. An atteapt is made to deteraine whether a single
C event took place. If this cannot be established, subroutine
C FIND2 is invoked, which is structured like an expert systen.
C It contains rules which deal with cluap enlargenent and spurious
C length 2 clumps.
C
    OPEN(32,FILE='CODED',STATUS='OLD')
    OPEN(33,FILE='PREDRAW',STATUS='UNKNONN')
C Obtain preamplifier levels for each record in CODED file
C Beginning of eain loop
C First initialize all preanps to 0 since not all are in CODED
    10 DO 20 I=0,69
            PX(1)=0
            PY(I)=0
20 COMTINUE
        DO 30 I=0, HAXCHAN-1
            XOUT(I)=0
            YOUT(I)=0
    30 CONTINUE
C
        READ(32,I,END=999)NX,(PSUBX(I),I=1,MX),(PX(PSUBX(I)),I=1,NX),
        +
                NY,(PSUBY(I),I=1,NY),(PY(PSUUBY(I)I),I=1,NY)
C
C Convert preanplifier outputs to all channels theoretically possible
        DO 40 I=0,69
            IF (PX(I).6T.0) THEN
                XOUT(I)=PX(I)
                N=HOD(41:1,70)+70
                XOUT(N)=PX(I)
            ENDIF
                IF (PY(I).GT.0) THEN
                YOUT(1)=PY(1)
                N=MOD(4111,70)+70
                YOUT(N)=PY(I)
            ENDIF
        40 CONTINUE
C
```

```
C Elioinate islands
    IF ((XOUT(0).GT.0).AMD.(XOUT(1).LE.0)) XOUT(0)=-XONT(0)
    IF ((YOUT(0).6T.0).AMD.(YOUT(1).LE.0)) YOUT(0)=-YOUT(0)
    IF ((XOUT(MAXCHAN-1).GT.0).AND.(XOUT(HAXCHAN-2).LE.0))
    + XOUT(MAXCHAN-1)=-XOUT(MAXCHAN-1)
    IF ((YOUT(MAXCHAM-1).6T.0).AND. (YOUT(MAXCHAN-2).LE.0))
    + YOUT(MAXCHAM-1)=-YOUT(MAXCHAN-1)
        DO 50 I=1, #AXCHAN-2
        IF ((XOUT(I).67.0).AND.(XOUT(I-1).LE.0).AND.
    + (XOUT(I+1).LE.01) XOUT(I)=-XOUT(I)
        IF ((YOUT(I).GT.0).AND.(YOUT(I-1).LE.0).AND.
        + (YOUT(I+1),LE.OI) YOUT(I)=-YOUT(I)
    50 continue
C
C Find the number of active channel cluaps in each direction
            CALL COUNTCLUAPS(XOUT,NXCLUMPS)
    CALL COUNTCLUMPS(YOUT,NYCLUMPS)
C
        IF ((MXCLUMPS.6T.1).OR.(NYCLUMPS.GT.1)) THEN
                CALL FIND2(XOUT,YOUT,NXCLUHPS,NYCLUNPS)
            ELSE
C In this case, the nuaber of cluaps in each direction is 1
C CLUMPINFD returns start channel numbers, widths, and anplitude
C suss for the clusp found
                CALL CLUMPINFO(XOUT,O,XSTART,XHIDTH,XSUM)
        CALL CLUHPINFO(YOUT,O,YSTART,YWIDTH, YSUM)
        IF ( (XNIDTH.NE.YHIDTH).OR.(XSUH.NE.YSUM).OR.
                    (XWIDTH.6T.5) ) THEN
                    CALL FIND2(XOUT, YOUT,NXCLUMPS,NYCLUHPS)
                ELSE
                    WRITE[33;'(2I3)')XWIDTH,YUIDTH
C Write out x channels triggered in raw forgat
                    WRITE (33,81)(XSTART+J,J=1,XWIDTH)
C Write out x anplitudes
                            MRITE(33,81)(XOUT(XSTART+J),J=0,XHIDTH-1)
C Write out y channels triggered in raw format
                                    MRITE(33,81)(YSTART+J,J=1,YWIDTH)
C Mrite out y aeplitudes
                URITE(33,81)(YOUT(YSTART+J),J=0,YWIDTH-1)
            ENDIF
        ENDIF
C End of main loop
    60 T0 10
    81 FORMAT(10014)
999 STOP
    END
C
C
    SUBROUTIME FIND2(XCHAN, YCHAN,HXCLUMPS,NYCLUHPS)
C Top level processor for case where double events are suspected
    INTEGER MAXCHAN
    PARAMETER(MAXCHAN=140)
    INTEGER XCHAN, YCHAN,NXCLUHPS,NYCLUMPS, I, INIT
    INTEGER WX(10),WY(10),XSTART(10),YSTART(10),XSUM(10),YSUM(10)
    LOGICAL ELIM2A,ELIH2B
    DIMEMSION XCHAN(0:MAXCHAN-1), YCHAN(0:NAXCHAN-1)
    DO 1 1=1,10
        XSUM(1)=0
        YSUM(I)=0
    1 CONTINUE
```

```
C Accumulate inforation about the clunps
    IMIT=0
    DO 10 I= , MXCLUHPS
        CALL CLUMPIMFO(XCHAN,INIT, XSTART(I),MX(1),ISUN(1))
        IMIT=\START(1)+WX(I)
    10 cONTIME
    IMIT=0
    DO 20 1=1,NYCLuTPS
        CALL CLLUPIMFO(YCHAN,IMIT,YSTART(I),WY(1),YSUM(1))
        INIT=YSTART(I)+WY(I)
    20 COMTINUE
C Elininate spurious endpoints of cluaps with width 6T 2
    CALL ZAPENO(MXCLUMPS, XCHAN,XSTART,WX,XSUH)
    CALL IAPEND(UYCLUNPS, YCHAN,YSTART,HY,YSUM)
C Sort the cluap info pointers by cluap width
    30 IF (NXCLUMPS.6T.1) CALL SORT(NXCLUIPS,WX,XSTART,XSUM)
    IF (RYCLURPS.6T.1) CALL SORI(NYCLUMPS,WY,YSTART,YSUM)
C The following code operates like an expert systen; each condition
C of the case structure represents a known situation, and a lom
C confidence catch-all condition occurs at the end
        IF ((MXCLUHPS.E日.2).AND.(NYCLUMPS.EQ.2).AND.(MX(1).LT.WX(2))
    + .AND.(UX(1).EQ.WY(1)).AND.(WX(2).EQ.WY(2)I) THEN
C Case where there are clearly 2 events of different midths
            CALL MRITER(XCHAN, YCHAN, HXCLUHPS,NYCLUMPS, XSTART, YSTAFT,WX,YY)
        ELSEIF ((NXCLUMPS.EQ.2).AND.(NYCLUMPS.E日.1).AND.
    + (WX(1).EQ.WX(2)).AND.(WX(1).EQ.WY(1)I) THEM
C Case mhere events line up in the y dimension, but widths equal
            CALL WRITER(XCHAN,YCHAN,HXCLUHPS,NYCLUMPS,XSTART, YSTART,WX,WY)
        ELSEIF ((NXCLUMPS.EG.1).AND.(NYCLUMPS.E日.2).AND.
        + (WY(1).EQ.WY(2)).AND.(WX(1).EQ.WY(1)I) THEM
C Case mhere events line up in the x disension, but widths equal
            CALL WRITER (XCHAN, YCHAN, MXCLUKPS,NYCLUNPS, XSTART,YSTART,WX,WY)
        ELSEIF((MXCLUMPS.GT.2).AND.(WX(NXCLUMPS-1).6T.2).AND.
    + (MX(1).E日.2).AND.
    + (ELIN2A(XCHAN,NXCLUMPS,WX,XSTART,XSUM)) I THEN
c Case mhere a width 2 cluap is aultiplexed with other clunps of
C larger width. ELIM2A checks the duals, and if successful, reduces
C the number of cluaps, resets the width, start, and sua pointers,
C and returns.IRUE.
            60 to 30
        ELSEIF((NYCLUMPS.6T.2).AND.(WY(NYCLUMPS-1).6T.2).AND.
    + (WY(1).E日.2).AND.
    + (ELIM2A(YCHAN,NYCLUMPS,WY,YSTART,YSUMI) I THEN
        60 TO 30
C
    ELSEIF ((MXCLUMPS.GT.2).AND.(UX(2).EQ.2).AND.
    + (WX(NXCLUNPS).6T.2).AMD.
    + IELIN2B(XCHAM,NXCLUMPS,WX,XSTART,XSUMII I THEN
C Case where a midth 2 clump is sultiplexed with other width 2
C clunps. ELIN2B looks for width 2 cluaps oultiplexed with a larger
C clunp and elininates then. If any cluaps are elisinated, Elim2B
C returns.truE.
            60 T0 30
    ELSEIF ( (NYCLUKPS.GT.2).AND.(WY(2).EQ.2).aND.
        + (ELIM2B(YCHAN,MYCLUMPS,WY,YSTART,YSUM)) I THEN
            60 T0 30
        ElSE
            CALL WRITER(XCHAN,YCHAN,NXCLUMPS,NYCLUNPS,XSTART,YSTART,WX,WY)
        ENDIF
        RETURN
```

 END
    ```
    LOGICAL FUMCTIOM ELIMZA(CHAM,MCLUHPS,WIDTH,START,SUM)
    IMTEEER MAXCHAM
    PARAMETER(HAXCHAM=140)
    INTEGER CHAN,MIDTH,START,SUM,MCLUNPS,DUAL,I
    DIHEMSIOW CHAM(0:MAXCHAN-1),WIDTH(10),START(10),SUM(10)
    C When there are gore than 2clunps in one disension, deteraine
    C whether one of the width 2 clunps is spurious by seeing if
    C the duals of its netbers are part of other clunps
    C
        ELIM2A=.FALSE.
        IF ( (MIDTH(1).EQ.2).AMD.
        + (CHAM(DUAL(START(1)I).EQ.CHAN(START(Il)).AND.
    + (CHAM(DUAL(START(1)+1)I.EQ.CHAM(START(1)+1)) ITHEM
            CHAM(START(1)I=-CHAN(START(1))
            CHAN(START(1)+1)=-CHAN(START(1)+1)
            MCLUMPS=NCLUMPS-1
            DO 100 I=1,MCLUMPS
                        MIDTH(I)=WIDTH(1+1)
                        START(I)=START(I+1)
                    SUM(1)=SUM(1+1)
                CONTINUE
                ElIM2A=.TRUE.
            ENDIF
        RETURM
        END
C
        LOGICAL FUMCTION ELIM2BICHAN,MCLUMPS,MDDTH,START,SUH)
        INTEGER mAXCHAN
        PARAMETER(HAXCHAM=140)
        INTEGER CHAN,WIDTH,START;SUM,MCLUMPS,DUAL,CLNO,I,J,K
        DIMENSIDN CHAN(0:MAXCHAN-1),NIDTH(10),START(10),SUAM(10)
        LOGICAL MEHBER
    C If a midth 2 clump is found which is aultiplexed with a larger
    C clunp, it is elicinated. This function is only invoked mhen
    C there are at least 2 width 2 clunps
            ELIM2B=.FALSE.
            CLNO=1
    10 IF ((MIDTH(CLNO).EQ.2).AND.(CLMO.LT.NCLUHPS)) THEN
        I=dual (START(Clmo))
        j=duaL(START(CLMO)+1)
C See if I or J is aultiplexed into the larger clunp
        IF ( (MEHBERII,START(NCLUHPS),WIDTH(NCLUMPSII).OR.
        * (MEMBER(J,START(NCLUMPS),MIDTH(MCLUMPS!)) IHEN
c Elininate the current cluap
C Do not increment CLNO in this case.
                    CHAN(START(CLMOH)=-CHAN(START(CLNO))
                        CHAN(START(CLNO)+1)=-CHAN(START(CLNO)+1)
C Move width, start, and sum pointers down
            DO 30 X=CLNO,NCLUHPS-1
                        WIDTH(K)=WIDTH(K+1)
                        START(K)=START(K+1)
                        SUR(K)=SUM(K+1)
                    CONTINUE
                    NCLUKPS=NCLUNPS-1
                    ELIM2B=. TRUE.
                ELSE
                        CLNO=CLMO+1
                        ENDIF
        60 T0 10
        ENDIF
        RETURM
        END

LOGICAL FUNCTIOM MEMBER(CHMO,START, WIDTH)
IMTEGER CHMO, START, WIDTH
C Deteraine whether CHMO is part of the cluap of length MIDTH
C beginning at channel nueber START
IF ( (CHMO.GE.START).AND. (CHNO.LT.START+MIDTH) ) THEN
NEMBER = TRUE.
ELSE
MEMBER=.FALSE.
ENDIF
RETURM
END
C
SUBROUTIME URITER(XCHAN, YCHAN, NXCLUAPS, NYCLUMPS, XSTART, YSTART, WX, WY)
INTEGER MAXCHAN
PARAMETER (MAXCHAN=140)
INTEGER XCHAN, YCHAN, HXCLUMPS, MYCLUMPS, TOTXCH, TOTYCH
INTEGER UX(10), WY(10),XSTART(10),YSTART(10), 1, J
DIMENSION XCHAN(0: WAXCHAN-1), YCHAN(0: MAXCHAN-1)
TOTXCH=0
TOTYCH=0
DO \(10 \quad \mathrm{I}=1\), NXCLUMPS
TOTXCH=TOTXCH + WX(I)
10
CONTINUE
DO 20 I=1, MYCLUAPS
TOTYCH=TOTYCH+NY(I)
20 CONTINUE
WRITE (33,' (213)' ITOTXCH, TOTYCH
C Urite out \(x\) channels triggered in ram foraat
MRITE \((33,81)((X S T A R T(1)+\mathrm{J}, \mathrm{J}=1, \mathrm{WX}(1) 1, \mathrm{I}=1, \mathrm{MXCLUMPS})\)
C Urite out x anplitudes
WRITE( 33,81\()((\times C H A N(X S T A R T(1)+J), \mathrm{J}=0, \mathrm{WX}(1)-1), \mathrm{i}=1\), WXCLLMPS \()\)
C Write out y channels triggered in raw foreat
WRITE \((33,81)((Y S T A R T(1)+J, \mathrm{~J}=1, \mathrm{WY}(1)), \mathrm{I}=1\), NYCLUMPS \()\)
C Write out y anplitudes
WRITE \((33,81)((\) YCHAN \((Y S T A R T(1)+J), J=0\), MY (I) -1\(), I=1\), MYCLUMPS \()\)
RETURN
81 FORMAT(10014)
END
C
SURRDUTINE CLUKPIMFOICHAN, INIT, START, MIDTH,SUM)
InTEGER MAXCHAN
PARAMETER (HAXCHAN=140)
INTEGER CHAN, IMIT, START, MIDTH, SUM, I
DIMENSION CHAN(O:MAXCHAN-1)
C Find consecutive active channels and their anplitude sun
C starting search at position INIT
C
C Find the first non-zero amplitude channel
START=INIT
5 IF (CHAN(START).LE.OI THEN START=START+1
IF (START.GE.MAXCHAN) THEN
MIDTH=0
SUM=0
RETURM
ELSE
60 TO 5
ENDIF
EMDIF
```

C Find total width and accunulate sue
SUM=CHAM(START)
WIDTH=1
I=START+1
10 IF (CHAN(1).6T.0) THEM
MIDTH=WIDTH+1
SUM=5UH+CHAM(1)
I=I+1
IF (1.GT.MAXCHAN-1) RETURM
60 TO 10
ENDIF
RETURN
END
C
SUBROUTIME SORT(MCLUMPS,MIDTH,START,SUK)
INTEGER NCLUAPS,HIDTH(10),START(10),SUM(10),I,J
C Sort the cluap width, start, and sus pointers by width
C Bubble sort is appropriate here since NCLUMPS is 5 or less
DO 10 I=1,NCLUMPS-1
DO 20 J=1,MCLUMPS-I
IF (NIDTH(J).GT.WIDTH(J+1)) THEN
CALL SMAP(MIDTH(J),NIDTH(J+1))
CALL SHAP(START(J),START(J+1))
CALL SWAP(SUM(J),SUM(J+1))
ENDIF
CONTINUE
20
CONTINUE
RETURN
END
C
SUBROUTINE SMAP(I,J)
INTEGER I,J, TEMP
TEMP=1
I=J
J=TEMP
RETURN
END
C
SUBROUTINE COUNTCLUAPS(CHAN,NCLUAPS)
INTEGER HAXCHAN
PARAMETER(MAXCHAN=140)
INTEGER CHAN,NCLUKPS,I,START,WIDTH,SUM
DIMENSION CHAN(0:MAXCHAN-1)
NCLUMPS=0
I=0
10 CALL CLUMPINFO(CHAN,I,START,HIDTH,SUM)
IF (HIDTH.EQ.0) RETURN
NCLUMPS=NCLUNPS+1
I=START+WIDTH
IF (I.LT.MAXCHAN-1) 60 TO 10
RETURN
END
C
INTEGER FUNCTION DUAL(N)
IMTEGER N
IF (N.LT.70) THEN
DUAL=MOD(41:N,70)+70
ELSE
DUAL=MOD(41%N,70)
ENDIF
RETURM
END

```
    SUBROUTINE LAPEND(NCLUAPS,CHAN,START,MIDTH,SUR)
    IMTEGER MAXCHAN
    PARAMETER(HAXCHAN=140)
    INTEGER I,NCLUHPS,ENDPT,CHAN,START,WIDTH,SUH,DUAL,GSTART,WSUB
    IMTEGER PREDICT
    DIMEMSION CHAM(0:MAXCHAN-1),WIDTH(10),START(10),SUM(10)
    DO 25 I=1,MCLUMPS
        IF ( (MIDTH(I).6T.2).AND.
    + (CHAM(START(l)).6T.CHAM(START(I)+1)).AND.
    + (CHAN(DUAL(START(I)I).GT.0)) THEN
    C Extract the Gaussian shaped cluap from a possibly large ciunp
    C looking froe the left side of the clunp
                CALL GETSUBCLUMP(CHAN,START(I),WIDTH(1),GSTART,WSUB,1)
C Extrapolate the correct value for CHAN(START(I))
                CALL EXTRAPOLATE(CHAN,WSUB,START(I)+1,START(1),PREDICT)
C Adjust the anplitudes of the endpoint and its dual
                SUM(I)=SUM(I)-CHAN(START(I))+PREDICT
                CHAN(START(I))=PREDICT
                CHAN(DUAL(START(I))I=CHAN(DUAL(START(I)))-PREDICT
C Readjust width and start pointers if necessary
                IF (PREDICT.EQ.O) THEN
                    WIDTH(I)=WIDTH(I)-1
                    START(I)=START(I)+1
            ENDIF
        ENDIF
        ENDPT=START(I)+MIDTH(I)-1
        IF ( (MIDTH(I).6T.2).AND.
    + (CHAN(ENDPT).6T.CHAN(ENDPT-1)).AND.
    + (CHAN(DUAL(ENDPT)I.6T.0) ) THEN
C Extract the Gaussian shaped clusp froe a possibly large cluap
C looking fron the right side of the clunp
                CALL GETSUBCLUMP(CHAN,START(I),MIDTH(1),6START,USUB,-1)
C Extrapolate the correct value for CHAN(ENDPT)
                CALL EXTRAPOLATEICHAN,USUB,GSTART,ENDPT,PREDICT)
C Adjust the amplitudes of the endpoint and its dual
                SUM(I)=SUM(I)-CHAN(ENDPT)+PREDICT
                CHAN(ENDPT)=PREDICT
                CHAN(DUAL(ENDPTI)=CHAN(DUAL(ENDPTI)-PREDICT
                    C Readjust width pointer if necessary
                IF (PREDICT.EQ.0) WIDTH(I)=WIDTH(I)-1
            ENDIF
25 CONTINUE
        RETURN
        END
C
    SUBROUTINE GETSUBCLUMP(CHAN,START,WIDTH,GSTART,WSUB,INCR)
    INTEGER HAXCHAN
    PARAMETER(MAXCHAN=140)
    INTEGER CHAN,START,WIDTH,GSTART,WSUB,INCR,POS
    DIMENSION CHAN(O:MAXCHAN-1)
C Find the Gaussian subcluap starting fron the left if INCR=1 or
C fron the right if INCR=-1
    USUB=1
C Set starting position for Gaussian clunp search; endpoint is bad
    IF (INCR.EQ.1) THEN
        POS=START+1
    ELSE
        POS=START+MIDTH-2
    ENDIF
```

C Find other end of Gaussian subcluap by cliebing one hill until
C the next hill is detected or end of given clunp
C First uphill
10 IF (CHAM(POS).LE.CHAN(POS+IMCR)) THEN
USUB=WSUB +1
POS=POS+1MCR
IF ((POS.GT.START+1).AND.(POS.LT.START+MIDTH-2).AMD. $+$ (CHAN(POS).6T.0)) 60 TO 10 ENDIF
C Then downhill
20 IF ((POS.GT.START).AMD. (POS.LT.START+MIDTH-1).AND. + (CHAN(POS),GE.CHAN(POS+IMCR))) THEN

MSUB $=$ MSUB +1
POS $=P 05+$ IMCR
60 TO 20
EMDIF
C Set starting pointer for the Gaussian sub cluap IF (IMCR.E日.1) THEN

6START=START
ELSE
GSTART=START+WIDTH-WSUB-1
ENDIF
RETURN
END
C
SUBROUTIME EXTRAPOLATE(CHAN, WIDTH,XSTART, XSEARCH, PREDICT)
INTEGER MAXCHAN,OPP1,OPP2,Y1,Y2
REAL C,XOPP, CENTER
PARAMETER (MAXCHAN=140)
INTEGER CHAN,WIDTH,XSTART,XSEARCH,PREDICT DIMENSION CHAN(O:MAXCHAN-1)
C Find the center C of the distribution C=CENTER(CHAN, HIDTH, XSTART)
C Conpute the two x values closest to the opposite fron XSEARCH
C These foraulas are correct whether XSEARCH is to the left or the
C right of C.
OPP1=2:C-XSEARCH
OPP2 $=0$ PP1 $1+1$
C Get the opposite value froe XSEARCH relative to C as a real nuaber $X O P P=2 \boldsymbol{C}$ - X SEARCH
C Set PREDICT to the linear interpolated value
IF ((OPPI.LT.XSTART).OR. (OPPI.GE.XSTART+MIDTH)) THEN
$Y 1=0$
ELSE
$Y 1=$ CHAN(OPP1)
ENDIF
IF ((OPP2.6E.XSTART+MIDTH).OR.(OPP2.LT.XSTART)) THEN Y2 $=0$
ELSE
Y2=CHAN(OPP2)
ENDIF
PREDICT $=(1.0$ YY2-Y1)/(1.0tOPP2-OPP1) 1 (XOPP-OPP1) + Y1
RETURN
END

REAL FUNCTION CENTER(CHAN, WIDTH,START)
INTEGER HAXCHAN, I, HIDTH,START, CHAN
REAL YSUM, XDOTY
PARAMETER(MAXCHAK=140)
DIMENSIOM CHAN(O:HAXCHAN-1)
C Deteraine the center of the cluap starting at START of size WIDTH
YSUM=0
XDOTY=0
0010 I=START,START+WIDTH-1
YSUH=YSUR+CHAR (I)
XDOTY=YDOTY+1ICHAN(I)
10 CONTINUE
IF (YSUM.EQ.0) THEN
MRITE(t, t)'Itt ERROR -- YSUM $=0^{\circ}$
CEMTER=9999
RETURM
ENDIF
CEMTER=XDOTY/YSUM
RETURM
END

APPROVAL

MULTIPLEXING READOUT CHANNELS IN PROPORTIONAL COUNTERS

By James Caristi

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.
E. Tondloug-Harrem
E. TANDBERG-HANSSEN

Director
Space Science Laboratory

