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AN EQUIVALENT DOMAIN INTEGRAL METHOD FOR
THREE-DIMENSIONAL MIXED-MODE FRACTURE PROBLEMS

K. N. Shivakumar and I. S. Raju
Analytical Services and Materials, Inc.
Hampton, VA

ABSTRACT

A general formulation of the equivalent domain integral (EDI) method for
mixed-mode fracture problems in cracked solids is presented. The method is dis-
cussed in the context of a 3-D finite element analysis. The J—integral consists of
two parts: the volume integral of the crack front potential over a torus enclosing
the crack front and the crack surface integral due to the crack front potential plus
the crack-face loading. In mixed-mode crack problems the total J-integral is split
into J7,Jr1, and Jrrr representing the severity of the crack front in three modes
of deformations. The direct and decomposition methods are used to separate the
modes. These two methods were applied to several mixed-mode fracture problems
in isotropic materials. Several pure and mixed-mode fracture problems were an-
alyzed and results found to agree well with those available in the literature. The
method lends itself to be used as a post-processing subroutine in a general purpose

finite-element program.

INTRODUCTION

Several numerical techniques, in conjunction with finite-element (F-E) anal-
yses, have been developed to calculate fracture mechanics parameters (stress-
intensity factor K, strain energy release rate G, and J-integral). Three of these
techniques are: (1) the virtual crack extension (VCE) method [1-4], (2) the virtual
crack closure technique (VCCT) [5-8], and (3) the J-integral method [9-12]. The
VCCT method is simple and accurate but can be applied only to linear elastic
problems. In contrast, the VCE and J-integral methods can be applied to both
linear and nonlinear problems. These methods are best demonstrated for pure
mode problems or for calculating the total crack driving forces (G or J). Appli-

cation of these methods to mixed-mode fracture problems is complex. The VCE



method involves a physical extension of the crack front by a small amount. Se-
lection of the amount of crack extension is arbitrary and can introduce errors in
inelastic problems. Further, both VCCT and VCE methods require a F-E mesh
that is nearly normal to the crack front. Except for some simple cases, generating
such customized F-E models for irregular-shaped cracks is difficult and time con-
suming, if not impossible. Furthermore, such detailed modeling may not improve
the global accuracy of the boundary value solution. Therefore, pursuit of methods
that do not have these limitations continues.

The J-integral method is very attractive, particularly for nonlinear material
problems. With the original J-integral equation by Rice [9], Cherepanov [10,12],
and Eshelby [11] for two-dimensional (2-D) problems as the starting point, several
crack tip integrals were developed to include body forces due to thermal and
magnetic fields and unloading effects in elastic-plastic problems [13-18]. For 2-D
problems, the crack tip integrals are written as the sum of a remote line integral
and an area integral around the crack tip. For 3-D problems, the J-integral is the
sum of a remote surface integral and a volume integral around the crack front.
These integral formulations suffer from a common drawback in that they require
the evaluation of surface integrals which include singular terms. The evaluation
of these surface integrals, although possible, is very unwieldy in F-E analyses.

The J-integral formulation has been modified into a domain integral form [19-
23] after de Lorenzi [24,25] introduced a S-function concept to define the virtual
crack extension in 3-D cracked solids. In this method, the surface integrals for 3-D
problems can be transformed into integrals over a domain or volume and, hence,
the name equivalent domain integral (EDI). The EDI formulation is computation-
ally very appealing and efficient.

Recently, Nikishkov and Atluri [20] presented an EDI formulation for cracked
3-D solids. To simulate the singularities at the crack front, they used quarter-point
~singularity elements. While they present the EDI formulation in a comprehensive
manner, some details of the formulation need additional explanation. Also the
formulation of reference 20 may not be general enough for problems where crack
faces are subjected to external loading. The first objective of this paper is to
present a general formulation of the EDI method for the calculation of J-integral

under mixed-mode loading conditions.



Most investigators use collapsed quarter-point singularity elements at the
crack front to simulate the crack front singularity with a polar arrangement of
elements around the crack front. This type of mesh may be suitable but not con-
venient, particularly, for crack extension studies. Furthermore, in the plastic range
the quarter-point singular element produces a 1 /r type singular strain field, which
is valid only for elastic-perfectly-plastic material. Therefore, the second objective
of this paper is to study the accuracy of the results when non-singular elements
with a rectilinear arrangement of elements are used at the crack front.

First the EDI formulation for general mixed-mode fracture problems in elastic,
elastic-plastic, and anisotropic materials is presented. Next, the validity of the
formulation is studied by applying it to several linear elastic and isotropic mixed-
mode fracture problems. Numerical implementation of the EDI method for 20-
noded and 8-noded, 3-D isoparametric elements is presented in the appendix.
Several differences between the present formulation and those in the literature are
highlighted.

CRACK FRONT AND DOMAIN INTEGRALS

The J-integral was introduced by Rice [9], Cherepanov (10], and Eshelby
[11] to define the strength of the stress-strain field in nonlinear elastic 2-D crack
problems. The J-integral was shown to be path-independent for nonlinear elastic
and power-law hardening elastic-plastic materials. This path independence can
be explained based on one singular point (crack tip) inside a closed contour in a
singly connected domain.

In 3-D crack problems, the crack front forms a line singularity and the strength
of the singularity (K or J) could be varying all along the crack front. Therefore, the
path independency is valid in a global sense, that is the total (or average) strength
of the singularity of the complete crack front is independent of the surface enclosing
it. However, at a point on the crack front, the path independency is valid only
over a small region around the crack front due to interacting singular fields at
neighboring points on the crack front.

Consider a small tube of radius € around a segment of crack front of length
A as shown in Figure 1(a) such that the limit of A and % tends to zero. The



local J-integral, also referred to as the crack front integral, over the surface A is
defined as (see Fig. 1(a) ) [12,20]

. Ou;
/A Jeydos = Jim, /[Wn,, ~ oypetny] dA (1)

In Equation (1), W is the stress-work density, o;; is the stress tensor, u; is the
displacement vector, and n is the kt* directional component of the unit normal
vector on the closed surface A.. The indices 7 and j take the values 1, 2, and 3,
and k takes the values 1 and 2. Thus the local value of J,, is the total energy
flux leaving the closed surface A, per unit crack front length in the k** direction.
Jz, can be defined in any coordinate system, but the local crack front coordinate
system z;,z;, and z3 is convenient for crack-extension studies. Note that the axes
z1 and z3 are in the crack plane and are normal and tangential to the crack front,
respectively, while z, is normal to the crack plane.

The complete surface integral, in terms of surfaces identified in the Figure

1(a), is written as (henceforth the limits are dropped for convenience of presenta-

tion)
‘/J“d:c;;: / QdA +/ QRdA +/ QdA (2)
A A, Aq +A¢2 A‘ct +A‘cb
where
Ou;
Q = [VVTI,]c — a'ij-aTknj] (3)
€5
W o= / o:; deij (4)
0

In Equation (2), A¢; and A., are cross-sectional areas of the tube at O, and O,
respectively. The subscripts ¢t and cb represent top and bottom crack surfaces,
respectively. The stress-work density in Equation (4) is calculated over the com-
plete strain path. The total strain tensor ¢;; includes elastic, plastic, and thermal
components. For linear elastic problems, W = iﬁ%‘—) Note that Equation (2)

involves only stress, displacement and strain fields but no material properties.



However, to calculate stresses from strains the appropriate constitutive relation-
ships (isotropic or anisotropic) must be used. Thus Equation (2) is applicable for
general thermo-elastic-plastic and anisotropic material problems.

Fracture modes in a 3-D cracked solid can be represented by three modes:
opening (mode I), shearing (mode II), and tearing (mode III) modes. The
corresponding three modes of the J-integral are Jy, Jrr, and Jri1. In Equation
(1) or (2), J-; and J;; represent the total J-integral (J1 + Jrr + Jirr) and the
product integral (—2+/J7 - J11), respectively [12, 19, 20]. Since the meaning of J .3
integral is not clear for crack problems, it is not defined by Equations (1) or (2).
However, the mode ITI integral is separately defined as [20]

/ Jrrrdzy = lim [ Q3dA + f Q3dA
A -y A+ A

—0 A,
A—~0
+ [ Qs dA ] (5)
Ac¢¢+A-cb
where
Ous
Qs = WHin, — o3 B (6)
€3;
wil = / o3; des; (7
o

The indices i and j take values 1, 2, and 3. Equations (2) through (7) completely
define all three J-integrals. As previously mentioned, the evaluation of surface
integrals, Equations (2) and (5), is tedious and could introduce errors due to
numerical integration of singular terms. Therefore, an alternate form of evaluat-
ing the above surface integrals called the Equivalent Domain Integrals (EDI) is

presented in the next section.

Equivalent Domain Integral

Consider two tubular surfaces A, and A spanning between two points O and
O, on the crack front (see Fig. 1(b)). The tube A is arbitrary and encloses the
tube A, on which the J-integral is evaluated. The surface integrals (Egs. (2) and
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(5)) on A, are converted into volume integrals by mathematical manipulations.
First, the right hand side of Equations (2) and (5) are multiplied by unity. Next,
from the resulting right hand side of the equation, subtract the product of the

same integral over the surface A and zero, as shown below.

/J,,,da:s = 1. QdA + 1-/ QdA
A A, A+ Az
(8)
+1-/ QdA—O-/QdA
Al¢¢+A¢cb A
/JI[[d223 = 1. Q3dA + 1/ Q3dA
A A, A+ Ag, (9)

+1-/ Q:dA — o./Q3dA
Atcc‘l'Atcb A

Note that, Equations (8) and (9) assume a unit extension of the crack front
segment in the z;-direction. Instead, if an arbitrary (nonuniform) virtual extension
of the crack front is made, Equations (8) and (9) need to be modified to account
for this variation. Therefore, an arbitrary but continuous function S(z1,z2,%3) is
introduced [19, 20, 23] that has the property S(z1,z3,23) = 0 on the surface 4
and $(z;,22,23) = S(z3) on the surface A.. Using the S-function, Equations (8)

and (9) are rewritten as follows.

/J,,,Sdzz = QSdA +/ QSdA
a A, Ay + Agg
+/ QSdA - / QSdA (8a)
AI¢|+Alcb A
/JIIISd:c3 = Q3 SdA +/ Q; SdA
A A, Ay + Az

+/ Qs SdA - / Qs SdA (9a)
A¢c¢+A¢cb A

As previously mentioned, A is small (im A — 0) and, hence, J ., is assumed to
be constant over the crack front segment length A. Then, Equations (8a) and
(9a) are simplified to



Jou - f = / QSdA+/ QSdA
A( A11+A|2

+/ QSdA —/QSdA (10)
A¢<1+A¢cb A
Jiur- f = QanA+/ Qs SdA
A¢ A¢1+A¢2
+/ Q:;SdA — / Qs SdA (11)
A¢c¢+Atcb A
where
O;
f = / 5(33) d23 (12)
O

The parameter f is equivalent to the new crack surface area created by translating
the crack front by S(z3) in the z;- direction. Evaluation of f in Equation (12)
and the choice of the §-function will be discussed later. Equations (10) and
(11) were further simplified by selecting the S-function such that the function has
zero values at two end surfaces (O; and O;) of the tubes A, and A and non-zero
between these two end faces. With this choice, the second surface integrals in
Equations (10) and (11) become identically zero.

Now the integrals on the crack faces between the inner (A.) and outer (4)
tubes are added and subtracted from the right hand sides of Equations (10) and
(11). This manipulation is performed to obtain the integrals on a closed surface
that encloses a volume. After some elementary algebraic operations, Equations
(10) and (11) is rewritten as follows

Jeo - [ = QSdA

./,; + (A-A), + A+ (A - 4),

+/ QSdA +/ QSdA (13)
(A-AJ),, (A - 4),,

+ / QdA
Acct + Accb



Jrir- f o= — Qs SdA

'/44 + (A"Ac)cg + A( + (Al _A)cb

+ [ @ssat + | Q:5d4  (19)
(A - A.)“ (Ac - A)ca

+ [ Qs dA
Agee + Accy
The first term in Equations (13) and (14) is negative because the direction of

integration on the inner surface of the tube (A.) is reversed. In Equations (13)
and (14), (4 — A.),, and (A, — A)_, are the top and bottom crack surface areas
between the two tubes A and A.. The first term in Equations (13) and (14)
encloses the volume between the two tubes A and A., which is represented as
(V — V.). The rest of the terms in the right-hand sides of Equations (13) and
(14) are integrals on the crack faces. Hence, J;, and Jyss are expressed as the

sum of domain and crack surface integrals as follows

th ' f = (Jz,, y f)domain + (le- - f)crackfacel (15)

JIII' f = (jIII ) f)domai'n + (JIII ‘ f)crackfacec (16)

Reference 20 obtained similar equations but did not include the crack face
integrals. However, as will be shown later, for special cases the crack-face integrals
vanish and the complete J-integral is given by the domain part of Equations (15)
and (16). ,

Domain integral.- Invoking Green’s divergence theorem, the closed surface

integral of Equations (13) and (14) are written as a domain integral as follows

(Jzﬁ 'f)domain = —/ QSdA

Ou;
= -/[Wnk — a.-j-ézlk-nj]SdA (17)

_ ows) 8 , Bu
- —/(v_v.)[ e Pl



Hence, the domain integral is

as Bu; 0S5
Tz, - == — — i
( f)domatn \/(V—V.)[ Waxk a’sz 3:::_,- ] v
(18)
ow 6511
Similarly one has
88 Ouz 0S8
_ I 92 Bt Bl
(JIII f)domam /(V—V.) w axl JB:::; 6:c, v
(19)
ow I 8 ,0Ou;
_‘/(IV V)[ Oz, * Bz (6:::, )5 dv

In deriving Equations (18) and (19), the equations of equilibrium

60; 5

Oz;
and the small deformation strain-displacement relationships

1, Ou; Ou;

€j = '2'(53—1, 3 z:)
were used.

In conventional finite element analysis, the equations of equilibrium are not
satisfied point wise in the domain that is modeled. Numerical experimentation
showed that the differences between including and not including the terms involv-
ing the equations of equilibrium are of the order of 10~3 to 10~* of the integral
values for several problems. Therefore, in writing Equations (18) and (19) the
equations of equilibrium are assumed to be satisfied exactly.

The terms in brackets in the second integral in Equations (18) and (19) are
point wise equal to zero for a linear elastic material. These terms, however, are

non-zero in elastic-plastic and thermal problems. Since the present formulation is



for general thermo-elastic-plastic problems, such simplifications are not incorpo-
rated.

The domain integral Equation (18) is rewritten in a matrix form as

aS ! ]
Uer Daomain == [ (W = {2, (2} S}] &V
(V-Vo) L2
[ - e S @Y (20)
(v-vo 92k
where
{"}T = {011 022 033 012 02 031}

Oe O¢ Oe e e Oe
' AT _ 11 22 33 12 23 31
{6"‘} = { Oz, Ozp Oz 2 Oz, 2 Oz 2 Oz }

{a'u.1 a’U2 8u3
Ba:,, 5:!3), sz

011 012 031
[2] = | 012 022 023

031 023 033

{uf, }T =

85 oS 0§

{S' }T = { 3::1 632 6233 (21)

and the stress-work density W is

W = / [g11de1n + o22dez + oazdess + 2012dey2 + 2023ders + 2031des; |
0

Similarly, the mode IIT integral Equation (19) is written as

iN d ,
(JIII'f)domain = - -/(V V)[ WIIIE;;_ -é:_:{a3}T{S}]dV

(22)

aWIII "
~ [ 1T (o) ) s
(v-v) 9%
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where

{Us}T = {031 032 0’33}

02u3 6211.3 62U3

{82312 63162}2 621623 (23)

{u3" }T =

and

€
wir = / [ 03sdess + oaidesy + o3zdesz ]
0

The numerical implementation of Equations (20) and (22) in a finite-element
analysis with isoparametric elements is presented in the Appendix.

The integral J., in Equation (20) for the linear elastic case is equivalent
to the total strain-energy release rate calculated by the virtual crack extension
method [1-4, 13, 24, 25].

Crack-face integrals.- The crack-face integrals in Equations (13) and (14)

are
(Jz,. 'f)crackface = / QSdA + / QSdA
(A-A)ct (Ae— A),
+ / QdA (24)
Alct + Alcb
and
(JIII ' f)crackface = / Q3 SdA + / Qs SdA
(A_AI)CI (AI - A)cb
+ / Qs dA (25)
Atcl + Adcs

When the terms Q ( Eq. (3)) and Qs ( Eq. (6)) are zero on the crack faces,
obviously, the integrals in Equations (24) and (25) vanish. On the crack faces, ny
and n; are always zero, while n; = —1 on the top face (ct) and n; = 1 on the
bottom face (cb). Imposition of these conditions in Equations (3) and (6), results

in the following.

11



Fork =1

Ou;
(Q)crackface = —a'izgg'l_n2
0
(QS)crackface = - 0’32‘6_2::'"'2 (26)
Fork = 2
Ou;
(Q)crackface = Wn2 — 042 a ng (27)
) z5

Note that for k£ = 2, Q3 is zero.

Thus for traction free crack faces the terms (Jz, Jerackface 80nd (Jr1r)crack face
vanish. In contrast, the term (J,, )crackface is N0 longer zero. As noted in refer-
ence 23, the (Jz, )erack face 15 zero only for pure mode-I fracture problems or for a
singular stress field alone. However, in any finite size cracked body the stress field
consists of both singular and non-singular terms and, hence, the (J 23 )erackface in-
tegral is not zero and cannot be neglected. The numerical evaluation of crack-face
integrals involve the computation of singular integral terms, which are computa-

tionally cumbersome and the source of errors [23].

Separation of Modes in Mixed-Mode Problems

There are three modes of deformations in a cracked body, namely, the opening
mode (Mode I), the shearing mode (Mode II), and the tearing mode (Mode
III). The direct and decomposition methods are used to separate the mixed-
mode fracture mechanics parameters into the three individual modes.

Direct method.- The three components of the J-integral, namely, Jy, J17 and
Jrr1, are calculated from J., and J,, of Equation (15) and Jrrr of Equation
(16). Since Jysz is directly calculated, the other two are calculated by solving the

equations

12



Jey = Jr + Jir + Jix

Jey = =24/ J1dn (28)

Equation (28) was used to obtain Jr and Jys as

1 2
= g [ VIR T =T+ VT ¥ T T
1 2
Jir = -4- [\/ le—Jza—JIII - \/J=1+J=2—JIII] - (29)

Thus, in a general mixed-mode crack problem, computation of J., and J.,
from Equation (13), Jrrr from Equation (14), and the use of Equation (29)
completely defines all three modes of the J-integral. This procedure appears simple
but the evaluation of J,, could be complicated and erroneous due to the numerical
integration of singular functions. Furthermore, as explained in reference 23, the
local crack-face displacements are needed to distinguish between the opening and
sliding (shearing) modes of deformation. Because of these reasons, separation of
modes using Equation (29) may not be the best choice. Hence, an alternate
method that avoids the evaluation of J.,, called the decomposition method, is
used.

Decomposition method.- The advantage of transforming the surface inte-

gral into a domain integral appears to be lost because of the non-zero crack-face
integrals as shown in Equations (15), (16) and (27). These crack-face integrals are
necessary to account for the terms containing the product of the singular and non-
singular stress (strain) fields in the stress-work density expression. It was shown
in reference 23 that the product terms are eliminated by decomposing the stress
and displacement fields into symmetric and antisymmetric parts. The resulting
equation contains only the domain integrals. Hence, the method is attractive
and is computationally efficient. The decomposition method, however, requires

additional effort to create a symmetric mesh about the crack plane.

13



The decomposition of displacement and stress fields is straight forward for 2-
D problems [19, 23, 26-28], but is slightly more complicated for 3-D problems [20].
Hence, the decomposition of displacement and stress fields corresponding to the
three modes of fracture is presented. Consider any two points P(z,,z;,z3) and
P'(z;,—%2,z3) that are in the immediate neighborhood of the crack front and are
symmétric about the crack plane as shown in Figure 2. For any arbitrarily general
deformation, the displacements and stresses at points P and P' can be expressed

as a combination of symmetric and antisymmetric components as shown below.

up Us UL1AS
uzp ¢ = { U2s + < u2as (30)
usp uss U3As

and
Uip! Uuis —U1AS
ugpr ¢ = { —U2s ¢ + U248 (31)
Usp! uss —U3AS

where subscripts § and A4S denote the symmetric and antisymmetric components,
respectively.
Equations (30) and (31) are used to determine the symmetric and antisym-

metric displacements in terms of the displacements at points P and P’ as

Uy 1 | WP + uip

U2 = 5 Uzp — Uzp!

us ) g usp + uspr
Uy 1 Uip —Ur1p
Uz =3 uzp + uzpr (32)
U3 ) s Uzp — usp!

Similarly, the symmetric and antisymmetric components of the stresses are

expressed in terms of the stresses at points P and P' (see Fig. 3) as

14



(011

a22
{ 733
712
023
\ 731

4 0'11 A
g22
033

ﬁ J12

723

\ 031 /

3

78

AS

[

| o=

,

\

J11p
0225
O33p
T12p
023p
O31p

T11p
O22p
033p
T12p
023p
O31p

|+ + +

+

4+ + |

G115,
0224,
033,
0125,
023,
0'3]P, /

C11p: )
0225,
033,
012,
0235,

a31pl /

(33)

The symmetric and antisymmetric displacement and stress fields are further

separated into mode I, mode II, and mode II] components as follows

{u} = {u} + {37+ ('

and

e

DN -

[T

uip + v1pr
Up — U2pP!
uzp + usp!

uip — Uip!
uzp + uapr

0

0
0

Uzp — Usp’

15
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{o} ={o}' + {a}'" + {o}'"

((T11p + O11p, )
022p + 022,

1) o33, + 033,,
= =4 >
2 | 012p — 012,

023p — 023,
\ 031, + 031, /
((011p — O11p, )
022p — 022}»:
1 0
+ =9 ’
2 | 012, + 012y,
0
\ 0 7
( 0 A
0
1o -0
33p 335
+ 59 P 35
2 0 (35)
023, + 023,
\ 031p — O31p, /

Similar equations in reference 20 had typographical errors. The mode I,
mode II, and mode III displacements (Eq. (34)) and stresses (Eq. (35)) are
used to directly evaluate Jr,Jrz, and Jrrr from J,, using Equation (15). Note
that the surface integral in Equation (15) is required only when the crack face
is loaded. The J., integral for each of these modes of deformation is identically
equal to zero because of the orthogonality of the modes of deformations. Hence,
the decomposition method involves only the evaluation of domain integrals and is

computationally efficient.

S-Functions

As mentioned previously, the S-function is an arbitrary but continuous func-
tion with a zero value on the surface A and at the ends of the tube (A; and A;)
and a non-zero value (varying between zero and one) on the surface A, (see Fig.
1). On the tube surface A, the S-function is a function of only z3 and has a value

16



of one at the location where the J-integral is required. The S-functions are con-
veniently defined by specifying the values of S at the nodes and using the element
shape functions (see Appendix). Figure 4 presents several types of S-functions for
domains spanning one or two elements in the zs-direction. Table 1 presents the
values of f (see Eq. (12)) that correspond to each of the S-functions shown in
Figure 4. Also, the S-functions for both 8-noded and 20-noded isoparametric ele-
ments are presented. For the 8-noded element, a linear S-function is defined, while
for 20-noded elements several combinations of linear and quadratic functions are
defined. Note that the values for f depend only on the variation of the S-function
in the z3-direction.

The J-integrals for various cracked 3-D solids were calculated using the various
S-functions presented in Figure 4. The results of these numerical experiments will

be discussed later.

RESULTS AND DISCUSSION

The EDI method was applied to several pure mode-I, mode-II, mode-I11,and
mixed-mode fracture problems to evaluate the accuracy, domain independency,
and S-function independency. Although the method formulated above is for gen-
eral anisotropic and nonlinear materials, the results presented here are restricted
to linear elastic and isotropic materials with Poisson’s ratio of 0.3. Throughout the
analysis only non-singular elements were used around the crack front. Wherever
possible, a rectangular arrangement of finite elements was used near and around
the crack front to evaluate the accuracy of the rectangular type of modeling.

First, the EDI method was applied to a 3-D cracked body subjected to a com-
bination of known mode-I, mode-II, and mode-III singular stress fields. Then,
the method was applied to various finite size crack problems subjected to loadings
that produce single or mixed-mode deformations. The specimen configurations
considered were the middle-crack tension specimen and embedded cracks in cir-
cular cylindrical rods subjected to tension, torsion, and shearing loads. The com-
puted J-integral values are compared with those from literature wherever possible.
Both the direct and decomposition methods were used to separate the mode-IIT
component. Only the decomposition method was used to separate mode-I and

mode-II components because of the singular integration involved in the direct

17



method [23]. All of the above analyses used finite element models with 20-node
isoparametric elements. Typical results are also presented for models with 8-node

isoparametric elements.

Singular Field Loading on a Cracked Body

Consider a single-edge cracked specimen with a straight crack front as shown
in the Figure 5(a). This crack configuration was subjected to mode-I, mode-IT
or mode-IIT or a combination of these modes. This problem demonstrated the
accuracy of the method without introducing the nonsingular stress field that occurs
in any finite-element analysis of a cracked body. The displacements in each of the

three modes of deformation are given in terms of the spherical coordinates (r,¥,
and z) [29] as
Mode-I displacements:

Ky [r 0 . 2 0
ul_F -2—"cos§[1—2u+sm -2-]
Ky r . 0 . 6
ur = ﬂsxn§[2—2u—cos 5] (36)
Uz = 0
Mode-IT displacements:
Ky [r .6 , 0
ul——a— -2—1rsm§[2—2u+cos 7
Kir T 0 ., 0
— =i i — i 7
uy o 2ﬂ_c052[ 1+ 2v —sin 5 (37)
Uz = 0

Mode-III displacements:
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u1=0

Uy = 0 (38)

Ky /27 . 8
Uz = ‘/— -
3 G T sm2

where G = E/(2(1 +v))

The above displacement fields were imposed on the cracked body shown in Figure
5(a). The resulting stresses and displacements in the solid were used to calculate
the J-integrals by the EDI method.

Utilizing the symmetries in the problem, a representative quarter of the solid
was modeled with 20-node isoparametric elements as shown in Figure 5(b). One
layer of elements was used to model the entire thickness. The finite element model
had 320 nodes and 36 elements. The displacements for each mode of deformations
were calculated at each node of the model from Equations (36)-(38) and were
used as input for EDI algorithm.

Domains and S-functions.- Five domains were used in the calculations.
These domains are shown in Figure 5(b) as D1, D3,...Ds. Each domain consisted
of one ring of four elements around the crack front. The surface that is nearest to
the crack front of each domain corresponds to the surface A.. Similarly, the surface
that is farthest from the crack front of each domain corresponds to the surface 4.
(Thus, for example, the surface A for the domain D; will be the surface A, for
domain Dj3.) On the surfaces A of each domain, the S-function was prescribed to
be zero. On the surfaces A, several types of S-functions in the z3- direction (the
six types are shown in Fig. 4) were considered. Since one layer of elements was
used to model the thickness of the solid, A; was set equal to zero for the Type IT
through VI S-functions.

J-integral results.- Table 2 presents the normalized value of J., calculated
for four domains (D, to Ds) and six types of S-functions. The imposed displace-
ment field on the model corresponds to Ky = 1. The Jys integral, as expected,
was computed to the order of machine zero and hence is not shown here. Results

for all four domains and Type I, II, III, and V  S-functions are in excellent
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agreement with the exact solution. Type IV and VI S-functions are quadratic in
radial direction. Although these results are within two percent of the exact solu-
tion they are not as accurate as other types. Similar trends were observed when
quadratic S-functions were used on several other crack problems. These results
suggest that the simple Type-I S-function will give accurate J-integrals.

The computed integrals were inaccurate when the domain D, was used. The
J,,-integrals for this domain were about 10 to 15 percent higher than those for
other domains. This behavior is attributed to the errors in the numerical integra-
tion of the imposed singular stress field.

Note that in the above analysis one ring of elements around the crack front
was used in each domain. Multiple rings of elements in each domain (for example,
combining the D; and D; domains) gave results identical to those with a single
ring of elements. Multiple rings, however, increase the data preparation efforts
considerably. Thus, domains with a minimum number of rings of elements (in this
case one ring) are preferable.

The domain independency observed in this example is expected since this is
a plane-strain problem where the strength of the singularity is constant along the
crack front (z3-axis). Therefore, for crack bodies having a constant singularity
strength along the crack front, the J,,-integral is independent of the domain.

Table 3 presents the normalized J.,, calculated assuming several linear combi-
nations of the K7, Krr, and Kyr displacement fields given by Equations (36-38).
Four domains, each with Type I S-functions were used. The J., calculated for
four domains from Equation (15) agrees very well with the exact solutions. The
maximum difference is less than 2% for the K; = K17 = 1 loading in domain Dj.

Middle-Crack Tension Specimen

A typical middle-crack tension, M(T)*, specimen of W/a = 2, t/a = 1,
H/a = 8, and crack length a subjected to a uniform tension stress o at z2 = £H /2
was analyzed. The F-E mesh shown in the Figure 6 was used for the analysis by
imposing symmetry conditions at £; = —a, z2 =0 (on the uncracked plane), and
z3 = 0 planes. The model was comprised of six unequal layers with thicknesses

0.22t, 0.13t, 0.08t, 0.04t, 0.02t, and 0.01t as shown in Figure 6(a). (The layer with

* ASTM abbreviation for middle-crack tension
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the smallest thickness is near the z3 = t/2 surface.) Five domains, D, Ds,... Ds,
as shown in Figure 6(b) and Type I S-function (linear in radial direction and

quadratic in z3-direction, see Table 1) were used to calculate the domain integrals.

Plane-strain analysis.- First, the M(T') specimen was analyzed for a plane-

strain condition by imposing u3 = 0 on z3 = 0 and z3 = t/2 planes. The J,
values were calculated for the five domains all along the crack front using each
of the six layers in the thickness direction. The average normalized value of J,,
J., E/[m 62 a(1 — v?)], was 1.410 with a maximum variation of less than 0.1%.
This value agrees very well with handbook value of 1.414 and VCCT method [6]
value of 1.424. These results also suggest that a simple linear S-function in the

radial direction yields accurate J, values.

Three-dimensional analysis.- The M(T) specimen was reanalyzed by re-

laxing the plane-strain condition, i.e., by removing the boundary condition uz =0
on the z3 = t/2 plane. Three domain definitions, D 4, Dp, and D¢, were used.
The domain and S-function definitions for domain D 3 are illustrated in the Figure
6(b). In D4, each ring of elements around the crack front represents a domain.
In this case, the radius (¢) of the inner surface (the A, surface on which the J,
is evaluated) was different for each domain; it varied from 0.0 to 0.734 times the
crack length a for domains D; to Ds, respectively. The other two domains (Dp
and D¢) involve a constant inner surface A and a variable outer surface. Domain
Dg had € = a/10, and, hence, the domain D; included the second and third rings
of elements around the crack front. The corresponding S-function definition in
the radial direction is bilinear as shown in the Figure 6(b). The domain D ¢ had
¢ = 0. Therefore, for example, domain D; included first, second, and third rings
of elements.

Table 4 presents the normalized J -, for all five domains using the three domain
definitions. As expected, J, for the interior layer is independent of the domain
and the domain definition. In contrast, J, for the last layer with a D4 domain
definition shows a strong domain dependency. As the radius (or mean distance
from the crack front) of the inner surface of the domain becomes large the stress,
strain, and displacement fields on this surface also include the effect of the singular

field from the other segments of the crack front. Evaluation of J.,-integral on this
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surface would yield values which are different if the single crack front segment
alone had contributed to the deformation field. If the inner surface of the domain
is close to or at the crack front, the interaction from the neighboring segments of
the crack is either very small or nonexistent. Hence, the Dp (¢/a = .1) and D¢
domain definitions gave more accurate results than the type D 4. These results
suggest that the radius of the inner surface should be less than or equal to one-
tenth of the crack front. Furthermore, a domain consisting of only one ring of
elements is sufficient to calculate accurate values of J provided the domain is very
close to the crack front. Note that domains D; and D; always satisfy the above
conditions, hence, the results were accurate and agreed very well with the VCCT
method [6].

The global average value of J,, over the crack front, however, is domain
independent. Any ring of elements (even with a D4 domain definition) spanning
the complete length of the crack front yields accurate values. For example, the
global average value of J.,, E J,, /[m 6% a(1—2?)], for the four domains were 1.521
(D), 1.523 (D3), 1.529 (Dy4), and 1.531 (Ds). Only the innermost domain was
less accurate, 1.433 (D; ), because of errors in the stress-strain fields very near the
crack front. In the above analyses a D 4 domain definition was used and each ring
had 24 elements.

Figure 7 compares the normalized J., along the crack front from EDI and
VCCT [6] methods. Excellent agreement is observed between the two methods.

Plane-strain results are also shown in the figure as a reference solution.

Embedded Penny Shaped Crack in Circular Rod

An embedded penny shaped crack of radius a in a circular cylindrical rod with
D/a = 10 and H/a = 40 is shown in Figure 8. Two types of loadings, uniform
tension and torsion, were considered. Note that Z, Z2, and Z; represent the global
coordinate system and #;, @2, and #3 represent the corresponding displacements.
Utilizing the symmetry in the problem one-eighth of the specimen was modeled.
Figure 8(b) shows the F-E model of the lower eighth of the specimen. The model
has 5143 nodes and 1020 twenty-noded elements with 6 layers in the circumferential
direction as shown in Figure 8(b). Figure 8(c) shows the details of the modeling

near a point on the crack front and the two domains D, and D; used in EDI
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calculations. Note the rectangular arrangement of elements. This arrangement
is in contrast to the polar arrangement used in previous examples and by other
investigators [20]. Two domains and Type I S-functions were used to evaluate the

integrals.

Remote tension load.- The solid is loaded by a uniform stress o on the

T3 = +H/2 planes. The J,,-integrals were calculated for the two domains (D 4
domain definition) in each of the six layers in the circumferential direction. The
J.1 values for all six layers calculated in either D, or D, were identical. This
is expected because of the axisymmetric nature of the problem. The normalized
EJ., /lo? a(1 — v?)] values from the EDI method for domains D; and D; are
1.333 and 1.299, respectively. The exact analytical solution due to Sneddon [30]
for a penny shaped crack in an infinite solid is 1.273, while Benthem and Koiter’s
asymptotic solution [31] for a finite size solid is 1.275. Thus, the normalized J .,
values from domains D; and D, differed by less than 3% from each other and
are about 2% to 5% higher than the closed form solutions [30, 31]. The result
for domain D, is more accurate than that for domain D;, about 2% higher than
Benthem and Koiter’s value. The larger error in the domain D ; may be attributed
to the fact that only two elements were used around the crack front and the whole
domain is within the singular field. A D¢ domain definition of domain D, which
included the two rings of elements around the crack, also gave results identical to

the D, domain solution.

Remote torsion loading.- A torque of magnitude T' = = a*G/H was im-
posed at the two ends of the specimen (Z3 = £H/2), where G = E/[2(1 + ).
This corresponds to an angular twist of magnitude 2/H in the uncracked rod. The

displacement field for this loading in the uncracked rod is

2 =—(2/H)Z;3 2,
i3 =0

The boundary conditions #; = 0 on Z; = 0 plane, @2 = 0 on Z; = 0 plane,

and @3 = 0 at all nodes were imposed on the finite-element model. On the face
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Z3 = —H/2 the displacements given by Equation (39) were imposed on the
model. The J—integral was calculated using both the direct and decomposition
methods. The normalized values, E Jyrra® /[(1+v) T?], from the direct method for
domains, D; and D, are 0.2402 and 0.2389, and from the decomposition method
for domains D; and D, are 0.2388 and 0.2374, respectively. The value of the
normalized integral for an infinite solid obtained with the analytical solution by
Lowengrub and Sneddon [32] was 0.2293. Since only mode-III loading was applied
the total integral J., (Equation (15)) and the Jyr integral (Equation (16)) are
nearly identical for both domains. The value of J 11 calculated by the EDI method
is about 4% larger than Lowengrub and Sneddon’s infinite body solution [32].

Inclined Embedded Penny Shaped Crack

The EDI algorithm is next applied to problems involving mixed-mode defor-
mations. Figure 9 shows an embedded inclined penny shaped crack in a circular
rod subjected to a uniform stress o. The crack plane is inclined at an angle a to
the #; — &2 plane. The solution to this problem can be obtained as the sum of
two solutions: the solution to a penny shaped crack subjected to traction normal
to the crack faces of the magnitude 0, = (0/2)(1 + cos2«a) and the solution
of a penny shaped crack subjected to shear traction on the crack faces of magni-
tude * = —(0/2) sin2a. The exact solutions for an infinite solid with the above
mentioned traction are given by Cherepanov [12] for v = 0 and Kassir and Sih
[33] for a general value of Poisson’s ratio v. The strain energy release rates for
the three modes, after converting the stress-intensity factors given in reference 33

using plane-strain assumptions, are

cla
Gr = ;f(l + cos 2a)?

4(1 -v¥ao? ., 2
G = T (Z—2)'E sin’ 2a cos* ¢ (40)
_ I S
Grr = it szz)(i V);/E)ao' sin? 2o sin? ¢

Where ¢ is the angle measured from the ;'-axis on the crack plane (see Fig. 9(b)).

These results for the infinite size solid are used to compare with the results from
EDI method for a finite size rod.
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A cylindrical rod with a D/a = 5 and H/a = 10 was used in the analysis. Uti-
lizing the symmetry in the problem one-half of solid was modeled. The model has
9547 nodes and 2000 twenty-noded parabolic elements (see Fig. 10). Symmetry
conditions (u@; = 0) were imposed on #; = 0 plane. The three domains D,, Ds,
and D; used are shown in Figure 10(b). The normalized total J-integral all along
the crack front calculated using Equation (15) (Jz1) and the total value of J
(sum of Jr, Jr1, and Jysr) from the decomposition method are shown in Figure
11. The Kassir and Sih [33] solution is shown by the solid line in the figure. The
total values of J from the direct and the decomposition methods agree with each
other for all three domains. EDI results from all three domains are about 2% to
7% larger than Kassir and Sih’s solution because a finite size solid was analyzed.
Among the three domains, the domain D2 gave the lowest value while the domain
D; gave the largest. The maximum difference between the two domains D, and
D; was about 3 percent.

Figure 12(a) shows the distribution of the normalized J, Jir, and Jygr val-
ues along the crack front obtained from the decomposition method. The indi-
vidual mode components from the EDI method agree well with those determined
by Kassir and Sih all along the crack front. The small differences between the
two solutions can be attributed to the finite solid. It is interesting to note that
Cherepanov’s solutions (with v = 0) for J;r and Jryr are about 28% lower than
Kassir and Sih solution (with v = 0.3).

Figure 12(b) compares the Jysr values calculated from the direct (Equation
(16)) and decomposition methods with Kassir and Sih solution [33]. For all three
domains, the two EDI procedures agree well with each other and with Kassir and

Sih.
Inclined Semi-Circular Surface Crack in a Tension Rod

A semi-circular prismatic rod with an inclined semi-circular surface crack
was analyzed. The centrally located semi-circular surface crack plane is oriented
at an angle 30° to the Z;-axis of the rod (see the insert sketch in Fig. 13).
The rod is subjected to a remote tension loading. The finite-element model of
Figure 10(a) was utilized to analyze this problem. The three domains D,, Dy,
and D; shown in Figure 10(b) were used in the EDI calculation. The total value
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of J(J.,) and the individual components Jy, Jr1, and Jrrr along the crack front
are shown in Figures 13 and 14, respectively. These results were obtained using
the decomposition method. No reference solutions are available for this problem.
Solid lines in Figures 13 and 14 are the smooth fit to the domain D solutions.

The J-values for the three domains agree well with one another. The maxi-
mum difference between the results of the domain D, and D3 is about 3 percent.
As expected, (a) all the J values are symmetric about ¢ = 90°, (b) the Jr and Jyr
have the highest values at ¢ = 0° and 180° with the lowest value at ¢ = 907, (¢)
the Jrrr value is zero at ¢ = 0° and 180°, (d) Jrrr value is maximum at ¢ = 909
and (e) Jys value is zero at ¢ = 90°.

Application to 8-Node Isoparametric Elements

The use of 8-noded isoparametric elements in the EDI analysis was demon-
strated using two classical crack problems in a tension specimen: an embedded
elliptic crack and a penny shaped surface crack. The F-E model and the domain
used were same as that given in reference 34, except the notch radius is zero. The
F-E mesh had 3420 nodes and 2772 eight- noded elements. Around the crack
front, a rectangular arrangement of non-singular elements was used (similar to
that shown in Fig. 8(c)). The element size around the crack front was a/20,
where a is the crack length in thickness direction of specimen. A domain consist-
ing of the second ring of elements around the crack front and two element layers
along the crack front was used for the J-integral calculation.

Figure 15 compares the distribution of the normalized total J(J,) along the
crack front for an embedded elliptic crack calculated from the EDI method to
Green and Sneddon’s infinite body solution [35]. The two solutions agree well
with each other.

Figure 16 shows the distribution of the normalized total J (which is same as
J1) along the crack front for a semi-circular surface crack in a tension specimen.
The J-values from the EDI method agree very well with those from the VCCT [6]
and Raju and Newman’s solutions {36]. The EDI algorithm is incorporated in the

ZIP3D [37] code. The ZIP3D is an elastic and elastic-plastic finite-element code
to analyze cracked bodies.
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CONCLUDING REMARKS

Details of development of the three dimensional equivalent domain integral
(3-D EDI) method for the calculation of mixed-mode fracture mechanics param-
eters in isotropic or anisotropic and linear or nonlinear materials are presented.
Differences and improvements between the current algorithm and that reported
in the literature are highlighted. Results presented in this paper are restricted to
isotropic elastic solutions. Several single and mixed-mode loaded cracked bodies
were analyzed and results were found to agree very well with those available in
the literature.

The EDI method with 20- or 8-noded isoparametric, nonsingular elements
and either a polar or rectilinear arrangement of elements at the crack front gives
accurate values of the J-integral. A simple linear S-function in the radial direction
is recommended if only one ring of elements at the crack front is used. The EDI
method was found to be independent of the type of S-function, except for one
special case. The J values were found to be inaccurate for domains consisting
of only one ring of elements around the crack front with S-functions that were
quadratic in the radial direction from the crack front.

The EDI method is domain independent provided the radius of the inner
surface of the domain is either zero or very small (less than one-tenth of the major
crack length). Domains consisting of only the second ring of elements or the first
two rings of elements around the crack front reduce the data preparation effort
and also give accurate J-integral values.

The principal advantage of the 3-D EDI method is that the finite element
idealization need not be orthogonal to the crack front. The orthogonality of the
modeling at the crack front is a requirement for the virtual crack closure and the
force methods. In the case of mixed-mode loadings, the decomposition method
yielded accurate J-integrals. The method requires the evaluation of only one
integral with different sets of displacement and stress fields. However, the method

requires a finite element mesh that is symmetric about the crack plane.
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APPENDIX: NUMERICAL IMPLEMENTATION OF THE EDI METHOD

This appendix presents the numerical implementation of the EDI method for
a finite element analysis with isoparametric elements. The procedure presented in
this appendix is similar to that of the 2-D analysis in reference 23 and is applicable
to both 8-noded and 20-noded 3-D isoparametric elements. For the purpose of
illustration the 20-noded element is used.

A typical finite element model around the crack front is shown in Figure
17(a). The shaded region represents a typical domain surrounding the crack front.
Although, no restriction was imposed on the number of elements in the domain
either in z; — or z,—directions, one ring of elements in £; — and z; —directions were
used to explain the procedure. The procedure for computing J ., is presented but
can be easily extended to the Jrr; computation as well.

The total J-integral (J.,) is equivalent to sum of the domain integrals con-
tributed by the elements in the shaded region shown in Figure 17.

N,
(th)domain = E']zb; (Al)
i=1

where J.,, is the volume integral over the i** element in the shaded region and
N, is the number of elements enclosed in the domain.

For isoparametric finite elements, the displacements within the element are
defined by the shape functions N; and the nodal displacements (uq);-

ua = Nj(ua); (42)

where N; = N;(§, n,¢) and £, 1,( are the coordinates of the parent element.
The index j takes the value 1 to N, (N is the number of nodes per element; N,
= 8 for eight-node linear element and N, = 20 for twenty-node quadratic element)
and o takes the value 1, 2, and 3 corresponding to the displacementsin z;—, z2—,
and z3—directions, respectively.

The volume integral J., of the it* element (Eq. (20)) is computed using

Gaussian quadratures as
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ow Ty
+ (g0 = {0 LN S | wnwauy(detld)) |,
(43)
where Mg is the number of Gaussian quadrature points used in each direction ¢, 7,
and ¢ and wom, Wy, and w, are the Gaussian weights and det [J] is the determinant

of the Jacobian matrix [J| defined by

iR R
B = | g% ... Y. 1 j j (A4)
G B T e, (ma)w. (@3)w

Most of the quantities necessary for Equations (20-23), W, W1 {4}, {03},
and [g], are readily known in terms of the nodal displacements of the element.
But, computation of the terms S,{S'}, and %g needs special attention and is
discussed below. Evaluation of the derivative matrices{e’,, } and {u}'} is same as

that for %; hence, they are not discussed.
i

S-Functions

As mentioned previously, the S-function is any arbitrary but continuous func-

tion with a non-zero value (varying between 0 and 1) on the surface of the inner
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tube (A.) and a value of zero on the surface of the outer tube and at the two ends
of the tube (see Fig. 1). The variation of S-function over a typical i** element
in the shaded region is shown in the Figure 17(b). The function is conveniently

defined using the element shape functions as

S, m,¢) = N; S,

where j = 1 to N, and S; is the nodal value of the S-function at node j on the
element. Different S-functions can be defined by assigning 0, .5 or 1 to §;. For
a typical element shown in the Figure 17(b), the S-function is completely defined
by specifying S; = S10 = 1 and zero to all other nodes. This definition yields a
S-function having a parabolic variation along the crack front and a linear variation

in the radial direction (Type I S-function).

Partial Derivatives of §

Once S is defined the partial derivatives of S, i%, 3‘%, and -&% can be

computed using the isoparametric formulation as

8S 8S
bz, £
- 8s
sl -y g (46)
85 85
823 R.

where [J] is the Jacobian matrix defined in Equation A4.

Partial Derivatives of W

The terms g—“ are computed by fitting a bilinear equation (in terms of the
parent coordinates £, 7, and {) to W, using the values at the 2 x 2 x 2 integration
points and then taking derivatives with respect to zx. In reference 20, the integral
J g—:‘:dV was approximated by evaluating %;v% at the center of the element. A
different approach is taken here. Because all the quantities are known at the
integration points, the integration is carried out without further approximations
of other terms in Equations (20) to (23). The values of the stresses are known to

be more reliable at the 2 x 2 x 2 Gaussian points within the element (in comparison
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to the nodal values). The stress-work density W is approximated in bilinear form

as

W(¢,n¢) = a1 + a2 + asn + a4{ +asén
+ agn¢ + a7(€ + asén( (A7)

Using the 2 x 2 x 2 Gaussian values of the stress-work density W, Equation (A7)

1s rewritten as

WEn¢) =1[1 &€ 1 ¢ & ¢ & n(][TH{Wes} (48)

where
- 1 1 1 1 1 1 1 1 7
V3 V3 =3 -3 V3 3 V3 V3
V3 =3 V3 V3 V3 -3 V3 V3
T =L -3 V3 -3 V3 =3 V3 V3 V3 A9
7] 8 3 3 -3 -3 -3 -3 3 3 (49)
3 -3 -3 3 3 -3 -3 3
3 -3 3 -3 -3 3 -3 3
| —-3v3 33 3v3 -3v3 3vV3 -3v3 -3v3 3.3
and

(We}T ={W; Wit Wir Wiy Wy Wy Wyrr Wernr 37 (410)

where Wi to Wy s are the values of W at the 2 x 2 x 2 Gaussian points shown
in Figure 18. The partial derivatives %V-, %‘:71, and %% are

o 0100770 ¢ n¢
g =1o010¢ ¢ 0 &| (TIWel (A11)
3 000107 ¢ ¢y

The derivatives %:—‘: can now be obtained as
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where [J] is defined in Equation (A4).
Similarly, derivatives of {¢.,} and {u}'} can be obtained. All the necessary

terms in Equations (20) to (24) are now known and, hence, the domain integrals

for each element can be calculated.

Computation of J-integral Along the Crack Front

In a 3-D finite-element model of a cracked body, the crack front is divided into
a number of To calculate the J-integral at each of the nodal points, for example
at node i, consider the crack front segment between the nodes (i — 1) and (¢ + 1)
(see Fig. 19). The S-function will have a value of unity at node i and zero at
nodes (i —1) and (i +1). Since the S-function is generated from the element shape
functions, the S-function is linear for 8-noded linear element and quadratic for the
20-noded quadratic element (see Fig. 19). Utilizing the domain corresponding to
the crack front segment (i — 1) and (¢ + 1) (see, for example Fig. 17 for a 20-node
model), the J-integrals are calculated from Equations (15) and (16). The analysis
is repeated at other nodal locations. If the first node is on the plane of symmetry
of the model, the left-half (segment (i — 1) to i) of the S-function is neglected.
However, the accuracy of the J-integral is poor at nodes on the free surface of the

model because of the well known boundary layer effect [38,39].
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Table 1. S-functions and f-integrals.

S-function type S-function f-integral
Left segment Right segment
¢ =z3/0 ,C=33/A2

I (1-¢?%) (1-¢*) 2A/3
I (1+)/2 1-0/2 (A1 + Ag)2
11 (2 —¢)/2 (¢2+¢)/2 (A1 + A2)/6
IV (2 -¢)/2 (¢ +¢)/2 (A1 + Az)/6
v (1+¢)/2 (1-0)/2 (A1 + Az)/2
VI (1+0)/2 (1-¢)/2 (A1 + A2)/2
8-noded element (1+¢)/2 (1-¢)/2 (A1 + Az)/2

Table 2. Comparision of J,, for various S-functions and domains in a

K; =1 stress field loaded specimen.

S-function VI E/(1 —v?)
type
Domains
D, Ds D, Ds

| 1.0008 1.0005 1.0013 1.0018

II 1.0008 1.0005 1.0044 1.0018

III 1.0008 1.0005 1.0107 1.0018

v 1.0144 1.0200 1.0085 1.0062

v 1.0053 1.0070 1.0037 1.0032

VI 0.9870 0.9870 1.0129 0.9973
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Table 3. Comparision of J-integral from EDI method with exact solu-

tions for mixed-mode singular field loadings.
(Type I S-functions)

Loading Jzy
K; K1 Kinr Exact EDI method
D, D; Dy Ds
1 0 0 0.9100 0.9107 0.9105 0.9112 0.9116
0 1 0 0.9100 0.9142 0.9156 0.9127 0.9121
0 0 1 1.3000 1.3015 1.3020 1.3011 1.3010
1 1 0 1.8200 1.7929 1.7864 1.8035 1.8096
0 1 1 2.2100 2.2158 2.2176 2.2138 2.2131
1 0 1 2.2100 2.2122 2.2125 2.2123 2.2126
1 1 1 3.1200 3.0945 3.0885 3.1046 3.1106

Table 4. Comparision of normalized J calculated from various domain

definitions for M(T') specimen.
(W/a=4,H/a=8,t/a=1,v=0.3)

EJ,, /{ro?a(l —v?)}

EDI method VCCT method
2/t Domain Domain type
Dy Dg D¢

0.11 D, 1.558 1.558 1.558 1.575
(interior layer) D, 1.551 1.551 1.571
Dy 1.544 -~ 1.559 1.579
D, 1.547 1.572 1.592
Ds 1.543 1.582 1.602

0.495 D, 1.293 1.293 1.293 1.279
(exterior layer) D, 1.380 1.380 1.296
D; 1.468 1.389 1.305
D, 1.498 1.400 1.316
Ds 1.526 1.411 1.327
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