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ABSTRACT

Dense, sintered SigN 4 posesses a residual intergranular glass phase which
softens at high temperatures, resulting in degradation of the ceramic's mechanical
properties at these temperatures. An important parameter in the determination of the
high temperature mechanical properties of sintered Sign 4 is the temperature-viscosity

relationship of the intergranular glass. In this paper, a method for indirectly
measuring the intergranular glass viscosity at a given temperature using physical
modelling of a two-phase glass crystal microstructure and beam-bending viscometry

measurements of Si_q4 is described. Intergranular glass viscosities obtained by this
method are presented for a yttria-sintered Si_Ne

INTRODUCTION

Si_'q, is a material that has received considerable interest in recent years for

use in structural components for high temperature applications, in particular the all-
ceramic gas turbine engine. Because of its low self-diffusivity up to its decomposition
temperature, Si3N4 requires the use of a sintering aid, commonly a metal oxide, for
fabrication of fully dense materials. As a result of this processing, a residual glass
phase is present at the grain boundaries [ 1, 2 ]. At high temperatures, the
degradation of mechanical properties, such as flexural strength and creep resistance,
has been attributed to the softening of this intergranular glass phase [ 3 ]. In a number

of investigations, it has been presumed that the temperature-viscosity relationship of
the intergranular glass has a direct influence on the mechanical properties above the
glass softening point [ 4, 5 ]. It has been suggested that improvements in the high
temperature mechanical properties can be obtained by either increasing the viscosity
of the intergranular glass through suitable compositional changes [ 6 ] or by reducing
the volume fraction of glass phase present through crystallization heat treatments
[ 7 ]. Although it has been demonstrated that reduced glass volume fractions do
enhance the high temperature mechanical properties [ 8 ], it has also been shown that
the existence of a very thin amorphous phase may always be present due to
thermodynamic constraints [ 9 ]. Hence, the physical properties of the glassy phase,
in particular the viscosity, may be a limiting factor in the optimization of the high
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temperature mechanical properties. Knowledge of the {ntergranular glass viscosity at

a given temperature, along with the appropriate mathematical models, can be useful
in the prediction of creev rates, flexural stren_hs, and ames to failure. Therefore,. the

purpose of the present study is to obtain the viscosity of the intergranular glass phase
as a function of temperature in yttria-sintered Si3N4. To accomplish this, physical
modelling of a two phase glass/crystal microstructure, coupled with beam bending
viscometry measurements of the apparent viscosities of the sintered silicon nitride at
various temperatures, were performed.

EXPERIMENTAL PROCEDURES

Direct measurements of the true viscosity of the intergranular glass in dense

yttria-sintered Si3N4 are not possible due to the polyphase microstructure of dense
Si_. Any viscosity measurements performed on bulk Si3N4 samples will produce an
apparent viscosity value, resulting from the viscosity of the parent yttrium-silicate
glass and the effect on that viscosity due to the presence of _-Si_ crystals within the
glass. In addition, it is not possible to perform direct viscosity measurements on bulk
glass with compositions similar to the intergranular glass in yttria-sintered SigN4.
These glasses will devitrify upon cooling from the melt [ 10 ]. Hence, in order to
obtain values for the true viscosity of the intergranular glass in yttria-sintered Si_',_,

an indirect measurement approach is required. Basically, this approach involves the
physical modelling of a two-phase microstructure by fabricating glass/crystal
composites containing a parent glass of known temperature-viscosity relationship and
crystalline material of known specific volume. The volume fraction of crystalline
material is varied in these composites and the effect upon the viscosity of the parent
glass is noted as a function of volume fraction crystalline content. A curve is then
constructed which relates the volume fraction of crystalline content in the composites

to the relative viscosity, _,_, defined as the ratio of the measured composite viscosity
to the true glass viscosity at a given temperature. Using values of the relative

viscosity obtained from this curve, combined with measurements of the apparent
viscosity in the bulk Si:_4, allow the calculation of the true intergranular glass

viscosity.
In this study, four different bulk SigN, compositions were processed. The

compositions and sintering conditions are listed in Table 1. Greater than 98%
theoretical density was achieved for these compositions, with the exception of the
SN60/40, which attained 95% density. The 6Y and SN60/40 were processed so that the

intergranular glass phase was silica rich, with a SiO2 : Y203 molar ratio of .- 33 : 1 in
the starting powders. The SN84/16 and SN76/24 were processed with a SiO2 : Y203
ratio of 2 : 1 in the starting powders. The powder processing and sintering of the
green bodies was performed at NASA Lewis Research Center, Cleveland, OH. Details
of the processing have been published previously [ 11 ]. X-ray diffraction ( XRD ) of

the as-sintered bars was performed both before and after viscosity measurements to
check for devitrification of the glass phase. SEM of etched microstructures was
performed on each composition and determinations of the glass volume fractions were
made using a Zeiss videoplan image analyzer.

The physical modelling was accomplished by fabricating a series of fully
dense, hot-pressed composites containing -325 mesh Al203 and Coming 7761 glass. The
volume fractions of Al203 in the composites were 30, 40, and 50 vol%. The pressing
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conditions were at 870 "C and 1000 - 20(30 psi for 15 minutes. XRD was performed on
each of the composites before and after viscosity measurements to check for

devitrifica.tion of the glass phase.

Compositions and Sintering Conditions for Si,N.
|

Composition

6Y

SN84116

SN76/24

SN60/40

Mill charge ( wt% )

SiaN, Y203

86.52

86.47

79.40

59.37

6.77

8.83

13.45

21.25

III I

Sintefing
Conditions

St%

6.71

4.70

7.I5

19.38

2140 C, 4

hr, 5 MPa

N2

2140 C, 2

hr, 5 MPa

N2

2140 C, 4

hr, 5 MPa

Nz

1900 C, 8
hr, 2.5

MPa N2

Table 1. Processing and sintering conditions for Si3N ,.

Viscosity measurements were made using the beam-bending technique as
described by Hag), [ 12 ]. In this technique, the rate of deflection of a centrally loaded

beam in a three-point loading configuration is measured and related to the viscosity
by the equation

n = Lg._{M+ Ap.A._], (1)
2.4I_v 1.6

where 1"1= viscosity ( poise ), g = 980 cm/sec _, L = span length, cm, I¢ = cross

sectional moment of inertia, cm 4, v = midpoint deflection rate, cm/min, M = applied
load, grams, 13= specimen density, g/cc, and A = cross-sectional area of test beam,
crn2. In this study, two separate viscometers were employed: for the bulk Sign 4
materials, a top loading configuration was used, wherein loads were applied via a SiC
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loading rod and deformation of the specimen was detected by a LVDT coupled to the
rod. This construction was necessary because of the higher loads required to obtain
measurable deformation rates for these materials. The deflection of the specimen was

then plotted versus time on a chart recorder. After making necessary corrections to
the data to account for transient differential thermal expansion within the apparatus,

equation (1) was applied to the deflection data. The other viscometer, which was used
with the composites, utilized a .100 inch diameter sapphire rod to load the specimens
from the bottom. In either case, the underlying principle of operation was identical.
The error in the measured viscosity for either viscometer was + 10%, and the error in

temperature measurement was + 1.5 "C. The accuracy of the viscometers was
ascertained by checking them against viscosity data for fused silica [ 13 ] and National
Institute of Standards standard reference material SRM 711 viscosity standard.

RESULTS

SEM and volume fraction determinations

The typical etched microstructures of the sintered Si3N 4 is shown in figure 1.
The microstructures of each composition are basically the same, consisting of

elongated, hexagonal, interlocking _-Sia_q4 crystals. The microstructures were very
uniform over the entirety of each sample. The dark regions are the areas where the
grain boundary glass has been etched out by the I-IF acid treatment.

Figure 1. Microstructure of SN84/16 sintered silicon nitride.

To obtain the volume fraction of glass phase present in a given material, the

area fraction occupied by the _-Si3N4 grains in an etched microstructure was
determined and this value subtracted from unity to obtain the area fraction occupied

by the glass. The principle of equivalence of area and volume fractions was then
employed to obtain the volume fraction of glass phase present. The average measured
values, calculated from three micrographs from each composition, were 16.3 + 3.0,

O,._:dhi_L PAGE IS
OF POOR QU_,LITY
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22.3+ 2.1,17.3+ 3.2,and 23.0+ 1.7vol% for the 6Y, SN84/16, SN76/24, and SN60/40

compositions respectively.

Composite bar modeling

The curve relating volume fraction of Al_) 3 in the composites to the average

relative viscosity TI,,_,_ was prepared from the composite bar viscosity data. A second

degree polynomial curve fit was applied to the data, resulting in the following relation

for Th,_,,,s:

log10 _,,L,vs = -1.6381.10 .2 + 3.9309V + 5.66768V 2 , (2)

where V = the volume fraction of Al203. This curve is shown in figure 2.

LOG RELATIVE VISCOSITY vs VOLUME FRACTION

/_O/CORNg_3 7761 OI.ASSCOMPOSt.S
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VOLUME FRACTION AL20"J

• Figure 2. Volume fraction A1203 vs log10 Th,L,,,s-



Viscometryof bulk Sin'S4

All of the corrected deflection vs time curves exhibited two characteristic

stages of deformation which are manifested in the slopes of the curves. The first stage,

occurring upon the instant of loading, is a region of initial rapid deflection rate which

quickly diminishes with time. The second stage is a region of constant deflection rate.

A typical curve is shown in figure 3. These curves are structurally similar to creep

curves ( strain vs time ) for similar Si_'_T, materials [ 14 ], as well as the creep curves

for other ceramics containing an intergranular glass phase. In this study, the

deflection rates corresponding to the constant deflection rate region of the deflection

curves were calculated by performing a least-squares fit to the data over this portion.

The apparent viscosities of the bulk Sign 4 compositions, calculated by applying

equation (1) to the deflection rate data, are listed in table 2. In this table, N/A

indicates that a viscosity could not be calculated from the data. Also listed in this

table are the calculated intergranular viscosities for each listed apparent viscosity

value. These values are calculated on the basis of relative viscosity factors obtained

from equation (2).

SN76 #6, 1355 C, 281 MPa
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Figuze 3. Typical deflection-time curve of sintered silicon nitride

DISCUSSION

The apparent viscosity data is seen to decrease with increasing temperature
as expected. For example, the apparent viscosity of SN84/16 decreases from 14.73

log_0 Pa s to 13.34 log_0 Pa s as the temperature increases from 1305 "C to 1405 "C.
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composition

Summary of sintered Si_/, viscosity data.

T ( "C ) los. _, ( Io8. Pa s ) log. _ ( log. Pa s )

6Y0O #2

#5

#3

#6

SN84/16 #21

#16

#8

SN76/24 #12

#7

#6

#11

#4

5N60/40 #8

#9

#5

#7

1305

1330

1355

1405

1305

1355

1405

13136

1330

1355

1385

14115

1305

1330

1353

1405

N/A

14.45

13.96

N/A

14.73

13.79

13.34

13.66

13.62

13.40

14.01

14.40

13.83

13.98

N/A

N/A

NIA

7.20[a79-7.60]

6.71(6.30-7.11]

N/A

8.27 [ 7.99-8.53 ]

7.33 [ 7,0S-7.59 l

6.88 [ 6.60-7.14 1

6..54 [ 6.11-6.96 ]

6.50 [ 6.07-6.92 I

6.28 { 5.85-6.70 ]

6.89 [ 6.46-7.31 ]

7.28 { 6.85-7.7O l

7.45 [ 7_4-7.67 ]

7.60 ( 7.39-7_2 ]

N/A

N/A

Table 2. Summary of sintered silicon nitride viscosity data.
t '

Exceptions to this in the viscosity data occur in the SN76/24 and 6Y above 1385 "(2and

in the SN60/40. The expected decrease in apparent viscosity is observed in the

SN76124 material until 138.5 "C is reached, whereupon the apparent viscosity is seen

to increase sharply. This is due to crystallization of the glassy phase, thereby

increasing the total amount of crystallinity in the material. From equation (2), it is

clear that increased crystallinity results in higher values of _,,s, and therefore

increased apparent viscosities.Crystallization of the intergranular glass was observed

to occur to some extent during all of the tests. No attempt was made to obtain an

estimate of the amount of crystallization. Measurements of the apparent viscosity

were made 15 minutes after the furnace reached the desired setpoint. This was done

in order to try to minimize the effects of crystallization to the viscosity measurements.

Additionally, there isno microstructural evidence to suggest that dissolution of the _-

Si_/_ into the glass phase occurred.



6'

Average values of the intergranular glass viscosity based on the measured
volume fraction were calculated for 1305, 1330, and 1355 "C. These values are plotted

vs 1/T in figure 4 along with data obtained for Amersil fused silica. The viscosity of

the intergranular glass is seen to be., 3 orders of magnitude less than that of fused

silica at a given temperature within the range of study. This is as expected, since pure

silica possesses the highest viscosity of any glass, which is reduced with the addition

of an oxide such as YzCh. Differences in intergranular glass viscosities at a given

temperature may be attributed to differences in the glass compositions or to

differences in crystallization behavior among the different compositions. An activation

energy was also calculated from the averaged viscosity data assuming an Arrhenius

dependence of viscosity on temperature. The value obtained was 631.6 + 7.6 kJ/mol.

This value is consistent with the activation energy for flow of certain silicate glasses,

•, 600 kJ/mol [ 15 ]. The activation energy for viscous flow of the silica glass in figure

3 is_ = 570 kJ/mol.

INTERGRANULAR GLASS VISCOSITY

¢1
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o
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[.=
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0

• intcrgranular viscosity
0 Amc_ fused silica

7 @" I i I , I i I , I i
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1/T * I0"*-4 K**-I

Figure 4. Sintered silicon nitride intergranular glass viscosity.

V. CONCLUSIONS

The viscosity of the intergranular glass in a yttria-sinte-'_cl Si31_4"has been

calculated from the apparent viscosity data of the bulk material. Reasonable values

for intergranular glass viscosity can be obtained by using the relative viscosity values

extrapolated from the physical modeling data. An activation energy for flow of the

intergranular glass can be calculated from the data, and the result is comparable to

the activation energy for viscous flow of certain silicate glasses.
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Crystallization of the Yttria Silicate Intergranular Phase in
Silicon Nitride with Zirconia Additions

K. A. Kuechelmann and C. H. Drummond, III

Department of Materials Science and Engineering, The Ohio State

University, Columbus, OH 43210

Abstract: Crystallizing the grain boundary glassy phase in

liquid-phase sintered SigN 4 with zirconia additions has been

studied as a function of post-fabricating heat treatment. Delta-

Y2Si207 is crystallized in the grain boundaries after heat
treatments for 2 h between 1200 C and 1400 C. Heat treatments at

1500 C and 1600 C result in the crystallization of beta-Y2Si207.

Details of the crystallization behavior of a simulated bul_ gIass

composition with added zirconia is also presented.

I. Introduction

Interest in sintering covalent crystalline solids such as

silicon nitride (Si3N4) to theoretical density stems from the

potentially excellent-high temperature properties which would

make it suitable for applications in the aerospace industry or in

gas turbine engines. In order to achieve dense silicon nitride,

oxide sintering aids are generally added [1-3]. However, the

glassy phase subsequently formed softens by 1200 C, degrading

properties above this temperature sharply [4]. Crystallization

of the intergranular phase to a more refractory phase(s) via

post-sintering heat treatments is one method by which

improvements in mechanical strength may be achieved [5]. The

addition of zirconia to silicon nitride has proved to be an

effective densifier [6,7], and is also a known nucleating agent

in glass ceramics [8,9]. Previous studies [10-12] have shown

Si3N 4 with Y203 as a sintering aid to crystallize delta-Y Si O• 2 2
after heat treatments for 2 h or less at 1500 C while longer hea_

treatments at 1500 C resulted in the crystallization of beta-

Y2Si207 . Zirconia additions are introduced to enhance

crystallization of these yttrium disilicate polymorphs, and

perhaps encourage a crystallization sequence more in line with

that reported by Ito and Johnson [13].

(i)

II. Experimental Procedure

The initial powders used to fabricate the simulated bulk

glass composition consisted of 56.43 wt% Y203 , 38.57 wt% SiO2,
and 5.00 wt% zyttrite. Zyttrite is a fine-particulate (0.05

micron) yttria stabilzed cubic zirconia (c-ZrO2) with 6.5 mol%

Y203 . After processing and drying, the material was pressed into
pellets, filled into either W or Mo crucibles, and melted at 2100

C for 4 h at either 1 or 25 atm N . Annealing was performed in
air at temperatures ranging from i_00 C - 1650 C at 0.5 to 120 h.

The heating rate from room temperature to 1500 C was i0 C/min and

the cooling rate approximately 15 C/min.



Samples were finely ground to a powder and studied by x-ray

diffraction after heat treatment. Analytical electron microscopy

was performed. Standard ceramographic techniques were used in

the preparation of TEM specimens. Three mm discs were cut

ultrasonically and then mechanically wet polished to i00 microns

in thickness. Final polishing and dimpling was accomplished

sequentially with 15, 6 and 1 micron diamond compounds. Samples

were cryomilled (two Ar + beams) to avoid transformations between

crystalline and amorphous species. Milling was performed at 6

kV, 1 mA at angles ranging between 15 and 8 degrees. During the

last 30 minutes of milling, the settings were decreased to 3 kV

and 0.5 mA to remove amorphous layer build-up. Selected area

diffraction patterns of yttrium disilicate polymorphs were solved

using the computer program DFTools and crystallographic data

previously reviewed by Liddel and Thompson [14].

Silicon nitride samples were prepared from initial powders:

92.44 wt% Si3N4, 6.96 wt% Y203 , and 0.6 wt% zyttrite. The amount

of zyttrite added approximately equaled 5 wt% in the

intergranular phase. The powders were milled in high-purity

silicon nitride grinding media and ethanol. They were then

vacuum dried and die pressed at 21 MPa and subsequently cold

isostatically pressed at 50 atm N 2. The samples were heat

treated in a nitrogen atmosphere for 2 h at temperatures ranging

from 1200 C to 1600 C and at 1500 C for 5 and 20 h. The heating

rate from room temperature was 42 C/min and cooling rate

approximately 130 C/min upon turning off the furnaces.

X-ray diffraction was performed on solid silicon nitride

samples. TEM specimen preparation was similarly performed as

described above, however, samples were polished to 60 microns in

thickness before dimpling and ion milling. Electron microscopy

and EDS analysis were again used to examine the grain boundary

phase content.

III. Results

Bulk Glass Composition

(i) As-melted samples

The as-melted samples of the simulated bulk glass

composition crystallized beta-Y2Si207 regardless of nitrogen
partial pressure or melting crucib_le employed. X-ray diffraction

did not indicate any amorphous content, however bright-field TEM

(Figure 1) did show silica rich pockets which were determined to

be amorphous by characteristic diffuse ring patterns.

(2) Heat Treatments 1300 C - 1425 C

After heat treatments in this temperature range, at times up

to 20 h, beta-Y2Si207 was consistantly determined to be present.

At longer heat treatments, 48 to 120 h, gamma-Y2Si207 was the
predominant phase at 1400 C and above.

(3) Heat Treatments 1425 C - 1600 C

Gamma-Y2Si207 was favored in this temperature region for all
heat treatments, with exception at very short heat treatment

times. At 1500 C and up to one hour heat treatments, beta-



Y2Si207 remained the major phase present.
crystallize at about 1600 C for those heat
or longer.

Delta-Y2Si207 began to
treatments of 5 hours

(4) Heat Treatments at 1650 C
A mixture of gamma- and delta-Y2Si207 crystallized after

heat treatment at 1650 C for 20 h.

Figure 2 demonstrates schematically the x-ray diffraction
results obtained for the bulk glass sample melted at 1 atm N 2 in
a W crucible, designated 'GSI/5(W)'. Each letter represents the

phase or phases found present after heat treatment. When it was

qualitatively determined that one phase predominated over

another, an ">" separates them. Traces of phase present are

indicated by parentheses. The horizontal lines at 1445 C and

1535 C indicate the temperatures at which the transformations

from beta to gamma and gamma to delta have been previously

reported.

Analytical electron microscopy performed indicated

confirmation of these findings, while the presence of

cristobalite as a minor phase was also verified. Zirconia was

confirmed to be cubic in structure, as was the initial zyttrite

powder.

Figure 3 is a schematic representation of the phase

transformations in the simulated bulk glass. These results

demonstrate that the transformations are sluggish. The

approximate polymorphic transformations of yttrium disilicate

from beta to gamma and gamma to delta occur at 1425 C and 1600 C

respectively for 20 hour heat treatments. The gamma- phase

appears preferentially stabilized as compared with the reported

phase stability region by Ito and Johnson.

Silicon Nitride Composition

(I) As-sintered specimen

The as-sintered specimen of the 6Y Si3N 4 with zirconia
additions demonstrated an amorphous grain boundary phase as

confirmed by TEM. Figure 4 shows the general morphology of the

specimen with the corresponding ring pattern obtained from the

intergranular phase. Figure 5 demonstrates both bright field and

dark field images of the intergranular phase, the diffuse

scattering of electrons again indicating the amorphous nature of

the grain boundary region. EDS analysis was performed over four

regions of the intergranular phase and weight percents of oxide

components were calculated to be: 53.20 wt% Y203 , 44.16 wt%

SiO2, and 2.65 wt% ZrO 2. These results correspond well with the
composition of the simulated bulk glass composition.

(2) Heat Treatments 1200 C - 1400 C

Heat treatments for 2 h between 1200 C and 1400 C

crystallized delta-Y2Si207 as the grain boundary phase. The
morphology of the yt]:rium disilicate intergranular phase was

characterized by a fine-grained mottled nature as shown in Figure

6.



(3) " Heat Treatments 1500 C - 1600 C

An isothermal study at 1500 C for 2, 5, and 20 hour heat

treatments revealed that while the yttrium disilicate polymorph

crystallized was beta-Y2Si207 in all cases, the morphology of the
phase changed with increasing heat treatment times. The

intergranular beta-yttrium disilicate phase had a larger grain

size and appeared interconnected in contrast to the delta-phase.

At 2 h heat treatment (Figure 7), beta-Y Si 07 appeared at a
single orientation, as demonstrated by dark_;ie_d images obtained

using a spot diffracted by the intergranular phase, over limited

areas of the microstructure. After 5 h (shown in Figure 8)and 20

h heat treatments, the beta- phase appeared at a single

orientation over 5 microns and 20 microns respectively.

IV. Discussion

Reaction Sequence

a. Bulk Glass Composition

The phases of yttrium disilicate in the GS/5 compositions

followed a sequence similar to that reported by Ito and Johnson,

with the exception that the alpha-Y2Si207 polymorph was never
observed. The kinetics of the transfozCmation were sluggish in

all cases, the reaction being highly dependent upon time of heat

treatment, as shown below:

1500 c (0.5 h)
1425 c 1600 c (20 h)

beta gamma delta

1350 C (120 h)

Earlier studies by Kumar and Drummond examined a composition

identical to the composition studied here, except that no

zirconia was added. Their study revealed that beta-yttrium

disilicate was not crystallized upon quenching as it was in this

case. Depending upon the cooling rate of the furnace used,

either delta- or gamma-Y2Si207 crystallized. No beta-Y2Si207 was
ever observed. The initial yttrium disilicate phase crystallized

upon quenching may have affected subsequent phases formed.

b. Silicon Nitride Composition

The observed reaction sequence for the intergranular phase

in the 6y Si3N 4 composition with 0.5 wt% zyttrite added differed

from that o_ the bulk glass significantly. The grain boundary

phase was amorphous prior to heat treatment and crystallized

delta-Y2Si207 and ultimately beta- after higher temperature heat
treatments as described below:

1200 C 1400 C (2 h)

amorphous delta beta

This reaction sequence does, however, correspond well with

studies previously performed on a similar 6Y composition without

zirconia performed by Hilmas and Lee. In their study, the grain

boundary phase was also amorphous before heat-treatment, and



similarly crystallized delta-yttrium disilicate after heat

treatments at 1200 C, 2 h. However, in their study the

crystallization of beta- occurred at a higher temperature, 1500

C, after heat treatments of 5 h or longer.

V. Conclusions

The introduction of zirconia to the 6Y silicon nitride

composition acted to increase the number of heterogeneous sites
for nucleation to accelerate the delta to beta transformation.

The zirconia appears to have stabilized the presence of the beta-

Y2Si207 polymorph in both the GS bulk glass composition and the
6Y s_licon nitride composition.
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