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Summary

The current status of unstructured-grid methods develop-
ment in the Unsicady Acrodynamics Branch at NASA Langley
Rescarch Center is described. These methods are being devel-
oped for unsteady aerodynamic and acroelastic analyses. The
paper furst highlights the flow solvers that have been developed
for the solution of the unsteady Euler equations and then gives
selected results which demonstrate various features of the ca-
pability.  The results demonstrate two- and three-dimensional
applications for both steady and unsicady flows. Comparisons
are also made with solutions obtained using a structured grid
code and with experimental data to determine the accuracy of
the unstructured grid methodology. These comparisons show
good agreement which thus verifies the accuracy.

Introduction

Considerable progress has been made over the past two
decades on developing computational fluid dynamics (CFD)
methods for aerodynamic analysis."2 Recent work in CFD has
focused primanly on developing algorithms for the solution of
the Euler and Navier-Stokes equations. For unsteady acrody-
namic and acroelastic analysis, these methods generally require
that the mesh move to conform to the instantancous position
of the moving or deforming body under consideration. Many
of the methods that are currently being developed assume that
the mesh moves rigidly or that the mesh shears as the body
deforms. These assumptions consequently limit the applicabil-
ity of the procedures to rigid-body motions or small-amplitude
deformations. Furthermore, these methods of solution typically
assume that the computational grid has an underlying geometi-
cal structure. As an alternative, algorithms have been developed
recently which make use of unstrucwred grids.3"* In two di-
mensions these grids are typically made up of triangles and in
three dimensions they consist of an assemblage of tetrahedra.

The unstructured grid methods have several distinct advan-
tages over structured grid methods which mike them attractive
for unsteady aerodynamic and acroelastic analyses. For exam-
ple, the primary advantage of the unstructured grid methodology
is the ability to easily model very complicated three-dimensional
geometries such as the F/A-1R aircraft shown in Fig. 1% The

aircraft was modeled by including the wings with leading edge
extension, horizontal and vertical tails, as well as the canopy
and the fusclage. The modeling also includes engine inlets and
nozzles 10 simulate engine power effects. With a structured
grid, it is extremely difficult to achieve this level of geometrical
complexity. A second advantage is that the methodology allows
for a gencral way 1o move the mesh to treat realistic motions
and structural deformations of complete aircraft configurations.
An cxample of the deforming surface grid for a transport-type
configuration undergoing a complete-vehicle bending motion is
depicted in Fig. 2. The deforming grid capability does not
involve any assumptions which limit applications to small de-
formations, such as the simple grid shearings done in some
structured grid codes. A third advantage is that it enables in a
natural way for adaptive mesh refinement to predict more accu-
rately the physics for the flow. For example, shown in Fig. 3
is a conical vortex-dominated flow solution for a flat plate delta
wing at a supersonic freesteam Mach number.!? The solution
was obtained by adapting the original coarse mesh three times
10 the instantancous flow. The final result is a highly accurate
solution of the Euler equations, produced by using an order of
magnitude fewer grid points than if a globally fine mesh was
used. Similar to spatial adaption, temporal adidption may also
be employed with unstructured grids for unsieady problems to
resolve more accurately and efficiently the physics of the flow in
time,'® Temporal adaption can be thought of as time-accurate lo-
cal time-stepping where smaller time steps are used in grid cells
where the emporal gradients are large and larger time steps are
used in cells where the gradients are small. Time accuracy is
maintained by bringing all grid cells to the same time level as
determined by the largest step size in the problem.

The purpose of the paper is to describe the current status
of unstructured-grid methods development within the Unsteady
Aerodynamics Branch at NASA Langley Research Center.!*1®
The paper first highlights the flow solvers that have been de-
veloped for solution of the time-dependent Euler equations and
then gives selected results which demonstrate various features
of the capability. The flow solvers that are described are either
of the central-differcnce-type with explicit antificial dissipation
or of the upwind-type which are naturally dissipative. Both
implicit and explicit temporal discretizations are discussed for
the time-integration of the governing fluid flow equations. De-
tails on the spatial and temporal adaption procedures are also



Fig 1

given. The selected results that are presented demonsirate two-
and three-dimensional applications for both steady and unsteady
flows. Comparisons are also made with solutions obiained using
a structured grid code and with experimental data 10 determine
the accuracy of the unstructured grid methodology.

Central-Difference- Type Flow Solver

The unsteady Euler equations in integral fonn are solved
using a finitc-volume algorithm that was developed for use on
unstructured grids of triangles in 2D or 1wirahedra in 3D 101
The algorithm reduces conceptually to central differencing on a
rectangular mesh and thus is referred 10 as a central-difference-
type flow solver. With this solver, artificial dissipation is added
explicitly to prevent oscillations near shock waves and to damp
high-frequency uncoupled error modes. Specifically, an adap
tive blend of harmonic and bihurmonic operators is used, cor-
responding 10 second and fourth difference dissipation, respec-
tively. The biharmonic operator provides a background dissipa-
tion 1o damp high frequency errors and the harmonic operator
prevents osallations near shock waves,

The LEuler equations are integrated in time using a standard,
explicit, four-stage, Runge-Kutta time-stepping scheme. In this
scheme the convective operaor is evaluated at cach stage and,
for computational efficiency, the dissipative operator is evalu-
ated only at the first stage. The scheme is second-order-accurate
in time and includes the necessary s 10 account for changes
in cell volumes due to a4 moving or defonming mesh, Further-
more, this explicit-scheme has a step size that is limited by the
Courant-Friedricks-Lewy (CFL) condition corresponding to a
CFL number of 2v/2. To accelerate convergence to steady-state,
the CFL number may be increased by averaging implicitly the
residual with values at neighboring grid points, These implicit
cquations are solved approximately using several Jacobi itera-
tions. Convergence to steady -state is funther accelerated using
enthalpy diwmping and local time stepping. The local time step-
ping uses the maximum allowable step size at each grid point
as determined by a local stability analysis. For unstcady appli-
cations, however, a global time step is usually used because of
the time-accuracy requirement. The maximum allowable global

Unstructured surface grid for F/A 18 fighter configuration.

time step may be increased 10 4 value that is larger than that dic-
taied by the CFL condition by using a time accurate version of
the residual smoothing. Aliernatively, temporal adaption may
be used which involves a spatially varying time step, as de-
scribed in a subsequent section,

Upwind-Type Flow Solver

The unsteady Euler equations may be solved alternatively
by using upwind differencing and either Aux-vector or flux-
difference splitting similar to upwind schemes developed for use
on structured meshes. ™ 151 The present unstructured grid al-
gorithm is thus referred to as an upwind-type flow solver. The
spatial discretization of this solver involves a so-called flux-
split approach based on either the flux-vector splitiing of van
Leer™ or the Aux-difference splitting of Roce.2! These flux-split
discretizations account for the local wive-propagation charac-
teristics of the flow and they capture shock waves sharply with
at most one grid point within the shock structure. A further
advantage is that these discretizations are naurally dissipative
and consequently do not require additional anificial dissipation
terms or the adjustment of free parameters 1o control the dissi-
pation.

The Euler equations are integrated in time using either an
explicit Runge-Kutta method (desceribed in the previous section)
or an implicit time-integration scheme involving a Gauss-Seidel
relaxation procedure.' The procedure is implemented by re-
ordering the elements that make up the unstructured mesh from
upstream o downstream. The solution is obtained by sweeping
two times through the mesh as dictated by stability considera-
tions. The first sweep is performed in the direction from up-
stream to downstream and the second sweep is from downstream
o upstream.  For purely supersonic flows the second sweep is
unnccessary. This relaxation scheme is unconditionally stable
and thus allows the sclection of the step size based on temporal
accuracy of the problem being considered, rather than on the
numerical stability of the algorithm. Consequently, very large
time steps may be used for rapid convergence to steady state,
and an appropriate step size may be selected for unsteady cases,
independent of numerical stability issues.



NN
"l'[e“‘l' Va\ baY,
! ,v"" AVAY "V‘) >
- A% P

LD

(a) maximum (bend-up) amplitude. (b) minimum (bend-down) amplitude.

Fig. 2 Surface grid for the Pathfinder I configuration which illustrates how the mesh
moves for an assumed complete-vehicle bending mode.
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Fig. 3 Effects of adaptive mesh refinement on the total pressure loss contours for a 75°
swept flat-plate delta wing computed using the conical Euler equations at
AL, =14, 0 =20° and 7 = 10°.



Spatial Adaption Procedure

Spatial adaption is employed with the unstructured grid flow
solvers to enrich the mesh locally in regions of high spatial flow
gradients to resolve more accurately and efficiently the physics
of the flow. Equally auractive are coarsening technigues that
remove elements from regions where relatively small changes
in the flow variables occur. Both enrichment and coarsening
procedures are currently being developed.® However, only the
enrichment procedure is described herein, The enrichment pro-
cedure uses an indicator to determine if an element in the mesh
is 10 be refined or subdivided into smaller elements. Typically,
the absolute change in density along an edge is used as an indi-
cator for flows with shock waves and total pressure loss is used
for Aows with vortices. More recently a refinement indicator
based on the material derivative of density'® has been shown to
be a superior indicator for unsteady flows. In general, the refine-
ment indicator is compared with a preset tolerance to determine
whether a given element should be refined. If the tolerance is
exceeded, a new node is created at the midpoint of the edge
and the element is divided. Each time the mesh is refined, an
element may be divided in one of severl different ways. The
coordinates of the new node are determined by averaging the
coordinates of the endpoints that make up the bisected edge.
Special care must be taken, however, when an edge that is to
be divided lies on a boundary of the grid, since the midpoint of
the edge does not generally lie on the boundary. In this case,
the location of the new node is determined generally by using
a spline of the boundary coordinates.

Temporal Adaption Procedure

Temporal adaption is employed with the unstructured grid
flow solvers, similar to spatial adaption, to resolve more accu-
rately and cfficiently the physics of the flow in time.'® Tem-
poral adaption can be thought of as time-accurate local time-
stepping. Local time-stepping is typically used in a non-time-
accurale manner to accelerate the convergence of the governing
fluid flow equations 10 steady-state. Since only steady-state is
desired, it does not matter that every point in the flow is at a dif-
ferent time. This, of course, is not the case for a time-accurate
problem, since each point in the flow for such a calculation must
be on the same temporal level o maintain time-accuracy. The
problem is that if all of the grid cells are marched at the same
time step with an explicit time-marching scheme, the most re-
strictive time step must be used in order to maintain numerical
stability. Temporal adaption is a method to march each cell at
its own lime step, although ultimately the flow variables in all
cells reach the same point in time. Temporal adaption can be
viewed as similar to spatial adaption in that small time steps
should be taken only in localized areas governed by the flow
physics and not in the entire flow field. Typically, small grid
cclls are integrated with small time steps and large grid cells
arc integrated with large time steps. All of the cells reach the
same time level u 4 1 to maintain time-accuracy by using lo-
cal time steps that are multiples of one another. The solution
is integrated in a special sequence so that all values necessary
for the calculations at an intermediate level are available at the
proper times. For a particular cell w0 be integrated from time
level 0 1o time Tevel o 4 1, for example, the solution must also
be known at its neighboring cells at time level n. If the value
needed for the integration is unknown at a particular temporal
node, it is determined from a lincar interpolation between two
known values.

Deforming Mesh Algorithm

For problems where the aircraft moves or deforms, the mesh
must move so that it continuously conforms to the instantancous
shape or position of the vehicle. This is accomplished by
using a spring network to model the original mesh such that
cach edge of the triangle or tetrahedron is represented by a
spring.12 The spring stiffness for a given edge is taken to be
inversely proportional 1o the length of the edge. Grid points
on the outer boundary of the mesh are held fixed and the
instantaneous locations of the points on the inner boundary
(aircraft) are given by the prescribed surface motion. At each
time step, the static equilibium equations in the x, y, and
z directions, which result from a summation of forces, are
solved iteratively at each interior node of the grid for the
displacements. This is accomplished by using a predictor-
corrector procedure, which first predicts the displacements of the
nodes by extrapolation from grids at previous time levels and
then corrects these displacements using several Jacobi iterations
of the static equilibrium equations. The predictor-corrector
procedure has been found to be more cfficient than simply
performing Jacobi iterations because far fewer iterations are
required to achieve acceptable convergence. In practice it has
been found that only one or two iterations are sufficient to
accurately move the mesh,

Results and Discussion

Selected results from the unstructured-grid methods of Refs.
10--19 are presented for two- and three-dimensional geometries
for both steady and unsteady flows. Comparisons are made
with solutions obtained using a structured grid code and with
experimental data to determine the accuracy of the methodology.

Two-Dimensional Euler Results

To assess the two-dimensional central-difference-type Euler
flow solver, calculations were performed for the NACA 0012
airfoil.'! These results were obtained using the unstructured grid
shown in Fig. 4. The grid has 3300 nodes, 6466 triangles, and
extends 20 chordlengths from the airfoil with a circular outer
boundary. Also there are 110 points that lie on the airfoil sur-
face. Generalized aerodynamic forces for the NACA 0012 air-
foil oscillating in either plunge or pitch-about-the quarter-chord
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Fig. 4 Partial view of unstructured grid of triangles
about the NACA 0012 airfoil,
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Fig. 5 Comparisons of generalized acrodynamic forces
computed using CFL3D and the unstructured-grid
central-difference-type Euler flow solver for the
NACA 0012 airfoil at M. = 0.8 and o, = 0°.
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Fig. 7 Comparisons of steady-state results for the
NACA 0012 airfoil at M, = 0.8 and o, = 1.25°
computed using the upwind-type Euler flow
solver with flux-vector splitting.

are shown in Fig. 5. For this case the freestream Mach number
was M., = 0.8 and the angle of attack was a, = 0°. Com-
parisons are given among results obtained using the so-called
pulse transfer-function analysis, the harmonic analysis, and a
harmonic analysis performed using a structured grid Navier-
Stokes code (CFL3D) run in an Euler mode. The three sets of
results agree well with one another, for both plunge and pitch
motions, thus verifying the accuracy of the unstructured grid
method.

Acroelastic results were also obtained for the NACA 0012
airfoil with two degrees-of-freedom (pitch and plunge) at M=
0.8 and a, = 0°.!' Comparisons of second mode generalized
displacements (¢;) are shown in Fig. 6 for three values of
nondimensional dynamic pressure (Q) that bracket the flutier
point. The generalized displacements agree well with the struc-
tured grid (CFL3D) solution which verifies the unstructured grid
methodology for acroelastic analysis. The flutter speed for this
case, determined by interpolation of the dominant damping of
these generalized displacements, also agrees to within 2% of the
CFL3D value.



To test the more-recently-developed upwind-type Euler flow
solver, steady Mow results were obtained for the NACA (012
airfoil at M, = 0.8 and o, = 1.25%, using both implicit and ex-
plicit time-marching.'® The explicit time-marching results were
obtained using a CFL number of 2.5 and the implicit time-
marching results were obtained using a CFL number of 100,000.
A comparison of the convergence histories is shown in Fig. 7(a)
and the resulting steady pressure distribution is shown in Fig.
7(b). The “error” in the solution was taken to be the [,—norm
of the density residual. As shown, the explicit solution is very
slow to converge whereas the implicit solution is converged
10 four orders of magnitude in only approximatety 500 steps.
Also, the pressure distributions indicate that there is only one
grid point within the shock structure, on either the upper or
lower surface of the airfoil, due to the sharp shock capturing
ability of the flux spliting. Converged steady solutions are thus
obtained with the implicit algorithm with an order of magni-
tude less CPU time than the explicit algorithm, and the shock
waves are more sharply captured with the flux-split spatial dis-
cretization than the central-difference-type discretization. These
improvements in accuracy and efficicncy are also realized for
unsteady applications.

Conical Euler Results

Calculations were performed using the conical Euler version
of the central-difference-type flow solver to investigate unsteady
vortex-dominated flows about highly-swept delta wings.'® This
code includes the additional analysis of the free-to-roll case by
the inclusion of the rigid-body equation of motion for simultane-
ous time integration with the governing flow equations. Results
were obtained for a 75° swept delta wing at a freestream Mach
number of 1.2 and an angle of auack of 30°. A partial view of
the grid which was used is shown in Fig. 8. The grid, which
has a total of 4226 nodes and 8299 elements, indicates that the
wing has thickness and sharp leading cdges.

Figure 9 shows the free-to-roll response of the wing which
was initiated by using an initial angular velocity. In this cal-
culation, for simplicity, the mesh was moved 10 conform to the
instantancous position of the wing by rotating rigidly according
to the wing roll angle, rather than by using the deforming mesh
algorithm. The results indicate that initially the oscillatory re-
sponse diverges for small values of roll angle.  As the angle

Partial view of unstructured grid about a 75°
swept deha wing.

Fig. 8

increases to around 35°, the rate of divergence decreases due
1o stabilizing aerodynamics, and finally, the response reaches a
maximum amplitude of motion at ¢ = 38° corresponding to a
limit cycle. These results are similar in_nature to those obtained
by Arena and Nelson? in a low-speed experimental investiga-
tion of wing rock. The wing-rock time history from Ref. 22,
shown in Fig. 10, was obtained for an 80° swept delta wing at
30° angle of attack. Although the case considered in Fig. 9 is
different from that of Ref. 22 (the data from Ref. 22 are for
low speed flows whereas the conical Euler code is limited to
supersonic freestream applications), the similarity between the
two sets of results in Figs. 9 and 10 is noteworthy and gives
credibility to the present calculations.

Three-Dimensional Euler Results

Unsteady flow results were obtained for a supersonic fighter
configuration that was oscillating in a complete-vehicle bending
mode to demonstrate a three-dimensional application of the
central-difference-type Euler solver.!? The results were obtained
using a grid which has 13,832 nodes and 70,125 tetrahedra.
The surface triangulation of the aircraft is shown in Fig. !1{a)
and the bending mode shape (exaggerated by a factor of five)
is shown in Fig. 11(b). Instantaneous pressure distributions
on the surface of the vehicle at the maximum (bend-up) and
minimum (bend-down) amplitudes of oscillation are shown in
Fig. 12. For this case the freestream Mach number was
2.0, the reduced frequency (based on wing tip semi-chord)
was 0.1, and two angles of attack of 0 and 12 degrees were
considered. The results of Fig. 12 show the effects of angle
of attack on unsteady pressures, and clearly demonstrate that
the unstructured grid methodology can treat complex aircraft
configurations undergoing structural deformation.
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Fig. 9 Free-to-roll time history for a 75° swept delta
wing at A, = 1.2 and o = 30°.
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wing at 30° angle of attack (Ref. 22, reprinted
with permission from Professor Robert C. Nelson,
Notre Dame University).



To test the more-recently-developed upwind-type Euler flow
solver, calculations were performed for the ONERA-M6 wing.'¢
The M6 wing has a leading cdge sweep angle of 30°, an
aspect ratio of 3.8, and a taper ratio of 0.562. The airfoil
section of the wing is the ONERA “D” airfoil which is a 10%
maximum thickness-to-chord ratio conventional section. The

results were obtained using a grid which has 42,410 nodes
and 231,507 tetrahedra. Results were obtained for the M6
wing at a freestream Mach number of 0.84 and 3.06° angle
of attack. These conditions were chosen for comparison with
the experimental pressure data of Ref. 23 as shown in Fig. 13.
The results indicate that there is a weak supersonic-10-supersonic

bend-down

(a) original surface grid.

Fig. 11
configuration.

Bend-down

(b) assumed bending mode.

Surface grid for the Langley supersonic fighter

® o =12°

Bend-down

-.25

Fig. 12

Cp

.25

Effccts of angle of attack on the instantancous pressure cocfficient contours on the

Langley fighter configuration at the maximum (bend-up) and minimum
(bend-down) amplitudes of deformation computed using the
central-difference-type Euler flow solver at AL, = 2.0 and k = 0.1,



shock wave in the inboard region, forward toward the leading-
edge. The primary, supersonic-to-subsonic shock which occurs
in the midchord region coalesces with the first shock in the
outboard direction toward the wing tip. Near the tip, the two
shocks merge 10 form a single, strong, supersonic-to-subsonic
shock wave. The Euler results are in fairly good agreement
with the experimental pressure data, especially in predicting the
strength and location of the shock waves, which tends 1o verify
the upwind-type algorithm. The shocks are sharply captured
with only one grid point within the shock structure, due to the
flux splitting.

Spatial Adaption Resuits

To demonstrate the spatial adaption procedures, results are
obtained for the NACA 0012 airfoil pitching harmonically about
the quarter chord.' The freestream Mach number was 0.755 and
the mean angle of attack was 0.016°. The pitching ampliude
wias 2.51° and the reduced frequency (based on semi-chord)
was .0814. Figure 14 shows the instantancous adapted meshes
and Fig. 15 shows the corresponding instantancous density
contour lines (Ap = 0.02). The instantaneous meshes and
density contour lines during the thind cycle of motion were
plotted at cight points in time, In each plot, the instantaneous
pitch angle o{r) and the instantancous angular position A7 in
the cycle are noted. The instantancous meshes (Fig. 14) clearly
indicate the enrichment in regions ncar the shock waves and near
the stagnation points. They also show coarsened regions where
previously enriched regions have relatively small flow gradients.
The density contours during the cycle (Fig. 15) demonstrate
the ability of the spatial adaption procedures to produce sharp
transient shock waves.
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Comparisons of steady pressure distributions for
the ONERA M6 wing computed using the
upwind-type Euler flow solver with flux-vector
splitting at M = 0.84 and o, = 3.06°.

Fig. 13

Temporal Adaption Results

To demonstrate the efficiency of temporal adaption over
global time-stepping for unsteady problems, results were ob-
tained for the same NACA 0012 pitching airfoil case of the
previous section.'® Figure 16 shows calculated results obtained
using temporal adaption and global time-stepping as well as
comparisons with the experimental pressure data of Ref. 24. In
each pressure plot the instantaneous pitch angle a(7) and the
angular position in the cycle k7 are noted. During the first part
of the cycle there is a shock wave on the upper surface of the
airfoil, and the flow over the lower surface is predominately
subcritical. During the latter parn of the cycle the flow about the
upper surface is subcritical, and a shock forms along the lower
surface. The pressure distributions indicate that the shock posi-
tion oscillates over approximately 25% of the chord along each
surface, and in general, that the two sets of calculated results
compare well with each other. This good agreement verifies the
time-accuracy of the solution computed using temporal adap-
tion, which was obtained at one-fourth of the CPU time that the
global ume-stepping solution required. Both sets of calculated
results also agree well with the experimental data.

Concluding Remarks

The current status of unstructured-grid methods develop-
ment in the Unsteady Acrodynamics Branch at NASA Lang-
ley Research Center was described. These methods are being
developed for unsteady acrodynamic and acroelastic analyses.
The paper highlighted the flow solvers that have been devel-
oped for the solution of the unsteady Euler equations and gave
selected results which demonstrated various features of the ca-
pubility. The results demonstrated two- and three-dimensional
applications for both steady and unsteady flows. Comparisons
of two-dimensional stcady and unsteady results were made with
solutions obtained using a structured grid code and with exper-
imental data to determine the accuracy of the two dimensional
flow solvers. Comparisons of three-dimensional steady results
were also made with experimental data to determine the accu-
racy of the three-dimensional flow solver. These comparisons
showed good agreement which thus verifies the accuracy of the
unstructured grid methods.
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