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Abstract

Some recent developments on integrated damping mechanics for unidirectional
composites, laminates, and composite structures are reviewed. Simplified damping
micromechanics relate the damping of on-axis and off-axis composites to constituent
properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate
and structural damping mechanics for thin composites are summarized. Discrete layer
damping mechanics for thick laminates, including the effects of interlaminar shear
damping, are developed and semi-analytical predictions of modal damping in thick
simply-supported specialty composite plates are presented. Applications demonstrate the
advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber
orientation, structural geometry, and temperature on the damping. Additional damping
predictions for composite plates of various laminations, aspect ratios, fiber content, and
temperature illustrate the merits and ranges of applicability of each theory (thin or thick
laminates).
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INTRODUCTION

The significance of passive damping to the dynamic performance of structures is widely

recognized. Damping is a significant dynamic parameter for vibration and sound control,

fatigue endurance, and impact resistance. Current light-weight and high-performance re-

quirements imposed on most structural applications restrict the use of many traditional

non-structural damping sources. Polymer-matrix composites are known to exhibit signif-

icantly higher material damping than most common metals, as a result of the polymer

matrix and their heterogeneity. Composites are already preferred in many structural ap-

plications due to their high specific stiffness and strength, hence, the option of passive

structural damping is an added advantage to these materials.

Various damping mechanics theories for unidirectional composites and laminates [1-

14] have been reported. Work on the damping of composite beams and plates [15-16], and

plate/shell composite structures of general geometry and lamination has been also reported

[17]. The research has demonstrated that composite damping depends on an array of

micromechanical and laminate parameters, temperature, moisture, and existing damage.

The composite damping is also anisotropic, but exhibits an opposite anisotropy trend

than stiffness and strength, being minimum in the direction of the fibers and maximum

in the transverse and shear directions. In addition, the structural composite damping

was found to be strongly dependent on structural configuration and deformation state.

It is apparent, therefore, that in order to realize significant structural benefits from the

damping of composite materials, integrated damping mechanics are required, correlating

the damping of composite structures to parameters of the basic constituent materials,

laminate configuration, hygro-thermal conditions, and structural geometry. This paper

reviews the past and present research at the Lewis Research Center in the development of

integrated damping theories for thin and/or thick composites and composite structures.

The damping mechanics complement previous work performed at Lewis on integrated

composite mechanics [18].

These integrated methodologies enable the synthesis of global damping capacity at the
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structural level, or any intermediate material level, while including the effects from crit-

ical parameters at each individual material level (micromechanical, laminate, and struc-

tural), friction from broken/debonded fibers, interlaminar layers, temperature, moisture,

and global structural geometry and boundary conditions.

Damping micromechanics explicitly relate the on-axis and off-axis damping capacities

of the unidirectional composite with the micromechanical parameters and the fiber orienta-

tion angle. Two different laminate/ structural damping theories have been developed. The

first was based on the classical laminate plate theory (CLPT) Kirchoff-Love's assumptions

which assume a linear displacement field through the thickness and neglect interlaminar

shear effects. The CLPT damping theory combines simplicity, computational speed, and

has yielded excellent results for thin laminates and laminated structures subjected predom-

inantly to extensional and/or flexural deformations. An important element of the CLPT

laminate damping theory is the inclusion of the interlaminar matrix layer damping, which

proved to be a potentially important source of damping for angle-ply laminates. A finite-

element based methodology for the synthesis of the passive damping and the simulation of

the damped dynamic response of thin composite structures has also been developed.

Recently, a novel discrete laminate damping theory for the damping of thick com-

posites is developed. The method assumes a piecewise continuous displacement field with

variable degrees of freedom through the laminate thickness. The effects of interlaminar

shear damping are also included. The discrete damping theory, although computation-

ally more cumbersome, is particularly suitable for thick composite laminates, or laminates

where the representation of local interlaminar shear effects are important. A semi- analyt-

ical methodology for the prediction of the dynamic properties of simply- supported (SS)

specialty thick composite plates based on the aforementioned theory is presented, and re-

sults for the modal damping values are reported. Comparisons with structural damping

predictions based on the CLPT damping theory illustrate the advantages of both laminate

theories.

Application studies and experimental correlations illustrate the merits and the accu-
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racy of these unified damping theories. In addition, they provide valuable information and

guidelines for the design of composite laminates/structures with good dynamic character-

istics, as well as, for the successful measurement of damping in composites.

COMPOSITE DAMPING

This section briefly reviews the synthesis of damping for on-axis (damping along the

material axes) and off-axis composites (unidirectional composites loaded at an angle),

including the effects of temperature and moisture on composite damping. Additional

details are provided in Ref. [13].

On-Axis Damping

For a unidirectional composite loaded along the material axes (Fig. la), closed-form

expressions have been developed for the synthesis of damping based on elastic hysteretic

damping assumptions [13]. For orthotropic but transversely isotropic materials, like uni-

directional reinforced composites, six damping coefficients will completely characterize the

damping of the composite, that is: (1) longitudinal damping zb jj (direction 11), (2) trans-

verse in- plane damping 012 (direction 22), (3) transverse through-the- thickness damping

013 (direction 33), (4) in-plane shear damping 016 (direction 12), (5) interlaminar shear

damping b14 (direction 23), and (6) interlamina.r shear damping b15 (direction 13). These

six damping capacities are explicitly related to fiber/matrix moduli and damping values,

and the fiber volume ratio (FN'R). Typical damping predictions and experimental correla-

tions for Gr/F,poxy unidirectional composites are shown in Fig. 2.

Off-Axis Damping

For the case of off-axis composites, ie. composites loaded at an angle (Fig. lb), a

transformation provides the equivalent damping capacity of the composite in the structural

coordinate system. Ref. [13] presents the damping transformation for in-plane SDCs. The

damping transformation is extended herein, based on the same principle of invariance of

the dissipated energy, to include out-of-plane shear and transverse damping. In such case,

the off-axis composite damping is best described by the following 6 by 6 damping matrix
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[0c]

[ b .:] = [R] T [ b l][R] —T
	

(1)

The transformation matrices [R] T and [R] -T are shown in the Appendix and induce the

effect of fiber orientation angle, while the diagonal matrix [bj] represents the on-axis damp-

ing values

11 0 0 0 0 0
0 'b12 0 0 0 0

[l] = 0 0 '013 0 0 0 (2)
0 0 0 0 i4

^
0 0

0 0 0 0 /'15 0
0 0 0 0 0 016

The off-axis ply damping matrix is non-diagonal and has the general form.

Wcll bc12 0 0 0 bc.16

b c21 OM 0 0 0 'bc26

[Y c] =
0 0 OC33 0 0 0 (3)
0 0 0 Oc44

^/
4 0

0 0 0 4c54 , ^N

/''c45

c55
/'0"

4 c61 7Yc62 0 0 0 'Yc66

The non-diagonal terms 12 indicate coupling between in-plane extensions, the terms 16 and

26 coupling between the in-plane axial and shear stresses, while the terms 45 the coupling

between interlaminar shear stresses. Apparently, off-axis loading will affect the overall

damping capacity of the composite in two distinct, yet uncommon to isotropic materials,

ways: (1) by altering the values of the diagonal terms, which is equivalent to altering the

dissipative capability of the ply directly associated to normal and shear strains, and (2)

by inducing and altering non-diagonal terms, which control the amount of strain energy

dissipated by coupled deformation modes. This is best illustrated in Fig. 3 where the

equivalent axial damping, and the values of the damping terms b cll i 4'c22, and zbc66 of a

0.50 FVR Gr/Epoxy composite vs. the fiber orientation are plotted. The important effects

of fiber orientation and coupling are apparent.
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Hygrothermal Effect

Many mechanical properties of polymers, including damping, are sensitive to hy-

grothermal variations. In this manner, temperature and moisture may have a definite

effect on the response of polymer composites. Previous studies [18,19] have shown that

the hygro-thermal effect on most mechanical properties of the matrix can be modelled as,

PM = [ Tg w — T ]0.s	
(4)Po	 Tgd — To

where: P and T represent matrix properties and temperature; subscript M represents

Mechanical Properties; and subscripts o ; gd, gw respectively indicate room, dry glass

transition and •_ ;lass transition conditonr. An inverted form of eq. (4) has been

proposea for the hygro-thermal effect on the matrix damping:

Pd _ [ Tgd — To]4

Po	 Tg ,, — T

The wet glass transition temperature is [19],

Tgu, = Tgd (0.005mz 0.1m 1 1)	 (6)

where rnj is the moisture content. The exponent q in eq. (5) can be correlated to experi-

mental damping data of each individual polymer matrix. In the present paper an average

value q=0.5 is assumed. The effects of temperature and moisture on the composite damp-

ing are introduced based on the previously described micromechanics. A similar approach

is used for other mechanical properties.

LAMINATE DAMPING

Two different laminate damping mechanics theories have been developed for thin and

thick laminates, respectively. The first is based on the CLPT Kirchoff-Love assumptions

and has provided excellent correlations with experimental results. The second is based

on discrete laver laminate plate theory (DLPT) and incorporates a piecewise continuous

deflection field of variable degrees of freedom. The discrete laver damping theory (DLDT)

is developed to model the damping of thick laminates, or laminates where the interlaminar

(5)
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shear effects are non-negligible. The assumed displacement fields for both laminate theories

are shown in Fig. 4. In both cases, the dissipated strain energy in the laminate is defined

as,

f
E,

h/2
OW L = 1/2	 T [E,][O,]E,dz	 (7)

h/2

and the maximum laminate strain energy

W L = 1/2 J	 E,T[E,]E,dz
r h/2

h/2

	 (8)

where [E,] is the off-axis stiffness matrix (see Appendix). The equivalent laminate specific

damping capacity (SDC) then is,

'OL = OWL/WL
	

(9)

Thin Laminates

An overview of the laminate damping theory for thin laminates [14] is provided here.

Based on the Kirchoff-Love's assumptions of uniform linear displacements through the

thickness and no interlaminar shear, the laminate strain E, contains only in-plane strains

which are related to the mid- plane strain E° and curvature k as follows:

E ci = {E°, k i }{l, z} T (i = 1, 2, 6)	 (10)

Combination of eqs. (7,10) and integration through the thickness provides the dissipated

strain energy of the laminate, expressed in terms of the 3 by 3 damping matrices [A d ], [Cd],

and [Dd ] (see Appendix) which are related to the properties of the composite laminate only.

OW L = 2 {E°, k} I ^c^^ ^Dd^ 
J { 

k }	 (11)

The previous expression is complete, in that, it represents general laminate configurations

and deformations. Indeed, the extensional damping matrix [Ad ] represents the laminate

damping capacity in pure extension, the flexural damping matrix [D d ] represent the lam-

inate damping in pure bending and torsion, and the coupling damping matrix [Cd] is
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associated with coupled extension-flexure deformations. All three matrices in eq. (11) are

fully populated. They also include the interlaminar damping contributions of the interply .

matrix layer, which have shown to be a significant additional source of damping in compos-

ite laminates [14]. Similarly, the maximum laminate strain energy in eq. (8) is expressed

as:	
r	 1

wL = 2 {e°, k} I [C ,] [D] 
J { 

k }	 (12)

where [A], [C], and [D] are the extensional, L coupling, and flexural laminate stiffness ma-

trices. Therefore, the equivalent damping capacity of a general laminate is calculated by

combining eqs. (9,11,12) and is a function of the composite laminate parameters and the

specific deformation state {e°, k}.

This laminate damping theory has yielded excellent correlations with experimental

results. Typical damping predictions for a 0.50 FVR graphite/epoxy (0 + 0/90 + 0/45 +

0/ — 45 + 0), laminate under cyclic free-flexure (a bending moment M = (Mx , 0, 0)) is

shown in Fig. 5. Additional laminate damping predictions and correlations for various

laminate configurations are shown in ref. [14].

Thick Laminates

A new discrete-laver laminate damping theory (DLDT) is recently developed for thick

laminates and/or laminates with significant interlaminar shear effects. In contrast to the

CLPT, the present theory assumes a general piecewise continuous in-plane displacement

field through the laminate thickness, in addition to the midplane deflections. Discrete

layer theories were historically proposed by Grigolyuk [20] and subsequently generalized

(see review [21]) for the more accurate calculation of stresses in thick laminates. The

authors, however, have realized that they combine the potential for accurate damping

predictions in thick laminates, or laminates with weak interlaminar damping layers, where

deviations from the CLPT assumptions are expected. The assumed displacement field has

the form,

u(X,y, z, t) = U' ( X , y , t ) +^(Xly.z,t) (13.1)

v ( X , y , z ' t ) = v, ( X , y , t ) +'D(x,y,z't) (13.2)

8



w(x, y, z, t) = W , (X, y, t)
	

(13.3)

where superscript o represents the uniform through-the-thickness midplane deflection. Ap-

plying a piecewise continuous linear displacement field, as suggested by Reddy and co-

workers [22-23], the previous eqs. take the form:

N

u(x,y,z,t) = u°(x,y,t) + Eu'(x,y,t)F j (z)	 (14.1)
j=1

N
v(x, y, z, t) = v°(x, y, t)	 I: vj (x, y, t)Fj(z)	 (14.2)

j=1

w(x, y, z, t) = W, (x, y, t) (14.3)

where, u 3 and vJ are displacements, along the x and y directions respectively, preferably

at the interfaces between various plies, or sublaminates (group of plies), and Fj (z) are

linear interpolation functions. In this manner, the assumed in-plane displacement field is

general, in that it may represent general displacement fields and interlaminar shear strains

through-the-laminate thickness in the laminate plane.

The laminate strains are directly derived from eqs. (14)

N

Eci = Eci +	 EciF2(z)	 2 = 1, 2, 6	 (15.1)
j =1

N

E ci = E ci	 EciFz(2)	 i = 4,5	 (15.2)
j=1

where, the midplane strains are,

o _ o	 c	 o	 o	 o	 0
Ecl — TL,x
	 c

c = v ,y	 Ec6 = u ,y + v,x

	

O _ o	 o	 o

	

Ec4 — tL y	 Ec5 = w,x

and the generalized strains are,

(16.1)

(16.2)

3	 3 _ ,>	 >	 >	 >
Ecl — u ,x	 Ec2 — Z ,y	 Ec6 — 71 y + v x (17.1)
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ec4 = v j Ec5 = ui (17.2)

The comma in the subscripts indicates differentiation. Combination of eqs. (7, 15-17)

ultimately provides the dissipated strain energy per unit area,

	

N	 N N

OW L = 1/2(E,T [Ad ]E' + 2E,T ^[Ba] Ej + E 
1: EcT

[ Dj— ] E-)	 (18)

	

j=1	 j=1 m=1

where, [Ad ] is the previously defined extensional laminate damping matrix, but with ad-

ditional out-of-plane shear .terms. The generalized coupling damping matrices [Bd] and

flexural/shear matrices [Dd" ] are new.

	

NI	 hk

[ Ad] _ 1: f
h
	[Ec]k[^c]kdz	 (19.1)

	

k=1	 k-i

NI 

fhk - I

hk

(Bd)i n =	 ([Er]k[^c]k)i,,P(z)dz	 i,n = 1,2,6	 (19.2)
k=1 

N, rhk

	

( Bd)in =	 Jh	 ([Ec]k[ _"/^,'r]k)inF? (z)dz 	 in = 4,5
k=1k-i

	

Ni	 hk

(Dam )in =	
fhk- 

([E^]k[	 P(z)F"`(z)dz	 i,n = 1,2,6	 (19.3)

	

k=1	 i

	

N i	 hk

( D dm )in —	 f^ k - j
([Ec'Jk[Y'c]k)inFz(Z)Fz (z)dz	 i,n = 4, 5

k=1 

In a similar manner, the combination of eqs. (8, 15-17) provides the maximum strain

energy per unit area,

N	 N N

W L = 1/2( E^T[A]E^ + 2 E^ T E[B^]E^ +	
EcTID^m]Em)	 (20)

	

j=1	 j=1 m=1

where, [A] is the previously defined extension laminate damping matrix, however, with

additional out-of-plane shear terms. The generalized coupling camping matrices [ B 3 ] and

flexural/shear matrices [Dj— j are new.

NI	 hk

[A] = E	 [Eclkd z	 (21.1)
k=1 Jhk-,
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Ni 	hk

(Bj)in =
	 k- 1

([E-]k)inF'(z)dz	 i,n = 1,2,6	 (21.2)
k=1

N, 

fhk -1

	

hk

( B j )in =	 ([E.Jk)inFi(z)dz	 i,n = 4 ,5
k=1 

	

N,	 hk

	

(Djm ) in = E	 ([Er]k)inF'(z)F'(z)dz	 i,n = 1,2,6	 (21.3)
k=1 1hk_1

E([E

N, 

fhk- 1

hk

^]k)inFz(z)Fi`(z)dz	 i,n = 4 ,5
k=1 

The equivalent laminate damping for a given local displacement field is provided by

eq. (9).

STRUCTURAL DAMPING

The present section describes the procedure followed for characterizing the global

damping capacity of composite structures. It is clear from the previous sections, that the

damping capacity of the composite structure will strongly depend on the global deforma-

tion state. This difficulty is overcome by considering the modal damping values, that is,

the damping of the structure vibrating solely at the respective modal shapes. Since the

vibration modes form a complete set representing the elasto-dynamic response of the struc-

ture undergoing small deflections, the modal SDCs provide a complete characterization of

the global structural damping. The modal damping coefficients, in connection with other

modal parameters, can also provide the damped dynamic response of the structure [24].

Thus, the objective of this section is to present the method for synthesizing modal

damping. The modal SDC associated with the n-th vibration mode ^b n is:

^bn = 
A,, A wndV

fv wndV

where Aw n and wn represent the dissipated and maximum specific modal strain energies

per cycle respectively. For the case of laminated composite structures the structural modal

damping becomes,
f ,^ wLndA

^n = A	 (23)
fA wLn dA

(22)
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where AWL, and wLn are respectively the dissipated and maximum laminate modal strain

energies of the n-th mode.

Thin Composite Structures

For thin composite structures, eq. (23) is combined with eqs. (11-12) to yield the

modal damping. For specialty laminates and simple structural configurations, such as

plates and shells, exact mode shapes may be found, and explicit integration of eq. (23)

is possible, resulting in analytical expressions for modal damping. Such expressions have

been derived by the authors for simply-supported rectangular plates.

More general laminate/structural configurations, however, require a form of approxi-

mate solution. As a result, approximate procedures based on finite element discretization

were developed [17]. The integrations in eq. (23) are performed numerically, first over

the area of the element, and then over the structural area. A specialty finite element was

developed with 6 degrees of freedom per node. The damping capacity of the element was

represented by the element damping matrix and included membrane, flexural, and coupling

damping terms. The complete inclusion of extensional, flexural and coupling terms into

the damping element matrix, readily provided the capacity for predicting the damping in

composite structures with general laminate configurations and/or material and geomet-

ric coupling (for example, thin composite shells, thin- wall box or tubular beams, and so

forth). Typical predicted SDCs for three graphite/epoxy composite structures of varying

structural complexity, a cantilever beam, plate and shell respectively, are shown in Fig. 6.

The assumed lamination was (±0) 5 ,. Among other issues, Fig. 6 dramatically illustrates

the effect of fiber orientation, structural aspect ratio, curvature, and mode order on the

structural modal SDCs.

Thick Composite Plates

A new semi-analytical method for the calculation of damping in simply- supported

thick cross-ply composite plates, in connection with the discrete layer laminate damping

theory previously described. Assuming a rectangular a by 0 symmetric composite plate

with negligible coupling ( A 16 =A 26 =0 , B ib =B26 =0 , D16 =D2s =0), the following Navier
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fundamental solutions form a complete set of mode shapes in the x-y plane:

v'mn( x , y , t ) = Umncos(ax)S2n(by)es"t 	 (24.1)

vmn(x, y, t) = V,nnSZn(ax)cos(by)ei"t 	 (24.2)

u'mn(x, y, t) = W nnSZn(ax)sin(by)ei"f	 (24.3)

U1 ( x, y, t) = U'mncos(ax)Sin(by)ei "t 	 (24.4)

vm n (x,y,t) = V„insin(ax)cos(by)e	 (24.5)

Where, a = 7-n7r/a and b = nor/O. Combination of eqs. (16,17,24) yields the modal

mid-plane and generalized strains as separable functions of x, y coordinates, time, and

amplitudes.

	

{ E n} _ [B,n,, U,nn}ei"t' 	 f cl j = [BI jfUmn}ei
"t 	 (25)

where, the terms in matrices [B],,,,n are sine/cosine functions of x, y coordinates and mode

order. The amplitude displacement vectors are U° = {U°,V°,W° }T and Uj = {U',Vj }T.

The kinetic energy through the thickness of the plate is:

h/2

KL = 1/2	 {v,} TP{v }dz 	 (26)
h/2

Considering eqs. (14) the laminate kinetic energy per unit area takes the form:

	

N	 N N

KL = 1/2({ic° } T [A M ] { v,°} + 2 { 0 } T 1:[BM]{u j } +	 {u' }T [DM jiu —J)	 (27)

	

j=1	 j=1 m=1

where the generalized laminate mass matrices are

N,	 hk

[AM ] _	
f1h	

diag(P k )dz	 (28.1)
k=1k -1

N+	 hk

Tj I _ f
hk

diag(P k )F'(z)dz	 (28.2)
k=1 -1
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N1 it,

hk

[DM] _ 1diag(p k )Fj(z)F'^`(z)dz	 (28.3)
k=1	 k-1

The term diag(p k ) indicates a diagonal matrix, with all diagonal terms equal to the

density of the k-th ply.

By substituting eqs. (25) into the strain and kinetic laminate energy, eqs. (20) and

(27), integrating over the plate area, and applying Lagrangian dynamics, it is proved that

the undamped modal analysis (free vibration) solution of the plate takes the form:

_W 2 [ A1'mn 1 U.n + [h mnl U.n = 0	 (29)

where, U,,,,. = { Umn ; U mn l "'. Umn 1. Numerical solution of this eigenvalue problem

provides the natural frequencies and the through-the-thickness modes for each order mn

of plane modes, in the context of eqs. (24).

The modal damping of each mode is subsequently calculated, in accordance with eq.

(23). First eqs. (19) and (21) are integrated through-the-thickness, and are combined with

eqs. (18) and (20) respectively. Then the gen. erahzed stresses and strains are related to

the calculated mode shape using eq. (20). The integrations over the area of the plate are

performed analytically. Only the natural frequencies and the mode shapes through-the-

thickness are calculated numerically, hence, the whole procedure is semi-analytical.

An analogous procedure was also developed for the exact analytical solution of the

natural frequencies and modal SDCs of thin rectangular plates based on the CLPT as-

sumptions. In the remaining paragraphs, predictions with both thick and thin composite

damping theories are shown.

Predicted results for the first 10 modes of a square 406 mm by 406 (161n by 16in)

simply-supported (SS) plate, 4.06 mm thick (0.16 in), of 16 0.50 FVR Gr/Epoxy plies,

each 0.01 in thick, based on both discrete layer plate theory (DLPT) and CLPT are shown

in Table 1. Three laminate configurations are investigated: (1) a unidirectional plate (0)16,

(2) cross-plies (0 4 /90 4 )„ and (3) alternating cross-plies (0/90) 4 ,. The fibers in the 0 degs

plies are parallel with the x axis and 16 discrete linear displacement segments, one in each

ply, were used (N=17). As seen, the modal SDCs vary widely with the modal shape.
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In all cases, the differences in the prediction of the first few modal SDCs is small and

both theories show good agreement in the prediction of natural frequencies. For this plate

of high aspect ratio, this was expected and lends credence to the method. However, the

differences between the modal damping of higher order modes of the 0/90 plates, is greater

than in the case of the unidirectional plate. This is attributed to the higher interlaminar

shear stresses developed in the transverse plies in order to balance the normal stresses in

the longitudinal plies.

The fundamental modal SDC and natural frequency of a square 0.50 FVR (04/904).

Gr/Epoxy plate are plotted in Fig. 7 for varying aspect ratios a/h. At aspect ratios

greater that 50, both CLPT and DLPT give comparable predictions, which again rein-

forces the validity of the DLPT damping method. At aspect ratios lower that 50, the

DLPT damping method gives significantly higher predictions of damping than the CLPT,

because the interlaminar shear effects are important, which illustrates the superiority of

the methodology. The differences in frequency predictions are small.

To illustrate the potential of the unified composite clamping methodologies presented

herein, the fundamental SDC and natural frequency of a 203 mm by 203 mm (8 in by 8

in), (0 4 /904 ) 8 Gr/epoxy plate for varying FVR, either in the 90 degs plies only or the 0

degs plies only, are shown in Fig. 8. The modal damping is rather insensitive to the FVR

variation in the 90 degs plies, however, the DLPT predicts significantly higher damping at

low FVR. It is recalled that at low FVR, the shear modulus G123 is reduced, hence, higher

strain energy is stored in the 90 degs plies to balance the bending stress in the 0 degs plies,

moreover, the interlaminar shear damping is increased. The variation of the FVR in the

0 degs plies has a definite effect on the modal damping and frequency, but both theories

provide equivalent results.

Predictions of the fundamental SDC and natural frequency of the same plate, sub-

jected to uniform through-the-thickness temperature variations are plotted in Fig. 9. The

CLPT significantly underestimates the fundamental SDC at higher temperatures. It is

recalled, that in higher temperatures, the shear modulus of the 90 degs plies decreases and
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the shear damping increases respectively. The temperature variation has little effect on

the natural frequency.

CONCLUSIONS

The paper presented an update on past and present research work performed by the

authors on the development of unified theories for the damping of polymer composites and

composite structures at NASA-Lewis Research Center. Damping mechanics for compos-

ites were developed in a unified sense, that is, for all three stages of structural complexity

(micromechanical, laminate, and structural), including hygrothermal effects, and effects of

interlaminar shear. Laminate and structural damping mechanics for thin composite lami-

nates of general laminate configurations were first developed and reported. The damping

mechanics can handle extensional, flexural and coupled deformations, therefore, can pre-

dict the damping of symmetric, antisymmetric, and/or fully asymmetric laminates, or the

damping of co-r,. e st r" ' Ct ui :._ with geometric coupling such as thin-wall beams, shells,

and sr • :rui. Representative results and experimental correlations were presented.

Damping mechanics for thick composite laminates/ structures are presently under de-

velopment and a unified discrete-laver damping theory was presented. The discrete dis-

placement field of variable degrees of freedom enabled the calculation of interlaminar shear

strains and the incorporation of interlaminar shear damping. Semi-analytical solutions

were developed for the prediction of damped dynarric characteristics of thick composite

laminates. Comparisons with the CLPT damping theory illustrated that for high aspect

ratios both theories give comparable results. However the discrete- layer theory provided

better predictions, in specific cros ,-ply laminate configurations, low aspect ratios, high-

order modes, cross-plies with inner plies of low FVR, and cross-plies at higher tempera-

tures. Both theories yielded comparable predictions of natural frequencies in most cases.

Overall, the presented evaluations of the method demonstrated the power and ver-

satility of these integrated composite damping mechanics. The damping mechanics have

been incorporated into in-house research codes, including ICAN [18]. Subjects of future

research will be composite laminates with interlarrvnar damping lavers, and the effects
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of damping improvements on the stiffness, natural frequencies, buckling resistance, and

impact performance of thick composite structures.
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APPENDIX

Off-axis ply stiffness matrix [E,] (ref. 18):

{uc } _ [E,:]{e^j
	

(Al)

[E,:] _ [R] -1 [
Ej] [R] -T
	

(A2)

Transformation matrices:

[R] -1 = [R(—B)]
	

(A4)
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Laminate damping matrices (CLPT):

NI
II''	

N, -1

[ ACD] _	 tl,i[Ec.]T [Yk c]i +	 gi[S]t[4'm]i	 (A5)
i=1	 i=1

N,	
,, //''	

NI -1

[ CCD] =	 2(zt — z6)i[Ec]'[Y'c]i 	+	 z,-p,jHj[S]i[VYm]i	 (A6)
i=1	 i=1

N+	 NI -1

[DCD] =	 3(zt — zb)i[Ec]T [^I'.] i +	 Z,Z.p i gi[ S] j [ ,O.]i	 (A7)
i=1	 i=1

The interply distortion energy coefficient 8, and matrix [S] are described in ref. 18.
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Table 1. Modal characteristics of square simply supported plates

Mode (n,m)	 Nat. frequency (Hz) 	 Modal Damping, %
(DLPT)	 (CLPT)	 (DLPT)	 (CLPT)

(016) Plate

1 (1,1) 128.8 129.2 1.035 0.996
2 (1,2) 161.5 161.9 2.561 2.531
3 (1,3) 240.2 240.8 3.861 3.842
4 (1,4) 367.3 368.5 4.399 4.389
5 (2,1) 490.8 496.8 0.761 0.606
6 (2,2) 510.6 516.8 1.148 0.996
7 (1,5) 538.8 541.2 4.582 4.575
8 (2,3) 556.3 562.8 1.827 1.684
9 (2,4) 640.7 647.8 2.654 2.531
10 (2,5) 772.3 780.4 3.390 3.294

(0¢1904)s 	 Plate

1 (1,1) 128.8 129.2 1.026 0.996
2 (1,2) 231.1 231.9 1.464 1.428
3 (1,3) 449.5 452.8 1.440 1.357
4 (2,1) 461.7 468.2 0.764 0.635
5 (2,2) 510.1 516.8 1.113 0.996
6 (2,3) 652.5 660.5 1.437 1.326
7 (1,4) 767.6 777.5 1.428 1.279
8 (2,4) 914.4 927.7 12572 1.428
9. (3,1) 1011.0 1043.0 0.845 0.562
10 (3,2) 1041.0 1074.0 1.012 0.736

(01904, Plate

1 (1,1) 128.9 129.2 1.019 0.996
2 (1,2) 338.0 340.3 0.931 0.865
3 (2,1) 392.9 396.5 0.823 0.737
4 (2,2) 512.1 5.168 1.076 0.996
5 (1,3) 720.8 732.0 0.904 0.752
6 (2,3) 827.2 839.6 1.103 0.964
7 (3,1) 852.1 869.7 0.837 0.643
8 (3,2) 922.2 940.3 1.025 0.846
9 (3,3) 1140.0 1163.0 1.173 0.996
10 (1,4) 1254.0 1288.0 0.972 0.706
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