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RESON_FF TRIAD IN BOUNDARY-LAYER STABILITY

PART I. FULLY NONLINEAR INTEI_CTION

Reda R. Mankbadi

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY
i

A first-principles theory is developed to study the nonlinear spatial evo-

lution of a near-resonance triad of instability waves in boundary-layer transi-
tion. This triad consists of a plane wave at fundamental frequency and a pair
of symmetrical, oblique waves at the subharmonic frequency. A low-frequency,
high-Reynolds-number asymptotic scaling leads to a distinct critical layer
where nonlinearity first becomes important; the development of the triad°s
waves is determined by the critical layer's nonlinear, viscous dynamics. The

resulting theory is fully nonlinear in that all nonlinearly generated oscilla-
tory and nouoscillatory components are accounted for.

The presence of the plane wave initially causes exponential-of-exponential
growth of the oblique waves. However, the plane wave continues to follow the
linear theory, even when the oblique waves' amplitude attains the same order of
magnitude as that of the plane wave. A fully interactive stage then comes into
effect when the oblique waves exceed a certain level compared to that of the
plane wave. The oblique waves react back on the fundamental, slowing its
growth rate. The oblique waves' saturation results from their self-interaction
- a mechanism that does not require the presence of the plane wave. The
obliqoe waves' saturation level is independent of their initial level but
decreases as the obliqueness angle increases.

Part It of this study will present results for the composite solution and
comparisons with observations. Novel features of the phenomena will be
described, and new interpretations of the experimental data will be given
therein.

1. INTRODUCTION

1.1. Background

Experiments on boundary-layer transition and accompanying instability-wave
growth have identified several distinct flow-development regimes. The first
regime begins with the onset of a two-dimensional, Tollmien-Schlichting (TS)
wave that propagates in the flow direction and is uniform in the spanwise
direction. These waves harmlessly grow and decay in accordance with the two-
dimensional, linear stability theory when their amplitudes are sufficiently
small. However, a nonlinear regime characterized by a three-dimensional dis-
turbance field appears when the amplitude becomes sufficiently large. These



three-di_ensional disturbances grow at much higher rates than predicted by

linear theory and ultimately lead to the transition to the turbulent state.

The occurrence and growth of three-dimensionality have been recognized as

a prerequisite for the eventual transition into turbulence since the experi-
ments of Klebanoff & Tidstrom (1959) and of Klebanoff, Tidstrom, & Sargent

(1962), which demonstrated that the three-dimensional structures are periodic
in the spanwise direction. These experiments, which incorporated relatively

large two-dimensional input disturbances, documented the wrapping of the ini-
tial TS wave into peak-valley pairs characterized by streamwise wavelengths
equal to that of the TS wave and to a spanwise wavelength of the same order.
But at low-to-intermediate levels of the two-dimensional input disturbances,

the experiments of Knapp & Roache (1968); Kachanov, Kozlov, & Levchenko (1978);
Kachanov & Levchenko (1984); Saric & Thomas (1983); Saric, Kozlov, & Levchenko

(1984); and Corke & Mangano (1987, 1989) indicated the existence of another
form of the spanwise periodic structure. In these experiments, a staggered
X-shaped pattern occurred, the streamwise wavelength was twice that of the TS
wave, and the spanwise wavenumber was almost half of that observed by Klebanoff
e_ al. The three-dimensional structure is thus the subharmonic of the input TS
wave. Unlike the TS wave, the observed subharmonic oblique waves grow rapidly

and eventually lead to the transition to the turbulent state. Since this struc-
ture occurs at low-to-intermediate amplitudes of the TS wave, it is more likely
to occur in natural transition than is the fundamental-type structure of

Klebanoff ec al. These experimental observations established the subharmonic
route to boundary-layer transition, which is the subject of the present work.

The observed three-dimensionality in boundary-layer transition has promp-

ted several theoretical and numerical attempts to find the mechanisms associa-

ted with the rapid development of the three-dimensional waves. Raetz (1959)

and Craik (1971) suggested the existence of a resonant triad consisting of a

plane wave and a pair of symmetrical oblique waves. Their studies suggested
that, if the wavenumbers are such that the phase velocities are equal, then the

interactions might be strong. This is attributed to the phase-coupled energy

exchange among the wave components and to the possible transfer of energy from
the mean flow to the waves in the critical layer. Though the proposed model

could not quantitatively explain the observed phenomena, it revealed the exis-

tence of a particularly strong, nonlinear resonance mechanism for the selective

growth of a pair of oblique waves and established in principle the subharmonic
route to boundary-layer transition. Smith & Stewart (1987) considered the
resonant interactions at wavenumbers close to the lower branch of the neutral

stability curve by starting from the unsteady, triple-deck equations where the
critical layer has moved into the viscous wall layer and is passive. The

linear secondary stability analysis of Herbert (1983, 1988) explained many fea-
tures of the observed phenomena in the parametric resonance stage. Other theo-
retical and numerical work on the subject is reviewed by Craik (1986); Stuart

(1986); Herbert (1988); Nayfeh (1988); Fasel (1990); Saric (1990); and Kleiser
& Zang (1991). These studies have resulted in considerable effort to establish
the mechanisms and methods for quantitative analysis in this area.

1.2. Scope of Present Work

The present work is concerned with developing a first-principles theory

for use in the study of the fully interactive, near-resonance triad in



boundary-layer transition. The triad consists of a two-dimensional TS wave at
the fundamental frequency _ and of a pair of three-dimensional oblique waves
at the subharmonic frequency _/2. The oblique waves make equal and opposite
angles, ±e, to the flow direction, and their common streamwise wavenumber is
nearly half that of the plane wave. Observation of boundary-layer transition
typically reveals harmonic time-dependent instability waves, which exhibit spa-

tial downstream growth that is described in the early stages by linear stabil-
ity theory. As such, we will here consider initially linear instability waves
whose continued downstreamspatial growth results in nonlinearity (as was first
done by Goldstein, Durbin, & Leib, 1987). Here, the fully nonlinear interac-
tions of the waves have been studied via matched asymptotic expansion in the
nearly common, critical layer at the transverse position where the instability
wave's phase velocity equals that of the mean flow.

Critical'layer nonlinearity (CLN) has been successfully adapted for the
study of the nonlinear development of stability waves in various situations.
ffaslowe provided an excellent review of CLN in shear flows: more recently,
Huerre (1987) considered the two-dimensional shear layer in the viscous,
critical-layer regime where growth, or nonequilibrium, effects are negligible.
Critical-layer nonlinearity in the nonequilibrium regime, where growth effects
are dominant, has been considered by Goldstein & Leib (1988, 1989); Goldstein
& Hultgren (1988); and Goldstein & Choi (1989), who showed that nonequilibrium
(i.e., growth) effects must be accounted for in order to match the nonlinear
solution onto a suitable linear instability wave in the upstream region, where
the wave amplitudes are small. They used their analysis to study various

phenomena in free shear flows, such as nonlinear roll-up effects, the nonlinear
evolution of a single oblique wave on compressible and incompressible shear
layers, the nonlinear interaction of a pair of oblique waves in a free shear
layer, and the instabilities in supersonic mixing layers.

For boundary-layer flows, Goldstein, Durbin, & Leib (1987) used CLN to

study the nonlinear roll-up of vorticity in the presence of adverse pressure
gradients, and Goldstein & Wundrow (199p0) used CLN to study nonlinear second-
mode instability in high Math-number boundary layers. The role of CLN in
boundary-layer transition is evident from experimental observations, such as
those of Corke & Mangano (1989), whose work demonstrates that nonlinearities
are concentrated in the critical layer. The numerical results of secondary
stability analysis (Herbert, 1988) also suggest that secondary instability ori-
ginates from the redistribution of spanwise vorticity in the critical layer.

Subharmonic resonance experiments in boundary layers (Corke & Mangano,
1987, 1989; Kachanov & Levchenko. 1984; Saric & Thomas, 1983; and Saric ecal.,

1984) indicate that at least three stages of the nonlinear interactions follow

the initial linear growth stage: super-exponential subharmonic growth, satura-

tion, and decay. In the super-exponential stage, or, loosely termed, the para-

metric resonance stage, the subharmonic oblique waves grow rapidly while the
fundamental plane wave behaves almost in accordance with the linear theory.

This stage is followed by the fully interactive regime, wherein the subharmonic
exceeds the fundamental, saturates, and then decays. This regime, which may
or may not be associated with a backreaction on the fundamental, ultimately
results in the transition to the turbulent state. The recent experiments of
Corke & Mangano (1989) and Corke (1989) have indicated the existence of several
previously unencountered features of the fully interactive regime. Also, the
fully interactive regime has not been completely explored by direct numerical



simulations owing to the resolution requirements, which become prohibitive as
the amplitudes increase downstream. For these reasons, this study focuses on
the nonlinear interactions of the waves, starting from the linear stage and

encompassing the resonance as well as the fully interactive saturation and
decay stages. Emphasis is placed on capturing the fully interactive regime,
which is done by allowing the oblique waves a sufficiently large amplitude to
produce a backreaction on the plane wave.

Because the aboye-cited experimental observations also indicate that sub-
harmonic resonance occurs at low dimensionless frequencies, this study employs

an asymptotic analysis that is valid not only in the low-frequency domain rele-
vant to the experimentally observed phenomena but also at the technologically
important lower-frequency domain, which may not be easily made subject to
experimental testing or direct numerical simulations.

Subharmonic resonance first occurs near, and continues downstream of, the

.upper-branch neutral stability curve (see the data of Kachanov & Levchenko,
1984; Saric & Thomas, 1983; Saric, Kozlov, & Levchenko, 1984; Corke & Mangano,
1987, 1989: and §3.4, part II of this study). The parametric resonance mech-
anism is proportional to the plane wave's amplitude, which peaks at the upper
branch; furthermore, as this study will demonstrate, the parametric resonance
mechanism also is proportional to the cube of the Reynolds number, which
increases indefinitely do_stream. For all these experiments, these two fac-
tors cause resonance to occur in the vicinity and downstream of the upper
branch, with the subharmonic maximum growth rate occurring not at, but down-
stream of, the upper branch. Therefore, the upper-branch scaling (Drazin &
Reid, 1981) must be relevant to the subharmonic resonance phenomena.

Moreover, at low frequencies, the upper-branch scaling applies not only in
the vicinity of the upper branch, but also over most of the Reynolds-number
range, breaking down only at low Reynolds numbers in the asymptotically small
neighborhood of the lower branch (Goldstein & Durbin, 1986). Therefore, the
upper-branch scaling is relevant to the entire Reynolds-number range associated
with the subharmonic resonance phenomena. This scaling leads to a multideck
stability structure characterized by a distinct, nonlinear, viscous critical

layer separated from the viscous wall layer, and it cannot be captured by a
triple deck structure (see Bodonyi & Smith, 1981; and 9razin & Reid, 1981, and
references therein).

The above factors uniquely fix the asymptotic scaling. As such, in this

study a low-frequency, high-Re}_olds-number scaling is adopted that is appli-
cable to all the Reynolds-number range relevant to the observed subharmonic
resonance. This scaling brings into play the critical layer and distinguishes
it from the viscous wall layer.

Section 2 of this study addresses the linear solution in the main part of
the boundary layer. Slowly varying amplitude functions are introduced in the
linear solution and are ultimately determined by considering the nonlinear vis-
cous flow in the critical layer for each mode. The high-Reynolds-number linear
solutions are obtained by matching the appropriate results in the different
transverse zones. This leads to a linear relationship between the growth rate

and the velocity jump across the critical layer. The waves then interact non-
linearly, with the nonlinearity first coming into effect in the nearly common
critical layer.



Section 3 addresses the nonlinear, viscous critical-layer flow. The non-
linear viscous critical layer is required to approach a conventional linear,
viscous critical layer far upstream. Within the order_of approximation of the
analysis, nonlinear effects a_e confined to the critical layer, thus providing
the boundary conditions required to solve the viscous nonlinear equations that
govern the critical-layer flow. The scales of amplitudes are determined for
the fully interactive case, which implies that the oblique waves can become
large enough to cause a backreaction on the plane wave. The self-interaction
of the oblique waves occurs at the same level and is found to be of major
importance.

Section 4 addresses the nonlinear amplitude equations for the triad waves.

The nonlinear solution presented here matches onto the upstream linear solution
and onto the linear solution outside the critical layer. The amplitude equa-
tions are obtained analytically by equating the velocity jumps across the crit-
ical layer that are calculated from the linear solution to those that are
calculated from the nonlinear solution.

Section 5 examines the nonlinear mechanisms independently of the flow
divergence effects, which is feasible because of the comparatively short
streamwise distance wherein nonlinearity occurs. Here, the study demonstrates
that the saturation of the oblique waves is caused by their self-interaction,
even in the absence of the plane wave. This self-interaction, which leads to
the saturation and decay of the oblique waves, previously has not been identi-
fied in the subharmonic route to boundary-layer transition. The parametric
resonance of the subharmonic caused by the plane wave, and the backreaction
that occurs on the latter are also examined in §5. This is followed by the
presentation of discussions and conclusions in §6.

Part II of this study will examine the influence exerted over the develop-
ment of instability waves by flow-divergence effects. This will be achieved by

following Goldstein & Leib (1988) in forming a composite solution that accounts
for both the nonlinear effects and for those caused by the boundary-layer
growth. The results will be compared with experimental data as well as with
numerical simulations, and excellent agreement will be demonstrated.

Part II of this study also will examine other waves generated by the non-
linear interactions, waves that were not present in the initial (upstream)
linear stage and which are fully accounted for in the present theory.. These
waves are of significant magnitude and play a crucial role in determining the
triad's amplitudes as well as in interpreting several previously unexplained
experimental observations.

In addition, part II will examine the broad range of unstable spanwise
wavenumbers.

2. SCALING AND LINEAR SOLUTION

The flow under consideration here is that of an incompressible laminar

boundary layer. Its mean boundary-layer velocity is given by the Blasius

velocity UB, where



_2 4
UB = _y - _ y ÷ . . . as y 4 0 (2.1)

and k denotes the scaled Blasius skin friction = 0.332. The upstream flow

starts as a near-resonance triad of spatially growing instability waves: a

two-dimensional mode of normalized frequency _ and wavenumber _, and a pair

of subharmonic oblique waves of frequency e/2, streamwise wavenumber nearly

equal to a/2, and spanwise wavenumber ±_. The development of the waves up-
stream of the nonlinear region (fig. l{a)) follows the weakly nonparallel flow

linear theory. All velocities are normalized by th6 upstream velocity U®,

lengths by _*, time by 6*/U®, and pressure by pU_, where p is the fluid

density and _* is the boundary-layer thickness defined as S* -_®.
Here, v is the kinematic viscosity..

The high-Reynolds number scales as

= alOR ,
(2.2}

where R is the Reynolds number based on the local-boundary layer thickness,

_*, and R is an order-one scaled Reynolds number and a real quantity for

time-periodic spatially growing disturbance. The small-frequency parameter a
can be related to the normalized frequency F* by the approximate relation in

Goldstein & Durbin {1988}

ev 12 {2 3}
F* - _-_-- a

CO

The normalized complex wavenumber _ is small, and its imaginary part is

smaller than its real part (Goldstein, Durbin, & Leib, 1987). Cqnsequently,

each of the three modes has a well-defined critical layer at nea_ly the same

transverse position, Yc, where the real part of their nearly common phase velo-

city, c, is equal to the streamwise velocity, U.

Outside the critical layer, the unsteady flow is governed by the linear

dynamics, as first pointed out by Haberman (1972), and is treated as being

locally parallel in the streamwise length scale over which the nonlinear

effects take place. The velocity field is given by

r 8¢0
u = UB{Y) +Be Ao(X I) aT (Y,Xl,a}eiX + SA(Xl}[U+(Y,Xl,a)eiZ

+ U_(Y,Xl,a)e-iZ]eiX/2_ (2.4a1

v _ Be i[¢aAo¢oeiXL + 6YA(eiZ + _iZ)¢_iX/2]-j {2.4b}

and

w-_eA(W+eiZ_ - W_e-iZ)e ix/2 , (2 .4c)

6



where

x I _ o4× (2.5a)

X _ _(x - oct) (2.5b)

Z _ _z (2.5C)

(2.5d)

The amplitudes Ao and A are for the two-dimensional and the oblique waves,
respectively. The symbols e and 6 are the measures of the amplitudes of
the two-dimensional and the oblique waves, respectively. The amplitude func-
tions and their scales will ultimately be determined from the nonlinear analy-
sis in the critical layer. Because the initial development of the instability

waves is linear, we can take A(Xl) to be initially a real quantity, but we
allow the two-dimensional amplitude Ao(xl) to be complex. Farther down-
stream, because of the nonlinear effects, both A(Xl) and Ao(Xl) become com-
plex. In (2.4), U± and W± are related to the eigenfunction _ through the
relations

,,. = a_ (2.6a)
y - y

_ S2 W (2.6b)
Y ± Y ± " /2 -2 U - c ' I

where @o, @ satisfy the linear Orr-Sommerfeld and Squire equations, respec-
tively, with appropriate boundary conditions. The wavenumbers and phase velo-

cities scale as (see Goldstein. Durbin, & Leib, 1987)

4Ao
iA

o

(2 .Ta)

_

,¢=_+_ _cA'
2i A

Y

, (2 .Tb)

c O = 3
0 A'

I + -- w

(2.7C)

C J

3
1+2 _ A'

• - A

, (2.7d)



and

where an overbar (-) denotes an order-one real constant. Here, (') denotes
differentiation with respect to the flow variable x 1. The scaling, given by
equations (2.1) and (2.7), is consistent with Reid's (1965) equation (3.128).

At the high-Reynolds-number limit, the disturbance solution is a multi-
zoned structure (fig. l(b)), wherein the critical layer is distinct from the
wall layer (see Bodonyi & Smith, 1981; Orazin & Reid, 1981; Graebel, 1966;

Eagles, 1969; Fraenkel, 1969; and DeVillers, 1975). Zone I (Stokes layer) is
a viscous wall layer and is the zone closest to the wall. Zone II (Tollmien
region) is an inviscid rotational zone of adjustment within which the critical
layer III is induced. Zone IV is above zone II and is an inviscid rotational
region comprising most of the boundary layer. Above zone IV is the quasisteady
zone V, in which the flow properties are of an inviscid irrotational type,
U = 1, V = O. Zones IV and V can be combined into one zone (Heisenberg

region).

The linear solutions in the above zones are presented in appendix A.

Matching the inner solutions in zones II and IV produces relations (A.4.8) to
(A.4.11), which below are written for the lowest order of approximation as

= _. , (2.8a)

x i , (z.sb)

Here, Yc

=- (A_) + 2_ 'os G + COS A 4)3 (_)

-- + tial

is the location of the critical layer, which scales as

(2.9a)

(2.9b)

Yc =aYc ' (2.10)

where Yc is an order-one real constant and A_ and _@o are the velocity

jumps across the critical layer for the oblique and two-dimensional modes,

respectively. The obliqueness angle, e, is given by

O = sin -1 _

Y

(2.11a)



Upon substituting relations (2.5d) acd (2.8a) into relation (2.11a), we obtain

0

e = 60 (2.11b)

The velocity field in zone II, which contains /he critical layer, is given

according to the linear solution (appendix A) as

+_ + aa o + a 3 f' + iPcYc¢_ caoelX + 2 s 0

p

(+ c'(_. + aa) tan e sin e + a 3 f' cos e + tan e sin e

Xy -

x I(Y - Yc)InlY- Ycl + Yc In Ycl + ),y2 Pc - _ Yc + 2 Y

(2.12a)

where

and

v : -a2),Y _ll rLi_eaoei x + 2iy(cos z)sAeiX/2j _ + .

w = -2S(sin e sin Z)_li c')" ige ix/2 + .
),Y - F.

p = oc),/_= [¢AoeiX

l

+ 2(cos e cos Z}6Ae ixl2] + . . . ,

f' ilc(V+ vc inly YcI Yc) r Y2 Y,= - .I- -- 4-

X2y 2
C

_c 4

• , (2.12b)

(2.12c)

(2.12d)

(2.12el

(2.12f)



3. FULLY INTERACTIVE NONLINEAR SOLUTIf.,._IN CRITICAL LAYER

The previous linear solution, (eq. (2.12)), becomes singular at the criti-
cal layer. The appropriate transverse scaling coordinate in this region, which
matches to the linear growth rate, is given by

Y-Y

= 2 c (3.1)

This scaling of the critical-layer thickness also is consistent with Reid's
(1965) result that the critical layer has a thickness on the order of (a.R) -1/3.
Then, on substituting (3.1) into (2.12), the critical layer solution expands

as follows

6 +y - 8 I -2
u - c = a3_ + a Pc cq + a Pc 2 q + 6a-2u_2 + 6o-lu_1 + _u 0 + 6au 1 + 6o2u2

+ +oou O , + + . , (3.2a)

= -¢a-2_XYc_ iAoeiX _ 6a-2_XYc 2 cos Z _#iAe ix/2 + (3.2b)

w = _a-2w_2 + _a-lw_l + 5w0 + Saw I + _o2w2 + 6a3w 3 + . • • , (3.2c)

p = ra_ _eAoeiX + _o_ cos e 2 cos Z_aae ix/2 + (3.2d)

Here, u and u(o) denote the oblique and plane waves, respectively, and we

have written

4_

v - a v (3.3a)

and

(3.3b)

The full momentum equations can be expressed in terms of the scaled variables

x1, X, Z, and n as

Du =-(_Px + a3Pxt , a-8P_, _Pzl (3.4a)

and the continuity equation as

_uX + v- + - + O3uxln BWz = 0 ,
(3.4b)

10



where

u - (U,V,W) (3.4C)

and

a a _w _ R a_s- -c) + ÷o3u + _ [3.4d)

It also is convenient to work with the equation for Z-component vorticity e,
which can be written as

_l°-2UzW_ " a6_zW X O9VZWxlla_ = + o=wz - - • (3.5)

The nonlinear terms in the critical layer solution will balance the velo-

city jump at the same order as in the linear solution when

10
¢ - o . (3.6)

The expansion (3.2) indicates that the first order of interaction occurs when

= r. This leads to a double exponential growth for the oblique waves, but

the backreaction on the plane fundamental cancels out for this scaling level.

The emphasis here, however, is on the fully interactive oblique and plane

waves.

The next order of interaction that produces a nonzero backreaction is

e 7.5 (3.7)- --_-_ - °
a

This also is the same order at which the oblique wave's self-interaction

appears. Substituting {3.6) and (3.7} into (3.2), the expansions are now re-

written in the general form as

u - oc = 03_ + a5"5U5.5 + o6U6 + 06"5U6.5 + . . (3.8a)

5"5W 5 a6W 6 6"5W6. 5 a7W7w = a .5 + + a + + . (3.8b)

= 05. 06 (3.8c)5V5. 5 + o6V 6 + "5V6. 5 + o7V7 + . .

p = a8"5P8 a9P9 9"5P9. olOPlo.5 + + a 5 ÷ + (3.8d)

and the vorticity, _, is given by

-a_ = ),+ o 2"5U. 03U6 3.5U6 a4U70.5_+ -+an .5,n + - +
(3.8e)

11



The mean flow components at the order o 6 and o 8 are given by

u6 +¥ - (3.9a)= PC Cq'

-2

_-- (3.9b)_8 " _c 2 "

The linear solution indicates that

- -_ _ 2i_ cos z Ae ix/2 ,
V5.5

(3.10a)

" AeiXl2- Xc _# 2 COS e COS z
P8.5

(3.10b)

o _E'_¢ i_toeiX (3.10c)v 8 ,,

Pli° . X_ _o Ao eix (3.10d)

Substituting (3.8) into (3.4), we obtain the nonlinear viscous equations for
each term in the expansion

L3U _ = -2LkU(3+E_k)

k=4
- _'P(3+l),X - Pi,x z

(3.11a)

where

L3W_ " - D LkW(3+_-k) - _P(3+E),Z '

k=4

av_ ( au_ aWL

" - _ a--_--_ _a-E -+ _ U_-3_a_ * axz ) '

a 1 a 2

L3-_u 3_-_a_ 2 '

(3.11b)

(3.zzc)

(3.11d)

(3.11e)

a a a a
Lk = _Uk _ + Vk -- + _Wk _-_ + Uk_ 3 _

an

(3.11f)

12



11 12 13
K'2,2,2, • . . ,

u3 -

Uk = Vk = Wk = 0

(3.11g)
I

7 8 0 and 10 (3.11h)for K- 2' 2' 2' 2- "

4. AMPLITUDE EQUATIONS

In order for the nonlinear and linear solutions to match, the amplitude

equations must be derived by equating.the velocity jump across the critical
layer obtained analytically from the nonlinear solution to that obtained from
the linear one. The solutions at different levels in the expansion (3.8) are
needed to arrive at this result. The procedure is outlined in this section,
and the details of the intermediate st_ps appear in appendixes B, C, and D.
The interaction mechanisms contributing to the amplitude equation appear in
appendix E. The amplitudes for the triad waves appear here. Other nonlinearly
generated waves, which determine the velocity jump calculated from the non-
linear solution and thus contribute to the amplitude equations of the triad,

appear in appendixes B and D. TheRe nonlinearly generated waves play a key
role in interpreting several experimental observations, as will be discussed in
part II of this study.

4.1. Oblique Waves' Amplitude Equation

As earlier noted, the amplitude equation for the oblique wave is obtained

here by equating the velocity jump from the nonlinear solution with that from

the linear solution (2.9a). Examination of the expansion {3.8) and the linear

solution (2.12) indicates that the velocity jump occurs at the 5 level.
+ can be obtained from (3.11) as UIO"

The equation for U10.5,_

+ ),D+Wlo. -_ [LkU} -L3U10.5,_ " 5 13.5-k),n
k=4

+ sin O Lk, [(13.5_k} '

where

U+ - U cos 0 + W sin 0 ,

{4.1a)

(4.1b)

The solution for

_Z 8D+ - cos e _ - sin e _ _-_

u÷
10.5,;1 can be written in the general form

{4.1c)

13



U1o.s,a- Re
n-O ,m-1

Q(nm){- ,xl)e i[(n12)X+mZ]10.5_, q
(4.2)

Our purpose here is to match the velocity jump across the critical layer ob-
tained from the nonlinear solution to that obtained from the linear solution.

Since the latter is composed only of the oblique waves -exp[i_:Z)J,

P

the solu-

+

tion of U10.5,_ corresponding to n = 1, m - 1 is therefore needed. Analysis
÷

of the U_,_+ - equations indicates that U_,_ has no nm= 11 component for

- 5.5, 6.5, 7.5, 8.5, and 9.5. Thus, we can write

.[ _ - + •I.IT+(11)-" U5.5,_D+W8 + U8,qD+W5 5 _U5.sUs,qx _U8U5.5 _X .sU8,z-3v10.5, q • ,

o _U8- - V5
n

(11)

(4.3)

To obtain n (11) from the above equation, the solutions at the 5.5 and 8 levels
_10.5

must first be obtained. Using (3.11), the solution at the 5.5 level can be
written as

U5.5 - 2 tan 0 cos Z Be l iQ(q,xl)eiX/2] (4.4a)

'5.5- 2 sin Z _¢ [Q(_,xl)eiX/2 ] , (4.4b)

where Q satisfies

LIQ = _XcA sin O cos e ,

and using Fourier transform, we obtain as

Q - A sin O I0
e iK_ e hK3/3 dK ,

where

(4.4C)

(4.4d)

n ffi "_- (4.5a)
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h = 1 (4.5b)

= Xl - x0 (4.5C)

and x 0 is the origin of the nonlinear region.

The solutions for the 5.5- and 8-level components, provided in appendix B,

are substituted into'equation (4 3) to obtain N(11) and its Fourier transform• _10.5 •

_(11) (K) The velocity jump for wave, J3D'the three-dimensional is given by
10.5 "

r= n(ll) dn _(Zl) (K - O)J3D = _ _10.5 = _10.5
(4.6)

Details of the procedure are given in appendix C and the final result is

3.5

i'_A R 3 .n._2 AoA* + M _ A2A *, (4.7a)
JaD =- 4 )2 4 ,V_

M = 1.055 - 17.8 i (4.7b)

The jump condition as given by equation (2.9a) is now written as

cose + cose d_ J_
(4.8)

Substituting (4.7) into (4.8), we obtain the amplitude equation

I )2cos e + cos 4 A + _ v _- iA*A o - iM )`a/_ A2A *
(4.9)

which for e = 60 = reduces to

where

d__AA= 4 3 _3 2 _4.5
dx 5 koA + _ v _ iA*A o - _ iM _ A2A * ,

Li near Resonance
interact ion

(4.1o)
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is the linear growth rate.

(4.11)

4.2. The Two-Dimensional Wave's Amplitude Equation

Comparing the expansion (3.8) to the linear solution (2.12) indicates that
the velocity jtm_p for the two-dimensional wave occurs at U13. The equation

for U13 is written from equation (3.11) as

+ = XD+Wi3L3U13_ -_ [LkU_16-k),_ + sine Lk,_Wc16-k)

k=4

-_cos e(Uk,zW(16_k),_ - Uk,_W(16_k),z)] , (4.12)

which reduces to

M3+W13 < + + + )L3U13+,_ " _ L5.5Ulo.5,n- + LsUs, _ + Llo.5Us.5, _

- sin eIL5.5,_W10.5 + L8,_W 8 + L10.5,_W5.5)

+ _ cos O<U5.5,_Wlo.5,z + Ue,_Ws, z 4- Ulo.5,_Ws.5,z

- Us.5,zWlo.5,_ - Us,zWS,_ - UIO.S,zW5.5,_) • (4.13)

Terms representing the interactions between components 6.5 and 9.5, 7.5 and
8.5, or 6 and 10 would have produced an interaction term proportional to A2.
However, they failed to produce a velocity jump across the critical layer and
as such are not written explicitly in equation (4.13). (Goldstein & Lee, 1991,
observed the same phenomenon for the case of a triad of waves in an adverse-

pressure-gradient boundary layer.) Equation (4.13) provides a general solution
in the form

+ _ _n) " [ (n/2)X+mz]UI3, _ , _ Q (_,xl)e I . (4,14)

n=O ,m=l

The linear solution at this level indicates that only the plane wave is discon-

tinuous. Therefore, to match the nonlinear velocity jump to the linear one,

n(20) is needed. The procedure is similar to
only the plane-wave component _13

that outlined in §4.1; however, here the 5.5- and 8-, and lO.5-1evel terms are
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(:a9
needed to calculate Q13

then given by

The jump for the two-dimensional wave, J2D' is

_: n(20] dn fl(20)(K- O)J2D = _13 " _13 (4.15)

Details of the procedure are supplied in appendix D, which gives

vi R .5 AoA'A _5

]2D = 8 k2 Ao + MIR3 + M2 k- A-A3 '
(4.16)

where

M1 - 0.5848 , (4.17a)

M2 - -0.241 (4.17b)

The jump condition (2.9b) can be written as

dA° )2
mg

Ao - X-- J2D + iAo'_l_\ O/initia I
(4.18)

Substituting (4.16) into (4.18), we obtain the plane-wave a_plitude equation as

dA°  4.5
_-" (k o + ik i)A o + iM1 _ AoAA* - iM2 _'_ A*A3 ,

Linear Mutual Backreact ion

(4.19)

where k i is the initial detuning factor. Equations (4.10) and (4.19) repre-
sent the amplitude equations for the oblique and plane modes, respectively.
The interaction mechanisms contributing to these equations are discussed in
appendix E. Equations (4.10) to (4.19) indicate that the oblique subhar_onic
waves at 0 - 60 ° and the plane fundamental wave both reach the corresponding

linear upper-branch neutral stability curve at R = 0.1537, which is obtained

by setting the linear growth rate k o in equation (4.11) equal to zero.

5. NONLINEAR MECHANISM

Wave development is governed in part by the nonlinear dynamics considered
above and by flow-divergence effects. Here, we will examine nonlinear mecha-
nisms that occur over relatively short streamwise length scales where nonpar-
allel effects are unimportant. The flow-divergence effects will be considered
in part lI, wherein a composite expansion will be obtined.

17



5.1. Oblique Wave Development in the Absence of the Plane Wave

Because of the significance of oblique waves to boundary-layer transition,

some experiments have attempted to examine oblique-wave development in the
absence of the plane wave (e.g., Robey, 1987 and Schneider, 1989). This study
examines the solution of the oblique waves' amplitude equation (4.9) in the
absence of the plane wave. Under such conditions, the restriction on the span-
wise wavenumber dictated by equation (2.8a) is lifted, hence the obliqueness

angle can take any value. According to the asymptotic linear theory, the phase
speed increases with the obliqueness angle and is given by

(5.1a}

For a general obliqueness angle, and with no plane wave present, equation (4.9)
takes the form

cos e + ,'-.COS

_2 ] _4.5- -- A - iM(e) _ A2A"
4 )3(2 cos e)J )_A/_

(5.1b)

This equation is solved analytically to obtain

q kob _ cl+iC,A = A. e , (5.2)
1

which gives the modulus as

q kobX

IAI - Ai e G (5.3)

and the phase angle _ as

The initial real amplitude at

given by

where

- C_ On G .

= 0 is Ai , and G

(5.4)

is the nonlinear function

I 2q kob_l-0"5G = 1 + dlAi 2 - dlAi 2 e (5.s)
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Mi_4.5

d I -
7,_<_ kob

and the linear growth rate is given by

(5.6a)

X2_OS 60 _ _2

k°b " ,,_ - q k 3 cos 0
(5.6b)

1 (5.6c)
q " cos 0 + 1/cos 0 '

Real(M) (5.6d)
C_ - - Imaginary(M)

The case of 0 = 60 ° , relevant to the exact resonance case to be presented in
part II, is discussed below. The effect of the obliqueness angle, correspond-

ing to various spanwise wavenumbers, is discussed in §5.1(b).

5.1(a). Oblique Waves Self-Interactions at 0 - 60 °

The self-interaction of the oblique waves at O - 60 ° with no plane wave
present is examined here. Equation (5.2) shows that there are only two parame-
ters controlling the oblique-wave development. The first is the oblique waves'

amplitude, Ai, and the second is the scaled Reynolds number R.

Figure 2 shows the modulus of the oblique waves' amplitude for several
initial values, Ai. The location with respect to the upper branch is given by

R/Rub - 0.80, where Ru - 0.1537 is the scaled Reynolds number at the upper-
branch neutral stabilit_ curve. The initial growth depicted in figure 2 is

linear. It is followed by the oblique waves' nonlinear self-interaction, a
mechanism that reduces their growth rate. Next, the amplitude of the oblique
waves reaches an asymptotic saturation level independent of its initial level.

This saturation level can be obtained from equation (5.3) as

0.5

(5.7)

Because the waves' self-interaction in equation (5.1) is proportional to their

amplitudes cubed, a higher initial amplitude is associated with a quickening
of nonlinear damping effects, which causes the asymptotic saturation level of
the amplitude in the nonlinear region to be independent of the initial level.

In the case of linear growth, the amplitude of the oblique waves remains
real and its phase angle remains zero as initially prescribed. However, as
figure 3 illustrates, nonlinearity causes the amplitude to become complex and

19



the phase angle to change with _. Increasing the initial level of amplitude

for the oblique waves causes stronger nonlinear effects and rapid changes in
the phase angle. In the limit of x * ®, the phase angle decreases linearly
with x at a constant rate independent of Ai,

d_.__ 4

d_ = - _ C_k°b (5.8)

As earlier stated, the other factor controlling the self-interaction is
the scaled Reynolds number. Figure 4 shows the linear and nonlinear solutions

for two values of R corresponding tQ R/Rup ffi 0.5 and 0.95. At the smaller

value of R, the linear growth rate is high and causes large aBplitudes. Since

the nonlinearity is proportional to A3, it produces a dramatic reduction in

the amplitude. If R/Run " 0.95, the linear growth rate is weak, resulting in
low amplitudes and less _ignificant nonlinear effects. The net outcome is that
the saturation level of the oblique waves slowly decreases with the Reynolds
number, in accordance with equation (5.7). In reality, the Reynolds number is
not frozen, as assumed here, but increases in the streamwise direction owing to
the boundary-layer growth. Thus, the decrease of the saturation level with the
Reynolds number (fig. 4) indicates that the oblique waves' peak is followed by
decay because the Reynolds number increases in the downstream direction. The

oblique waves' self-interaction thus not only causes their saturation, but
ultimately also their decay.

5.1(b). Effect of Obliqueness Angle

The devglopment of the oblique waves amplitude at various obliqueness
angles corregponding to various spanwise wavenumbers is shown in figure 5. The

initial conditions are R/Rup ffi 0.8 and A i .. 0.1. Figure 5 depicts a linear
growth region, followed by a nonlinear saturation region. The linear growth
rate decreases with the increase of the obliqueness angle, as can be predicted
from Squire's transformation. For all obliqueness angles, the self-interaction
of the oblique waves leads to their saturation and ultimately to their decay.

Of particular interest are the small-angle oblique waves, which are al_ost
as probable as is the plane wave in a real flow with natural three dimension-
ality. Figure 5 demonstrates that, at small angles, the linear growth is
almost the same as that of the plane wave. Nonlinear effects are absent for
the exact plane wave, e = 0 °. But a small obliqueness angle results in pro-
nounced nonlinear effects. The oblique waves are characterized by a three-
dimensional vorticity field; therefore, the nonlinear effects appear at a lower

amplitude level for the oblique waves than they do for the corresponding two-
dimensional waves. Thus, for the present amplitude level, self-interaction is

evident among the s_all-angle oblique waves but absent for the exact plane
wave, e = 0 °. This phenomenon is further depicted in figure 6, which shows the
oblique waves' saturation level at _ = 100 versus the obliqueness angle. An
abrupt drop in the saturation level is apparent at small obliqueness angles:
In the intermediate range 10 ° < e < 65 °, the dependence on the angle is weak;
at higher angles, a sharp drop occurs. In a study by Schneider (1989) heating
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elements were used to force oblique waves into a boundary layer. The develop-
ment of the oblique waves Was then followed by measuring the shear stress. The
saturation of the measured oblique waves versus the obliqueness angle was qual-
itatively the same as obtained here.

5.2. Presence of the Plane Wave

We will now examine the simultaneous development of the plane and oblique
waves while the Reynolds number is frozen. The development of the waves at
e - 60" is described by equations (4.10) and (4.19), which are subject to the

following initial conditions: amplitude of the obliquewave, IAii; amplitude

of the pIane wave, [Aoi[; and initial.phase of the plane wave, _oi' The ini-

tial phase angle of the oblique wave is taken to be zero. The initial detuning
factor, k i, is taken to be zero and _oi - 3_/2.

Figure 7 shows the development of the oblique waves for the fully interac-
w

tive case. The initial conditions are R/Run - 0.8, Aoi - 1, and Ai - 0.0001.
In figure .7(a), the oblique waves' amplitude-is compared with the amplitude of
the linear-growth case and with that of the parametric resonance case (only the
linear and resonance terms are kept in (4.10)). The initial growth of the amp-
litude is identical to the linear one; however, the first stage of nonlinear
interaction, caused by the parametric resonance mechanism (the second term in
eq. (4.10)), soon comes into effect, causing exponential-of-exponential growth.
As the amplitude increases, a second stage of interaction (the last term in
eq. (4.10)) comes into effect wherein the self-interaction of the oblique waves
reduces their growth rate and leads to their saturation.

In the linear-growth regime, the phase of the oblique waves' amplitude
remains zero. In the resonance regime, if _oi " 3v/2, the phase still remains

zero, as depicted in figur_ 7(b). As the fully interactive stages occur, the
phase decreases with x, indicating a nonlinear influence on the streamwise
wavenumber.

Figure 8 depicts the development of the plane wave under the same initial
conditions as in figure 7. In the fully interactive stage, the amplitude of
the plane wave is reduced compared to that of the linear growth (fig. 8(a)).
However, the effect on the plane wave of the interactions is not as pronounced
as in the case of the oblique waves. In the plane-wave equation (4.19), the
coefficient of the AoAA* term is purely imaginary and, consequently, merely
results in a nonlinear detuning of the streamwise wavenumber. Also, the back-
reaction term is a quartic-tvpe, A4. Thus, the effect of nonlinearity on the
plane wave is felt farther downstream, when the oblique waves reach a consider-
able amplitude. As for the phase of the plane-wave amplitude, figure 8(b)
shows that it remains equal to its initial value up to the second stage of
interaction, when it decreases in the downstream direction.

Figures 7 and 8 show that the development of the waves can be divided into
distinct stages, according to the mechanisms involved. In the initial stage,
the linear-growth mechanism governs. In the following, the parametric reso-
nance mechanism governs. The plane wave still follows the linear theory but
causes exponential-of-exponential growth of the oblique waves. As the oblique
waves continue to grow, the fully interactive regime comes into effect. The
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oblique waves react back on the fundamental, causing a reduction in its growth

rate. The most important mechanism in the fully interactive regime is the

oblique waves' self-interaction.

6. DISCUSSION AND CONCLUSIONS

The effects of critical-layer nonlinearity (CLN) on a near-resonance, spa-

tially growing triad of instability waves comprised of a plane wave at funda-
mental frequency and a pair of symmetrical oblique waves at the subharmonic

frequency were analyzed for a Blasius boundary layer. A low-frequency, high-

_1/10Reynolds-number scaling in terms of the small parameter o ~ leads to a
stability structure with a distinct critical layer, wherein nonlinearity is

important.

In the fully interactive case, the amplitude of the oblique waves may
exceed that of the plane wave such that a nonzero backreaction on the latter
occurs. The amplitude equations were determined first by obtaining the analyt-
ical solutions for each term in the asymptotic expansion of the nonlinear vis-

cous critical-layer flow. Then, to match the solutions, the velocity jump
across the critical layer, calculated from the nonlinear (inner) solution
within the critical layer, was equated to the velocity jump across the critical
layer calculated from the linear (outer) solution. Eliminating the velocity
jump yielded a direct, nonlinear relationship between the growth rates and the
amplitudes.

The effort involved is justified by a comparatively simple amplitude equa-

tion that differs from previously obtained equations. For one, the resulting
theory is fully nonlinear in that all the nonlinearly generated oscillatory and
nonoscillatory components produced by the interactions are accounted for. The
analysis indicated that when the amplitude of the oblique waves is smaller or
comparable to that of the plane wave, a parametric resonance term appears in
the amplitude equation for the subharmon_c oblique waves. But the backreaction
on the plane fundamental wave cancels out, even when the amplitudes are of the
same order. A new stage of interaction comes into effect when the amplitude of
the oblique waves becomes greater than that of the plane wave divided by o2.5;

the growth rates become fully coupled with a nonzero backreaction term affect-
ing the plane fundamental wave. This is also the same order of magnitude at
which the oblique waves self-interaction comes into effect.

The development of the oblique waves in the absence of the plane wave was

first examined in §5.1, where an analytical solution (5.3) was presented for

the amplitude equation. This type of interaction in free shear flow was first

considered by Goldstein & Choi (1989). The solution indicates that the sat-

uration and decay of the oblique waves occur as a result of their self-

interaction, a mechanism that does not require the presence of a plane wave or

the appearance of a staggered pattern and that has not previously been identi-
fied in the subharmonic route to boundary-layer transition.

The study also indicated that, because the oblique waves initially follow

the linear theory, their amplitude at first remains real, as originally pre-
scribed. However, as the nonlinear effects become increasingly important do_-

stream, the amplitude changes from real to complex, indicating a nonlinear
modification of the streamwise wavenumber. Equilibrium occurs on the short

nonlinear length scale when the linear-growth mechanism is balanced by the
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self-interaction mechanism. The saturation level of the oblique waves is inde-
pendent of their initial level but would slowly decrease on the long length
scale on which the Reynolds number increases.

The saturation level of oblique wa_es was found to decrease with an
increase in the obliqueness angle. As in the experimental data of Schneider
(1989), increasing the obliqueness angle from zero to a small value resulted
in an abrupt change in the nonlinear breakdown mechanism. The critical-layer
singularity of the oblique mode was found to be stronger than that of the
plane mode, which caused the nonlinearity and saturation of the oblique waves
to occur at a much smaller amplitude compared to that of the strictly two-

dimensional wave (of zero obliqueness angle). The saturation and decay mech-
anism of the oblique modes was therefore found to differ from that of the
plane wave. This result is in agreement with that found by Goldstein & Choi
(1989) for oblique waves in free shear flows where the nonlinear interaction
leads to explosive growth.

Section 5.2 presented the results for the nonlinear mechanisms in the

presence of the plane wave. The nonlinear effects were found to appear in two
stages. In the first, the presence of the plane wave caused exponential-of-

exponential growth of the oblique waves as a result of the parametric reso-
nance mechanism. The oblique waves did not react back on the plane wave,

allowing the latter to develop according to the linear theory, even when the

oblique waves attained amplitudes on the same order of magnitude as the ampli-

tude of the plane wave. However, as the oblique waves continued to grow and

exceeded a certain level compared to that of the plane wave, a second fully

interactive stage occurred. The growth rates became fully coupled and the

oblique waves saturated because of their self-interaction while reacting back

on the plane wave.

Part II of this study will present results for the composite solution,

which accounts for both the flow-divergence and the noqlinear effects.
Therein, excellent agreement with observations is demonstrated not only over
the parametric resonance stage, but also over the fully interactive saturation

and decay stages. Novel features of the phenomena will be discussed and new

interpretations of the experimental data will be given.
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APPENDIX A

LINEAR SOLUTION

We present here the details of the linear solution in the five-zoned
structure.

A.1. Solution in Viscous Sublayer (Zone I)

For the viscous effects to come into play in this region, the scaling for
y should be

y.. o4y , (A.1.1)

where y is order one. This scalingis consistent with the classical theory

result that the thickness of the wall layer is of the order (aRC) 1/2 (Reid,

1965). Substituting equation (2.1) into the 0rr-Sommerfeld equation, we ob-
tain, up to the required order of approximation,

(A.1.2)

A A
B

where @ stands for _o or @, a stands for^ _ or y, c ^stands for Co or

_, and D is the derivative with respect to y. We expand _ as

^ °2g 2 o3g 3= go + vgl + + +' (A.I.3)

A A

and, with c_ and c expanded according to equation (2.7), we obtain

(A.1.4)

A i

The solution of (A.1.4) must decay as y "-® and is subject to the conditions

go{0)- go(o)- 0 (A.1.5)

The first-order solution is thus given by

go = mb°- (my - I + e -m_) (A.1.6)

m2 - -i_d_c o , (A.1.7)
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where bo is an arbitrary constant to be determined by matching with the solu-
tion at zone II. A similar solution is obtained for the obliqu e waves. The

corresponding velocity components are given by

u = _8 [¢Aobo(1 - e-mY)eiX + 2_Ab cos 6 cos Z(1 - e -M_y)eix/2

v- _ -ia 5 _ _-- + e -m -

(A.1.8)

_ 2ic5 Y bM + e-MY" I _A cos Z e iX/2÷ . .] , (A.1.9)

and

(A.I.10)

where

M2 - -i_Rc (A.1.11)

A.2. The Tollmien Region (zone II)

As pointed out by Goldstein, Durbin, & Leib (1987), the solution for this

region is obtained by introducing the scaled transverse coordinate

Y . Y (A.2.1)

directly into the Orr-Sommerfeld equation and using equations (2.1) and (2.7).
The solution is obtained in the form

_" a[(c 1 + oc2 ÷ o2c3)+ (c 2 + oc4 + a2c6)Y] + o4F (A.2.2)

As will be shown, the matching requirements give c I - c 2 - c 3 - O; therefore,
the solution can be written as

^ a4F- a(), + aa)Y + (Y,_b) , (A.2 .s)

where a is an order-one constant that depends on _, and F satisfies the
relation

82F Pc 1 + - ),2Y(Y c + Y)
Oy2 y i y _ '

(A.2.4)
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where

k2y 2

c (A.2 s)
_c " - _

and - kYc.

Since equation (A.2.4) is singular at ¥ - Yc, F can be discontinuous
Integra-across ¥c, and F_ denotes the solution above or under this point.

ring equation (A.2.4), we obtain

F±(Y,_) = F(O) + Pc_½ y2 + yc[(y_ yc)(in[Y - yc[ + i_±)

+ - _ + _ Y) , (A.2.6}

where the normal velocity is continuous across the critical layer. The con-
±

stants of integration _± and _o are, in general, a complex function of x1.

The value of F as Y - 0 is F(O), which is determined via matching with the

solution in zone I. The corresponding velocity components are given by

[ ] [ uu = Be r/to ().+ aa) + ,¢) eix + 2_A cos Z (), + aa}cos 0 + U - C

x sin e tan e a(k + aa)Y + a3cos e F'(Y,@)

v = _0 (-eAoi_a2[()_

and

4 U'
sin 0 tan 0 F(y,@)jeiX/21+0 U-C

+ aao)Y + a3F(y,@)]e iX

-2SAi_a2[(),+ aa)Y + a3F(y,,)]cos,Z eiX/2) ,

U'_A sin Z sin 0 (),+ aa) - U Uc a(). + oa)Y

+ a3F(y'_) - U - c a4F(y'¢) eiXl "

(A.2.7)

(A.2.8)

(A.2.9)
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A.3. Solution in the Heisenberg Region (Zones IV and V)

According to Goldstein, Durbin, & Leib (1987), Miles' (1962) solution,
which is uniformly valid for y - 0(1) and y _ 1 in the limit as _,V " O, is

given by

where

u' _ 0(_s) , (A.3 1)_--"-J ^ 4"

* U - C (U - c)2f/*

1

fl* " 2(1 - c) 2 + rIO + _1 + _2f12 + '
i

(A.3.2)

Ill ,2,1!::]1 (U - c)2 _ dy_0 " (1 - C) 2 (1 C {U
(A.3.s)

1 2 Ii (U _ c)2QodY(1 c) 2
(A.3.4)

and

°2-Ii c,2r 0 o] yL(1 - C) 2 +
(A.3.5)

By substituting equations (A.3.1) to (A.3.4) into the classical "inviscid
function" Lin, 1955, p. 37), which is defined as t

WE
_D_

u,_ - (u- ;)V_'
(A.3.6)

and by inserting U = UB and equation (2.7) into the result, expanding for
small a, and then using equation (2.1), we obtain (following Goldstein,
Durbin, & Leib, 1987}

and

w = wt(y;a,_,_) ÷ a3 i_x (cos e +
Y

1)A'cos e A

Wo Wt(y a,_o,_ ) + a3 2ick A_
= ; _-2 Ao

(A.3.7)

(A.3.e)
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where

I y2 ÷ O(y3)]oc), IjI + 2o_j 2 o2_2j3 8x

F

4X3L
I ]+ O(y2) + cr3__c In y - 48 X2 + O(y)

(A.3.9}

The coefficients J1 to J5 in the above equation are given by

i

dy , (A.3.1Oa)

U_ + 2" dy ,( )
(A.3.1Ob)

---_+

UB

8 6 3 8 6

2 + (),y)4 (),y)3 + (ky)2U3 UB + 4X3y(y + 1

J5 -- I )lim _..__!1+ )d22
y-_O \8c

_*o

U-.UB

(A.3.10c)

(A.3.1Od)

(A.3.1Oe)
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A.4. Matching Solutions

Matching the solution in zone I and the solution in zone II is easily done
by matching the velocities. Considering the inner solution for the two-

A

dimensional wave ((A.1.8) to (A.I.IO)), as y ÷ ®, the solution reduces to

u - Be boeiX , (A.4.1)

v = _0 [-ioLo5bo(Y - 1)+ .]e iX (A,4.2)

Considering the solution in zone II ((A.2.7) to (A.2.9)), as ¥ - O, we have
i

_- _,[x+oa,o3F'_O_+. .]eix. (,.,.3)

V = Be [-iaS_oF'(O) ÷ .]eiX . (A.4.4)

Matching the u-velocities gives

b° - ), , (A.4.5)

while matching the v-velocities gives the imaginary part of F(O) as

-X
F.(O) = (A.4.6)

Matching the vslocities of the obliqu_ waves produces similar expressions, with

c replacing co and y replacing _.

Matching the solution in zone II and the outer solution in zones IV and V
is most easily done by using the inviscid function. The inviscid function for
the solution in zone II is obtained by substituting equation (A.2.3) into
equation (A.3.6) and re-expanding

0 3  cYc(YYo) ]= _ + o [-'---_ In L - iA¢ - F(O)XyC_ 81 Xyc¥(2¥c + y} + 0(o4)
(A.4.7}

( ) (o o)for Y > Yc' where Re denotes either ¢- - ¢+ or ¢ - ¢ .

tions (A.3.7) and (A.3.8) shows that

Matching equa-

AO o4
- _ ÷ o32._ + o( ) (A.4.8)
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x_(1-o_)-2- 1- o_X
a. (1 - o._)

4 ,.

+ o.3 c In Yc - "4"8 _'2 - c_--'_'_##_ Ao] - _"Yc + 4 In o' - 0
(A.4.9)

-2- -2

c I )A' YPc y
os e + =- _ Y (_) +

cos A _X2 c
cXY c

(A.4.10}

and

A' _2_ c _. -20

--'- Yc(_ ) + _oA0 2_oX2 o 2_oYcX _

and
sistent with our original assertion that ct and c. are real quantities.
fact, it follows from equations (2.5d) and (A.4.8) that

(A.4.11)

Equations (A.4.8_ and (A.4.9) are dispersion relations that determine
in terms of c. Since their coefficients all are real, they are con-

In

!

. _ _ + ! a3j_ + O(a 4)
g/ o

(A.4.12)

This shows that _ and _ satisfy the usual long-wavelength, small-growth'

rate resonance condition to within the order of the detuning. To a first-

approximation, equation (A.4.9) shows that co and _ satisfy the usual long-

wavelength, small-growth-rate dispersion relation

(A.4.13)?o " _-"

The imaginary part of the dispersion relations (i.e., the matching between

zones II and Ill) produces the real parts of equations (A.4.10) and (A.4.11).

For the initial linear growth, 4¢ is real. The amplitude A is real. and ._

is initially complex, but its imaginary part remains equal to its initial
value. Nonlinearity causes both amplitudes to become complex. Since the amp-

litudes appear as order a3 in the dispersion relations, the imaginary parts

of A'IA or Ao/A o are balanced by the imaginary part of the corresponding

A¢. Therefore, equations (A.4.10) and (A.4.11) in their complex form are valid
for both the linear and nonlinear growth regimes. They relate the slow growth

rates of the instability waves A'/A and Ao/Ao to the phase jumps _ and

A@o across the critical layer. To determine these letter quantities, it is
necessary to consider the flow in the critical layer.

Equations (A.2.3), (A.2.6) to (A.2.9), (A.4.5), and (A.4.6) show that the
flow field in zone II can be written as
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_ 2-- y2 +_# X + (78 +
0

/
• y ± {), + aa°3< f' + lPc c'o>]eAo eix + 2 cos e\

f

_(), + aa) tan 0 sin O + a 3If' cos 0 ++
),Y- F, L.

f

tan 0 sin 0 _XF{O) + - -
),¥ - _ _ _cC

x [(Y- Yc)ln{Y- Yc { + Yc In ¥c] + x¥2 i_c- _ c 2 ¥

+ _ s in2O 1_,- _ 1 + X _ _, c01s2

where

iPcYc I_ ±cos e + _y _ ¢- sin2Ol)/(cos Z)6AeiX/2>

v- -a2),Y _C [i_eAoeiX+ 2iy(cos Z)SAe iX/2] +

_k iAeiX/2
w = -2_(sin 0 sin Z)_ XY - c +

p - ac_, _, [eAoeiX + 2(cos (3 cos Z)SAeiX/2] + . .

f' = Pc Y + Yc In{Y - Yc{ + Yc _ 2" y2 + .

(A.4.14)

(A.4.15)

(A.4 •16)

(A.4.17)

(A.4.18)

31



APPE,'_ff)I X B

NONLINEAR SOLUTION AT THE s 8 LEVEL

At the 0 8 level, equation (3.11) gives

_ i_a-_8_2 u_°_)-_ _(,'% + ,o_)

I 1 _2 _T_20) . 2Bi tan e Q2 _ _:_A tan e O_ ,

- i _)°_ "- __'_'̀_ or,,

1 a 2 8(02} 1 c_(A*O._ AO_) ,-- W - 2_iQQ* - _ -
R a_2

V (02) i_W8(02 )I._ - -2

L(20) . -_iU_ 20) ,
t_,rl

U_00) ffi 2U8(02) ,

sin e w8(22) -cos e U8(22)s

W(2-2) _W(22)
8 " "'8 '

g(l-_l) . W_20) . w8(O0) = W (I±I) = V(00) . V(2_ 2) = v(l_ I) . 0 .8 -8 8,n 8,n 8,n

The substitution (eq. ((4.5)} and Fourier transform, defined as

CO

F(k) ffi_ e-iknF(n)dn ,

Fin)- _ _ eiknF(k) dk ,

(s._)

(e.2)

(B.3}

(B .4)

(B.s)

(s.6)

(B.7)

(s.8)

(B.9)

(B.iO)

(B .11)

(B.12)

(B.13)
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are used to obtain the solution for equations (C.1) to (C.6) as

Ll_02) = -dAA*(S 1 + S2) + b 1 ,

W(802) . dAA*(4 sin2 0 $3 + S1 - $2) + b2 '

2 0 S4 + S5) ÷ b3 '_:o_._d_-_(___"

2 8 S8 + S9 - $10) + b6 '

where

d _m

_h

(B .20a)

and

2

iO ikn 3/3sl- _'_ '_'

O ikn hk313 dk_--_-- e '

_ - _t dk2 '

(B.2Ob)

(B.20c)

(e .2od)

(B .20e)
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0

S4 =

--OO

olike+(hi0_k3-c.i0_(k1+k2)3+_hI3_(k_k:)"(kl+ k2 - k)dk I dk2 dk ,

(B .2Of)

S5 - e

--00

(B.2Og)

, IlI°°'ikq+ (h/6)k3+ (h/3)_k_+k_)-(h/6 ) (kl+k2) 3]

(e.2Oh)

kle [ikq+ (h/6)(k3+k_)]
(B.20i)

0

e

(klk2)3 dk I dk2 , (B.2Oj)

IO ikn$9 = e ehk3/3 clk
_® k 2

(B.2Ok)

O -ikn ehk3/3
e dk

$10 = - k2
(e.2op.)

where H is the step function, and bI to b6 are constants, determined

through matching to the corresponding linear solution outside the critical

layer.
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APPEhD I X C

VELOCITY JUMP FOR THREE-DIMENSIONAL MODE

Upon using equation (4.2) in equation (4.3), we obtain

_1 82 _(11) [2 cos 0 + COS O(u(O0) + U(02)'_ sine W(02) ]
R _2J"10.5 = _Avi Pc \ 8,nr) _,nn/ - o,r)n

- cA*yi U + 8,nn / + 2c_ sin e Ao 0_

+ 2_[2(QU8(02))_ COS e - sin 0 0 W8(02)
n

+ U; (22) +-8

- 2 sin e i(O_ I V02 - 0_ V80 ) (c.1)

The solution Q at the 5.5 level is given by (4.4), whereas that at the a 8

level is given in appendix B. Taking the Fourier transform of equation (C.1)
gives

_(11) = ehk3/3 Ii10.5

-hk3113

o •
!

where

t O 2iA _Pc 2 sin O- _- cos e + )_2 AoQ_r I , (C.3a)

_1 = i--_ (3A cos O U(02) +' sin 0 W(02) - A'U (20) cos O)
X_:2 _,nn o,nn _,nn '

(C.3b)

_2 = _ [2(QU_ 02)) cos O- QT1W_02) sin O + Q_U8(2,0)COS O] ,
_x_ 2 n

_3 = 2i sin 0 (^..20 02)
_X_3 \qnnVa - QnnV8 •

The velocity jump J3D is obtained by

(C.3c]

(C.3d)
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where

and

J3D

(30

]i

N(11)_k l In(11) dn = O) Jo + J1 + J2 + J3_10.5 _10.5 _

-hk_/3

e _j dk 1, j = O, 1, 2, 3

Jo 2via _Pc" sin o= _ _- cos e + 2--Aol o
¢ k8 2

(c.4)

(C.5)

(C.6a)

Jl

F
. Y ]-3(A*I i + AI2)A + 2-_--(A*I - AI2)A + 8 13 - 4 A'I 4

2_.2c3h L _ 1 _ _

I
_ A-AIs,,

J
(C.6b)

,32sin2e E,Ai.io 8 ] ,)2_3 -2 11 112 - _ All3 - _ I '

O hk_/3

O= hk_/3
I2 =- e klIQ*(-kt)ldkl ,

(C.6c)

(C.6d)

(C.7a)

(C.7b)

(C.7c)
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[6

19

_OD

[4" e kl e Q _2 dkl '

_® -k I

[5 == e kl

_= -k 1

= _ e k I e _®
_OO

_OD

(c.Td)

18

-hk_/6 ,-
e k2Q dk2 6kl

e Qn

[7 = _= ' =

h_ e Qn
= e

ik2n
+ _* )e dk2

ik2n
e d.k2 clk 1 dn

2
k 2

dkan

ik2n
e dk2 dkt (in

(C.Th)

., e e

(C.7i)

e _2 dk 3 dk 2 dk t dn ,

. e h'k31 e Qrt +
110 -=

_OD

x ctk 3 d.-k2 dkt dn

37



111 = e kl e k3

× dk 4 dk3 clk2 dk I ,

If°{k +k2_h/3 2 e

112 = e \ 1 } kl k3 6(k 3 - kI + k2) e k4Q

x dk4'dk 3 dk 2 dk I ,

m

13 °of°
kI

V_
k2

3 3
(h/3)(kl+k3_ ,,

e " "QQ*&(k 2 + kI + k3)dk 2 dkI dk3 ,

2
kI
_'_ _(k 2 + k I + k3)[A*Q- AQ*]dk 2 dk I dk 3 ,

k 2

where I 0 to I14 are given by equation (C,7). Substituting I 0 to
into equation (C.6), we obtain

Jo = 2viA _Pc AoA*_ _-- cos O - 4_ sin 2 0 _ TO ,
X_2h

(C.7_)

(C.7m)

(C.7n)

(C.7o)

I14

(C.8a}

)2_3h5/3 - 3 + + _ T3 ,
(zy

(C.8b)

4vA2A . _6
]2= ._ -2-4

),2_.3h5/3 _ y
_2]-viT7 - 2T9 + F TIO '

(C.8c)

_ 8vA2A . _6 [_2Tll 4T13 ] (C 8d)
J3 = X2_3h5/3 -2-2 -

cry

The T's are the reduced form of the I integrals and are evaluated to give
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TO - 0.5, T2 ffi 0.591, T3 = 0.73, T7 = 1.03, T9 = 0.0625, TIO = 0.188,

vi _i
Tll = _ _-_, T13 - _ _ T7 (c.9)

Using - _-_, _ ffi , and cos e ffi 1/2, and substituting the numerical
values _o_ the integrals (C.9} in (C.8) we obtain

i_A R 3 _2AoA.4Jo " 4 k2
(C. lOa}

J1 " 0.845
A2A._3.5

(C.lOb)

J2 " (0.21 - 5.39i)

A2A._ 3.5
(c. lOc )

Thus, we can write

_3.5

J3 ffi -11.45i A2A * 4/_
(C.lOd)

J1 ÷ J2 + J3 = M
A2A._ 3.5

where

M -_ 1.055 - 16.8i

The jump for the three-dimensional mode is thus given by

_3.5
ffi 3 v_2 AoA. + M _ A2A *J3D -is"_ A-

4X2

(C.lla)

(C.11b)

(C.12)

39



APPEND I X D

VELOCITY JUMP FOR THE TWO-DIMENSIONAL MODE

Substituting equation (4.14) into equation (4.13) and using the transfor-
mation (eq. ((4.5), we obtain

I 82 _(20) 1 + T5 )2rli - h a--_,),_13 = <zc),--(TM-8 + T8-8 .5-10.5 '
(D.1)

where TM_8 is the interaction of the mean flow with the oS-level components,
given by

TM_8 2iPc_ cos e cA 0 - -" - 2 (20)= alPcCn U8, n cos e - 2p c cos e v_ 20) . (D.2a)

The interaction among the 8-8 components is T8_ 8

2i_ (2 sin 0 Ws(O2)u(2-2) - 2 cos 0 g_2-2)g (02) - cos 0 II(02)I[(2-2)T8-8 = 8, n 8,11 _8 -8,n
C

1 u(OO)u(20)_ u(O0) cos e (_Aoai _ V20_
- _ cos e 8 8,n J + 8,nn _2 8 /

U(2-2)V(02)

- 2 cos 6 8tqq 2
C

(D .2b)

T5.5_10.5 is the interaction _f the 5.5-1evel components with the lO.5-1evel

components

T5.5-10.5 = A_ cos e vlO .5,nn "_I\ 10.5 COS e - -10.5 sin e

II (11) - sin e w(11) 2i sin e "nn-lO.SJ+ Q 3 cos e vlO .5,n "10.5,n

(D.2c)

Other terms appearing in equation (4.13) do not contribute to the (20)

component.

The equations for the U8, W8, and V8 components are given in appen-
dix B. The solution at the 10.5 level is obtained by utilizing equations

(3.11) and (4.5) to obtain
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and

where

I 82 _T(11) Ruhi- h 8-_/u10.5 - _>,--_

l a2 _(11) Rwni - h a- /.lO.5 - '

11
Vnlo. 5 = -IyUUlo.5 ,

(D .3a)

(D.3b]

(D.3c)

Ru = -6fl + 5Bf2 - _ tan 0 f3 + _d_o tan e f4 + i_((3Af5 - A'f6}

_ _ C,A_2flOi tan e(f 7 - f8 ) + 2ip c + _ _- tan e pcC2f
1

-2
Rw _ _ - - (f7 2-Pc c fll" 2-fl - 2-f2 + _f3 + _Aof4 i _ f8 ) _

c

and

11 '

I A.fl2_+ iy Af 9 * cos e s-_e) '

fl Q*v 

f2 = QU_02) '

f3 " Qw_02) '

f4 " Q_ '

f5 = U(02)8,n '

V (02) ,
f7 = Q8,n

(D.4a)

(D.4b)

(D.4c)

(D.4d)

(D.4e)

(D.4f)

(D.4g)

(D.4h)

(D.4i)
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f8 " °_v(2°) ' (D.4j)

f9 = W(02)8,n '
(D.4k)

flO" rl , (D.4_)

f11 ffi Qn2 ' (D.4m)

= U (22)
f12 8,n "

!

The Fourier transform of equation (E.1) is given by

(D.4n)

2o °Iie  dk .

"13 2_kc
(D.5)

The velocity jump is given by

Ii1 e RQ dk ,J2D " 2_kc
(D.6a)

where

RQ - TM_ 8 + T8_ 8 + T5.5_10.5 "
(D.6b)

The jump J2D can be written as

J2D = JM-8 + J8-8 + J5.5_10. 5 , (D.7)

where

v _ Pc vi _ AoCOs e
IM-8 = _-i _--- Ao = - _-- k2

Y

This jump results from the mean-flow interaction with the linear part of

component. The other terms in

J8-8 is given by

(D.8)

v_2o)

TM_8 (eq. (5.5)) produce no velocity jump. The
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where

181 = Ii X dx e-x313

- x÷Xl÷X2J-Jx.÷x23
182 = e _k ]" / XlH(X 2 - Xl}dX 1 dx2 dx ,

and, substituting cos e .. 1/2, we obtain

(D.gb}

(D.9c)

_3.5

J8_8 = 0.8567AoAA* _-- I81 - 0.808 _ R5182
(D.9d)

The first term in the above equation results from the term in T8_ 8 involving

20 The second term in theH{O0} alone interacting with the linear part of V8 .v8

above equation is the result of the term in T8_ 8 involving u(2-2)U02 Other_8 8n"

terms in -T8_ 8 do not contribute to the velocity jump.

The jump resulting from the 5.5-10.5 interactions is written as

J5.5-10.5 = Ga + Gb + Gc '

I
([).1o)

Jump Ga corresponds to the first square-bracketed term in equation (D.2c),
jump Gb corresonds to the second square-bracketed term in equation (D.2c),
and jump Gc corresponds to the third square-bracketed term in equation (5.7).
The fourth square-bracketed term in equation (D.2c) produces no velocity jump.
G is given by

)Ga - -lr _A3A* 1 _2 sin e - 3 _Ta5 + 2_ _2 AOA*A
- _3_4 h7/3 -2 Tal --<x oc <z coy ),2c3h5/3 Ta4

" _3_4 7/3 2 -_ sin e Tbl + (3 cos 8 - sin 8)Tb5
)_c h c_ a

{D.11a)

(D.11b)
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Gc 4-_2 A*A3
" - _2 k3_4h7/3

2_ 2 + _C_ sin e(6 cos 0 - sin e)TSc ]_2 s in 2 0 Tcl 2_

4_t3 AoAA*_ s in 3 e

2 3 5/3
),ch

T4c (D.11c)

In the above equations, terms involving T1 result from interaction with the

Q*U (20) constituent of the vlO.5H(11) or W10.5.(11) Terms involving T4 result from

the interaction with the O_ constituent of the 10.5 components, and terms

involving T 5 result from the interadtion with the U_02) or W_02)

constituent of the 10.5 components. The jump resulting from the 5.5- to 10.5-
level interactions is written as

where

and

N2 = -0.2338 Tal

_3.5 _5A.A3
AoA*A + N2J5.5-Io.5" N1 x '

N1 = 1.48 Ta4 - 2.228 Tc4 = -0.2188

+ 1.62 Ta5 + 2.1Tbl + 1.026 Tb5 - 2.098 Tcl

- 2.93 Tc5 m --0.15

The total jump for the two-dimensional wave is given by

vi Y 5

8 X'2Ao + MIR3"

AoA*A _5
+ M2 _- A*A 3

where

M1 I 0 . 5848

M2 = -0.241

(D.12)

(D.13a)

(D. 13b)

(D.14)

(D.15a)

(D.lSb)
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APPENDIX E

INTERACTION MECHANISMS CONTRIBUTING TO AMPLITUDE EQUATIONS

Equations (4.10) and (4.19) represent the development of the oblique and
plane waves, respectively. The interaction mechanisms leading to these equa-
tions will be discussed here.

E.1. Oblique Waves

Equation (4.10) indicates that there are three mechanisms governing the
development of oblique waves. Its first term represents the usual linear
growth; its second term represents th_ fundamental-subharmonic interaction that

results from the interaction of the v_ 0 component of the plane waves with the
v

5.5 components of the oblique waves; its last term represents the oblique
waves' self-interaction.

The oblique waves' self-interaction term results from the velocity jumps

across the. critical layer, J1, Jo, and J_, given in appendix C: Jl results

 roo,,o o,or c, ooof oom o  o*
results from the interaction oF'the (5.5) (1-1) components with W_02) and from

the interaction of the (5.5) (-11) components with U_20); and J3 results from

the interaction of the V^ terms produced by nonlinearity with U_._, that is,

from the interaction of _02) with (5.5) (1-1) components and fromVthe

interactions of V_20) with the (5.5) (-11) terms. (These interactions are

summarized in table I.)

F.2. Plane Wave

The plane wave's nonlinear development is governed by the jump across
the critical layer. For the sake of discussion, this jump was split into

three separate mechanisms: JM-8, J8-8, and J5.5-10.5. (These interactions
are depicted in table II.)

JM-8 (eq. {0.8) represents the usual linear growth. This jump results

20 component interacting with the mean flow.
from the linear part of the V8

The other 8 components interacting with the mean flow produce no jump.

The second type of interaction, J8-8 (eq. (D.9), results from the self-

interaction of the 8 components. The 5.5 components first self-interact to

produce several 8 components: U_nm), V_nm), and W_nm) with nm-(02) (20), , !

(22), (00), (2±2), and (I±1). The U_0 component interacts with the linear

part of the V_ 0 component to produce the first term in 18_ s (eq. (5.30}).

The US2-2 interacts with the U_02) to produce the second term in IS_s

Other 8 components produce no velocity jump.
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The third nonlinear mechanism, J5.5-10.5 (eq. (D.IO)), results from the
interaction between the 5.5 components and the 10.5 components. The U10.5
component results from the interaction between the 5.5 components and the
8 components, which produces several terms in the U10.5 equation. Most of the
terms in the U10.5 equation (4.13) produce no velocity jump. Only three
terms,

interact with the 5.5 components to produce the velocity jump. The interac-
tions of these three terms with Vs. 5 produce Ca (eq. (0.11a)); their inter-

action with Qn produces Gb (eq. (D.11b)); and their interaction with q
produces Cc (eq. (0.11c)).
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Table 1. - Oblique waves' juzp across
the critical layer
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Tao,e 2. - Jump across the critical layer

a) Resulting from mean flow 8-component interaction.
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(b) Resulting from 8-component self-interactions.
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Tab2e 2. - Concluded.

(c) Resulting from 5.5-10.5 interactions.
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