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I often hear from colleagues in the earth sciences, astronomy, physics and other

disciplines that after we start up an expensive instrument or complete a massive

computation, we must save all the bits of information generated by the instrument or the

computation. The arguments for this practice are, first, that the cost of acquiring the bits

is so great that we cannot afford to lose any of them, and, second, that some rare event

might be recorded in those bits, and to throw them away would be a great loss for

science. Sometimes these points are made with such vehemence that I am left with the

impression that saving the bits is not merely a question of cost but is a moral imperative.

Those who accept the imperative of saving the bits are perforce limited to questions

about technologies for storing and moving bits. How can we build a communications

network with enough bandwidth to carry all the bits? How can we build storage devices

to hold them? How can we build retrieval mechanisms that will provide access to them

from around the world? Given a determination to save every bit, data compression is

worth considering only if it is lossless, or in other words if it is a reversible mapping
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from the original data to the compressed data. "Smart instruments" that detect patterns in

the data and inform us of those patterns are of little interest; indeed, there is sometimes

outright hostility to such such instruments. It has been claimed, for example, that on-

board data processing by weather satellites delayed the discovery of the Antarctic ozone

.°

hole by several years.

When the Hubble Space Telescope operates at full capacity, it sends some 300

million bits per second via NASA's satellite-link network to the Goddard Space Flight

Center in Maryland. This data stream will be joined by that from the ACT (advanced

communications technology) satellite and several other "Great Observatories. By the late

1990s, NASA will have placed in orbit a network of satellites making up the EOS (earth

observing system). These are just a few of the growing number of advanced space-borne

instruments, any one of which can produce a data stream of hundreds of millions of bits

per second.

Let us do some simple arithmetic with the EOS data stream. This system is

expected to produce between 1012 and 1013 bits per day. These are enormous numbers.

If the data are stored on compact optical disks, which hold about four gigabits each, then

a day's output will fill up at least 2,500 CDs. Where will all the disks be kept? Will the

Goddard cente r be responsible for recording 2,500 disks daily? Even a national

communications network with gigabit-per-second capacity will be inadequate to divert

the stream to other sites for recording. And if we succeed in recording all the bits, how

will we gain access to them? How will I as a scientist ask for the records that might

contain evidence of a particular event? I will have to search 2,500 disks to survey one

day's observations, 900,000 disks for a year's, or nine million disks if I want to examine
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trends over a 10-year period.

Increases in optical storage density may allow the number of disks to be reduced by

a factor of 10 or 100 by the time EOS is on line. On the other hand, the volume of data

generated by this program and others like it may well expand by a factor of 1,000.

Furthermore, these examples do not take into account the data-fusion problem that arises

when an investigator attempts to study several data sources simultaneously for

correlations. I have heard it said that advanced graphics will allow the investigator to

visualize all the bits and see the correlations. But this statement is too glib: it ignores

limitations on the bandwidth of networks, the speed of graphics devices, methods of

storing and retrieving data, and algorithms for detecting correlations.

Paradigms and Practicality

The imperative to save all the bits forces us into an impossible situation: The rate

and volume of information flow overwhelm our networks, storage devices and retrieval

systems, as well as the human capacity for comprehension. Why then are so many

scientists unwilling to forgo the practice? The answer seems to lie with the paradigm of

the scientific method itself, which requires that full disclosure of an experiment and its

data be made to the community to allow for independent verification of the results. To

shed light on this, I take a short digression into the paradigms of science.

We often use the word paradigm to refer to the framework of preunderstandings in

which we interpret the world. We have been taught, and we teach our students, that the

great discoveries of science have happened when the discoverer challenged the current

paradigm and stepped outside of it. At the same time, as recognized masters of our
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scientific domains, we resist changes that might leave us in a less-esteemed position.

Thus we have a love-hate relationship with paradigms: we like challenging the paradigms

of others, but we dislike having others challenge our own.

In Science in Action, Bruno Latour painstakingly analyses the scientific literature

before, during and after great discoveries and great inventions [1]. He distinguishes

between the simplified story we tell about science when looking back after the fact, and

the complex web of conversations, debates and controversies that exist before the

discovery is accepted by the community. By tracing the literature, he demonstrates that

statements are elevated to the status of facts only after no one has been able to mount a

convincing dissent. Thus, he says, science is a process of constructing facts. Not any

statement can be accepted as fact; a large community of people must accept the statement

and must be incapable with the resources and methods available to them of adducing new

evidence that casts doubt on the statement.

It is interesting that although we acknowledge the importance of community action

while doing science, we quickly adopt a different view as soon as the science is done.

Our research papers, for example, describe orderly, systematic investigations proceeding

from problem description, to experiment, to data collection and analysis, and finally to

conclusions. The paper tells a story that never happened: it fits neatly inside the

scientific-method paradigm, whereas the discovery itself is made inside a network of

ongoing conversations. We do this also with the history of science. We trace an idea

back to its roots, giving the first articulator the full credit. (If the idea is great enough, we

give its original articulator a Nobel prize.) The complex, dynamic web of conversations

and controversies disappears.
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Thestoriestold in our researchpapersmakeit seemasif thescientificmethodwere

somethingasfundamentalandimmutableasthelawsof nature.Whencommunityaction

is broughtbackinto view, however,weseethatin reality thescientificmethodis a setof

standardsfor convincingothersthata statementoughtto be takenasfact. Accordingly,

the method is subject to revision: communities change their standards when old standards

are no longer practical.

The same reasoning applies to the problem of massive data. The standard of saving

all the bits for future reference is clearly not practical in a growing number of cases. We

need to step outside the paradigm and accept that there are important cases in which we

do not need all the bits. New questions appear. An important one is: What machines can

we build that will monitor the data stream of an instrument, or sift through a database of

recordings, and propose for us a statistical summary of what's there?

Discovery Machines

Let me give an example of a "discovery machine" under test jointly by the Research

Institute for Advanced Computer Science and the Artificial Intelligence Branch at the

NASA Ames Research Center. Peter Cheeseman has developed a program called

Autoclass that uses Bayesian inference to automatically discover the smallest set of

statistically distinguishable classes of objects present in a database [2]. In 1987

Autoclass was applied to the 5,425 records of spectra observed by the Infrared

Astronomical Satellite (IRAS) in 1983 and 1984. Each record included two celestial

coordinates and 94 intensities at selected wavelengths in the range from 7 to 23

micrometers. Autoclass reported most of the classes previously observed by
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astronomers, and most of the differences between the Autoclass results and prior

understanding were acknowledged by astronomers as clearly representing unknown

physical phenomena. In 1989 NASA reissued the star catalogue for the 1RAS objects

based on Autoclass's results.

There is nothing magic about Autoclass. It is a program that takes a large set of

records of many-dimensional data and groups them into similarity classes using Bayesian

inference. It is thus an instrument that allows finer resolution than is possible with the

unaided human eye. It does not need to know anything about the discipline in which the

data were collected; it works directly on the raw data. The important point illustrated by

Autoclass is that a machine can isolate a pattern that otherwise would have escaped

notice by human observers.

Cheeseman suggests that an Autoclass analyzer could be attached to an instrument,

where it would monitor the data stream and form its own assay of distinguishable classes.

It would transmit the class descriptions to human observers on the ground, at significant

reductions in bandwidth. The human observer, wanting to see all the details of specific

objects, could command the analyzer to pipe all the bits straight through.

Let me give a second example. Also at the Research Institute for Advanced

Computer Science we have been studying an associative-memory architecture called

SDM (sparse distributed memory) [3, 4]. In a conventional computer memory each data

item is stored at a particular location, or address, and it can be retrieved only by

specifying that address. An associative memory affords access by content rather than by

location. In the SDM each memory cell has an address field (a vector of bits) and a data

field (a vector of counters). When an address pattern is presented, decoders at all the
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cells simultaneously determine whether the given address and their own stored address

are similar;, similarity is determined by some measure such as Hamming distance, which

counts the number of bits that would have to be changed to make two patterns identical.

All the cells in which the stored address is an acceptable match for the supplied pattern

participate in the read or write operation requested. Writing is accomplished by adding

an image of the data vector to the selected counters, reading by statistically

reconstructing a bit vector from these counters.

In one experiment David Rogers sought to learn if a variant of SDM could learn

correlations between measurements and desired results. He fed an SDM simulator a

stream of 58,000 records of weather data from a station in Australia. Each record

included 12 measurements and a bit indicating whether rain fell in the measurement

period. The measurements were encoded into a 256-birvector, and the rain bit of the

next period was used as data. Just before the actual next-period rain bit was stored, the

SDM was asked to retrieve its version of the bit. If the retrieved bit agreed with the bit

about to be written, each selected cell had 1 added to its "score." At intervals the two

highest-scoring memory locations were cross-bred by combining pieces of their names;

the new name thus created replaced the name in the lowest-scoring location. This is the

principle used in genetic algorithms, and Rogers calls his variant of the SDM the genetic

memory.

At the end of the experiment, Rogers found that the memory gave accurate

predictions of rain. By examining the address fields of all the memory cells, he was able

to determine which subset of the measurements were the most highly correlated with the

occurrence of rain in the next measurement period.
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The genetic memory is a machine that can be fed a stream of data. It organizes

itself to become a consistent predictor of a specified pattern. It opens up new methods of

discovering the predictors of a pattern in a large field of data elements.

Knowbots

Both Autoclass and the genetic memory show that it is possible to build machines

that can recognize or predict patterns in data without knowing the meaning of the

patterns. Such machines may eventually be fast enough to deal with large data streams in

real time. By the end of the decade they may be well be advanced enough to serve on

space probes and space-borne instruments, where they can monitor streams that would be

incomprehensible to us directly. With these machines, we can significantly reduce the

number of bits that must be saved, and we can reduce the hazard of losing latent

discoveries from burial in an immense database. The same machines can also pore

through existing databases looking for patterns and forming class descriptions for all the

bits we've already saved.

I am not alone in this conclusion. Writing in Science recently, journalist M.

Mitchell Waldrop documents the rising concern in the science community about the

volume of data that will be generated by supercomputers and by instruments [5]. He

likens the coming situation with drinking from a fire hose: Instant access to far-flung

databases could soon be a reality, but how will we swallow a trillion bytes a day? He is

drawn to a proposal by Robert E. Kahn and Vinton G. Cerf of the Corporation for

National Research Initiatives to create surrogate processes that would canvass the

networks looking for data of a particular kind, returning home with their findings. Called
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knowbots (short for knowledge collecting robots), these processes would scour the

networks for answers to questions.

Waldrop's article ends without saying how knowbots might work. What might go

inside? Machines that perform automatic discovery, pattern matching and prediction.
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FIGURE CAPTIONS

FIGURE 1. Automated detection of patterns in data is accomplished by the computer

program Autoclass, which employs the method of Bayesian inference to group data into

classes. The data in this case are infrared spectra of 5,425 stellar objects, recorded in

1983 and 1984 by the Infrared Astronomical Satellite (IRAS). Previous analysis had

identified within these records a set of 297 objects with strong silicate spectra. Autoclass

partitioned this set into two parts. One class (upper left) consists of 171 objects whose

spectra have a peak at a wavelength of 9.7 micrometers. The second class (lower left)

includes 126 objects with peak intensity at 10.0 micrometers. When the objects in each

set are plotted on a star map (fight), the upper set shows a tendency to cluster around the

galactic plane, whereas the objects in the lower set are more widely scattered, confirming

that the classification represents real differences between the sets of objects. Autoclass

did not use the celestial coordinates in forming the classes.

FIGURE 2. Genetic memory learns to predict future values in a stream of data. The first

stage in the memory's cycle of operations (top left) compares an address-in pattern with

all the patterns in the address array. Here matching bits are marked by colored circles,

and addresses that have at least three bits in common with the input pattern are shown in

gray; these locations are considered to be selected. In the second stage (middle left) the

three-bit pattern in the data-in register is stored at the selected locations by adding 1 to

each counter corresponding to a 1 in the pattern and subtracting 1 from each counter

corresponding to a 0 in the pattern. Data retrieval (upper right) entails summing each

column of counters; the corresponding output bit is a 1 if the sum is greater than or equal

to zero and is a 0 otherwise. The memory keeps track of each cell's success by a scoring
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process (lower right): whenever a selected cell correctly predicts an input value, the

cell's score is increased by 1. At intervals the addresses of the two highest-scoring

locations are "cross-bred" by selecting some bits from each (bottom left); the resulting

pattern replaces the address of the lowest-scoring location.
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