
l/mtt

pi3_

User Documentation for the MSK and OMS

Intelligent Tutoring Systems

Pamela K. Fink

L. Tandy Herren
David T. Lincoln

Southwest Research Institute

May 2, 1991

Cooperative Agreement NCC 9-16

Research Activity No. ET.23

i

&-

NASA Johnson Space Center

Mission Operations Directorate
Space Station Training Office

(HASA-C_-IO_81.5) U£ER DOCUMENTATION FOR THE N91-._2823

,_SK A'lt) OmS [NTFLLI_ENT TIJTORTi',iG SYCTEblS

(Houston Univ.) 33 p CSCL 09B
Uncl as

G3/O1 OO93113

._.............._
Research Institute for Computing and Information Systems

University of Houston - Clear Lake

t=_.- T.E.C.H.N.I.C.A .L R.E.P.O.R.T

_-- _---

https://ntrs.nasa.gov/search.jsp?R=19910023509 2020-03-17T14:45:30+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42816231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

:i

d

w

The

RICIS

Concept

The_J-niverslty of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake pro_

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into _:a
a three-year cooperative agreement with UH-Clcar Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9- i 6, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RiCIS is to conduct, coordinate and disseminate research on _i_

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

L,ake, ihe m_ion is being impiemeniex] through interdisciplinary invoivem_(ot r
faculty and students from each of the four schools: Business, Education, Human _:

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear .

Lake establishes relationships with other universities and research organizations, :_ _i
havlng_mmon research interests, to provide addMonal sources of expertise to _,, :
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information _ __
sciences. Working jointly with NASA/JSC, RICIS advises on research needs, _

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

z

User Documentation for the MSK and OMS

Intelligent Tutoring Systems

w

a

g

iN

m

im

m

I!

m

J

m
IN

mm

I

m

!

mE

L

i

m

mm
iw

'mm

h

mw

I

B

N

Preface

w

w

v

u

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Pamela K. Fink, Dr. L. Tandy Herren

and David T. Lincoln of the Southwest Research Institute. Dr. Glenn Freedman,

Director of the Software Engineering Professional Education Center at the

University of Houston-Clear Lake, served as RICIS research coordinator.

Funding has been provided by the Mission Operations Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA

Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Barbara N. Pearson of the

Systems/Elements Office, Space Station Training Office, Mission Operations

Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

m

u

=

w

w

rill

II

B

I

i

i

i

J

u

um

RD

I

s

m

ii

z
m

m
m

w

m

um

Contract No. NASA NCC-9-

Subcontract No. 060

Research Activity No. ET

SwRI Project No. 05-3515

u

= .

w

USER DOCUMENTATION FOR THE MSK AND OMS

INTELLIGENT TUTORING SYSTEMS

Prepared By:

Pamela K. Pink, Ph.D.

L. Tandy Herren, Ph.D.
David T. Lincoln

Southwest Research Institute

San Antonio, Texas

May 2, 1991

TABLE OF CON"TENTS

PAGE

1. THE USER'S GUIDE 1

2. The MSK ITS ... 2

2.1 Overview ... 2

2.2 Directory Structure ... 2

2.2.1 The Graphics Directory .. 2

2.2.2 The Tutor Directory .. 2

2.2.3 The Runtime Directory .. 5

2.3 Using the MSK ITS .. 5

2.3.1 Using the Executable Version of the MSK ITS .. 5
2.3.2 Using the Interpreted Version of the MSK ITS ... 5

2.3.3 The Output Files Created by the MSK Tutor ... 5

2.4 Setting MSK ITS Parameters ... 8

2.5 Changing the Rules and Modify the C Code for the MSK ITS 9

2.5.1 Changing the Rules for the MSK ITS .. 9

2.5.2 Modifying the C Source Code for the MSK ITS ... I0

3. The OMS ITS ... 11

3.1 Overview ... , ... 11

3.2 Directory Structure...., ... 11

3.2.1 The Graphics Directory .. 11

3.2.2 The Tutor Directory .. 11

3.2.3 The Runtime Directory ... 14

3.3 Using the OMS ITS .. 14

3.3.1 Using the Executable Version of the OMS ITS .. I4

3.3.2 Using the Interpreted Version of the OMS ITS ... 14

3.3.3 The Output F'iles Created by the OMS Tutor ... 16

3.4 Changing the Rules and Modify the C Code for the OMS ITS 19

3.4.1 Changing the Rules for the OMS ITS ... 19

3.4.2 Modifying the C Source Code for the OMS ITS .. 19

4. THE MOCKUP CODE ... i...... ,.. 20

4.1 Overview 20

4.2 Directory Structure ... 20

4.2.1 \project\msk\bln.,.; .. r.. 20

4.2.2 \project\msk\doc::...:,._ ... 23

4.2.3 \project\msk\include .. 23
4.2.4 \project\rusk\lib ... 23

4.2.5 \project\msk\msktutor ... 23

4.2.6 \project\msk\scr .. 23

4.3 Using the Tutor ... 24

4.3.1 Running the Interpreted and Executable Versions .. 24

4.3.2 Output Files Created by the Tutor .. 24

4.4 Changing the Rules and Modifying the C Code .. 25

m

m

m-

m

alg

m
I

m

I

D

m

I-

I

"qW

W

mm

v

LIST OF FIGURES

PAGE

1. Contents of the MSKITS/Graphics Directory .. 3

2. Contents of the MSKITS/Tutor Directory. .. 4

3. Contents of the MSKITS/Runtime Directory .. 6

4. The MSK Training Tree .. 7

5. Contents of the OMSITS/Graphics Directory ... 12

6. Contents of the OMSITS/Tutor Directory ... 13

7. Contents of the OMSITSttRuntime Directory ... 15

8. The OMS Training Tree ... 17

9. The OMS Expert Model ... 18

10. The Directory Structure of the Mockup C Code .. 21

w

ii

User DocUmentation for the

OMS and MSK Intelligent Tutoring System

I.THE USER'S GUIDE

This user's guide describes how to use the intelligent Tutoring systems for theManual Select

Keyboard (MSK) and the Orbital Maneuvering System (OMS) and how to use the C code that runs
the Mockup version of the MSK.

m

=_

i

m

i

i

B

_, _ i _i_ _ = _ . mm
m

i

I

III

I

I

mm

II

!

!

II

mm

m
B

!

l

m

I

,.==-

w

2. THE MSK ITS CODE

2.1 Overview

This section describes the following aspects of the MSK Intelligent Tutoring System:

a. The directory structure and files maintained in each directory

b. How to use the MSK ITS in interpreted and executable modes

c. How to rebuild the interpreted and runtime versions of the MSK ITS using the makefiles

provided. The system is compiled with the Apollo Domain X C compiler.

2.2 Directory Structure

The code for the MSK ITS exists in three sub-directories of the directory "/hrlits/msidts":

graphics, tutor, and runtime. To see a listing of these directories, type "cd/hrlits/mskits" at the %

prompt followed by the command "Is."

2.2.1 The Graphics Directory

The graphics directory contains the C source code and header files used to implement the

graphic display of the MSK. The graphics directory also contains the object code generated by

compiling the C source code. Figure I contains a listing of the files in the graphics directory.

These files create the representation of the MSK on the computer display, blowup objects on user
requesL monitor student input during an exercise, collect the speed of performance, generate a quiz

during the overview of the tutor, and perform many other basic utilities of the ITS.

2.22 The Tutor Directory

The tutor directory contains the CLIPS code that implements the tutor's instructional

strategy, expert model, and student model and directs the flow of control in the ITS. Figure 2

contains a listing of the files in the tutor directory. The following files constitute the bulk of the
CLIPS rules:

a) buildex.clp - these rules construct the exercises

b) cleanup.clp - these rules remove facts from the previous exercise and update information

about the student prior to a new exercise

c) evaluate.clp - these rules evaluate the student's performance on an exercise and recommend
a course of action

d) exercise.clp - these rules perform a search of the exercise tree to determine what type of

exercises the student should perform

e) genextype.clp - these rules randomly generate exercise types based on the student's needs

during unguided, speeded, and automated phases of training

=

J

beep.c

beep.o
beep text.c

blowup obj.c

blowup-obj o
blowup-panel,c

blowup_panel.o
ckfont
cktext

clr text.c
col_rs.c

colors.o

console

console.c
console.o

console.t

create_plot.c
ddd.h

ddd.t
defs.h

demo_step.c
demo step.o
dispiay plot.c

display-plot.o

display:text.c

dlsplay text.o
draw cons.c
draw cons.o

draw_goal band.c
draw_goal-band.o

drav_goal_box.c
draw leds.c

dra_-leds, o

draw obj.c
draw-obj.o

draw_panel.c

draw_panel.o

draw plot.c
draw plot.o
drk._

drk. t

exer.clp

get_status.c

get_status.o
get student_proc.c

get student proc.o
get_student step.c

get student_step.o
glo_als.c
globals.o
hilight.c

hilight.o
init struc.c
init-struc.o

int TO asc.c

int to asc.o

main.c
main.o
makefile

makefile.t

mbutn_update.c
mbutn update.o
monitor.h

msk.h
msk.t

nuM.lxt

objects.h

panels.h

plot.c

plot.h

pop_buttons.c
pop_buttons.o
position.c

position.o

quizl.c
quizl.o

quizltext.c
quizltext.o

quiz2.c

quiz2.o
quiz2text.c

quiz2text.o
quizutil.c

qulzutil.o
random.c
random.o
randomtot.c

randomtot.o

select.c
select.o

smek.h
smek. t
stdalone.c

stdalone.o

stopclk.h

stopclk, t
tan2file

test.clp
testdraw.c

testplot
testtext.c
testtext.o

textstring.h
toggle.c

toggle.o
trainl.c

trainl.o
trainltext.c

trainltext.o

train2.c
train2.o

train2text.c

train2text.o

trends.c
trends.c.bak

trends.o

trends.tmp
tutor.h

tutor,t
tutorutil.c
tutorutil.o

txtlin.txt

unxclips.mak
util.c

util.o

voicekey.h

voicekey, t
vindows.h

write IO.c
vrite-£O.o

m

m

m

W

s

mm

I

m

qm

m

m

l

!

Z
|

Figure l. Contents of the MSKITS/Graphics Directory

ww

t

m

3
qw

v

assi_n.clp
autowork.ovl

autowork.perf

buildex.clp

cleanup.clp

cleanup.imp
console

evaiuate.clp

evaiuate2.clp

exer.stack

exercise.clp

facts.clp

funcalls.clp

genextype,clp

goals.clp
graph.clp

instruct.parms

instructparms.c

load.file

parmsset
ray

remediate.clp
resetcrit

setparms
skills.cip

speed.ovl

speed.perf

speedvork.ovl

speedwork.perf
student.model

tandy.ovl

tandy.per£
tanfile

toplevel.clp

train.clp

update.clp

L

Figure 2. Contents of the MSKITS/Tutor Directory

f) remediate.clp - these rules control remediation by backtracking through the exercise tree

toplevet.clp - these rules initiate startup of the MSK tutoring system

The Runtime Directory

The runtime directory contains the object code created by compiling the C and CLIPS files.

It also contains the executable version of the MSK ITS, called MSKYI'S (see Figure 3). In order

to run the executable version, the file "instruct.parms" must be present in the same directory and

the user simply types "mskits." Instruct.parms is created by running the PARMSSET executable (see

Section 2.4).

The runtime directory also contains the C source code files located in the graphics directory

as well as the C source code files generated by the "rules-to-C" function (see Section 2.5).

2.3. Using the MSK ITS

2.3.1 Using the Executable Version of the MSK ITS

To use the executable version of the MSK tutor, change directories to the

/hrlits/mskits/runtime directory. At the % prompt, type "mskits." Be sure that the file

"instruct.parms" is in the same directory. The executable version of the tutor can be run ha any

directory as long as instruct.parms is in the same directory.

2.32 Using the Interpreted Version of the MSK ITS

The interpreted version of the MSK ITS must be run from the/hrlits/mskits/tutor directory.

At the % prompt, type "console." You will then get a CLIPS prompt and type as follows:

clips> (load "load.file")

clips> (assert (load))

clips> (run)

After the rules are loaded, type:

clips> (reset)

clips> (run)

This will load the MSK ITS into memory. Once you have exited the tutor, exit CLIPS by typing

"(exit)" at the CLIPS prompt. This will return you to the Domain X system prompt.

2.3.3 The Output Files Created by the MSK ITS

The MSK ITS creates two output files for each student who uses the tutor. One fde contains

the student model and is identified by the student's identifier and a ".ovl" extension (e.g.,

george.ovl). The student model consists of the entire training tree (see Figure 4) and indicators

marking which of the nodes the student has completed. The student model also contains the speed-

criterion and automate-criterion lists. These lists are used during speeded and automated

IB

I

g

11w

g

n

w

v

a.out draw_panel.o msktutor3.c
beep.c draw_plot.c msktutor3.o
beep.o draw plot.o msktutor4.c
beep text.c drk._ msktutor4.o

blowup obj.c get_status.c msktutor5.c

blowup-obj.o get_status.o msktutor5.o

blowup-panel.c get_student proc.c msktutor6.c

blowup-panel.o get_studentlproc.o msktutor6.o
clips.h get_student step.c msktutorT.c

clr text.c get studentZstep.o msktutor7.o
colors.c gloSals.c objects.h

colors.o globals.o panels.h
consoie.c hillght.c parmsset

console.o hilight.o plot.c

create_plot.c init strue.c plot.h

ddd.h Inlt-struc.o pop_buttons.c
deffacts.h instruct.parms pop_buttons.o
defs.h int to ase.c position.c

demo step.c int to asc.o position.o
demo-step.o main.c- quizl.c

disp[ay_plot.c main.o quizl.o

display plot.o makefile quizltext.c
display-text.c makefile.bak quizltext.o

display-text.o mbutn_update.c quiz2.c
draw cons.c mbutn update.o quiz2.o

draw-cons.o monitor.h quiz2text.c
drawZgoal band.c msk.h quiz2text.o

draw goal-band.o msklts quizutil.c
draw-goal-box.c msktutorO.c quizutil.o
draw-leds?c msktutorO.o random.c

draw-leds.o msktutorl.c random.o

draw obj.c msktutorl.o randomtot.c

draw_obj.o msktutor2.c select.c

draw_panel.c msktutor2.o select.o

setup.h
smek.h

stdalone.c

stdalone.o

stopclk.h
tan3file

tandy.ovl

tandy.perf
testdraw.c

testtext.c
testtext.o

textstring.h
toggle.c

toggle.o
trainl.c

trainl.o

trainltext.c
trainltext.o
train2.c
train2.o

train2text.c

train2text.o
trends.c

trends.o
tutor.h
tutorutil.c
tutorutil.o

util.c
util.o

voicekey.h
windows.h

write lO.c
write-IO.o

Figure 3. Contents of the MSKITS/Runtime Directory

I

1

!

I

t !

I

I

I

I

I

.S
C

o_

N

U

D

z

t

g

qp

m

I

m

m
D

m
li

m
lip

g

I
W

--7

v

v

v

w

exercises to determine on which exercises the student needs to perform at the criterion set by the

instructor in the file "instruct.parms."

The MSK ITS also creates a file that maintains the student's reaction times and accuracy

levels from the speeded and automated exercises. This file is named using the student's

identification and a ".perf' extension (e.g., george.perf). Each line in this fde corresponds to a single
exercise. The lane format is as follows:

a) training phase: 1. = unguided or guided; 2 = speeded; 3 = automated

b) operation type: 1 = tv channel attach; 2 = display request; 3 -- DDD format; 4 = AES

format; 5 -- flight select

c) operation sub.type: 1 = tv channel attach, display request, flight select, AES select, or DDD
select; 2 = AES deselect or DDD deselect; 3 = DDD reset operational limits; 4 = DDD

reset critical limits, 5 = DDD select drive; 6 = DDD select datatype; 7 = DDD select lamp
test

d) speed of performance: in seconds

e) accuracy of performance: percentage of steps until error

f) a list of l's marking the number of accurate steps in the operation; each 1 signifies an

accurate step

2.4. Setting MSK ITS Parameters

Various parameters of the MSK tutoring system can be set by the user. The source code that

implements parameter collection is in the file "instructparms.c" located in the tutor directory. The

executable version of this file is called parmsset. To provide new parameters to the system, type
"parmsset '° at the % prompt. After the user provides the parameter values based on system query,,

the executable will create the instruct.parms file. Instruct.parms must be in the tutor directory to

run the MSK ITS in interpreted mode and in the same directory as the MSKITS executable.

The parameters collected by parmsset include the/'ollowing:

a) Maximum Speed. This is the speed at which a student must be performing consistently to
avoid remediation.

b) Speed Criterion. The student must accurately perform two of each operation at or better

than this speed in order to proceed to the automated exercises.

c) Automate Criterion. The student must accurately perform two of each operation at or better

than this speed and be accurate in responding to the secondary task to end training.

d) Number of Beep Patterns. This number determines the size of the pool of possible beep

patterns that will be selected from.

8

e) Numberof Beeps in a Pattern. This number determines the length of the beep patterns.

f) Number of Target Patterns. This is the number of patterns that the student must recognize

and respond to on any given exercise.

g) Percentage of Target Beep Patterns. This number determines the frequency that the system

provides a target versus a distractor beep pattern to the student.

h) Latency between Beep Patterns. The amount of time that elapses between beep patterns
during art exercise.

i) The system asks a series of questions to determine which of the five operations to train

during the speeded and automated exercises.

2.5 Changing the Rules and Modifying the C Code for the MSK ITS

2.5.1 Changing the Rules for the MSK ITS

Changing the rules in the CLIPS files located in the tutor dia'ectory will change the operation

of the interpreted version of the MSK ITS but not the executable version. To modify a rule, change

directories to the tutor directory and modify the corresponding fi/e. Then run the tutor in the
interpreted mode.

If you wish to recompile the executable version of the MSK ITS following a change to the

rules, perform the following steps:

% cd/hrlits/mskits/tutor
% console

clips> (load "load.file")

clips > (assert (load))
clips> (run)

After the rules are loaded, type:

clips> (rules-to-c "msktutor" 1)

clips> (exit)

This procedure produces eight source files named msktutor0.c through msktutor7.c. Copy these

files to the/hrlits/mskits/runtime directory and then type:

%copy msktutor*.c ../runtime
% cd ../runtime
% make mskits

The mskits makefile will create the mskits executable.

W

I

m

U

W

I

m

J

=

m

g

Z
!11

m
IR

m

m

w

w

Z
m

m
g

: -

r

2.5.2 Modifying the C Source Code for the MSK ITS

Any changes to a C source code file requires recompilation of that file and relinking the files

to create "console." If vou want to change only the interpreted version of the MSK ITS, change
directories to the /hr(its/mskits/graphics directory. Type "make" at the % prompt. This will

recompile the file that was changed and relink the files. After this, copy "console" to the

/hrlits/mskits/tutor directory, change directories, and run the interpreted version.

If you want to modify the executable version of the MSK ITS, copy the relinked version of

"console" to the/hrllts/mskits/runtime directory and change directories. At the system prompt type

"make mskits." This will produce a new executable version of the MSK ITS.

-.....

=
10

The OMS ITS CODE

3.2

a°

b.

C.

Overview

This section describes the following aspects of the OMS Intelligent Tutoring System:

The directory structure and files maintained in each directory

How to use the OMS ITS in interpreted and executable modes

How to rebuild the interpreted and runtime versions of the OMS ITS using the makefiles

provided. The system is compiled with the Apollo Domain X C compiler.

Directory. Structure

The code for the OMS ITS exists in three sub-directories of the directory "/hrlits/omsits":

graphics, tutor, and runtime. To see a listing of these directories, type "cd/hrUts/omsits" at the %

prompt followed by the command "Is."

3.2.1 The Graphics Directory

The graphics directory contains the C source code and header files used to implement the

graphic display of the components of the shuttle orbital maneuvering system (OMS) and the VDT

screens that are displayed on the propulsion console. This code also implements the static overview
portion of the system. The graphics directory also contains the object code generated by compiling

the C s0urce code. Figure 5 contains a listing of the files in the graphics directory. These files

create the representation of the shuttle OMS and VDT screens on the computer monitor, blowup

objects on user request, monitor student input during an exercise, collect the speed of performance,

generate a quiz during the overview of the tutor, and perform many other basic utilities of the OMS
ITS.

3.22 The Tutor Directory.

The tutor directory contains the CLIPS code that implements the tutor's instructional

strategy, expert model, and student model and directs the:flow of control in the OMS ITS. Figure

6 contains a listing of the files in the tutor directory. The following files constitute the bulk of the
CLIPS rules:

a) DDD_overview.cip - these rules control the overview of the DDD panels on the propulsion
console

b) Diag_evaluate.clp - these rules control remediation to MSK operations

c) diag_exercise.clp - these rules perform a search of the exercise tree to determine what type
of exercises the student should perform

d) Diag facts.clp - this file contains the facts asserted into working memory at start-up

ii

11

m

D

g

m

i

l
I

W

J

Ill

Ill

m
I

I

II

i1
1
m

i

II

r

_q

DDD overview.c

DDD_overview_quiz.c
DDD overvlew text.c

OMS overview.c

OMS overview text.c

OMS-utils.c -

beep.c

beep text.c

blowup_obj.c

blowup_panel.c

build press.c
clr text.c

coast mode.c

colors.c

console.c

console reset.c

create_plot.c

demo step.c

displayll05.c

display_msk.c

display_plot.c

display_screens.c

display_temps.c

display_text.c
displayutil.c

downstream leak.c

draw cons.c

draw-goal band.c

draw-gaal-box.c
draw-leds?c

draw_obj .c

draw_panel.c

draw plot.c

get _iag answer.c

get_diagnostic_step.c
OMS.h

plot.h
failure.h

voicekey.h

objects.h

displays.h

textstring.h

get leak.c

get_sensor.c

get_status.c

get_student proc.c

get student step.c

get-which.c-

gloSals.c

helium_system failure.c

hilight.c
init ddd.c

init struc.c

int to asc.c

lea_s._

limits disabled.¢

main.c

mbutn update.c

overvlew_qulz.c
plot.c

pop buttons.c

popup.c

position.c

present diagnostics.c

present msk tasks.c

present_vdt?c

press sensor.c

print[copy.c

quizl.c

quizltext.c

quiz2.c

quiz2text.c

quizutil.c

random.c

randomtot.c

reset crit.c

run s[mulation.c

drk?h

tutor .h

msk.h

defs .h

stopclk.h
limits.h

select.c

sensor failures.c

start _iag_sim.c
stdalone.c

system func text.c
tank leak.c-

temp_sensor.c

test diag general.c
test-helium.c

test msk tasks.c

test_raw?c

testtext.c

toggle.c
trainl.c

trainltext.c

train2.c

train2text.c

trends.c

tutorutil.c

update ii01 ptl.c
update-ll03?c

update-ll05.c

update-lll0.c
util.c-

valve failure.c

valve-sensor.c

write-ll01 ptl.c
write-ll01-valve.c

write-ll03?c

write-ll05.c

write-ll09.c

write-lll0.c

write-IO.c

makef[le

makerun

monitor.h

ddd.h

smek.h

helium.h

windows.h

panels.h

i

Figure 5. Contents of the OMSITS/Graphics Directory

12

5iag_eval.clp

'iag_exercise.clp

.iag_facts.clp
diag msk.clp
diag-update.clp"

facts.clp

coast mode.ovl2

consoYe prac.ovl2

ddd display.ovl2

diag_gen.ovl2

dlag_unguided.ovl2

oms assign.clp

oms-buildex.clp

oms-cleanup.clp

oms-evaluate.clp

oms-exercise.clp

oms-funcalls.clp

gnd[prac.ovl2

gnd unguided.ovl2
limYts dis.ovl2

no proSlem.ovl2
system_failures.ovl2

Oms_genextype.clp

oms_goals.clp

oms_graph.clp
oms overvlew.clp

oms-remedlate.clp

oms-skills.clp
val_e fail.ovl2

valve-pos.ovl2

vdt_dTsplay.ovl2

vdt ungulded.ovl2
loa_.file

om,_toplev,l.clp
omS train.clp

oms update.clp

templates.clp

I

m

Figure 6. Contents of the OMS ITS/Tutor Dh'ectory

13

.,..¢.

v

e) Diag_msk.clp - these rules evaluate MSK operations

t') Diag update.clp - these rules control remediation during diagnostic training

g) OMS_buildex.clp - these rules construct the exercises

h) OMS cleanup.ctp - these rules remove facts from the previous exercise and update

information about the student prior to a new exercise

i) OMS_genextype.clp - these rules randomly generate exercise types during the diagnostic

phases of training based on student needs

j) OMS_overview.clp - these rules control the overview of the OMS pod components

k) OMS_remediate.clp - these rules control remediation by backtracking through the exercise
tree

1) OMS_toplevel.clp - these rules initiate the startup of the OMS tutoring system

m) temptates.clp - this file contains the templates (data structures) loaded at start-up

3.2.3 The Runtime Directory

The runtime directory contains the object code created by compiling the C and CLIPS files.

It also contains the executable version of the OMS ITS, called OMSITS (See Figure 7),

The runtirne directory also contains the C source code files located in the graphics directory
as well as the C source code files generated by the "rules-to-c" function.

3.3. Using the OMS ITS

3.3.1 Using the Executable Version of the OMS ITS

To use the executable version of the OMS tutor, change directories to the

/hriits/omsits/runtime directory. At the % prompt, type "omsits."

3.3.2 Using the Interpreted Version of the OMS ITS

The interpreted version of the OMS ITS must be run from the/hrlits/omsits/tutor directory.

Type:

% console

clips > (load "load.file")

clips> (assert (load))
clips> (run)

w

v

14

main.c

msktutorO.c
msktutorl.c

msktutor2.c msktutor5, c

msktutor 3. c msktutor6, c
msktutor 4. c msktutor7, c

I

m

o

Im

g

r

m

i
i

i

B

U

Figure 7. Contents of the OMSlTS/Runtime Directory

15

L_

w

w

_ k

After the rules are loaded, type:

clips> (reset)

clips> (run)

This will load the OMS ITS into memory. Once you have exited the tutor, exit CLIPS by typing
"(exit)" at the clips> prompt. This will return you to the Domain X system prompt.

3.33 The Output Files Created by the OMS ITS

The OMS ITS creates two output files for each student who uses the tutor. One file contains

the student model and is identified by the student's identifier and a ".ov12" extension (e.g.,

george.ovt2). The student model consists of the entire training tree (see Figure 8) and indicators

marking which of the nodes the student has completed. This training tree teaches the expert

knowledge shown by Figure 9.

The OMS ITS also creates a file that maintains the student's reaction times and accuracy
levels from the guided and unguided diagnostic exercises. This file is named using the student's

identification and a ".perf' extension (e.g., george.perf). Each line in this file corresponds to a single
exercise. The line format is as follows:

1) 1 signallhag that the system only covers guided or unguided exercises

2)

3)

training level: 6 = VDT task; 7 = console reset; 8 = critical reset; 9 "- diagnostic guided;

10 --- diagnostic unguided

problem type: 1 = pressure sensor failure; 2 = temperature sensor failure; 3 = valve position

sensor failure; 4 = limits disabled; 5 = dual pressure regulator failure; 6 = tank leak; 7 =

downstream leak; 8 = no problem

4) failed position: 0 if irrelevant; 1 or 2 for pressure sensor; A or B for valve position sensor

and dual pressure regulators

5) student's answer: same format as 3 and 4

6) diagnostic accuracy

7) diagnostic speed

8) this is followed by performance data on the MSK operations:
- for each MSK operation, the type of operation, accuracy, and speed are recorded

The data for 3 through 7 are only recorded if the subject is in the diagnostic guided or unguided

phases. The data for 5 is recorded on in the diagnostic unguided phase. MSK performance indices

are recorded for all phases.

16

.w

I 1

1 t

I I

J I

I

I

I

I

®

t..

F-

t.

F-

0

/-

w

g

u

g

i

i

HI

u

lID

z

I

u

llj

II

i

i

I

Ij

n

OK

NOT

DECREASING

PRESSURE

DECREASING

_pR NOT

DECREASING CHECK

VALVES

VALVE

POSITION

YES

VALVE

POSITIONS

ARE OPEN

BOTH

NO

SENSOR

MATCH

NO

PROBLEM

SWITCH
POSITION

NO MATCH

w

PRESSURI

STOPS OROPP

CLOSE

SlDEA

PRESSURE

KEEPS DROPPING

_ =
v

FAILURE
ON

PaESSURE
STOPS

SIDEB

OPEN

FAILURE
ON

PRESSURE
STOPS DROPP

PRESSURE

KEEPS DROPPING

BOTH

PRESSURE

KEEPS DROPPING

STREAM

LEAK
TANK

Figure 9. The OMS Expert Model

18

J

3.4 Changing the Rules and Modifying the C Code for the OMS ITS

3.4.1 Changing the Rules for the OMS ITS

Changing the rules in the CLIPS flies located in the tutor directory will change the operation

of the interpreted version of the OMS ITS but not the executable version. To modify a rule, change

directories to the tutor directory and modify, the corresponding file. Then run the tutor in the

interpreted mode.

If you wish to recompile the executable version of the OMS ITS foUowing a change to the

rules, perform the following steps:

% cd/hrlits/omsits/tutor
% console

clips> (load "load.file")

clips> (assert (load))

clips> (run)

After the rules are loaded, t,:qge:

clips> (rules-to-c "omstutor" 1)

clips> (exit)

This procedure produces eight source files named omstutor0.c through omstutor7.c.
files to the/hrlits/omsits/runtime directory and then type:

Copy these

% copy omstutor*.* ../runtime

% cd ../runtime
% make omsits

The omsits makefile will create the omsits executable.

3.4.2 Modifying the C Source Code of the OMS ITS

Any changes to a C source code file requires recompLiation of that file and relinking the files

to create "console." If you want to change only the interpreted version of the OMS ITS, change

directories to the/hrlits/omsits/graphics d/rectory. Type "make" at % prompt. This will recompile
the file that was changed and re[ink the files. After this, copy "console" to the/hrlits/omsits/tutor

directory, change directories, and run the interpreted version.

If you want to modify the executable version of the OMS ITS, copy the relinked version of

"console" to the/hrlits/omsits/runtime directory and change directories. At the system prompt type

"make omsits." This will produce a new executable version of the OMS ITS.

g

J

g

m

U

i

1ira

g

g

g

Q

m

i

m

III

19

N

=

i

=....

THE MOCKUP CODE

Overview

This m/anual will describe the following aspects of the MSK TUTOR mockup for the PC:

1. Directory structure and the files associated with each directory

2. How to use the TUTOR in an interpreted mode and as a runtime executable

3. How to rebuild the interpreted and runtime versions via makefiles (The current version of

the tutor is compiled with Microsoft C Vet. 5.10)

Directory Structure

The directory structure for the mockup and a brief description of the pertinent files is g/ven

(See Figure 10).

\PROJECT\MSK\BIN

The directory \project\rusk\bin contains copies of working executables and batch files

4.2

below

42.1

described below:

console.exe

dio48.exe

The interactive version of the used to test new rules.

reeompiling MSK TUTOR every time.

makeall.bat

This is quicker than

This file contains routines for configuring and controlling the ICS DIO48 digital

I/O card. Refer to the ICS DIO48 Reference Manual for more information.

- A batch file to remake all the make files in the \project\msk\src subdirectories.
MSKTUTOR.EXE is the executable created.

msk.dat This file contains the configurable parameters for the rusk software.

msk.exe Contains functions that:

1) Call the msk software to monitor panel inputs and t_-ack the elapsed time for the procedure.

2) Assert the string of student actions and elapsed time into CLIPS.

3) Drive the switch monitoring software. Monitor panel switches and compile a list of switches
as they are modified.

4) Compare current input states to the previous input states to determine if a different group

of switches has been modified than the previous group modified. If so, returns the group

number of the current group modified. Otherwise, returns NULL.

5) Add the input state of the group modified to the tist of switches which have been modified.

6) Calculate the elapsed time for the procedure.

20

Dire_err o{ C:\PROJ£C'r_M_K'%V(OR)qNG

DELETED < DIR >

LOADFIL

RECORD.CLP

TOPLEVELCLP

ASSIGNCLP

G ENEXT'YP,CLP
GOAI_.CLP

MOCKUPFA.CLP

TRAINCLP

UPDATE.CLP

SKILLS.CLP

CL.EANUP,CLP

EXERCISE,CLP

BUILDEX.CLP

EVALUATE.CLP

Dlce_ory of C:\PROJECT_MSK\SRC

CONFIO < DIR>

DIO4g < DIR>

MAIN <DIR>

Lrr[L <DIR>

CONSOLE < DIR>

RF_ADMETXT

Die_tm'y ¢4C:\PROJEL_MSK\SRC'_CONTIG

CON'F1G

CNFOTEST.C
CONFIG.C

CNFOTEST.DAT
CNFGTEST.EXE

Olre_o_/_r C:\PROJEC_MSK\SRC_DIO-IJI

Directory o1"C:\PROJIKC'I_MSK\SRC_MAIN

LINK.RS?

\ISK

INI'I'PARM C

MSKDRVR C

MSK, C

Oired_' _r C:\PROJEC'r_MSK_SRC_UTIL

UTILLIB
UTIL

B ITO P$ C
SWTTCHOP.C

Diredocy o(C:\ PROJEC'_MSK'_.$RC'_CONS()LE

DELETED < DIR>

BEEP.C
DISI:q'EXT.C

DUMMIES.C
G ETSTAT.C

GETPROCC

GLOBALS.C

CONSOLE

QUIZUTIL,C
TRENDS.C

TLrI"RUTILC

MAIN.C

_NDOM C
MOOTRUNC.C

LIB.RSP

CONSOLE.C

LI_RSP

I

m

I

i

DIO48

DIO4g.C

DIODRVR.C

O|mclory _ C:\PROJECT_MSK

MS--OR <Dig>

BIN <DIR>

DOC <DIR>

INCLUDE < DIR >

LIB <DIR>

WORKING <DIR>
SRC <D[R>

READM E.TX'T

Dlng'lmcy _ C:\PROJ£L-'T_MSK_ MSKTL'TOR

TLTrOR0.C

I%rrOR l,C

TLrroP.2,C

.13.;TOR3C
MSK'I"UTO R.C

"['UTOR4.C

MsIcrL_OR

TUTORS.C

TUTOR6.C
Tu'rORT.C

READMETXT

LINK.RSP

MSICI'UTOR. RSP

MAIN.C

LOAD.FIL

SETUP.H

Olrecm_ of C:\PROJECT_MSK\BIN

DIO48.EXE
MAKEALLBAT

MSK.DAT
MSKGOOD.EXE

READM E.'I'XT

CONSOLE.EXE

MS_OR.E_
MS_EXE

Directory ofC:\PROJEC'T_MSK_DOc

PARTLIST

BOARD.DRW

PANELDRW
SWTTCHES.DRW

TITLF_WP

SW1.,ABELS.WP
DIOCHANS

MCCONECT

SWCHANS
SWCONECT

Direr'tory.of C:\PROJEC'r\MSK'sINCLUDE

DIO4_.H

CONF[O.H
README,TXT

'dSK.H

MOCKUPH

Directory of C:\PROJECT_MSK_UB

CONFIO.LIB
DIC)48.LIB

LrTILLIB

MSK'1"LrrO R.LIB

CONSOLE.LIB

SD.LIB
MSICLIB

README.TXT

Figure i0. The Directory Structure of the MOCKUP C Code

21

= =

mskgood.exe Test file rusk driver.

msktutor.exe The compiled version of the C code created by the rules together with the
CLIPS code that runs without the CLIPS user interface.

4.2.2 \PROJECT_MSK'_DOC

The directory \project\msk\doc contains the documentation on hardware configuration.

4.23 \PROJECT_MSK\INCLUDE

The directory \project\rusk\include contains the header files for the MSK TUTOR C Code.

4.2.4 kPROJECT_MSKkLIB

The directory \projectkmsk\lib contains the object code libraries created by specific
make files.

4.2.5 \PROJECT_M SK\M SKTUTOR

The directory \project\msk\msktutor contains:

a. main.c for runtime version only

b. setup.h with the runtime flag set
c. the makefile, called msktutor, which creates the MSK TUTOR executable

d2 tutor0.c - tutor7.c files created in \project\rusk\working

The difference between the main.c program in this directory and the main.c in the
\project\msk\src\console directory is that this main.c does not include any user defined functions.

It also has a different calling sequence to CLIPS. These differences are necessary when creating
a runtime version of rules.

4.2.6 \PROJECT_MSK\SRC

The directory \projectkmskksrc contains the subdk:ectories with the C code for the tutor.

a. \config - contains C routines to configure parts of the control panel

b. \dio48 - contains the C functions needed to configure and control the ICS DIO48 digital I/O
card.

c. \main - contains the C routines that builds msk.exe, which is described above.

d. \utll - contains bitops.c which is composed of routines for bit field manipulation and

switchop.c which contains routines for rusk switch operations.

e. \console - contains C routines which make up the interpreted version of the tutor, called
console.exe, described above. It is used to test new rules.

f. \working - directory where clips rules are tested and then compiled into C code

22

43 Usingthe Tutor

4.3.1 Running the Interpreted and Executable Versions

To run the tutor in an interpreted mode, go to the \projectkmskkworking directory and type:

C> console

clips> (load "load.fLl')

cups> (assert (load))
cLips> (run)

cLips> (reset)

clips> (run)

This will result in all facts and rules being loaded into memory. Next, the system will prompt

you for a student identification. You are then asked which of the tasks the student is to perform.

You may choose any combination of the tasks. For each positive response, the student will be

expected to perform four trials at 100 percent accuracy. If the student makes an error, that trial

does not count as far as completion is concerned, but all trials are written to the student's record.

As soon as the last question about tasks is answered, the first exercise is displayed on the

screen. Also at that time the student's output file is opened to record that student's progress. From

the moment the exercise appears to the moment the student presses the return key is referred to

as the "read time." Then, as each step is completed, the time for that step is recorded, and when

the final return is pressed, the overall time is calculated. At this point, the tutor will display each

step for the exercise and whether or not the student performed the step accurately. If all steps are
correct, then the overall time for the exercise is displayed. Finally, the system will ask if the student
wishes to continue.

To run the tutor as an executable, you do not need to be in any specific directory as long as

the PC's path name includes the directory where the msktutor.exe resides. (Normally in

\project\rusk\bin). Then type:

C> msktutor

The tutor will run in the same manner described above. ::'

4.3.2 Output Files Created by the Tutor

The tutor creates a single output file, named after the student. For example, if the student's

name is Bill then the output file is "bill? An example of a student's output is given below. In the

first example, the student performed the task accurately, and in the second, an error was made.

Observe in the second example, an arbitrary speed of fifty is assigned since speed is not the primary
factor when the student is inaccurate.

I

I

g

1

lm

m

m

om

J

i

u

J

m

D

23
J

r

Example 1:

msk ddd format select

Read Inst'ruction-Time 1.64999998

student_step 1 0 function code thumbwheel 1 ok time 0
student_step 2 0 mode s_ect_pbi ddd fmt sel ok time 4.82999992

studentstep 3.0 lever switches 4440 ok time 8.39999962

studentstep 4 0 data_-type_pbi sire_playback2 ok time 2.20000005

student_step 5 0 enter switches left mon enter ok time 1.87
student_step 6 0 proc._done on ok t_ne 0-

accuracy list 100

speed_list 17.35000038
end

Example 2:

msk tv channel attach

Read Instruction Time 0.82999998

student_step 1 0 function code thumbwheel 1 ok time 0

studentstep 2 0 mode..se'iect..p-bi tv chan ok time 3.3499999

student_step 3 0 lever switches 50 ok time 4.94000006

studentstep 4 1 enter-switches right_mon enter bad time 1.70000005

accuracy list 57.142856"6

speed_list 50
end

4.4 Changing the Rules and Modifying the C Code

Changing only the rules will not affect the interpreted version of the tutor and therefore is

the quickest method for testing changes to the rules. Once you are satisfied that the changes work

correctly, you then want to recompile the runtime version, msktutor.exe. Perform the following
steps to do this:

C> cd \project\rusk\working (this should be the directory where changes occur)
C> console :

clips> (load"load.fil")

clips>(assert(load))

clips>(run)

clips> (rules-to-e "tutor" 1)

clips> (exit)

At this point, you should have eight source files named tutor0.c - tutor7.c. Next, copy these
to \project\msk\msktutor and then type:

C> cd \projectkmsk\msktutor
C> make msktutor

24

r

I

The msktutor makefile will create the msktutor.exe and place it in the \project\rusk\bin

directory.

Any changes to the C code requires a recompilation of that particular file via the makefile

in the directory where the C file resides. For example, if you change the msk.c f'de in

\project\msk\src\main, you perform the changes and then type:

C> make rusk (do not confuse the C source files and the make file names)

Unless you are in \project\msk\src\console directory already, type the following:

C> cd \project\msk\src\console

Then type:

C> make console

This rebuilds the entire console.exe. Then, as described above, you must rebuild msktutor.exe.

I
g

g

U

I

III

J

g

J

z

I

iiii

W

W

g

25

![

j --

