View metadata, citation and similar papers at core.ac.uk

L=
=
brought to you by .. CORE

provided by NASA Technical Reports Server

Advanced Software Development
- Workstation Project
ACCESS User’s Guide

N~ C g
Y3/2 20

36

Inference Corporation

— - Qctober, 1990
= Cooperative Agreement NCC 9-16
. Research Activity No. SE.25
L__ NA§A Johnson Space Center
Information Systems Directorate
Information Technology Division
— (NASA-CR-108673) ADVANCED SOFTWARE N91-32829
JFVELOPMENT WORKSTATION PRGJECT ACCFSS
: © USER'S GUILE (Research Inst. for Advanced el
. j ; - nclas
e nputer Scionc2) 26 £sCL 09B a
computs g 53/61 0043122
4 ~~—~~ |
B e m—————————— m—
Research Institute for Computing and Information Systems

of Houston - Clear Lake

4
S

https://core.ac.uk/display/42816225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences, As part of this endeavor, UH-Clear Lake proposed a
partnership with JSCto jointly define and manage an integrated program of research
in advanced data processmg technology needed for JSC’s main missions, including

administrative, engmeenng and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to -

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facnlmes are shared
by the two institutions to conduct the re :

research.

The missio
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of

- ’faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Apphed Sciences.
Other research organizations are involved via the “gateway” concept. UH-Clear

'Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.
A major role of RICIS is to find the best match of sponsors, researchers and

f RICIS is to conduct, coordinate and diss ssemmate research on

\

[

PRI
I

g,

g

L.

e e

v
bt 11 4

L

(s |

‘i

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
mto the- cooperanve goals of UH-Clear Lake and NASA/JSC.-

\

iy W

[

wie

L JT

111115 111 11

Ui

dit

weg 4 1 A

ant

wl

Advanced Software Development |
Workstation Project
ACCESS User’s Guide

‘h

{1

LTI | 4

T

i
¥

r

v

r

i
i

ll

1
i

{

i

!
|

I

g

1

g e oam tie am W R

q

unn

T

([

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC
through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center
and the University of Houston-Clear Lake. The NASA technical monitor for this
activity was Robert T. Savely, of the Software Technology Branch, Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

’ '
[lr ‘
] '

<0 1y

l

{

(I

]

"
ﬂ ‘\E‘

dim;

g

(i

‘\ IHI N

“

a1

il

1

m

Advanced Software Development
Workstation Project
ACCESS User’s Guide

UHCL RICIS Contract NCC-9-16 SE.25

Prepared for
Research Institute for Computing and Information Systems
University of Houston - Clear Lake
and
Software Technology Branch
Information Technology Division
Information Systems Directorate
Johnson Space Center
National Aeronautics and Space Administration

October, 1990

Submitted by
Inference Corporation
550 N. Continental Blvd.

El Segundo, CA 90245

(213) 322-0200

Inferen c e

Inference Corporation, 550 North Continental Boulevard, El Segundo, CA 90245 + 213-322-0200 « FAX: 213-322-3242

PR ISATIONALLE s

1 w61 G

!I\\\ 4 ¥ dw ®w w1 w4 [| t

"
L

i

av oowit «droumo gr

I

¢

o @0 dme G

LT

g

[T [T [|

1l

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

Table of Contents

1. Overview
2. Specification of a Knowledge Base
2.1 Specification of Objects and Object Attributes
2.1.1 Creation of an Object Taxonomy
2.1.2 Attributes with Multiple Values
2.2 Specification of Restrictions on Attribute Values
2.3 Specification of Constraints on Objects
2.3.1 Rule Objects
2.3.2 Constraints and Argument Lists
2.3.3 Formulas
2.3.4 Templates
2.3.5 Predicates
3. ACCESS Interface
3.1 ACCESS Tools Panel
3.2 Browsing or Modifying an Object - the Form Panel
3.3 Tools Panel Menus
3.3.1 The Object Menu - Saving, Deleting, or Displaying Source Code
3.3.2 The File Menu - Saving the Knowledge Base
4. Customization of the ACCESS Interface
4.1 Changing Defaults in the Interface
4.1.1 Controlling the Display of the Object Taxonomy
4.1.1.1 Use of the ACCESS TAXONOMY Attribute
4.1.1.2 Use of the filtered _object Slot
4.1.1.3 Construction of the Taxonomy Display
4.1.2 Controlling the Display of Object Features
4.1.2.1 Controlling the Order Display of Object Attributes
4.1.2.2 Controlling the Order of Display of Values of Multi-Valued
"~ Attributes
4.2 Specification of Forms in ACCESS
4,2.1 Structure of Custom Forms
4.2.2 Interface Between TAE Custom Forms and ACCESS OBJECTS
4.2.2.1 Form-specification Schemas
4.2.2.2 Ttem-specification Schemas

PAGE 1

O © 00 OO NN N -

22
23
25
26
27

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

List of Figures

ACCESS Tools Panel

Prompt for Object Name

ACCESS Generic Form Panel

Panel with Warning of Constraint Violation
Display of Source Code via Source Panel
Example of a Custom Form

Creating a Custom Form Using TAE Plus

PAGE 1I

11
13
14
16
18
23

R

dnr €« ' Wy € €1 QN €

(!

g

]

|
l

(]

{| MY

LRY

tnmy Cim) g

dy

|

el G

H

il

{

o

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

1. Overview

ACCESS is a knowledge-based software information system designed to assist the user
in modifying retrieved software to satisfy user specifications. The purpose of This
document is to provide a user’s guide for the knowledge engineer who wishes to create
for ACCESS a knowledge base consisting of representations of objects in some software
system. The purpose of this activity is to make this knowledge base accessible to an
end user who wishes to use the catalogued software objects to create a new application
program or an input stream for an existing system.

The application-specific portion of an ACCESS knowledge base consists of a taxonomy
of object classes (see Subsection 2.1.1); as well as instances (also called cases) of these
classes. Within the knowledge base there are also "rule" objects which are used to
dynamically modify user-created objects - e.g., by computing a new attribute value for
an object from the values of other object attributes (Section 2.3). Chapter 2 describes
how to create such a knowledge base. ‘

All objects in the knowledge base are stored in an associative memory. When the end
user selects an existing object for examination or creates a new one, the attributes of
this object are matched against attributes of the objects in the associative memory using
a redundant hash-addressing algorithm. Names of objects matching the current objects
are displayed to the user, and can be selected by him for examination or copy and
reformulation. '

ACCESS provides a standard interface for the end user to browse and modify objects.
This is described in Chapter 3. In addition, the interface can be customized by the
addition of application-specific data entry forms and by specification of display order
for the taxonomy and object attributes. These customization options are described in
Chapter 4.

PAGE 1

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

2. Specification of a Knowledge Base

The user interface for ACCESS is designéd so that the end user should not need to

know anything about the ART-IM® schema system. However, each object in ACCESS
is represented as an ART-IM schema and the knowledge engineer must have enough
knowledge of the ART-IM schema system to create the initial object taxonomy. A
detailed description of the ART-IM schema system is available in the ART-IM
Reference Manual, Volume I. This Chapter contains examples of how to use the
ART-IM schema system to represent knowledge base objects.

Included in the ACCESS release directory is a file "kernel.art” which contains those
schema definitions which are required for every ACCESS application. The knowledge
engineer will extend these schema definitions to include an application-specific object
hierarchy. ' '

2.1 Specification of Objects and Object Attributes

2.1.1 Creation of an Object Taxonomy

Each object in the knowledge base has "attributes" which may or may not have
"values". In the schema system, the attributes of an object are slots in the
corresponding schema; the values of these attributes are the ART-IM objects which are
slot values in the schema. A "feature" of an ACCESS object is a attribute/value pair
(or slot/value pair).

The object taxonomy in ACCESS includes a single root schema, named object. The
definition for object, as supplied in "kernel.art" is as follows:
(DEFSCHEMA OBJECT
"The class of all objects.”
(NAME “OBJECT*)
(TEXT "*)
(SAVED-STATUS)
(VIOLATES_CONSTRAINT))

Note that four attributes have been specified for this root object. These four attributes
are inherited by child objects, although any default values for the attributes may be
overridden. The value of the name attribute is the name of the object. The text slot
has a string as its value (default is the empty string). The use of this slot is primarily
confined to object instances and will be described in more detail below. The
saved-status slot is used for internal bookkeeping. The violates constraint slot is
assigned a value each time the system detects that an object has an attribute with a
value which violates a restriction the knowledge engineer has specified (e.g., the value of

PAGE 2

€

t <

I NI |

an

Wil

{

L

¢

g

im

Ci g

o

g g

g

i

ail

i

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

a slot is not an integer). It is also assigned a value each time the system detects that a
combination of object features violates a constraint the knowledge engineer has
specified. The specification of restrictions on attribute values and the use of constraints
on objects will be described in Sections 2.2 and 2.3 respectively.

For any specific application the knowledge engineer will define schemas which are
related to object through explicit or inherited is-a and instance-of relationships. The
examples in this section are derived from a knowledge base designed to represent a
trajectory simulation software package and to generate an input stream for that
package. In this case object has two application-specific children,
application component and application name, defined as follows:

(DEFSCHEMA APPLICATION COMPONENT
(IS-A OBJECT)
(NAME “Application_component"))

(DEFSCHEMA APPLICATION_NAME
(IS-A OBJECT)
(NAME "Application_name"))

Each of these objects in turn has children. For example, one of the children of
application component is propagation-selection, which is defined as follows:

(DEFSCHEMA PROPAGATION-SELECTION
(IS-A APPLICATION COMPONENT)
(JCOAST)

(JCOSTG)
(ON-ORBIT-TARGETING)
(VECTOR-PROPAGATION)
(TYPE-OF-SIMULATION))

The slots in this schema represent attributes whose values are used to specify to the
simulation program how to propagate the trajectory orbit.

This schema, or object, in turn has children. An example of a child object is
prop _sel 001, defined as follows:

(DEFSCHEMA PROP_SEL_001
(INSTANCE-OF PROPAGATION-SELECTION)
(JCOAST 1)
(JCOSTG 2)
(ON-ORBIT-TARGETING 1)
(VECTOR-PROPAGATION 0)
(TYPE-OF-SIMULATION 3_DOF_TRANSLATIONAL_R-K)
(NAME "PROP_SEL_003"))

The class propagation-selection is a subclass of the object
application component. An object in the propagation-selection subclass is
intended to specify the input parameters required by the trajectory simulation package
for propagating an orbit. In turn, the object prop sel 001 is a specific instance of

PAGE 3

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

this generic subclass and represents a particular set of parameters governing trajectory
propagation. For example, the value of the slot, type-of-simulation is a symbol
3 _dof_translational _r-k indicating that the integration technique to be used will
be a translational Runge-Kutta method with 3 degrees of freedom.

Whatever his application, the knowledge engineer must specify a taxonomy of objects
and specify the attributes of each object in this taxonomy. The specification of object
attributes may be either explicit or implicit through inheritance from ancestor objects.

2.1.2 Attributes with Multiple Values

In ACCESS an object attribute can have a single value or multiple values. An attribute
which is allowed to have only a single value is represented in the underlying ART-IM
representation by a slot whose cardinality is single. This is the default and the
knowledge engineer can define such attributes implicitly by simply using the slot in a
schema. An attribute which may have more than one value is represented by a multi-
valued slot. Such slots must be explicitly defined before they are used in any schema.
An example of a multi-valued slot is the slot violates constraint, which is specified
as follows:
(DEFSCHEMA VIOLATES_CONSTRAINT
(INSTANCE-OF SLOT)

(CARDINALITY MULTIPLE)
(INHERITS YES))

In this case, the schema definition specifies that violates constraint is a multi-valued
slot and that its uses will be inherited through inheritance links to related schemas. This
is the default behavior; to create a slot whose uses are not inherited, the value of
inherits must be no.

When the knowledge engineer creates a file defining the knowledge base, any multi-
valued slot must be defined before any schema(s) which uses this slot.

2.2 Specification of Restrictions on Attribute Values

It is quite common that the values of an particular attribute for an object need to be
restricted in some way. For example, the value of the hours attribute in a date object
should be an integer between 0 and -23. In the example shown above, the value of the
attribute type-of-simulation in a propagation-selection object represents the type
of integrator which will be used to propagate an trajectory. This value must be one of
an explicitly enumerated set of values.

ACCESS provides the knowledge engineer the capability to restrict the value of an
object attribute in one of pngee ways:

PAGE 4

I 11N I (N

ri o0 ¢

(|

! r 0 (I
1 I I (N 1

ghm

Qo

!

LN

g

@ 1l

gl

Ci

Al ol

QU umd 4|l qrEl g

W

¢ |

(IR 1

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

1. Restrict the value to a specific type - float, integér,%symbol, or string.
2. Restrict the value to be one of an explicitly enumerated set of values.

3. Restrict the value to be a symbol representing an object in one of an
explicitly specified set of subclasses of objects.

In order to specify any of these types of restrictions, the knowledge engineer must create
an instance of attribute-restriction schema. The attribute-restriction and
enumerated-set schemas are defined as follows:

(DEFSCHEMA ATTRIBUTE-RESTRICTION
(ALLOWABLE-CLASSES)
(HAS-ENUMERATED-SET)

(TYPE))

(DEFSCHEMA ENUMERATED-SET
(ALLOWABLE-VALUES))

In order to be used by ACCESS, the name of an attribute-restriction schema
instance must be the concatenation of the name of the attribute to which the restriction
applies and "-restriction."

In specifying an attribute-restriction schema, exactly one of the three slots type,
has-enumerated-set, and allowable-classes should be used. The type slot is used to
restrict the value of the attribute in question to be a specific type. Allowable values for
the type slot are float, integer, symbol, or string.

The has-enumerated-set slot is used to restrict the value of the attribute in question
to a explicitly enumerated set of objects. The value of this slot must be a schema which
is an instance-of an enumerated-set. The value of the allowable-values slot in this
schema must be a sequence representing the list of allowable values.

The allowable-classes slot is used to restrict the value of the attribute in question to
an instance of ome of an explicit set of subclasses. For example, if the attribute
propagator select must have a value which is an instance of a
propagation-selection object, this would be specified as follows:

(DEFSCHEMA PROPAGATOR_SELECT-RESTRICTION

(INSTANCE-OF ATTRIBUTE-RESTRICTION)
(ALLOWABLE-CLASSES PROPAGATION-SELECTION))

When the user assigns a value to an attribute which violates one of these restrictions,
this will be detected by ACCESS. The result is that the object in question is marked as
having a constraint violation. That is, a value is put into the violates_ constraint
slot of that object, indicating the type of restriction which has been violated. In this
case, the value put into that slot would be propagator _select-restriction-violation.

PAGE 5

_ACCESS USER'’S GUIDE - BUILDING A KNOWLEDGE BASE

In addition, through the interface, a pop-up window with a message to the user is
displayed. This is described in Section 3.2.

2.3 Specification of Constraints on Objects .

2.3.1 Rule Objects

An important aspect of the ACCESS design is that as objects are created and modified,
there exist modification rules within the system which can propagate new attribute
values or check the validity of existing values.

Modification rules in the knowledge base are themselves represented as objects and are
transformed at initialization time into ART-IM rules. The definitions of the object class
rule and the instance compile__rule, as supplied in kernel.art are as follows:

(DEFSCHEMA RULE
“The class of all rules.”
(IS-A OBJECT) ,
(COMPILE COMPILE_RULE_METHOD)
(NAME "Rule™))

(DEFSCHEMA COMPILE RULE
(INSTANCE-OF RULE)
(TEXT "(defrule compile_rule
(declare (salience -100))
(schema ?ruleZ~compile_rule
(instance-of rule)
(text ?))
=>
(send compile ?rule))™))

At initialization of ACCESS, the ART-IM rule defined in the text slot of
compile _rule is compiled. This creates a production rule, itself called
compile _rule, which will cause the value of the text slot for each object which is an
instance-of a rule to be compiled. In this way rules are generated which can modify
other objects in the knowledge base.

2.3.2 Constraints and Argument Lists

A subclass of the class rule is the class constraint. The definition of the constraint
class is as follows:

(DEFSCHEMA CONSTRAINT
"The class of all constraints.”®
(IS-A RULE)
(ATTRIBUTE)
(CONSTRAINT_OF)
(NAME "Constraint®))

PAGE 6

Tty 0 A

11

0 (Nl

(ITF

C i

{m

(|

i1

Qi

i

(|

auir o Qe Qime

iy

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

The class constraint in turn has subclasses formula, template, and predicate.

A formula is an object used to specify how to compute the value of an attribute of a
particular class of objects in terms of other attributes of that object and its subobjects.
(A subobject of given object is an object which is the value of an attribute of the given
object.) For example, a class of objects of type phase has attributes day, hour, min,
and sec, whose values represent the days, hours, minutes, and seconds since launch for
the beginning of this phase of the mission. It also has an attribute, tevent, whose value
is the time of the beginning of launch expressed in seconds. This value can be
calculated from the values of the day, hour, min, and sec slots.

A template is an object used to specify how a piece of text (normally a code fragment)
is to be generated on the basis of ti.. attribute values of an instance of a class of
objects.

A predicate is used to specify how the system will verify relationships between the
values of attributes of an object and its subobjects. A function is specified whose
arguments are these values and which returns T if the reelationship constraints are
satisfied and NIL if they are not. If the test fails, the object is marked as having a
constraint violation. .

Any formula, template, or predicate schema must specify a value for the
constraint _of slot. This value is the name of the object class to which the constraint
is intended to apply. The computation specified by one of these constraints will only be
invoked for objects which are instances of the specified class.

Formulas and predicates rely on user-specified functions either (in the case of a
formula) to compute an attribute value or (in the case of a predicate) to test for a
constraint violation. Templates use the ART-IM function sprintf to generate a string
value. The knowledge engineer must specify how to determine the arguments to these
functions.

This is done through the value of the arguments slot. This value must be a sequence
of n elements, where n is the number of arguments which will be required by user-
specified function or by sprintf. Each element in the sequence must be either a symbol
or a sequence of symbols, each of which is an attribute name (in ART-IM, either a slot
or a relation).

The use of this specification is perhaps best illustrated by an example. Suppose a
constraint is intended to apply to all objects in the class rendezvous, and that this
class has attributes propagator select and omp model _select. The values of
these attributes are intended to be instances of propagation-selection and
omp model schemas, each of which will have a text attribute, whose values are

PAGE 7

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

intended to be used as arguments to the constraint function. The following code
fragment shows how this would be specified:

(constraint of rendezvous) :
(arguments ((propagator_select text) (omp_model_select text)))

A constraint function will be applied to a specific object only if all arguments for that
function exist. In general, if the ¢-th element of the argument list is a symbol
representing a slot, then the 1-th argument for the constraint function will the the value
of the slot in the object in question. If the ¢-th value of the argument list is a sequence
of symbols, al, a2,..., then the argument is found by first taking the subobject which is
the value of the slot al, then taking the value of the slot a2 in that subobject,
assuming it also exists, etc. If the entire chain of subobjects exists, then the final
element in the chain is the value passed to the constraint function.

The number of arguments to a formula or predicate function or to sprintf is limited
to 40.

'2.3.3 Formulas
A formula schema results in the creation of a rule which is used to compute a value for
some attribute of a particular object class. A formula schema is of the following form:

(defschema formula :
(constraint of) ;class to which formula applies

(arguments)

(attribute) ;attribute for which value i1s computed

(function) ;name of function used to produce attribute value
(name) ;for documentation

)

The value of the function slot of a formula instance is symbol representing the name of
a user-supplied function. This is normally a def-art-fun, but could be a def-user-fun
or an ART-IM system function.

In order for a formula to be applied, there must be an object in the knowledge base
which is an instance of the class given by the value of the constraint of slot. The
values of attributes of this object and its subobjects as specified by the value of the
arguments slot must exist. These values are then passed as arguments to the function
specified in the function slot. The return value from this function is then used to
modify the value of the object attribute specified by the value of the attribute slot.

As an example, consider a khoWiedge base which contains an object date, defined as
follows: ' S o ,

PAGE 8

T
1 {

[T 11— I NTA I TR AR BN/ | “" &

{

if

I
0

¢

i

{1 !

L

a o

|

il 1l

a

W‘.v

Ll

ol
i

(I
i

&

g

L

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

(DEFSCHEMA PHASE
(IS-A APPLICATION COMPONENT)
(PH_NUMBER)
(PH_TITLE)
(ICOAST)
(COVAR_MAT)
(DAY)
(HOUR)
(MIN)
(SEC)
(T_HOUR)
(T_MIN)
(T_SEC)
(TEVENT)
(TERMIN)
(BTIME)
(STRING1 * R— -
%*
* —— — e —————— —— ——
$PHASE")
(NAME “"Phase"))

The following is a formula designed to compute the value of the slot tevent given
values for the day, hour, min, and sec slots:

(DEFSCHEMA PHASE FORMULA
(INSTANCE-OF FORMULA)
(ARGUMENTS (DAY HOUR MIN SEC))
(ATTRIBUTE TEVENT)
(CONSTRAINT OF PHASE)
(FUNCTION CALC-SEC))

(def-art-fun calc-sec (?day ?hr ?min ?sec)
(+ (+ (+ (x (* ?day 24) 3600) (* ?hr 3600)) (* ?min 60)) ?sec))

2.3.4 Templates

A template schema results in the generation of a rule which is used to a compute
string value for a slot in a particular object class. A template schema is of the
following form:

(defschema template
(constraint_of) ;class to which template applies

(attribute) ;attribute for which value is computed
(arguments)
(name) ;for documentation

(template_string) ;format string for printf function

When an instance of a template schema is specified, the value of the template-string
slot must be a string which is a suitable format string for sprintf. Continuing the
example started in Subsection 2.3.2, here is a full specification of a simple template:

PAGE 9

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

(defschema rendezvous_template
(instance-of template)
(constraint_of rendezvous)
(arguments ((propagator_select text) (omp_model_select text)))
(template_string " % ———-————m———n et L
* RENDEZVOUS

%a
%a
u))

This template will apply whenever there is an instance of a rendezvous object such
that the values of its propagator_select and omp model select attributes are
themselves objects with text attributes. The values of these text attributes will be
passed as arguments to sprintf, which will create a formatted string as specified by the
value of the template string slot. This string will then be asserted as the value of
the text slot in the rendezvous instance object.

2.3.5 Predicates
A predicate schema results in the generation of a rule which is used to perform a
procedural test on an object. If the test fails, the object is marked as having a

constraint violation. This is done by asserting the name of the function as a value in
the violates constraint slot of the object.

A predicate schema is of the following form:

(defschema predicate
(constraint_of) ;class to which predicate applies

(arguments)
(boolean~-function) ;name of function to be used for test
(name) ;for documentation

As with a formula, the value of the boolean-function slot of a formula instance is
symbol representing the name of a user-supplied function. This is normally a
def-art-fun, but could be a def-user-fun or an ART-IM system function. A
constraint violation is considered to have occurred if the function returns NIL. '

PAGE 10

I

A th @uw & A« 40 @« €« L w4«

n|
il

an i

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

oin

w 3. ACCESS Interface
% The following sections briefly describe the nature of the ACCESS interface. Information
- on how to customize this interface appears in Chapter 4.)
- 3.1 ACCESS Tools Panel
Figure 3-1: ACCESS Tools Panel

=
- ORIGINAL PAGE IS

OF POOR QUALITY

I Knculg’ Base I Cblact I

OBJECT APPLICATION_NAFE

! 3] [RSCENT
APPLICAT 1ON_COMPONENT ABORY

POPIS
ENTRY

Creste 94 Open Inctande: of Carrent C1s 0

File: example.art

mm

PAGE 11

vl

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

The ACCESS Tools Panel displayed in Figure 3-1 is the first panel displayed upon
invocation of ACCESS. The top half of this panel is used to display the taxonomy of
the knowledge base. Within this region are three taxonomy subpanels or "windows."
If an object in one of these subpanels is selected (by pointing and clicking) with the
mouse, it is highlighted and becomes the "current object." If this object has children,
then a list of these children is displayed in the next window to the right, with the name
of the previously selected object displayed above. If an object is selected from the
rightmost taxonomy window, then the taxonomy display is shifted one panel left before
displaying the child list. Two buttons on the left of the taxonomy windows offer the
user the option of shifting the display of the currently displayed taxonomy either right
or left.

In the center there is a subpanel or "button" called the Open Object Buttorn. This
subpanel displays the name of the current object - that object which has been most
recently selected from the taxonomy windows. If the current object is an object
instance, then this button offers the option of "opemng" the object for browsing or

“editing. Clicking on this button will invoke either the generic Form Panel or a custom

form through which the object can be modified. If the current object is a class, then
this button offers the option of creating an instance of that class and then opening the

resultmg mstance Tor browsmg or modification.

In the lower half of the Tools Panel are two windows, the Bookmarks Window and the
Matches Window. The Bookmarks Window displays a chronologically ordered list of
objects which have been opened during this ACCESS session. The Matches windows
provides a list of objects in the same class as the current object, ordered by the extent
to which they "match" the current object. Matching between two objects is done by

~comparing the features of one object with those of the other - each feature which

matches Increases the level of matching.

When an object is selected from either the Bookmarks Window or Matches Window by -
a mouse click, it becomes the current object. When this happens, the taxomomy -

windows are updated to display the ancestors and siblings of this object. The Open
Object Button is updated to show the n: name - of the new current object, and the Matches

Window is also updated._ _ , L

At the bottom of the Tools Panel is a display showing the name of the file from which
the current knowledge base was loaded or to which it has been saved in the course of
the current session.

In order to open an obJect or an 1nstance of a class for browsing and/or editing, the
user clicks on the Open Object Button in the center of the Tools Panel. If the current

PAGE 12

{

)

il
It

a1

i

oty

o

)

aur

L[]

dl

/]

L

Qi

Wi

il

é []

A e

ol

Al rlu .l el) N o f- vk i 1

1ima

i

v

i

t i

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

Figure 3-2: Prompt for Object Name

ORIGINAL PAGE IS
OF POOR QUALITY

CIESS - Tool Panel

PHASE

HANEUVER _PHASE
UPDATE _ATT [TUDE_PHASE
UPDATE_STATE _PHASE

APPLICATION_COMPONENT

[T¥RARTC _ALLOCATOR
SIMLATION_[EF INITION
O%P_SITMILATION_DEF INI 100
CASE_AND_PHAGE . TERMINAT I
PROPAGATION-SELECTION
STATE_INITIALIZATION |
VEHICLE. INTTTALIZATION |
MONTECARLO_INITIAL 1287108
STATE_VECTOR_REPLACE
ATMSPHER IC_HODEL
MV IGAT [ON_HODEL
OFP_MODEL

g
]
|
|

Booksarks Hatches

s ND BOOKHARKS sem UPDATE_ST_001 200
[MJ_ALLIGN_ 001 200
MAMEUVER_PHASE 001 200
DYN_ALLOC_001 T 10
PROP_SEL_ 001 ;1
SIM_DEF_001 T 100

File: example,art

object represents a class, rather than an object instance, the user will be prompted for
the name of a new instance, as illustrated in Figure 3-2. If the user supplies such a
name, that becomes the name of the new current object.

Once an object instance is opened, the generic Form Panel will be displayed (unless a
custom form has been specified for the class to which the object belongs). When the
Form Panel appears, the Tools Panel is "frozen" - that is, it becomes insensitive to
mouse clicks and other input. The generic Form Panel is shown in Figure 3-3.

PAGE 13

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE b

13 A .
Figure 3-3: ACCESS Generic Form Panel
ORIGINAL PAGE IS)
OF POOR QUALITY -
e . e -
Dbject: IMU_ALLICN 001 _w-
APPL ICATION_COMPONENT
TYNIC_ALLOCATOR =
SIMULATTON_DEFINITION =
OMP_SIMULATION DEFINITION _
CASE_AND_PHASE - TERMINATIO
. |ProPRGATTON-SE(ECTION
STATE_INITIALIZATION
VEMICLE_INITIAL[ZATION =
MONTECARLO_ INITTALIZATTON —
STATE_VECTOR_REPLACE -
ATMOSPHER1C_MODEL
NAYICATTON_HODEL
CROSP_MODEL —_
-
Yalus for attributs TEXT _
/IM_ALTGV, —
« -
@ADD.P DHSSTCLIEV, COVAR/T2-300
]
st 1
-
Hookmarks Matches
%msgpgagoi THU_ALLTCH_001

LDEF_STUDY_001_¥16 (W)
001

LDEF _STUDY
THU_ALLIGN 001

-
i 3
File: example.art i .
L | Ll
The name of the object being browsed is displayed in the upper left hand corner of the _
Form Panel. In the top half of the panel is the Object Features subpanel or window. =
Displayed inside this window are a list of object attributes and values. Attribute names
and values are truncated if necessary to conform with the screen size. The user can =
select a particular feature to examine by pointing and clicking with the mouse. L B
When a feature is selected, the value corresponding to that feature is displayed in the =
T e UL - — s mmTT e s - - - -
PAGE 14 -

Ll

i

U

Gimg wm Gie o Cm €@ e o@om dur O

tinal

ooy v un g

0 al

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

Attribute Value subpanel, which appears in the lower half of the Form Panel. The user
can enter text directly into this subpanel, thus editing the currently selected attribute
value. Any such editing must be confirmed by hitting the ESC key. When this is done,
the Features display will be updated to show the modified value.

Alternatively, if the currently selected attribute is one whose value is restricted to an
enumerated set or to an instance of an allowable class of objects, a "SELECT" button
the user will cause a menu of allowable values for this attribute to be displayed; he can
then select one of them from the menu. If a selection is made, the Features display will
be modified to show the newly-selected value.

Editing within the Attribute window does not change values in objects in the knowledge

base until the user clicks on either the "APPLY" or "OK" button in the upper right
hand corner of the Form Panel. Clicking on the APPLY button causes the changes
which have been recorded on the Form Panel to be made to the object in the knowledge

“base or, if the object being edited is a "SAVED" object, to a copy of that object.

- Within the knowledge base, objects are considered to be either "SAVED" or
~"WORKING." SAVED objects are those which were read into the knowledge base at

initialization time or which have been explicitly saved by the user (see Subsection 3.3.1).

---No modifications can be made to a SAVED object. A WORKING object, on the other
“hand, is one which has been created by the user in the course of the current session and

has not been explicitly saved.

If the uéer 1sed1t|ng aSAVED object Vvivihen he selects APPLY or OK, he will be
- prompted for a new object name. ACCESS will make a copy of the saved object, assign
" =7it the new name, and apply the changes to it.

- Once any changes to attribute values have been made, any constraints based on these
- new values are propagated. If constraint violations are detected, then a pop-up panel

with a warning message is displayed, with one warning message for each constraint
violation. (Figure 3-4 shows the pop-up warning panel.) The Matches Window is also
updated based on the new attribute values.

The final button in the top right hand corner of the Form Panel is the "CLOSE"
button. Clicking on the CLOSE button causes the Form Panel to be erased from the
screen and resensitizes the Tools Panel.

OK is equivalent to APPLY followed by CLOSE.

PAGE 15

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE -
Figure 3-4: Panel with Warning of Constraint Violation -
S -
ORIGINAL PA?E | -
| 29:n Tarm aac s@or are ED) I
-
AESS - Tool Parel Tor Pae] —
Obyect: LDEF_STUDY_001_VIG e -
APPLICATION_NYE
Features =
IRSTENT ﬁ [ATHOSPYERTC_MODEL_SELECT : =
ABORT INT NRYIGATION_HODEL _SELECT : ki -
SO THRUST_HODEL _SELECT T THRUST_MOD_ 001
POPIS S VORRS_INP :
ENTRY LDEF P _STMILATION_DEF : o
LIEF] STATE_VECTOR_REPL : =
LIEF| WRIARLE_ PRINT PLOT.L : =
QUTPUT_FREQUENCY _FL. : -
DEF [NE_WHEUVER_SE0 :
PHASE. (DA
PHASE. (2): UPDRTE_ST_001
PHASE . {D: IH_ALIGN 001 _
TeXT L] \n —
VIGLATES _CONSTRATNT * PHASE_-RESTRICTION-VICLATION -
NPE : *LDEF_STUDY_001_v1i6" "
Value for attribute DYNAMIC_ALLOC =
OYN_ALLOC 003, =
SONSTRAINT VIOLATION WARNING :
ING:
' The value A of the attribute PHASE_
in object LIEF_STUDY 001 V16
is not in the class PHASE
Booknarks Matches
[DEF _sTuDY_001] [LOEF _STUDY_001_vi6
|DEF_STUDY_001
' LDEF_STUDY_003 I
LDEF_STUDY 002 ;1000
INTELSAT_STUDY 001 : 3200
SQLMAX_STUDY_002 @ 300
SO STUDY_ 001 @ 300
& ea
l File: example.art

3.3 Tools Panel Menus ' z

Near the top of the Tools Panel are two pulldown menus - the Object menu and the
Knowledge Base Menu. These menus are described in the following subsections.

PAGE 186 - .

LN

ITH

(L

om wes ol o

1l

Y]

ne |

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

3.3.1 The Object Menu - Saving, Deleting, or Displaying Source Code

The Object Menu consists of three options - save, delete, compare, and view source.

Each performs its function on the current object, that is, the object whose name is

displayed on the Open Object button.

The save option makes the current object a SAVED object. This means that this
object can no longer be modified by editing and that its description will be saved if one
of the save options is selected from the Knowledge Base Menu.

The delete option deletes the current object from the knowledge base. If this object
appeared on the Bookmarks list, it is deleted from that list. A new object is selected to
be the current object and the deleted object will no longer appear in the object
taxonomy display.

The compare option allows the user to compare the current object with another object
in the same class. When this option is selected, a pop-up menu of objects with the same
parents is displayed. If the user selects one of these objects, then a panel appears which
gives a static display of all features (attribute/value pairs) of the two objects which are
different.

The view source option displays value of the text slot of the current object on the
Source Panel. The displayed text can be browsed, but not modified by the user. This
option is appropriate when ACCESS is being used to generate source code or an input
stream for some software system, as it allows the user to examine the generated code.
The Source Panel is shown in Figure 3-5.

At the top of the Source Panel are "WRITE" and "CANCEL" buttons. By selecting
the WRITE button, the user causes the text in the text slot of the current object (i.e.,
the text which is displayed on the Source Panel) to be written to a file. The base name
for this file is the name of the currént obJect its suffix is "txt".

Selecting the CANCEL button returns control to the Tools Panel.

3.3.2 The File Menu - Saving the Knowledge Base

The Knowledge Base Menu consists of three options - save, save as.., and exit.

When the option save is selected, all SAVED objects in the knowledge base as well as
ancillary customization data will be written out to the "current" file. This is the file
whose name is displayed at the bottom of the Tools Panel - initially, it is the file from
which the knowledge base was loaded. If there are WORKING objects in the
knowledge base, a warning panel will be displayed and the user will have the option of
canceling the save. The file created by save can be used as input to a subsequent
ACCESS session.

PAGE 17

ORIGINAL PAGE 1S
OF POOR QUALITY -

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

Figure 3-5: Display of Source Code via Source Panel

APPLICATION COMPONENT

DYNAMIC_ALLOCATOR
SIMAATION_TEFINITION
OMP_SIMULATION_DEF INITION
CAGE . AND PHASE _ TERMINRT
. |PROPRGATION-SELECT [OM
STATE_INITIALIZATION
VEHICLE_INITIALIZATION
MONTECARLO_INITIALIZATION
STATE_VECTOR_REPLACE

Sookmarks

UPDATE _STATE PHASE

Genarated Source Cods:

BROP_SEL 001
LDEF_STUDY 001_¥16 W)
LDEF_STUDY 001
TMU_ALL TGN 001

UPDATE ST _001

APDATE_STATE/
.
@ADD,P DMSTCLIEV., COVAR/T2-300
.
ICORST 0

TEVENT =293752
TERMIN=TIMEC, 233752
]

File: example.art

o'

The option save as.. works in the same way as save, except that the user is prompted
for the name of a file to save to. When supplied, this becomes the current file.

The exit option causes the current ACCESS session to be terminated. If a working
object has been created or modify since the knowledge base was initially loaded or last
saved, then a warning message is displayed and the user has the option of canceling.

PAGE 18

4

o

i
1

i

m‘

L

il

il

o

LA

il

TR

il

umn o qQimy g

[

aon um ol am e

f 1l

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

4, Customization of the ACCESS Interface

4.1 Changing Defaults in the Interface

The default display order of the object taxonomy on the Tools Panel and the display
order for an object’s attributes and values on the Form Panel is governed by the way
symbols are hashed internal to ART-IM. However, for clarity, the knowledge engineer
may wish to specify a particular display order for attributes or a specific structure for
the display of the object hierarchy. The method for doing so is described in the
following sections.

4.1.1 Controlling the Display of the Object Taxonomy

The knowledge engineer has two methods for controlling the display of the object
taxonomy in ACCESS. Each of these methods involves specifying a non-default value
for a slot in the ACCESS schema.

4.1.1.1 Use of the ACCESS TAXONOMY Attribute

The ACCESS schema, which is present in all ACCESS knowledge bases, contains a
taxonomy slot. This slot enables the knowledge engineer to specify a specific ordering
for the displays of object classes which appear in the various taxonomy windows. The
value of the taxonomy slot must be a sequence, with one element for each root object.
Currently, there is single root object, called object. Each element of the taxonomy
specification sequence is itself a sequence, the first element of which is an object (the
parent) and the second element of which is a sequence with one element for each child
of the given parent. The elements of this second sequence are taxonomy specifications
in which the child is treated as the root object. The following shows a textual display
of an object hierarchy and a code fragment with its corresponding sequence
representation.

OBJECT
APPLICATION _NAME
ASCENT
ABORT
RENDEZVOUS
POPIS
ENTRY
APPLICATION _COMPONENT
DYNAMIC-ALLOCATOR
SIMULATION _DEFINITION

PAGE 19

ACCESS USER'’S GUIDE - BUILDING A KNOWLEDGE BASE

(TAXONOMY
((object
((application_name
((ascent ()
(abort ())
(rendezvous())
(popis Q)
(entry ()
)
)
(application_component
((dynamic_allocator ())
(simulation_definition())
(omp_simulation_definition())
)
)
)
))
) SN

When the knowledge base is read into ACCESS at initialization time, ACCESS checks
the validity of any non-default taxonomy which has been specified. This verification
includes checking the syntactic correctness of the sequence structure, checking that each
atom in this structure is a symbol which is the name of an object, and checking that the
appropriate parent/child relationships hold. If this verification fails for any reason,
then ACCESS will revert to the default display. '

4.1.1.2 Use of the filtered object Slot_

There are some objects which should not be accessible at all to the end user of an
ACCESS application. Examples include rule objects. To avoid the display of an object
in the object taxonomy, the name of that object should be placed as a value in the
filtered object slot of the ACCESS schema.

4.1.1.3 Construction of the Taxonomy Display

When ACCESS is initially invoked, the leftmost taxonomy window shows those objects
which are children of the root object, object. This child list is ordered to first display
any children which are instances of object (i.e., objects which have an explicit
instance-of relationship to object). Next in the ordering are those subclasses of
object as specified by the taxonomy ordering. Finally appear children which are not
filtered objects but which do not appear in the taxonomy ordering.

When the user selects an object from this list, it becomes the "current object." Its
name is displayed above the middle taxonomy window. Its children are then displayed
as described above - first, child instances, then child subclasses from the taxonomy
ordering, finally child subclasses which are not specified in the taxonomy ordering.

~ PAGE 20

g ¢« ' g« L g qa An o«

&g

g

1\
|

(1

|

"
Il

(N

{

{1l

(0

U ol

I

Jhl

L

LINE B

aen

L

L

(R

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

4.1.2 Controlling the Display of Object Features

4.1.2.1 Controlling the Order Display of Object Attributes

~

When the knowledge engineer wishes to specify a particular order for displaying the
features (attribute/value pairs) of an object on the Form Panel, the method for doing so
is to use an instance-of an ordering schema. The definition of the ordering schema
is as follows:

(defschema ordering
(attribute-order))

In order to specify the display ordering of attributes for a particular class of objects,
one must create an instance-of an ordering schema whose name is the name of the
class followed by "-ordering." The value of the attribute-order slot in this schema
should then be a sequence of names of attributes (slots) in the corresponding class. For
example, suppose the knowledge engineer has defined a class, date, as follows:

(defschema date
(is-a time_coordinates)
(milliseconds)
(seconds)
{minutes)
(hours)
(day)
(month)
(year))

To specify a particular ordering for display of objects which are instances of the class
date, the knowledge engineer may then specify the following:
(defschema date-ordering
(instance-of ordering)

(attribute-order (year month day hours minutes seconds
milliseconds)))

When an object of type date is displayed, the features will be ordered with the year
first, followed by month, day, etc. If this object has other attributes which are not
filtered objects, i.e., are not values of the filtered _object slot of the ACCESS schema,
then the corresponding features will appear after those whose order has been explicitly
specified. Note that typically the attributes is-a and instance-of are included among
the list of filtered objects.

4.1.2.2 Controlling the Order of Disrplay of Values of Multi-Valued
Attributes

Some object attributes may have more than one value (see Subsection 2.1.2). These
attributes are represented in ART-IM by multi-valued slots. For such attributes, the
option exists to specify a function which will be sued to order the values of this

PAGE 21

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

attribute for display purposes and for formula functions, etc. The name of the function
must be of the form SLOT-NAME-ORDERING-FUNCTION, where SLOT-NAME is the name
of the slot in question. This function must accept as arguments two ART-IM objects
which are permissible values for the slot and must return an ART-IM integer. This
function will be used in the same way as the comparison function to the C library
function gsort - that is, the first argument will be considered to be less than, equal to,
or greater than the second depending on whether the value returned is less than, equal
to, or greater than zero. The function must be consistent - that is, if it returns 0 for two
arguments a and b, then it must return O for the argument b and a. Similarly, the
value of the function with arguments a and b must be opposite in sign to the value of

the function with arguments b and a. Violation of these consistency restrictions can
cause ACCESS to die.

An example of an ordering function is the following, which orders instances of phase
schemas on the basis of the value of the slot tevent. The ordering is defined so any
object with no value or a non-integer value for tevent is considered to be less than an
object which does have an integer value.

(def-art—-fun phase_-ordering-function (?si ?s2)
,get times from phase schemas 1 and 2
(bind ?validi (and (symbolp ?s1) (schemap ?s1) (slotp ?si tevent)))
(bind ?valid2 (and (symbolp 7s2) (schemap ?s2) (slotp ?s2 tevent)))
(bind ?t1 (if ?validl then (get-schema-value ?s1 tevent) else NIL))
(bind 7t2 (if ?valid2 then (get-schema-value ?s2 tevent) else NIL))
(1f (not ?7t1) then
(1f ?t2 then -1 else 0)
else (if (not ?t2) then 1
else (if (< ?t1 ?t2) then -1
else (if (eq ?tl1 ?t2) then 0
else 1)))))

Internally, ACCESS uses a function which accepts as arguments a sequence of objects
and the name of an ordering function for those objects and returns a sequence of the
same objects in ascending order. There is a public interface to this function of the form

(reorder-values ?art-sequence ?ordering-function)

'at

4. 2 Sp on oT Forms in ACCESS

ACCESS uses TAE Plus (Transportable Applxcatxons Env1ronment Plus) to support its
user interface. TAE Plus provides a graphical, point and click user interface based on
the X Window System The knowledge engineer can use the TAE Plus Workbench to
develop custom forms for browsing and editing objects in the knowledge base. The
knowledge engineer must then specify the interface between these forms and the
knowledge base. This section describes the structure of custom forms for use by
ACCESS and describes that interface. For information on creatlng TAE forms, see the
TAE Plus User Interface Developer’s Guide.

PAGE 22

1'F & €I

I
8K

I

ol

'

1iu
[|0

o

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

4.2.1 Structure of Custom Forms

Figure 4-1: Example of a Custom Form

ORIGINAL PAGE IS
OF PCOR QUALITY

3CTESS - Tool Pare!

Propagator Selection

_: OBJECT APPLICATION_COMPONENT PROPAGAT [ON-SELECTION
3 Object: PROP_SEL_001 A\
TR AR L[eem I o=
LEE ol [N SIMULATION_DEFINITION PROP_SEL_003 (1)
- PROP_SEL 002 (1)
. JCorsT JOOSTG OOrbit Vector Propagation
q STATE_INITIALIZATION (VKS " Mo Prop. Targeting for Multi—~vehicle
VEHICLE_INITIALIZATION - o~ " Ral [.
HMONTECARLO_INITIAL[ZATIQ (I CONIC [1Y JConic (" Ralative Vector propagation
j STATE_VECTOR _REPLACE @ FEG 7 CONIC 2 Analytic @ ECI Vector propagation
R TCAT TN i1 FFP i 8€G @ Numertcal
- i) FFP
3 -
i Tupe of Simulation
3 6 DOF R-¥
3 DOF Rotational RX

6 DOF Rot. and Quat. with Adams Transl, w RK
Adans

P Bocknarks Hatches

: [PROP_SEL _001] [PROP_SEL 001 T 800
LDEF_STUDY_001_v16 (W) PROP_SEL _003 T 400
LDEF_STUDY_001 PROP_SEL _002 T 400
IM)_ALLIGH 001

=

uetl

File: example.art

An example of a custom TAE form is shown in Figure 4-1.

A custom form is used to provide data entry for a single class of ACCESS objects. A
form may consist of one or more TAE panels. If more than one panel is used, they
should be positioned so that the end user can clearly see parts of all of them. These
panels consist of "items", each of which has a data type and a presentation type.

PAGE 23

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

Figure 4-2: Creating a Custom Form Using TAE Plus

ORIGINAL PAGE IS
OF POOR QUALITY

d] "€ *lus worxBencr

Resource File: propssl res

Hide “h
KorkBench Mode : E -
@ roveResize/Edit Gr1g ; ¢
(IrSet Defsult Values o (N "
i Comnecting New Pane! o -
New [tem - =1 Propagator Selection
rrent Selection :ottem (JCORST) 1n panel (propsel)
Obyect: l]
----- borkBench Command Herws —-——- ! L x] Y " Lo
! File £dit Utility
r ool * il On-Orbit Vector Propagation
- B TIKS 1Ko Prop, Targeting for Multi-vehicle
stem Name (1-15 chars): n:;t:l"e CCNIN KS 3 Conte iRelative Vector propagation
i1 :e:r ﬁ % AEG I CONIC <7 Numertcal P EC] Vector propagation
"anal Name: propsel AR ints - = -
77 Real Constratn ' . RS -t Rralygtic
tler [JcoRST]
Hinimm Yector Count: D Null Valus Allowed?
‘aximm Vector Count: ; @ 0z "o
Generates Events?
tring Size: E P g Type of Simulstion
bandiod E 0F R
Presentation Tupe: ; g ?ouuuml R-K
- - s s - rantlational R-X
- button - checkbox ¥ _i jcon - discrete - dyntaxt 5 DOF Rot. and Quat. with A Transl, v RK
Dpageedit Dpulldown @radic imover {Jrotator | § DOF Adams
Trstatic itext i textdisp I stratcher (7 stripchart Details
T textlist {7 workspace
“oreground Color Background Color
jliceBlue
l(huquohxu
Ant1querhitel
jequamarine

x -

These panels may be created using the TAE Workbench utility. Figure 4-2 illustrates
the use of the Workbench to edit the JCOAST item on the propsel panel. Note that
this item is of data type string and presentation type Radio Button.

Every form which is intended to be used by ACCESS must have at least one panel
which contain three items which have presentation type Button and whose names are
"apply", "close", and "ok." When the user selects "apply", the information which has

PAGE 24

'
13
i
i

o

U

tn
Eﬂ‘ PR

(i

il
i

[

!
l

U

i

L

!

G

g er

ain

L

!
i

liif

(o

Al

el

(i

i

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

been entered onto the form is stored in the corresponding object in the knowledge base.
Selecting "close" causes the form to be removed from the screen and control returned to
the main ACCESS Tools Panel. "ok" is a combination of "apply" and "close."

In addition to these three items, each forms panel must also contain a Static item whose
name is "object." This item is used by ACCESS to display the name of the object
which is being edited.

In addition to these required items, each panel may contain items which are used to
enter attribute values. Each item on a form panel must correspond to an attribute in
the class associated with the form. Items may be of type Radio, Checkbox, Text,
Textlist, or Pagedit. The first four of these types may be used to supply a single value
for an attribute. The last type (Pagedit) may be used to suply multiple values for an
attribute (e.g., for an attribute corresponding to a multi-valued slot in ART-IM).

Items on the form correspond to TAE variables of type Real, Integer, or String. TAE
variables of type Real are converted to ART-IM objects of type FLOAT; variables of
type Integer are converted to ART-IM integers. TAE variables of type String may be
converted to ART-IM objects of type string, float, integer, or symbol, depending on
what sort of conversion is specified.

TAE supplies a built-in capability for providing help on individual panel items. For
details on this capability, see the TAE documentation.

4.2.2 Interface Between TAE Custom Forms and ACCESS OBJECTS

The TAE specification for a custom form resides in a .res file. The mechanism for
specifying the correspondence between the TAE form and ACCESS objects is ART-IM
schema definitions. There are three principal types of schemas used: the
form-specification schema, the panel-spec schema, and the item-specification
schema. The definitions of these schemas are as follows:

(defschema has-item-specs
(instance-of slot)
(cardinality multiple))

(defschema conversion-specs
(1nstance-of slot)
(cardinality multiple)
)

(defschema form-specification
(file-name) ;string
(form-for-class) ;name of class to which this form applies
(collection) ;pointer supplied by ACCESS
(has-panel-specs)) ;sequence of panel-spec schemas

PAGE 25

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

(defschema panel-spec
(has-item-specs)
(panel-nanme) ;string
(has-1item-specs) ;names of item-specification schemas
(target-pointer) ;pointer supplied by ACCESS ~
(view-pointer) ;pointer supplied by ACCESS
(saved-view-pointer) ;pointer supplied by ACCESS
(panel-1d)) ;pointer supplied by ACCESS

(defschema item-specification
(corresponds-to-attribute) ;name of attribute in class to which
[this item corresponds
(parm-name) ;string giving name of item in TAE
(value-type) .value type in ART-IM - symbol, string,
; (both corresponding to TAE strings)
;integer (TAE integer), float (TAE real)
(conversion-specs) ;OPTIONAL - two element sequences specifying
;conversion from TAE strings to ART-IM symbols
)

4.2.2.1 Form-specification Schemas

For each form created, the knowledge engineer must complete a form-specification
schema as follows:

1. The value of the file-name slot of this schema must be a string containing
the name of the .res file in which the form is specified.

2. The value of the form-for-class slot of this schema must be a symbol
representing the class of ACCESS objects whigl} Vcorrrespond to this form.

3. The value of the has-panel-specs slot is a sequence, each element of which
is the name of a panel-spec schema. There is one such schema for each
panel comprising the form.

For each panel-spec schema referred to in the form-specification schema, the
knowledge engineer must complete slots as follows:

1. The panel-name slot of this schema must be a string containing the TAE
panel name.

2. The has-item-specifications slot is a multi-valued slot whose values are

the name of item-specification schemas. There must be one such schema
for each optional item on the panel.

The remaining slots of the form-specification and panel-spec schemas are used
internally by ACCESS to store pointers to TAE structures.

The following is an example of completed form-specification and panel-spec
schemas, corresponding to the form displayed in Fxgure 4-1.

PAGE 26

B

€ & en &« w4

u T

= ACCESS USER'’S GUIDE - BUILDING A KNOWLEDGE BASE

(defschema form—-for-propsel

(instance-of form-specification)
B (file-name “forms.res")
= (form-for-class propagation-selection)
e (has-panel-specs (panel-for-propsel)))
_ (defschema panel-for-propsel
- (1nstance-of panel-spec)
= (panel-name "propsel")
(has-1tem-specs jcoast-spec jcostg-spec on-orbit-targeting-spec
. vector-propagation-spec type-of-simulation-spec))
4.2.2.2 Item-specification Schemas
= For each optional item on a custom form, the knowledge engineer must construct an
item-specification schema which describes the interface between that item and the
== corresponding attribute in an ACCESS object.
= Each item-specification schema must be created as follows:
= 1. The value of the corresponds-to-attribute slot is the name of the
— attribute in the ACCESS class which corresponds to this item. This name is
= actually the name of an ART-IM slot.
: 2. The value of the parm-name slot is a string corresponding to the name of
: the TAE item.
3. The value of the value-type slot specifies the manner in which the value on
= the form will be converted from a TAE variable to an ART-IM object.
- Allowable values for this slot are as follows:
= a. FLOAT. This is used when the item on the TAE panel is of data type

Real. The value entered on the form is then converted from a TAE
B Real to an ART-IM float and vice-versa.

b, INTEGER. This is used when the item on the TAE panel is of data
e type Integer. The value entered on the form is then converted from a
= TAE integer to an ART-IM integer and vice-versa.
% c. STRING. This may be used when the item on the TAE panel is of
data type String. The value entered on the form is then converted
= from a TAE String to an ART-IM string and vice-versa. This is
= normally used for TAE items with presentation type Text, which allow
free-form text entry.
= d. SYMBOL. This may be used when the item on the TAE panel is of
data type String. If there are no values in the has-conversion-specs

-

PAGE 27

ACCESS USER’S GUIDE - BUILDING A KNOWLEDGE BASE

slot of the schema, then the value entered on the from is converted
from a TAE string to an ART-IM symbol using the function
a_read_ from _string. Conversion from an ART-IM string to a TAE
string is done using the function a_symbol value.
a_read _from _string will return a symbol whose name is represented
by a string of upper case characters and which is terminated by the
first white space in the TAE string. Thus to ensure that the resulting
ART-IM symbol can be correctly converted back to the original TAE
String, this form of conversion should be used only for RADIO button
items or TEXTLIST items whose valid strings are entirely upper case.

If there are values in the has-conversion-specs slot, then the
program will first try to use these specifications to convert from a TAE
string to an ART-IM object and vice-versa. The algorithm for
conversion is described below.

. MIXED. This may be used when the item on the TAE panel is of type
String. This is normally used when the TAE item has presentation
type Radio Button item or Textlist. In this case, ACCESS uses the
values in the has-conversion-specs slot to try to make a conversion
from a TAE string to an ART-IM object. FEach value in the
has-conversion-specs slot is a two element sequence, whose first
element is a string and whose second element is an arbitrary ART-IM
object. A TAE string is converted to an ART-IM object by searching
for a sequence whose first element matches the TAE string and then
taking the second element of the sequence. If no string is found
matching the TAE string, an error message is returned and the
corresponding form is erased from the screen. Thus the knowledge
engineer must be very careful to provide correet conversion
specifications.

The following example shows an item-specification schema which is used to specify
the conversion from a Radio button item to an attribute with integer values:

(defschema jcdéét—spec

(instance-of item-specification)

(corresponds-to-attribute jcoast)

(parm-name *JCOAST*)

(value-type MIXED)

(conversion-specs ("KS" 1) ("CONIC* 2) ("AEG" 3) (“"FFP" 4))
)

PAGE 28-

1|

0

(| | e ai LY

i q €« u

