
I
E

_" i / = %:

Advanced Software Development
Works ta tio n Proje c t

ACCESS User's Guide

Inference Corporation

¢,9/> 2./

._- -

October, 1990

- | _

L,=

i _.
w

T

k,,--

l

=i
i

lk.,._

Cooperative Agreement NCC 9-16

Research Activity No. SE.25

NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

NQ1-_2629
(NASA-CR-I_6?3) A_VANCED SOFTWARE

JFVELOPMENT WORKSTATION PROJLCT ACCFSS

USEr'S GUIJE (_ese_rch Inst. for Advanced

Comput_:r Sci_nc _) 36 p CSCL 09B Unclas
•_3/01 0043i22

Research Institute for Computing and Information Systems

University of Houston - Clear Lake
-.r- r , __ I _ii _=._ "

I

=--_C.H.N.I.C.A.L R.E.P.O.R.T

https://ntrs.nasa.gov/search.jsp?R=19910023515 2020-03-17T14:45:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42816225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

m

_J

ram=

- =

-]

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space ,
Center and local industry to actively support research in the computing and z

The information sciences, As part of this endeavor, UH-Clear Lake proposed a _
partnership with JSC to jointly define and manage an integrated program of research

RICIS in advanced data processing technology needed for JSC's main missions, including -_- administrative, engineerlngand science respons_b_ties. J_C agreed_nd entered_nto _ L
th d agreernefitWlthUH CI Lak begin inginMay I986 --a tee-year coopera ve - ear e n , , to

i.,,v,_"v_t_l_Cel_l_lJr" jointly plan and execute such research through RICIS. Additionally, underCooperative Agreement NCC 9-16, computing and educational facilities are shared
-- by tile twc;!_stt_tut_onsto condi_c[the r_rch_ ? - : _:_

The mission of _ _to conduct, coordinate and d_sseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of _ _=

- f_ic_uiiyandstudents from eacla of the four sciq001s:Busln_, Educatton_6h_lu,uman
Sciences and Humanities, and Natural and Applied Sciences.

Other researchorganizations are involved via the "gateway" concept. UH-Clear - -:
Lake establishes relationships with other universities - and research organizations , __
having common research interests, to provide additional sources of expertise to _--
conduct needed research.

A major role 0f RICIS is to find theist match of sponsors, researchers and _
research objectives to advance knowledge in the computing andinformation . __ .
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

_=.

into the:coo_rative goals of UH-Clear Lake and NASA/JSC. _4

z

m_

W

m

m

w

Advanced Software Development
Works ta tio n Proje c t

ACCESS User's Guide

I

w
m

w

w

N

W

i

!

i

m

m

l

mB

D

V

W

B

--=
W

w

w

m

w i

L-
Preface

w

z

m

z

m

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Robert T. Savely, of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

m

w

R

w

w

_m

n

lip

Ill

= :

Advanced Software Development

Workstation Project
ACCESS User's Guide

UHCL RICIS Contract NCC-9-16 SE.25

Prepared for

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

and

Software Technology Branch

Information Technology Division

Information Systems Directorate

Johnson Space Center

National Aeronautics and Space Administration

October, 1990

Submitted by

Inference Corporation

550 N. Continental Blvd.

El Segundo, CA 90245

(213)322-0200

J

Mfe r e n c o:

InferenceCorporation, 550NorthContinentalBoulevard,ElSegundo,CA 90245. 213-322-0200• FAX:213-322-3242

w

_w

I

_F

q

tm

m

m

m

II

Ip

q

g

I

J

mm

m

'uw

m
UD

i

m

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

r----

L_

V

w

m

1

m
w

Table of Contents

1. Overview 1

2. Specification of a Knowledge Base 2

2.1 Specification of Objects and Object Attributes 2

2.1.1 Creation of an Object Taxonomy 2

2.1.2 Attributes with Multiple Values 4

2.2 Specification of Restrictions on Attribute Values 4

2.3 Specification of Constraints on Objects 6

2.3.1 Rule Objects 6

2.3.2 Constraints and Argument Lists 6

2.3.3 Formulas 8

2.3.4 Templates 9

2.3.5 Predicates 10

3. ACCESS Interface 11

3.1 ACCESS Tools Panel 11

3.2 Browsing or Modifying an Object - the Form Panel 12

3.3 Tools Panel Menus 16

3.3.1 The Object Menu - Saving, Deleting, or Displaying Source Code 17

3.3.2 The File Menu - Saving the Knowledge Base 17

4. Customization of the ACCESS Interface 19

4.1 Changing Defaults in the Interface 19

4.1.1 Controlling the Display of the Object Taxonomy 19

4.1.1.1 Use of the ACCESS TAXONOMY Attribute 19

4.1.1.2 Use of the filtered_object Slot 20

4.1.1.3 Construction of the Taxonomy Display 20

4.1.2 Controlling the Display of Object Features 21

4.1.2.1 Controlling the Order Display of Object Attributes 21

4.1.2.2 Controlling the Order of Display of Values of Multi-Valued 21

Attributes

4.2 Specification of Forms in ACCESS 22

4.2.1 Structure of Custom Forms 23

4.2.2 Interface Between TAE Custom Forms and ACCESS OBJECTS 25

4.2.2.1 Form-specification Schemas 26

4.2.2.2 Item-specification Schemas 27

N
m

z
g

W

PAGE I

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE "_

F|gure 3-i:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 4-1:

Figure 4-2:

List of Figures

ACCESS Tools Panel

Prompt for Object Name

ACCESS Generic Form Panel

Panel with Warning of Constraint Violation

Display of Source Code via Source Panel

Example of a Custom Form

Creating a Custom Form Using TAE Plus

11

13

14

16

18

23

24

J

I

m

m

B

m

D

mi

m

m

m

m

w

w

PAGE H

w
i

J

m

J

[]

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

1. Overview

ACCESS is a knowledge-based software information system designed to assist the user

in modifying retrieved software to satisfy user specifications. The purpose of This

document is to provide a user's guide for the knowledge engineer who wishes to create

for ACCESS a knowledge base consisting of representations of objects in some software

system. The purpose of this activity is to make this knowledge base accessible to an

end user who wishes to use the catalogued software objects to create a new application

program or an input stream for an existing system.

m

W

mm

i

==

m

m
w

--_--__
m

W

m_
m
w

U

The application-specific portion of an _S knowledge base consists of a taxonomy

of object classes (see Subsection 2.1.1): as well as instances (also called cases) of these

classes. Within the knowledge base there are also "rule" objects which are used to

dynamically modify user-created objects - e.g., by computing a new attribute value for

an object from the values of other object attributes (Section 2.3). Chapter 2 describes

how to create such a knowledge base.

All objects in the knowledge base are stored in an associative memory. When the end

user selects an existing object for examination or creates a new one, the attributes of

this object are matched against attributes of the objects in the associative memory using

a redundant hash-addressing algorithm. Names of objects matching the current objects

are displayed to the user, and can be selected by him for examination or copy and

reformulation.

ACCESS provides a standard interface for the end user to browse and modify objects.

This is described in Chapter 3. In addition, the interface can be customized by the

addition of application-specific data entry forms and by specification of display order

for the taxonomy and object attributes. These customization options are described in

Chapter 4.

!
m
I

W

i

imm

PAGE 1
!W

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

2. Specification of a Knowledge Base

The user interface for ACCESS is designed so that the end user should not need to

know anything about the ART-IM ® schema system. However, each object in ACCESS

is represented as an AaRT-LM schema and the knowledge engineer must have enough

knowledge of the ART-IM schema system to create the initial object taxonomy. A

detailed description of the ART-IM schema system is available in the ART-IM

Reference Manual, Volume I. This Chapter contains examples of how to use the

A_RT-IM schema system to represent knowledge base objects.

Included in the ACCESS release directory is a file "kernel.art" which contains those

schema definitions which are required for every ACCESS application. The knowledge

engineer will extend these schema definitions to include an application-specific object

hierarchy.

2.1 Specification of Objects and Object Attributes

2.1.1 Creation of an Object Taxonomy

Each object in the knowledge base has "attributes" which may or may not have

"values". In the schema system, the attributes of an object are slots in the

corresponding schema; the values of these attributes are the ART-IM objects which are

slot values in the schema. A "feature" of an ACCESS object is a attribute/value pair

(or slot/value pair).

m

m

m

W

The object taxonomy in ACCESS includes a single root schema, named object. The

definition for object, as supplied in "kernel.art" is as follows:

(DEFSCHEMA OBJECT

•The class of all objects. "
(NAME "OBJECT")

(TEXT "")
(SAVED-STATUS)
(VIOLhTES CONSTRAINT))

Note that four attributes have been specified for this root object. These four attributes

are inherited by child objects, although any default values for the attributes may be

overridden. The value of the name attribute is the name of the object. The text slot

has a string as its value (default is the empty string). The use of this slot is primarily

confined to object instances and will be described in more detail below. The

saved'status slot is used for internal bookkeeping. The violates_constraint slot is

assigned a value each time the system detects that an object has an attribute with a

value which violates a restriction the knowledge engineer has specified (e.g., the value of

E
m

W

I

PAGE 2

K2 ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

a slot is not an integer). It is also assigned a value each time the system detects that a

combination of object features violates a constraint the knowledge engineer has

specified. The specification of restrictions on attribute values and the use of constraints

on objects will be described in Sections 2.2 and 2.3 respectively.

m

m

W

!
m
i

W
m
m

!
m

B

W

m

i

t

mm
v

l

!
W

!

!

m

For any specific application the knowledge engineer will define schemas which are

related to object through explicit or inherited is-a and instance-of relationships. The

examples in this section are derived from a knowledge base designed to represent a

trajectory simulation software package and to generate an input stream for that

package. In this case object has two application-specific children,

applicationcomponent and applicationname, defined as follows:

(DEFSCHEMA APPLICATION COMPONENT

(IS-A OBJECT)

(NAME "Appllcation_component"))

(DEFSCHEMA APPLICATION NAME

(IS-A OBJECT)

(NAME "Appllcation_name"))

Each of these objects in turn has children. For example, one of the children of

application_component is propagation-selectlon, which is defined asfollows:

(DEFSCHEMA PROPAGATION-SELECTION

(IS-A APPLICATION COMPONENT)

(JCOAST)

(JCOSTG)

(0N-0RBIT-TARGETING)

(VECTOR-PROPAGATION)

(TYPE-OF-SIMULATION))

The slots in this schema represent attributes whose values are used to specify to the

simulation program how to propagate the trajectory orbit.

This schema, or object, in turn has children. An example

prop sel 001, defined as follows:

(DEFSCHEMA PROP SEL 001

(INSTANCE-OF PROPAGATION-SELECTION)

(JCOAST I)

(JCOSTG 2)

(ON-ORBIT-TARGETING I)

(VECTOR-PROPAGATION O)

(TYPE-OF-SIMULATION 3 DOE_TRANSLATIONAL_R-K)

(NAME "PROP_SEL_OOa")Y

of a child object is

The class propagation-selection is a subclass of the object

application_component. An object in the propagation-selection subclass is

intended to specify the input parameters required by the trajectory simulation package

for propagating an orbit. In turn, the object prop_sel_001 is a specific instance of

PAGE 3

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

this generic subclass and represents a particular set of parameters governing trajectory

propagation. For example, the value of the slot, type-of-simulation is a symbol

3_dof_translational_r-k indicating that the integration technique to be used will

be a translational Runge-Kutta method with 3 degrees of freedom.

Whatever his application, the knowledge engineer mus{ specify a taxonomy of objects

and specify the attributes of each object in this taxonomy: The specification of object

attributes may be either explicit or implicit through inheritance from ancestor objects.

2.1.2 Attributes with Multiple Values

In ACCESS an object attribute can have a single value or multiple values. An attribute

which is allowed to have only a single value is represented in the underlying ART-IM

representation by a slot whose cardinality is single. This is the default and the

knowledge engineer can define such attributes implicitly by simply using the slot in a

schema. An attribute which may have more than one value is represented by a multi-

valued slot. Such slots must be explicitly defined before they are used in any schema.

An example of a multi-valued slot is the slot violates_constraint, which is specified
as follows:

(DEFSCHEMA VIOLATES CONSTRAINT

(INSTANCE-OF SLOT)

(CARDINALITY MULTIPLE)

(INHERITS YES))

V

I

E

In this case, the schema definition specifies that violates constraint is a multi-valued

slot and that its uses will be inherited through inheritance links to related schemas. This

is the default behavior; to create a slot whose uses are not inherited, the value of

inherits must be no.

When the knowledge engineer creates a file defining the knowledge base, any multi-

valued slot must be defined before any schema(s) which uses this slot.

lm

2.2 Specification of Restrictions on Attribute Values

It is quite common that the values of an particular attribute for an object need to be

restricted in some way. For example, the value of the hours attribute in a date object

should be an integer between 0 and 23. In the example shown above, the value of the

attribute type-of-simulation in a propagation-selection object represents the type

of integrator which will be used to propagate an trajectory. This value must be one of

an explicitly enumerated set of values.

ACCESS provides the knowledge engineer the capability to restrict the value of an

object attribute in one of three ways:

L
m

m

PAGE 4

u

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

z

i
E

m

[]
W

z
B

w

m

m

U

I

m
V

m

m_

_w

1. Restrict the value t0_a specific type - float, integer(symbol, or string.

2. Restrict the value to be one of an explicitly enumerated set of values.

3. Restrict the value to be a symbol representing an object in one of an

explicitly specified set of subclasses of objects.

In order to specify any of these types of restrictions, the knowledge engineer must create

an instance of attribute-restriction schema. The attribute-restriction and

enumerated-set schemas are defined as follows:

(DEFSCHEMA ATTRIBUTE-RESTRICTION

(ALLOWABLE-CLASSES)

(I-L%S- E_ERATF_/) -SET)

(TYPE))

(DEFSCHEMA ENI_ERATED-SET

(ALLOWABLE-VALUES))

In order to be used by ACCESS, the name of an attribute-restriction schema

instance must be the concatenation of the name of the attribute to which the restriction

applies and "-restriction."

In specifying an attribute-restriction schema, exactly one of the three slots type,

has-enumerated-set, and allowable-classes should be used. The type slot is used to

restrict the value of the attribute in question to be a specific type. Allowable values for

the type slot are float, integer, symbol, or string.

The has-enumerated-set slot is used to restrict the value of the attribute in question

to a explicitly enumerated set of objects. The value of this slot must be a schema which
is an instance-of an enumerated-set: The value of t_e_allowable-values sl0t in this

schema must be a sequence representing the list of allowable Values.

The allowable-classes slot is used to restrict the value of the attribute in question to

an instance of one of an explicit set of subclasses. For example, if the attribute

propagator _select must have a value which is an instance of a

propagation-selection object, this would be specified as follows:

(DEFSCHEMA PROPAGATOR SELECT-RESTRICTION
(INSTANCE-OF ATTR IBUTE-RESTR ICTi0N)

(ALLOWABLE-CLASSES PROPAGATION-SELECTION))

When the user assigns a value to an attribute which violates one of these restrictions,

this will be detected by ACCESS. The result is that the object in question is marked as

having a constraint violation. That is, a value is put into the vlolates_constraint

slot of that object, indicating the type of restriction which has been violated. In this

case, the value put into that slot would be propagator_select-restriction-violation.

PAGE5

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

In addition, through the interface, a pop-up window with a message to the user is

displayed. This is described in Section 3.2.

2.3 Specification of Constraints on Objects

2.3.1 Rule Objects

An important aspect of the ACCESS design is that as objects are created and modified,

there exist modification rules within the system which can propagate new attribute

values or check the validity of exlstlng values.

Modification rules in the knowledge base are themselves represented as objects and are

transformed at initialization time into ART-IM rules. The definitions of the object class

rule and the instance compile_rule, as supplied in kernel.art areas follows:

(DEFSCHEMA RULE
"The class of all rules."

(IS-A OBJECT)

(COMPILE COMPILE RULE METHOD)

(NAME "Rule"))

(DEFSCHEMA COMPILE RULE
(INSTANCE-OF RULE)

(TEXT "(defrule compile_rule
(declare (sallence-I00))

(schema ?ruie_'d_mpiie_ruie
(Instance-of rule)

(text ?))
=>

(send compile ?rule))"))

At initialization of ACCESS, the ART-IM rule defined in the text slot of

compile_rule is compiled. This creates a production rule, itself called

compile_rule, which will cause the value of the text slot for each object which is an

instance-of a rule to be compiled. In this way rules are generated which can modify

other objects in the knowledge base.

2.3.2 Constraints and Argument Lists

A subclass of the class rule is the class constraint.

class is as follows:

(DEFSCHEMA CONSTRAINT

"The class of all constraints."

(IS-A RULE)

(ATTRIBUTE)

(CONSTRAINT OF)

(NAME "ConsTraint"))

The definition of the constraint

W

i

m

!

W

I

m

J

PAGE 6

m

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

The class constraint in turn has subclasses formula, template, and predicate.

.==

w

m

!

A formula is an object used to specify how to compute the value of an attribute of a

particular class of objects in terms of other attributes of that object and its subobjects.

(A subobject of given object is an object which is the value of an attribute of the given

object.) For example, a class of objects of type phase has attributes day, hour, min,

and sec, whose values represent the days, hours, minutes, and seconds since launch for

the beginning of this phase of the mission. It also has an attribute, tevent, whose value

is the time of the beginning of launch expressed in seconds. This value can be

calculated from the values of the day, hour, min, and sec slots.

A template is an object used to specify how a piece of text (normally a code fragment)

is to be generated on the basis of tL: attribute values of an instance of a class of

objects.

A predicate is used to specify how the system will verify relationships between the

values of attributes of an object and its subobjects. A function is specified whose

arguments are these values and which returns T if the reelationship constraints are

satisfied and NIL if they are not. If the test fails, the object is marked "as having a

constraint violation.

Any formula, template, or predicate schema must specify a value for the

constraint of slot. This value is the name of the object class to which the constraint

is intended to apply. The computation specified by one of these constraints will only be

invoked for objects which are instances of the specified class.

Formulas and predicates rely on user-specified functions either (in the case of a

formula) to compute an attribute value or (in the case of a predicate) to test for a

constraint violation. Templates use the ART-IM function sprintf to generate a string

value. The knowledge engineer must specify how to determine the arguments to these

functions.

m

D

i

l
m
w

w
R

w

This is done through the value of the arguments slot. This value must be a sequence

of n elements, where n is the number of arguments which will be required by user-

specified function or by sprintf. Each clement in the sequence must be either a symbol

or a sequence of symbols, each of which is an attribute name (in ART-IM, either a slot

or a relation).

The use of this specification is perhaps best illustrated by an example. Suppose a

constraint is intended to apply to all objects in the class rendezvous, and that this

class has attributes propagator_select and omp_model_select. The values of

these attributes are intended to be instances of propagation-selectlon and

omp_model schemas, each of which will have a text attribute, whose values are

E PAGE7

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE w

intended to be used as arguments to the

fragment shows how this would be specified:

constraint function. The following code

(constraint of rendezvous)

(arguments ((propagator select text) (omp_model_select text)))

A constraint function will be applied to a specific object only if all arguments for that

function exist. In general, if the i-th element of the argument list is a symbol

representing a slot, then the i-th argument for the constraint function will the the value

of the slot in the object in question. If the i-th value of the argument list is a sequence

of symbols, al, a2,..., then the argument is found by first taking the subobject which is

the value of the slot al, then taking the value of the slot a2 in that subobject,

assuming it also exists, etc. If the entire chain of subobjects exists, then the final

element in the chain is the value passed to the constraint function.

The number of arguments to a formula or predicate function or to sprln'0f is limited
to 40.

2.3.3 Formulas

A formula schema results in the creation of a rule which is used to compute a value for

some attribute of a particular object class. A formula schema is of the following form:

(defschema formula
(constraint of)

(arguments)
(attribute)
(function)
(name)

)

The Value of the function Slot of a formula instance is symbol representing the name of

a user, supplied function. This is normally a def-art-fun, but could be a def-user-fun

or an ART-IM system function.

;class to which formula applies

;attribute for which value Is computed

;name of function used to produce attribute value
;for documentation

In order for a formula to be applied, there must be an object in the knowledge base

which is an instance of the class given by the value of the constraint_of slot. The

values of attributes of this object and its subobjects as specified by the value of the

arguments slot must exist. These values are then passed as arguments to the function

specified in the function slot. The return value from this function is then used to

modify the value of the object attribute specified by the value of the attribute slot.

As an example, consider a knowledge base which contains an object date, defined as

follows: i==_ _

m

J

m

u

g

l

g

W

m

m

g

m
m

m

g

m
!

U

PAGE 8 =

l

g

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

m

m

!

w

w

i

W

m
i

l

m
m
E_m

w

w

m
m

m

m

(DEFSCHEMA PHASE

(IS-A APPLICATION COMPONENT)

(PH_NUMBER)
(PH TITLE)

(ICOAST)

(COVAIR MAT)

(DAY)

(HOUR)

(MIN)

(SEC)

(T HOUR)

(T MIN)
w

(T SEC)

CTEVENT)

(TERMIN)

(BTIME)

(STRINGI " *

$PHASE")

(NAME "Phase"))

The following is a formula designed to compute the value of the slot tevent given

values for the day, hour, min, and sec slots:

(DEFSCHEMA PHASE FORMULA

(INSTANCE-OF FORMULA)

(ARGUMENTS(DAY HOUR MIN SEC))

(ATTRIBUTE TEVENT)

(CONSTRAINT OF PHASE)

(FUNCTION C_[LC-SEC))

(def-art-fun calc-sec (?day ?hr ?rain ?sec)

(+ (+ (+ (* (* ?day 24) 3600) (*' ?hr 3600)) (* ?mln 60)) ?sec))

2.3.4 Templates

A template schema results in the generation of a rule which is used to a compute

string value for a slot in a particular object class. A template schema is of the

following form:

(defschema template

(constralnt_of) ;class to which template applies

(attribute) ;attribute for which value is computed

(arguments)

(name) ;for documentation

(template_strlng);format string for prlntf function

When an instance of a template schema is specified, the value of the template-string

slot must be a string which is a suitable format string for sprlntf. Continuing the

example started in Subsection 2.3.2, here is a full specification of a simple template:

PAGE 9

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

(defschema rendezvous_template

(instance-of template)
(constraint of rendezvous)

(arguments [(propagator_select text)

(template_strlng " •

_a

_a

,,))

RENDEZVOUS

(omp_model_select text))) P

Np

mm

This template will apply whenever there is an instance of a rendezvous object such

that the values of its propagator_select and omp_model_select attributes are

themselves objects with text attributes. The values of these text attributes will be

passed as arguments to sprintf, which will create a formatted string as specified by the

value of the template_string slot. This string will then be asserted as the value of

the text slot in the rendezvous instance object.

2.3.5 Predicates

A predicate schema results in the generation of a rule which is used to perform a

procedural test on an object. If the test fails, the object is marked as having a

constraint violation. This is done by asserting the name of the function as a value in

the violates_constraint slot of the object.

A predicate Schema is of the following form:

(defschema predicate

(constralnt_of) ;class to which predicate applies
(arguments)
(boolean-functlon);name of function to be used for test

(name) ;for documentation

)

._s with a formula, the value of the boolean-function slot of a formula instance is

symbol representlng the name of a user-supplied function. This is normally_a _

def-art-fun, but could be a def-user-fun or an ART-IM system function. A

constraint violationis considered to have occurred ifthe function returns NIL.

g

B

u

m

m

W

r

m

g

m

U

J

g

PAGE 10 W

ACCESSUSER'SGUIDE- BUILD[NGA KNOWLEDGEBASE

3. ACCESS Interface

The followinE sections briefly describe the nature of the ACCESS interface. Information

<_n how to c_[stomize this interface appears in Chapter 4.

3.1 ACCESS Tools Panel

Figure 3-1: ACCESS Tools Panel

ORIGINAL PAGE IS

OF POOR QUALITY

l __

PAGE 11

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

The ACCESS Tools Panel dispiayed in Figure 3-1 is the first panel displayed upon

invocation of ACCESS. The top half of this panel is used to display the taxonomy of

the knowledge base. Within this region are three taxonomy subpanels or "windows."

If an object in one of these subpanels is selected (by pointing and clicking) with the

mouse, it is highlighted and becomes the "current object." If this object has children,

then a list of these children is displayed in the next window to the right, with the name

of the previously selected object displayed above. If an object is selected from the

rightmost taxonomy window, then the taxonomy display is shifted one panel left before

displaying the child list. Two buttons on the left of the taxonomy windows offer the

user the option of shifting the display of the currently displayed taxonomy either right
or left.

W

m

In the center there is a subpanel or "button" called the Open Object Buttofi. This

subpanel displays the name of the current object - that object which has been most

recently Selected from the taxonomy" Windows. If the current object is an object u

instance, then this button offers the option of "opening" the object for browsing or

: = editing. Clicking on th]s_utton will invoke either the _neric Form Panel or a custom - =
im

form through which the object can be modified. If the current object is a class, then

this button offers the option of creating an instance of that class and then opening the :_
resulting lnstance_or 5rowslng or modification

• U

In the lower half of the Tools Panel are two windows, the Bookmarks Window and the

Matches Window. The Bookmarks Window displays a chronologically ordered list of

objects which have been opened during this ACCESS session. The Matches windows

pfovl_des_l"st of objects in the same c7_ as the current object, ordered by the extent

to which they "match" the current object. Matching between two objects is done by

comparing the features of one object with those of the other - each feature which

= :matches increases the Ievei:of:matc]ng: =_

m

J

%Vhen an object is selected from either the Bookmarks Window or Matches Window by

a mouse Click, it becomes the current object. When this happens, the tax6nomy :

windows are updated to display the ancestors and siblings of this object. The Open

Object Button is updated to show the name of the new current object, and the Matches

:: Window_salsoupdated. i _ !! :
l

g

At the bottom of the Tools Panel is a display showing the name of the file from which

the current knowledge base was loaded or to which it has been saved in the course of

the current session.

3.2 Browsing or Modifying an Object - the Form Panel

In order to open an object or an instance of a class for browsing and/or editing, the

user clicks on the Open Object Button in the center of the Tools Panel. If the current

_.,---

g_

g

m
I

g

m
u

!

PAGE 12 g

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

Figure 3-2: Prompt for Object Name

ORIGihlAL PAGE IS
OF POOR QUALITY

" _ " : -_:. : :LZ "='7-

1

F_le: e×ample.art

m

m

m
1

object represents a class, rather than an object instance, the user will be prompted for

the name of a new instance, as illustrated in Figure 3-2. If the user supplies such a

name, that becomes the name of the new current object.

Once an object instance is opened, the generic Form Panel will be displayed (unless a

custom form has been specified for the class to which the object belongs). When the

Form Panel appears, the Tools Panel is "frozen" that is, it becomes insensitive to

mouse clicks and other input. The generic Form Panel is shown in Figure 3-3.

PAGE 13

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE w

Figure 3-3:

ORIGINAL PAGE IS

OF POOR QUALITY

ACCESS Generic Form Panel

1

IHU _LLIC,M.OO%

File _×ample.art

The name of the object being browsed is displayed in the upper left hand corner of the

Form Pand. In the top hail" of the panel is the ObjeC{ Features subpanel or window.

Displayed inside this window are a list of object attributes and values. Attribute names

and values are truncated if necessary to conform with the screen size. The user can

select a particular feature to examine by pointing and clicking With the mouse.

When a feature is selected, the value corresponding to that feature is displayed in t_he
T :_: : i = - 2_TT

i
m

1

I

PAGE I4 1

t_a

=_
m

m

I

I

I

i
mw

I
i

=

i i

i

=
==

! --

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

Attribute Value subpanel]w%ich appears in the lower half'of the Form Panel. The user

can enter text directly into this subpanel, thus editing the currently selected attribute

value. Any such editing must be confirmed by hitting the ESC key. When this is done,

the Features display will be updated to show the modified value.

Alternatively, if the currently selected attribute is one whose value is restricted to an

enumerated set or to an instance of an allowable class of objects, a "SELECT" button

will appear to the top and right of this subpanel. By clicking on the SELECT button,

the user will cause a menu of allowable values for this attribute to be displayed; he can

then select one of them from the menu. If a selection is made, the Features display will

be modified to show the newly-selected value.
=

Editing within the Attribute window does not change values in objects in the knowledge

base until the user clicks on either the "APPLY" or "OK" button in the upper right

hand corner of the Form Panel. Clicking on the APPLY button causes the changes

which have been recorded on the Form Panel to be made to the object in the knowledge

base or, if the object being edited is a "SAVED" object, to a copy of that object.

Within the knowledge base, objects are considered to be either "SAVED" or

"WORKING." SAVED objects are those which were read into the knowledge base at

initialization time or which have been explicitly saved by the user (see Subsection 3.3.1).

_: _ No. modifications can be made to a SAVED object. A WORKING object, on the other

.... hand, is one which has been created by the user in the course of the current session and

has not been explicitly saved.

If the user is editing a SAVED object when he selects APPLY or OK, he will be

prompted for a new object name. ACCESS will make a copy of the saved object, assign

: it the new name, and apply the changes to it.

Once any changes to attribute values have been made, any constraints based on these

-new values are propagated. If constraint violations are detected, then a pop-up panel

with a warning message is displayed, with one warning message for each constraint

vioiation[:_Figure 3-:4 shows th-epopiup warning panel.) The Matches Window is also

updated based on the new attribute values.

The final button in the top right hand corner of the Form Panel is the "CLOSE"

button. Clicking on the CLOSE button causes the Form Panel to be erased from the

screen and resensitizes the Tools Panel.

OK is equivalent to APPLY followed by CLOSE.

PAGE 15

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE "

Figure 3-4:

ORIGtN_,L pAGE IS
oF pOOR QUALITY

Panel With Warning of Constraint Violation

File: example.art

J

m

m

m

J

H

g

w

m

J

m i

m i

n |
n :

3.3 Tools Panel Menus

Near the top of the Tools Panel are two pulldown menus - the Object menu and the

Knowledge Base Menu. These menus are described in the following subsections.

m

g_

i)
j

PAGE 16 _ m !

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

m

W

W

w

i
m
w

m

m

3.3.1 The Object Menii" : °Savlng, Deleting, or Displ£ying Source Code

The Object Menu consists of three options - save, delete, compare, and view source.

Each performs its function on the current object, that is, the object whose:hame _ is : " _

displayed on the Open Object button. _ _' "....

The save option makes the current object a SAVED object. This means that this

object can no longer be modified by editing and that its description will be saved if one

of the save options is selected from the Knowledge Base Menu.

The delete option deletes the current object from the knowledge base. If this object

appeared on the Bookmarks list, it is deleted from that list. A new object is selected to

be the current object and the deleted object will no longer appear in the object

taxonomy display.

The compare option allows the user to compare the current object with another object

in the same class. When this option is selected, a pop-up menu of objects with the same

parents is displayed. If the user selects one of these objects, then a panel appears which

gives a static display of all features (attribute/value pairs) of the two objects which are

different.

The view source option displays value of the text slot of the current object on the

Source Panel. The displayed text can be browsed, but not modified by the user. This

option is appropriate when ACCESS is being used to generate source code or an input

stream for some software system, as it allows the user to examine the generated code.

_ The Source Panel is shown in Figure 3-5.

At the top of the Source Panel are "WRITE" and "CANCEL" buttons. By selecting

the WRITE button, the user causes the text in the text slot of the current object (i.e.,

the text which !s disp!ayedo_theSource Panel) to be written to a file. The base name

for this file is the name 61" the current object; its suffix is "txt".

Selecting the CANCEL button returns control to the Tools Panel.

3.3.2 The File Menu - Saving the Knowledge Base

The Knowledge Base Menu consists of three options - save, save as.., and exit.

When the option save is selected, all SAVED objects in the knowledge base as well as

ancillary customization data will be written out to the "current" file. This is the file

whose name is displayed at the bottom of the Tools Panel - initially, it is the file from

which the knowledge base was loaded. If there are WORKING objects in the

knowledge base, a warning panel will be displayed and the user will have the option of

canceling the save. The file created by save can be used as input to a subsequent

ACCESS session.

PAGE 17

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

Figure 3-5: Display of Source Code via Source Panel
=

J

ORIG_NAL PAGE IS

OF POOR QUALITY
J

File: example.art

f

m

g

W

I

=
W

m

The option save as.. works in the same way as save, except that the user is prompted

for the name of a file to save to. When supplied, this becomes the current file.

The exit option causes the current ACCESS session to be terminated. If a working

object has been created or modify since the knowledge base was initially loaded or last

saved, then a warning message is displayed and the user has the option of canceling.

PAGE 18

rl
ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

=

=

r

4. Customization of the ACCESS Interface

4.1 Changing Defaults in the Interface

The default display order of the object taxonomy on the Tools Panel and the display

order for an object's attributes and values on the Form Panel is governed by the way

symbols are hashed internal to ART-IM. However, for clarity, the knowledge engineer

may wish to specify a particular display order for attributes or a specific structure for

the display of the object hierarchy. The method for doing so is described in the

following sections.

4.1.1 Controlling the Display of the Object Taxonomy

The knowledge engineer has two methods for controlling the display of the object

taxonomy in ACCESS. Each of these methods involves specifying a non-default value

for a slot in the ACCESS schema.

4.1.1.1 Use of the ACCESS TAXONOMY Attribute

The ACCESS schema, which is present in all ACCESS knowledge bases, contains a

taxonomy slot. This slot enables the knowledge engineer to specify a specific ordering

for the displays of object classes which appear in the various taxonomy windows. The

value of the taxonomy slot must be a sequence, with one element for each root object.

Currently, there is single root object, called object. Each element of the taxonomy

specification sequence is itself a sequence, the first element of which is an object (the

parent) and the second element of which is a sequence with one element for each child

of the given parent. The elements of this second sequence are taxonomy specifications

in which the child is treated as the root object. The following shows a textual display

of an object hierarchy and a code fragment with its corresponding sequence

representation.

OBJECT

APPLICATION NAME

ASCENT

ABORT

RENDEZVOUS

POPIS

ENTRY

APPLICATION COMPONENT

DYNAMIC-ALLOCATOR

SIMULATION DEFINITION

PAGE 19

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

(TAXONOMY

((object

))

((appllcatlon name
((ascent O)

(abort O)

(rendezvous ())

(popls ())

(entry ())
)

)

(appllcatlon_component

((dynamic_allocator ())
(simulation definition())

(ompslmulatlon_deflnltlon())
)

When the knowledge base is read into ACCESS at initialization time, ACCESS checks

the validity of any non-default taxonomy which has been specified. This verification

includes checklng the syntactic correctness of the sequence structure, checking that each

atom in this structure is a symbol which is the name of an object, and checking that the

appropriate parent/child relationships hold. If this verification fails for any reason,

then ACCESS will revert to the default display.

4.1.1.2 Use of the filtered_object Slot :

There are some objects which should not be accessible at all to the end user of an

ACCESS application. Examples include rule objects. To avoid the display of an object

in the object taxonomy, the name of that object should be placed as a value in the

filtered_ object slot of the ACCESS schema.

4.1.1.3 Construction of the Taxonomy Display

When ACCESS is initially invoked, the leftmost taxonomy window shows those objects

which are children of the root object, object. This child list is ordered to first display

any children which are instances of object (i.e., objects which have an explicit

instance-of relationship to object). Next in the ordering are those subclasses of

object as specified by the taxonomy ordering. Finally appear children which are not

filtered objects but which do not appear in the taxonomy ordering.

When the user selects an object from this list, it becomes the "current object." Its

name is displayed above the middle taxonomy window. Its children are then displayed

as described above - first, child instances, then child subclasses from the taxonomy

ordering, finally child subclasses which are not specified in the taxonomy ordering.

t

J

g

z

W

m

U

. =

g

W

J

m

w

m
u

i

m

m

m

g

m

PAGE 20

=4

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

4.1.2 Controlling the Display'of Object Features

=--

w

v

Ill

=

W

4.1.2.1 Controlling the Order Display of Object Attributes

When the knowledge engineer wishes to specify a particular order for displaying the

features (attribute/value pairs) of an object on the Form Panel, the method for doing so

is to use an instance-of an ordering schema. The definition of the ordering schema

is as follows:

(defschema ordering
(attrlbute-order))

In order to specify the display ordering of attributes for a particular class of objects,

one must create an instance-of an ordering schema whose name is the name of the

class followed by "-ordering." The value of the attribute-order slot in this schema

should then be a sequence of names of attributes (slots) in the corresponding class. For

example, suppose the knowledge engineer has defined a class, date, as follows:

(defschema date
(is-a tlme coordinates)

(milliseconds)

(seconds)

(minutes)
(hours)

(day)
(month)

(year))

To specify a particular ordering for display of objects which are instances of the class

date, the knowledge engineer may then specify the following:

(defschema date-ordering
(instance-of ordering)
(attribute-order (year month day hours minutes seconds

milliseconds)))

W_nen an object of type date is displayed, the features will be ordered with the year

first, followed by month, day, etc. If this object has other attributes which are not

filtered objects, i.e., are not values of the filtered object slot of the ACCESS schema,

then the corresponding features will appear after those whose order has been explicitly

specified. Note that typically the attributes is-a and instance-of are included among

the list of filtered objects.

4.1.2.2 Controlling the Order of Display of Values of Multi-Valued

Attributes

Some object attributes may have more than one value (see Subsection 2.1.2). These

attributes are represented in ART-IM by multi-valued slots. For such attributes, the

option exists to specify a function which will be sued to order the values of this

PAGE 21

ACCESSUSER'SGUIDE- BUILDINGA KNOWLEDGEBASE "-

attribute for display purposesand for formula functions, etc. The name of the function
must be of the form SLOT-NAME-0RDERING-FUNCTION,where SLQT-NAMEis the name
of the slot in question. This function must accept as arguments two ART-IM objects
which are permissible values for the slot and must return an ART-IM integer. This
function will be used in the same way as the comparison function to the C library
function qsort - that is, the first argument will be considered to be less than, equal to,

or greater than the second depending on whether the value returned is less than, equal

to, or greater than zero. The function must be consistent - that is, if it returns 0 for two

arguments a and b, then it must return 0 for the argument b and a. Similarly, the

value of the function with arguments a and b must be opposite in sign to the value of

the function with arguments b and a. Violation of these consistency restrictions can
cause ACCESS to die.

m

J

w

An example of an ordering function is the following, which orders instances of phase

schemas on the basis of the value of the slot tevent. The ordering is defined so any

object with no value or a non-integer value for tevent is considered to be less than an

object which does have an integer value.

(def-art-fun phase_-ordering-functlon (?sl ?s2)
;get times from phase schemas 1 and 2

(bind ?valid1 (and (symbolp ?sl) (schemap ?sl) (slotp ?sl tevent)))
(bind ?valid2 (and (symbolp ?s2) (schemap ?s2) (slotp ?s2 tevent)))

(bind ?tl (if ?valldl then (get-schema-value ?sl tevent) else NIL))

(bind ?t2 (if ?valld2 then (get-schema-value ?s2 tevent) else NIL))
(if (not ?tl) then

(if ?t2 then -1 else O)

else (if (not ?t2) then 1

else (if (< ?tl ?t2) then -1

else (if (eq ?tl ?t2) then 0
else 1)))))

Internally, ACCESS uses a function which accepts as arguments a sequence of objects

and the name of an ordering function for those objects and returns a sequence of the

same objects in ascending order. There is a public interface to this function of the form

(reorder-values ?art-sequence ?ordering-function)

4.2 SpeciI]cation of Forths- in ACCESS

ACCESS uses TAEP]us (Transportable Applications Environchent Plus) to support its

user interface. TALE Plus provides a graphical, point and click user interface based on

the X Window System. The knowledge engineer can use the TAE Plus Workbench to

develop custom forms-for browsing and edking objects in the knowledge base. The

knowledge engineer must then specify the interface between these forms and the

knowledge base. This section describes the structure of custom forms for use by

ACCESS and describes that interface. For information on creating TAE forms, see the

TAE PlusUser Interface Developer's Guide.

g

m

m

U

J

i

m

g

U

m

I

w

ml

m

PAGE 22 w!

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

4.2.1 Structure of Custom Forms

ORIGINAL PAGE IS

OF POOR QUAIJTY

Figure 4-1: Example of a Custom Form

-- -- = 4;: :T , = =:=_

N

II

I

PROP__I. 003 (I)

PROP SE.. 0¢'2 (1)

File: example.art

)

I

i

W

An example of a custom TAE form is shown in Figure 4-1.

A custom form is used to provide data entry for a single class of ACCESS objects. A

form may consist of one or more TAE panels. If more than one panel is used, they

should be positioned so that the end user can clearly see parts of all of them. These

panels consist of "items", each of which has a data type and a presentation type.

=
i

PAGE 23

ACCESSUSER'SGLIDE- BUILDING A KNOWLEDGE BASE

Figure 4-2:

ORIGINAL PAGE IS

oF Poor Quavery

Creating a Custom Form Using TAE Plus

II

Font

J

M

I

g

m

J

g

=

m

l

These panels may be created using the TAE Workbench utility. Figure 4-2 illustrates

the use of _he V<orkbench to edit the JCOAST item on _he propsel panel. Note that

this item is of data type string and presentation type Radio Button.

Every form which is intended to be used by ACCESS must have at least one panel

which contain three items which have presentation type Button and whose names are

"apply", "close", and "ok." When the user selects "apply", the information which has

m

H

i

PAGE 24 _

L_j

M

f

w

m
--,=

W

w

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

been entered onto the form is stored in the corresponding object in the knowledge base.

Selecting "close" causes the form to be removed from the screen and control returned to

the main ACCESS Tools Panel. "ok" is a combination of "apply" and "close."

In addition to these three items, each forms panel must also contain a Static item whose

name is "object." This item is used by ACCESS to display the name of the object

which is being edited.

In addition to these required items, each panel may contain items which are used to

enter attribute values. Each item on a form panel must correspond to an attribute in

the class associated with the form. Items may be of type Radio, Checkbox, Text,

Textlist, or Pagedit. The first four of these types may be used to supply a single value

for an attribute. The last type (Pagedit) may be used to suply multiple values for an

attribute (e.g., for an attribute corresponding to a multi-valued slot in ART-IM).

Items on the form correspond to TAE variables of type Real, Integer, or String. TAE

variables of type Real are converted to ART-IM objects of type FLOAT; variables of

type Integer are converted to ART-IM integers. TAE variables of type String may be

converted to ART-IM objects of type string, float, integer, or symbol, depending on

what sort of conversion is specified.

TAE supplies a built-in capability for providing help on individual panel items. For

details on this capability, see the TAE documentation.

4.2.2 Interface Between TAE Custom Forms and ACCESS OBJECTS

The TAE specification for a custom form resides in a .res file. The mechanism for

specifying the correspondence between the TAE form and ACCESS objects is ART-IM

schema definitions. There are three principal types of schemas used: the

form-specification schema, the panel-spec schema, and the item-specificatlon

schema. The definitions of these schemas are as follows:

(defschema has-item-specs

(Instance-of slot)

(cardlnallty multiple))

(defschema converslon-specs

(instance-of slot)

(cardlnallty multiple)

)

(defschema form-speclflcatlon

(file-name) 'string

(form-for-class);name of class to which this form applies

(collection) ;pointer supplied by ACCESS

(has-panel-specs));sequence of panel-spec schemas

PAGE 25

ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE w

(defschema p_nel-spec "

(has-ltem-specs)

(panel-name) ;string

(has-ltem-specs);names of item-speclflcation schemas

(target-polnter);polnter supplied by ACCESS

(view-polnter) ;pointer supplied by ACCESS

(saved-vlew-polnter);polnter supplied by ACCESS

(panel-ld)) ;pointer supplied by ACCESS

(defschema Item-speclfication

(corresponds-to-attrlbute)_name of attribute In class to which

[this item corresponds

(parm-name) ;string glvlng name of item In TAE

(value-type) ;value type In ART-IM - symbol, string,

;(both corresponding to TAE strings)

;integer (TAE integer), float (TAE real)

(converslon-specs);OPTIONAL - two element sequences specifying

;conversion from TAE strings to ART-IM symbols
)

m

m

I

z

I

j

4.2.2.1 Form-specification Schemas

For each form created, the knowledge engineer must complete a form-specification
schema as follows:

1. The value of the file-name slot of this schema must be a string containing

the name of the .res file in which the form is specified.

, The value of the form-for-class slot of this schema must be a symbol

representing the class of ACCESS objects which correspond to this form.

3. The value of the has-panel-specs slot is a sequence, each element of which

is the name of a panel-spec schema. There is one such schema for each

panel comprising the form.

For each panel-spec schema referred to in the form-speclfication schema,

knowledge engineer must complete slots as follows:

1. The panel-name slot of this schema must be a string containing the TAE

panel name.

the

. The has-item-specifications slot is a multi-valued slot whose values are

the name of item-specification schemas. There must be one such schema

for each optional item on the panel.

The remaining slots of the form-specification and panel-spec schemas are used

internally by ACCESS to store pointers to TAE structures.

w

J

m

W

w

i
W

g

mm
m

J

==

The following is an example of completed form-specification and panel-spec

schemas, corresponding to the form displayed in Figure 4-1.

PAGE 26

-- ACCESS USER'S GUIDE - BUILDING A KNOWLEDGE BASE

w

w

=_

w

__=
U

(defschema form-for-propsel

(Instance-of form-speclflcatlon)

(file-name "forms.res")

(form-for-class propagatlon-selectlon)

(has-panel-specs (panel-for-propsel)))

(defschema panel-for-propsel

(instance-of panel-spec)

(panel-name "propsel")

(has-ltem-specs Jcoast-spec jcostg-spec on-orblt-targetlng-spec

vector-propagatlon-spec type-of-slmulatlon-spec))

4.2.2.2 Item-specification Schemas

For each optional item on a custom form, the knowledge engineer must construct an

item-speciflcation schema which describes the interface between that item and the

corresponding attribute in an ACCESS object.

Each

I.

item-specification schema must be created as follows:

The value of the corresponds-to-attribute slot is the name of the

attribute in the ACCESS class which corresponds to this item. This name is

actually the name of an ART-IM slot.

2. The value of the parm-name slot is a string corresponding to the name of

the TAE item.

.===

z

m

m

. The value of the value-type slot specifies the manner in which the value on

the form will be converted from a TAE variable to an ART-IM object.

Allowable values for this slot are as follows:

a. FLOAT. This is used when the item on the TAE panel is of data type

Real. The value entered on the form is then converted from a TAE

Real to an ART-IM float and vice-versa.

b. INTEGER. This is used when the item on the TAE panel is of data

type Integer. The value entered on the form is then converted from a

TAE integer to an ART-IM integer and vice-versa.

e. STRING. This may be used when the item on the TAE panel is of

data type String. The value entered on the form is then converted

from a TAE String to an ART-IN[string and vice-versa. This is

normally used for TAE items with presentation type Text, which allow

free-form text entry.

d. SYMBOL. This may be used when the item on the TAE panel is of

data type String. If there are no values in the has-conversion-specs

PAGE 27

ACCESS USER'S GUIDE -BUILDING A KNOWLEDGE BASE

slot of the schema, then the value entered on the from is converted

from a TAE string to an A/_T-IM symbol using the function

a_read_from_string. Conversion from an ART-IM string to a TAE

string is done using the function asymbol value.

a_read_from_string will return a symbol whose name is represented

by a string of upper case characters and which is terminated by the

first white space in the TAE string. Thus to ensure that the resulting

ART-IM symbol can be correctly converted back to the original TAE

String, this form of conversion should be used only for RADIO button

items or TEXTLIST items whose valid strings are entirely upper case.

If there are values in the has-conversion-specs slot, then the

program will first try to use these specifications to convert from a TAE

string to an A_RT-IM object and vice-versa. The algorithm for
conversion is described below.

e. MIXED. This may be used when the item on the TAE panel is of type

String. This is normally used when the TAE item has presentation

type Radio Button item or Textlist. In this case, ACCESS uses the

values in the has-conversion-specs slot to try to make a conversion

from a TAE string to an ART-IM object. Each value in the

has-conversion-specs slot is a two element sequence, whose first

element is a string and whose second element is an arbitrary ART-1M

object. A TAE string is converted to an ART-IM object by searching

for a sequence whose first element matches the TAE string and then

taking the second element of the sequence. If no string is found

matching the TAE string, an error message is returned and the

corresponding form is erased from the screen. Thus the knowledge

engineer must be very careful to provide correct conversion

specifications.

The following example shows an item-specification schema which is used to specify

the conversion from a Radio button item to an attribute with integer values:

(defschema Jcoast-spec

(Instance-of item-speciflcatlon)

(corresponds-to-attrlbute]coast)

(parm-name "JCOAST")

(value-type MIXED)

(converslon-specs ("KS" I) ("CONIC" 2) ("AEG" 3) ("FFP' 4))
)

g

U

J

U

m

g

m
U

J

l

m
I

u

g

mi
J

U

PAGE 28_ '_ -_

