@ https://ntrs.nasa.gov/search.jsp?R=19910023522 2020-03-17T14:44:37+00:00Z
)/ v

%éo?f/

-~ : // g

Research Institute for Advanced Computer Science
NASA Ames Research Center

G/SPLINES: A Hybrid of Friedman’s Multivariate
Adaptive Regression Splines (MARS) Algorithm with
Holland’s Genetic Algorithm

DAVID ROGERS

j N91-32836
{ASA-CR-138935) G/SPLINES: A HYBRID OF :
;;??éﬂi‘;h}’:\ MUL TIVARTATE ADAPTIVE RE(;%}?;SION
SPLINES {¥ARS) ALGORITHM WITH HQLLAfu Uncl 45
GERETIC ALGDRTTHM (Research*lnst. or 098 63701 5095
Z&vénced Computear science) 9P CSeL ! G

RIACS Technical Report No. 91.10

May 1991

G/SPLINES: A Hybrid of Friedman’s Multivariate
Adaptive Regression Splines (MARS) Algorithm with
Holland’s Genetic Algorithm

David Rogers
Research Institute for Advanced Computer Science
MS Ellis, NASA Ames Research Center
Moffeu Field, CA 94035
{415) 604-6363

Abstract

G/SPLINES are a hybrid of Friedman’s Multi-
variable Adaptive Regression Splines (MARS)
algorithm with Holland’s Genetic Algorithm, In
this hybrid, the incremental search is replaced by
a genetic search. The G/SPLINE algorithm
exhibits performance comparable to that of the
MARS algorithm, requires fewer least-squares
computations, and allows significantly larger
problems to be considered.

1 INTRODUCTION

Many problems in diverse fields of study can be formu-
lated into the problem of approximating a function from a
set of sample points. For functions of few variables a
large body of statistical methodology exists; these meth-
ods offer robust and effective approximations. For func-
tions of many variables, relatively fewer techniques are
available, and these techniques may not perform ade-
quately in the desired high-dimensional setting. The inter-
est in so-called neural-network models is due in part to
their performance in these high-dimensional multivariate
environments.

One class of algorithms proposed for high-dimensional
environments rely on local variable selection to reduce
the number of input dimensions during model construc-
tion. These methods approximate the desired function
locally using only a subset of the large number of possi-
ble input dimensions. Some of the members of this class
of algorithms are k-d Trees [1], CART [2], and Basis
Function Trees [10]. These algorithms build an approxi-
mation model starting with the constant model, and refine
the model incrementally by adding new basis functions.

Recently Friedman proposed another algorithm in this
class, the Multivariate Adaptive Regression Splines
(MARS) algorithm [5]. This statistical approach performs
quite favorably with respect to many neural-network
models. Unfortunately, the algorithm is too computation-
ally intensive for use in problems that involve large
(>1000) sample sizes or extremely high (>20) dimen-

sions. This behavior is caused by the structure of the
MARS algorithm, which builds models incrementally by
testing a large class of possible extensions to a partally-
constructed spline regression model, then adding the best
extension.

G/SPLINES are a hybrid of Friedman’s Multivariable
Adaptive Regression Splines (MARS) algorithm with
Holland’s Genetic Algorithm [8]. In this hybrid, the incre-
mental search is replaced by a genetic search. The
G/SPLINE algorithm exhibits performance comparable
to that of the MARS algorithm, requires less computa-
tion, and allows significantly larger problems to be con-
sidered.

In this paper I begin with a discussion of the problem of
functional approximation models, and the use of splines
in these models. 1 then describe the MARS algorithm and
estimate the number of least-squares regressions it
requires. I follow with a description of the G/SPLINE
algorithm. I conclude with experiments to illustrate its
performance relative to the MARS algorithm and to study
properties unique to G/SPLINES.

2 THE PROBLEM

We are given a set of N data samples (X;}, with each data
sample X; being a n-dimensional vector of predictor vari-
ables <x;;, Xp, . Xiy>- We are also given a set of N
responses (y;}. We assume that these samples are derived
from an underlying system of the form:

¥ = f(Xi)+error = f(x ...,xin)-i-error

iv
The goal is to develop a model G(X) which minimizes
some error criterion, such as the least-squares error:

1 N
LSE(G) = g ¥, (% —6(x))*
i=1

1. To appear in the proceedings of the Fourth Intemational Conference on Genetic Algorithms, San Diego, July 1991.

The model G is commonly constructed as a linear combi-
nation using some set of basis functions:

M
GRX) = ag+ Y, 89,(X)
k=1

Given an appropriate set of basis functions, standard
least-squares regression techniques can be used to find a
set of coefficients (a) which minimizes the least-
squared error [9]. This process suffers from two major
weaknesses. First, if the basis functions for G do not
reflect the underlying global structure of the function F,
the accuracy of G is likely to be poor. Second, if too many
basis functions are used in the approximation, the model
may suffer from overfitting; while it generates reasonable
approximations for F when given a data sample in {X;},
previously unseen data samples may generate large
errors. See Figure 1.

y
A

® Data samples
— Polynomial approximation G
. ==+ Underlying function F

> X

Figure 1: Overfitting. Using polynomials as the basis
functons in constructing G, we create an
approximation which exactly fits the data sample
points but does not approximate the underlying
function F well in other regions of the domain.

3 SPLINE APPROXIMATIONS

Spline functions have been used to address some of the
difficulties mentioned in the previous section. The basic
idea is that if global models are difficult to construct and
often poorly behaved, it may be preferable to build a
model piecewise using linear or low-order polynomials,
each defined locally over some subregion of the domain.
Because they are nonzero only in a part of the domain,
they can represent local structure of functions that may
not have easily-modeled global structure [4].

Such a set of spline basis functions in one dimension is
given by:

I, x, (x —tl)+, (x —12)+, .y (x —IK)+

which leads to models of the form:

K
G(x) = ag+a;x+ 2 3p.1 (x —tk)+
k=1
(In this notation, the subscript “+” means that the expres-
sion is assigned a value of zero if the argument is nega-
tive.) This type of spline is called a truncated power
spline. The variables 1, are called “knots™; they are the
locations where the spline functions subdivide the

domain. The full basis set has a size (K + 2). A graph of
one of these basis functions is shown in Figure 2.

-] -

I > x

Figure 2: Spline Function. A spline function is zero over
part of a domain, and a low-order polynomial over the
remainder of the domain. This 1-power spline is
continuous but has a discontinuous derivative. A g-
power spline is continuous and has (q - 1) continuous
derivatives. - ,

Splines perform quite successfully in building low-
dimensional models, but the extension to higher dimen-
sions has proven, in the understated words of Friedman,
“straightforward in principle but difficult in practice.”
Specifically, the standard extension of splines to higher
dimensions requires (K + q + 1)" basis functions and the
calculation of a corresponding number of coefficients;
here, n is the number of input dimensions, X is the num-
ber of knots per dimension, and g is the order of the
splines. Even for a relatively small number of dimen-
sions, the computational costs of calculating the coeffi-
cients and the large number of data samples needed
makes the procedure prohibitive.

4 THE MARSALGORITHM

The MARS algorithm was developed to allow spline
approximations in high-dimensional settings. The basic
idea is to build the model using only a small subset of the
(K + q + 1)" proposed basis functions. This is done by
extending a partial model using an incremental search for
the best new partition of the domain. This partitioning is
repeated until a model with the desired number of terms
is developed.

The algorithm begins with the linear model:

At each partitioning step, the current model is extended
by selecting: a basis function currently in the model; a
dimension not currently partitioned in that basis function;
and a knot location, assigned by selecting in turn the
value for that dimension in each data sample. This triple

(b, v, t) defines a possible extension to the current model:

Gm+2(x) = Gm(x)
+a BFb(X) (xv—1)+

+ap HBF (X)(1—x) N

The coefficients of the newly generated model are com-
puted using least-squares regression. All possible triples
of (b, v, t) are tried; the model G,,2(X) which best fits
the data samples is selected, and becomes the current
model for further partitioning. A more detailed “C”
descriPtion of the core MARS algorithm is given in Fig-
ure 3.

The most computationally-intensive part of the MARS
algorithm is the calculation of the least-squares coeffi-
cients for the newly proposed model. Thus, one estimate
of the cost of building the final model is the number of
least-squares regressions that must be performed. The
upper limit on the number of models the MARS algo-
rithm must generate and test at a given step is (N*m*n),
where N is the number of data samples, m is the current
number of basis functions in the model, and » is the num-
ber of input dimensions. If the number of basis functions
in the final model is My, the maximum number of mod-
els generated is:

Mmax

2
(Nxn)x ¥ (2m+1)
m=1
M2
= (N Xn) (—Z‘ﬁ

max models =

Mgy)

1. Figure 3 contains what Friedman calls the forward
stepwise portion of the algorithm; I do not describe the
backwards stepwise portion in this paper. That procedure
is a pruning process conducted on the model discovered
by the forward stepwise algorithm; it gives some minor
additional optimization. (In the experimental, however,
both forward and backward stepwise sections were used
before comparison with G/SPLINES.)

1 Model = constant_model ();

2 for (size = 1; size <= number_of_BFs; size +=2) {
3 lowest_score = INF;)
4 for (m = 1; m <= size; m++) {

5 var = NONE;

6 while (var = next_unused_var(BF (m), var)) {
7 for (s = 1; s <= number_of_samples; s++) (
8 if (basis_function_nonzero(BF(m), data[s}])) (
9 knot = data[s]{var];

10 new = partition (Model, BF(m), var, knot);
11 least_squares_fit (new);

12 new_score = LOF(new, data);

13 if (new_score < lowest_score) {

14 best_model = new;

15 lowest_score = new_score;

16 }

17 }

18 }

19 }

20)

21 Model = best_model;

2]

Figure 3: The MARS Algorithm. The MARS algorithm
is an incremental search to find the best new
partition to the current spline model, starting with
the constant model. The outer loop is over the
number of desired itions; the inner three loops
choose a basis function, variable, and knot. The new
model is tested after least-squares regression using a
lack of fit (LOF) function, and the best new model is
used for the next partitioning.

"Ihe good news is that the number of intermediate models
is linear in both the number of samples N and the number
of input dimensions n. The bad news is that this can sull
be a very large number of intermediate models, so the
MARS algorithm can only be used with a relatively small
number of data samples and input dimensions. Friedman
claims the algorithm is effective for up to 1,000 data sam-
ples and 20 input dimensions; this places many interest-
ing problems out of reach of the procedure.

Further, while the MARS algorithm is effective at creat-
ing well-performing models for many problems, models
which cannot be reached through an incremental search
are not discovered. Thus, functions which have a large
number of non-linear interactions between the input vari-
ables may not be well-suited to modeling using the
MARS algorithm.

5 G/SPLINES

The idea behind G/SPLINES is to use a genetic algorithm
to do a search using full-size models rather than using the
incremental search. The G/SPLINE algorithm starts with
a collection of functional models, generated randomly.
The coefficients for each model are determined using
least-squares regression, and the lack of fit (LOF) over
the data set is measured. The inverse of that lack of fit
score is used as the fitness criterion. The main cycle
begins by probabilistically choosing two parent models

based on their inverse LOF score. Crossover is used to
generate a new model. Mutation operators may be used to
add additional terms to the model. The worst scoring
function in the collection is then replaced by this new
model. A more detailed “C” description of the G/SPLINE
algorithm is given in Figure 4.

1 for (i =0; i < number_of_functions; i++) {

2 fen[i] = random_function();

3 least_squares_fit(fen[i]);

g function_score(i] = 1.0 / LOF(fenfi], data);

¢ for (i = 1; i <number_of_cycles; i++) {

7 select_parents(function_score, &parl, &par2);
8 child = worst_function(function_score);

9 crossover(fen[parl), fon[par2], fen[child]);

10 if (random_new_mutation())

11 add_new_BF(fen[child]),

12 if (random_merged_mutation(})

13 add_merged_BF(fcn[parl], fen[par2), fon{child]);
14 least_squares_fit(fcn[i]);

12 function_score[i] = 1.0 / LOF(fen[child], data);
1

}
17 model = best_function(function_score);

Figure 4; The G/SPLINE Algorithm. The G/SPLINE
algorithm is a genetic search over a set of models,
replacing the worst model with a crossover of two
highly-rated models, using an initial setup of random
functons, The models are tested after least-squares
regression using the inverse of a lack of fit (LOF)
function as the fitness score.

5.1 CROSSOVER

The core process in the G/SPLINE algorithm is a cross-
over algorithm, In G/SPLINE, two well-performing mod-
els are chosen, and the worst-performing model in the
system is chosen for replacement. (While there are a
number of possible procedures that could be used, basis
functions seemed natural as the atomic unit in the cross-
over algorithm.)

The fimess function used was the inverse of the lack-of-
fit function developed by Friedman in his MARS
research. The lack of fit function is based on the least-
squared error, with an additional penalty term related to
the size of the model and the number of data samples.
Without this penalty, the size of the models grows with-
out bound, resulting in increased computational costs and
increased risk of overfitting. Since both MARS and
G/SPLINES use the same lack-of-fit function as their
error measure, comparisons between MARS and
G/SPLINES are more informative.

The process begins by probabilistically selecting two par-
ents based upon the inverse lack-of-fit score. The two
model parents are in this form:

M,

Model-1(X) = aj + Y a,,(X)
k=1
M,

Model-2(X) = b, + Z b, B,(X)
k=1

In eachi parent model, we randomly choose a cut point,
and select one of the generated two segments for inclu-
sion into the child. We denote the selected segments of
each models with the inclusive sets (Start;, End;] and
[Starty, End,]. We then construct the new child model as:

. E“dl
Child-Model(X) = c+ Y d,4,(X)
k= Start,
End,

+ 2 X

k=Sun,

The child model is a linear combination of basis functions
derived from each parent. (Some genetic algorithms use
the unselected segments to create an additional child; in
this initial work, I found that creating both children did
not appreciably improve the performance of the
G/SPLINES algorithm.) Once the basis functions for the
child are determined, the coefficients are derived using a
standard least-squares regression.

5.2 MUTATION OPERATORS

As the crossover process proceeds, two effects are seen.
First, the number of different basis functions is reduced
as combinations of better-approximating basis functions
propagate through the models. Second, the models often
contain basis functions which contribute no benefit to the
quality of the model and increases the cost of the least-
squares computation. To counteract these effects I used
three mutation operators: NEW, MERGE, and DELE-
TION. After the standard crossover is performed, there is
a probability that one ar more of these mutation operators
may be applied, resulting in the addition or removal of
basis functions.

The NEW operator creates a new basis function by ran-
domly choosing an input variable v, a sign s (+1 or -1),
and a data sample <, ..., t,>. These parameters are used
10 create a basis function of the form:

BFnew(x) = (s (xv-tv))+

The MERGE operator takes a random basis function from
each parent, and creates a new basis function by multiply-
ing them together, that is:

BF ,,,(X) = randBF(X, parl) - randBF(X, par2)

It is through the MERGE operator that basis functions
containing multiplicative terms are introduced.

For both ADD and MERGE, the newly generated basis
function is added to the new model generated by the
crossover process. This has a cost for functions, which
find the crossover search slowed by the additional vari-
ance caused by this additional factor. However, in the
longer term, this keeps the pool of basis functions from
becoming dangerously small, and aids the process in
finding high-quality approximations.

The DELETION operator ranks the basis functions in
order of minimum maximum contribution to the gener-
ated model. Unlike the other two mutation operators,
DELETION requires an additional least-squares opera-
tion to calculate the coefficients of the generated model.
However, while it doubles the number of least-squared
operations, it also speeds convergence and encourages
compact models.

5.3 ALPHABET CARDINALITY

Considerable study has gone into developing effective
codings for genetic algorithms, but coding design
remains an art. In this work, an alphabet of high cardinal-
ity seemed the most appropriate: the basis functions are
the atomic unit in the crossover process, and there is an
extremely large number of possible basis functions. How-
ever, this choice places the work in the middle of an
ongoing debate regarding the size of the alphabet best
suited for genetic algorithms.

One school, of which Goldberg [6] is representative, is
“almost obsessed with the idea of binary codings.” This is
not simply a preference for binary representations, but
rather a rejection of other representations: “... in general
the use of high-cardinality alphabets so severely reduces
implicit parallelism that it is inappropriate to call these
schemes genetic algorithms in the sense of Holland.”

In reality, this argument is a poorly-disguised version of
the holism/reductionism debate; what is the “appropriate”
level of description? [7] Goldberg may be semantically
comrect in stating that high-cardinality alphabets do not
result in “genetic algorithms in the sense of Holland,” but
he is mistaken to assume that the use of a high-cardinality
alphabet “severely reduces implicit parallelism™; by using
a higher-level description, the search (and resulting
implicit parallelism) is simply being conducted on a dif-
ferent level of representation, not eliminated. Arguments
can certainly be given for and against the use of different
alphabets in different situations, but across-the-board
claims of -superiority for one side or another should be
viewed with great suspicion. :

6 EXPERIMENTAL

A training and a test data set were created for the experi-
ments. Each data set contained 200 data samples. The
function modeled was from Friedman {5]:

f(X) = 10- sin (nx,x,)
+20- (x4-1/2)2

+10-x,+5- x4
10
+ Z 0-x,
n=6

The data contained 10 predictor variables; the response is
dependent on the first five variables, and independent of
the next five variables. Noise was added to the response
so that the signal/noise ratio was 4.8/1.0.

The domain for G/SPLINE was a population of 200 func-
tions. Each function was initialized with 10 basis func-
tions generated using the NEW mutation operator. After
each crossover, there was some probability that one or
more of the mutation operators would be applied to the
child. The model with the lowest error on the training
data set was chosen for testing against the testing data set.

The model generated by the MARS algorithm was
reduced using his backward-stepwise algorithm, then
applied to the testing data set.

6.1 Experiment 1

The first experiment was designed to see if the
G/SPLINE algorithm could compete with the MARS
algorithm in being able to generate models with compara-
ble quality in an environment that favored the MARS
algorithm.

The least-squared error versus the number of least-
squared regression operations was graphed. The results of
this experiment are shown in Figure 5.

This experiment illustrates the rapid learning capability
of the G/SPLINE algorithm relative to the MARS algo-
rithm. After 5000 least-squares operations, the MARS
model has placed its first knot; the G/SPLINE algorithm
is already nearing its asymptote. The final MARS model
slightly outperformed the G/SPLINES model, but only
after doing an order-of-magnitude more least-squares
operations.

Did the model found by the genetic search use relation-
ships in the data set reflective of the underlying function,
or only discover easily-modeled pattems in random data?
Figure 6 addresses this issue; it demonstrates how the
variable use in the set of discovered models indeed
reflects the underlying structure of the generating func-
tion.

27.5 4 i i e i i
25

225
20 © Best test LS score

17.5 [MARS test LS score

0 100 200 300 400 500 600 700 800
#LS Ops x 100

Figure 5: MARS vs. G/SPLINE. Measured in the
number of least squares regtessiwdons that
must be performed, the G/S algorithm
performs significantly better than the MARS
algorithm. The G/SPLINES algorithm was close to
convergence after 4,000 least-squared operations (LS
ops), and showed no further improvement after
10,000 LS ops. The MARS algorithm was close to
convergence after 50,000 LS ops, and showed no
further improvement after 80,000 least-squares
gperaﬁons. e final least-squared error of the best
/SPLINES model was 1.17; the final least-squared
error of the MARS model was 1.12. The optimal
model would have a least-squared error of 1.08 on

the test set. :

1200 FUPE WU S SPUE ST S S ¢
1000 -
8004 -

of functions
g

o'l'Il“‘l""l
0123456789101

Figure 6: Variable use. The graph is the index versus the
number of times the variable is used in some basis
function in a discovered model. The variables were
counted after 5,000 genetic crossover operations. The
underlying function depends on the first five
variables, and does not depend on the next five
variables. In this case, the use of the variables reflects
the underlying function.

The performance of G/SPLINE is reminiscent of the per-
formance curves comparing Genetic Algorithm-based
systems with Backpropagation-based neural networks
[3]. In these systems, the genetic search is rapid at the

beginning of the process, far outperforming the neural
network. It is only after the problem is well-developed
that the backpropagation algorithm begins to compete
with the genetic search; eventually, the Backpropagation-
based neural network slightly outperforms an algorithm
based solely on genetic search. It is possible that the
MARS algorithm and the G/SPLINE algorithm have a
similar relationship with respect to their performance and

speed.

6.2 Experiment 2

This experiment is identical to the first experiment, with
the exception that the function is changed to have 5
dependent and 95 dependent variables, for a total of 100
predictor variables. The size of the data sets was
unchanged, with each containing 200 samples. (Note that
this change increased the problem size beyond Fried-
man’s stated capabilities of the MARS algorithm.)

3000 bttt

2500 4
2000 4
1500 +
1000 -

500

of BFs 'which use variable

0 10 20 30 40 50 60 70 80 90 100
Variable Number

Figure 7: Variable elimination. The graph is the index
versus the number of times the variable is used in
some basis function. The variables were counted after
10,000 genetic crossover operations. The underlying
function depends on the first five variables, and does
not depend on the other 95 variables. The five
dependent variables were the top five variables in
terms of actual use in basis functions.

As Figure 6 shows, even with only 200 samples of data,
the G/SPLINES algorithm still discovers the relative
importance of the 5 dependent variables amidst the 95
independent variables.

6.3 Experiment 3 S

In this experiment I wanted to study the effect of sample
set size on the rate of elimination of the independent vari-
ables. S e :

This experiment is identical to the first experiment,
except that two different data set sample sizes were used.
The first set was the standard 200-sample set, and the sec-
ond a 50-sample set.

use
o i
R

% Var
o o
o
X

0 10 20 30 40 S0 60 70 80 90100

Y P
0174
01544
0124 A
o1
0074
.005-
.0021

0-
0 10 20 30 40 S50 60 70 80 90100

= Ops x 100

. use

R Var.

Figure 8: Variable elimination and sample size. The _

graphs are the number of genetic operations versus
the percentage use of the five independent variables.
The top graph is for a sample size of 200; the bottom
graph for a sample size of 50. In the top graph, the
variables are gradually eliminated. For the smaller
sample size, the variables are eliminated rapidly.

Figure 6 shows the surprising result that the independent
variables are eliminated from consideration faster when
we have only 50 samples of data rather than 200. This is
because G/SPLINES does not eliminate variables through
positive identification of them as independent of the
input, but rather, these variables get left behind as vari-
ables with more predictive power are preferentially
selected for crossover. With smaller data sets, there is
more pressure for smaller models, which causes a fiercer
competition and earlier removal of basis functions which
do not substantially contribute to a model’s performance.

6.4 Experiment 4

In this experiment I wanted to study the effect of the
genetic algorithm on the size of the generated models.
The experimental conditions were identical to those of
the first experiment.

Best score

20 A 'y -' ' A A A - A

Avg fcn length

0 10 20 30 40 50 60 70 80 90100
* Genetic Ops x 100

Figure 9: Function length. The top gxa‘ph is the number of
genetic operations versus the least-squared error
(squares: test set, circles: training set). The bottom
graph is the number of genetic operations versus the
average model length (in basis functions). There is a
rapid increase in average function length, followed by
a slower decrease after the score is minimized.

Figure 6 shows that there is a rapid increase in model size
until the score is nearly minimal; after that, there is a
slower but consistent decrease in model size. This is
likely due to pressure from the genetic algorithm; a com-
pact representation is more likely to survive the crossover
operation without loss. Thus, the genetic algorithm
encourages compactness of representation in addition to
the advantages such compactness affords during scoring.
Since we are often interested in compact models (every-
thing else being equal), this is a beneficial effect.

7 CONCLUSIONS

It is difficult to properly compare the utility of two algo-
rithms, even when they share many similar features or are
applied to the same data sets. Such comparisons are too
often uninformative and unneccessarily harsh to the los-
ing algorithm (which is usually not the algorithm devel-
oped by the author). My goal in this work was not o

supplant the MARS algorithm, which I find elegant in
concept and has a proven record of success in practice.
Rather, my goal was to extend the reach of the algorithm
by proposing a variant that may not suffer some of the
limitations of the procedure as proposed by Friedman, yet
may retain most of its advantages. I believe I was suc-
cessful, but will leave the final judgement to the reader.

In this paper, the problems we selected were relatively
small, and gencrated relatively small models, containing
perhaps a dozen basis functions. As the complexity of the
problems grow, the necessary size of the model will also
grow; a genetic approach such as G/SPLINE may be the
most effective technique for deriving such models. Simi-
larly, the MARS model is most effective when most of
the predictor variables have additive effects on the
response; the G/SPLINE model, since it is not based on
the incremental search, may be better suited to discover
appropriate models in this case.

The number of least-squares regressions performed was
proposed as a measure of the inherent efficiency of the
algorithms. The structure of the MARS algorithm is such
that the cost of the least-squares regression can be greatly
reduced, so direct comparisons of the number of least-
squares regressions is not truly a measure of the amount
of computation involved in executing the algorithms.
Still, even with these improvements, the MARS algo-
rithm cannot effectively handle large (>1000) data sam-
ples or large (>20) numbers of input variables. It is
appropriate to0 look for algorithms which keep the many
advantages of the MARS approach while overcoming its
limitations.

Finally, while the G/SPLINE algorithm uses linear
splines as its basis functions, there is no reason the algo-
rithm could not use non-linear splines and non-spline
basis functions. While splines have attractive properties
that make them generate useful models in many circum-
stances, there is no reason that other functions, which
may perform well in circumstances where splines fail,
should not be included in the set of possible basis func-
tions, Work on this extension to G/SPLINE is ongoing.

Program Availability

The WOLF program implements the G/SPLINE algo-
rithm. This program currently runs under UNIX on Sun
and Silicon Graphics minicomputers, and under
THINK/C 4.0 on the Apple Macintosh II microcomputer.
The UNIX version of the software and data is available
by FTP on the INTERNET by sending mail to drog-
ers@riacs.edu. The Macintosh version is available on
floppy disk for a $20 copying fee.

It is my goal that the timely sharing of both the software
and the data sets will encourage comparison of this work
to other work, speed the dissemination of the algorithm,
and encourage others to similarly share their algorithms
and data. My rapid progress in developing this research
program was due in part to Dr. Friedman's policy of

- openly releasing his software (admittedly comment-

free...) for distribution; I encourage others to0 join me in
following that excellent precedent. -

Acknowledgments

This work was supported in part by Cooperative Agree-
ments NCC 2-387 and NCC 2408 between the National
Aeronautics and Space Administration (NASA) and the
Universities Space Research Association (USRA). Spe-
cial thanks to Doug Brockman (who shared my enthusi-
asm even though he didn’t know what the hell T was up
to), and to my father Philip Rogers, who made me want to
become a scientist.

References

[1] Bentley, J., “Multidimensional Binary Search Trees
used for Associative Searching,” Communications
ACM, 18, pp. 509-517, 1975.

{2) Breiman, L., Friedman., J., Olshen., R., and Stone,
C.. Classification and Regression Trees, Wadsworth,
Belmont, CA, 1984.

(3] Davis, L., Genetic Algorithms and Simulated
Annealing, Morgan Kaufmann, Los Altos, CA, 1987.

[4] deBoor, C., A Practical Guide to Splines, Springer-
Verlag, New York, NY, 1979.

(5] Friedman, J., “Multivariatc Adaptive Regression
Splines,” Technical Report No. 102, Laboratory for
Computational Statistics, Department of Statistics,
Stanford University, November 1988 (revised
August 1990).

[6] Goldberg, D., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, MA, 1989. '

[7) Hofstadter, D., Gidel, Escher, Bach: an Eternal
Golden Braid, Basic Books, New York, NY, 1979.
[Chapter X has a formal discussion of levels of
description, but I recommend the section titled
« Ant Fugue” for a more informal and inspired
discussion on reductionism.]

(8) Holland, J., Adaptation in Artificial and Natural
Systems, University of Michigan Press, Ann Arbor,
M, 1975.

9] Ralston, A., and Rabinowitz, P., A First Course in
Numerical Analysis, McGraw-Hill, New York, NY,
1978.

[10] Sanger, T., “Basis-Function Trees as a Generalization
of Location Variable Selection Methods for Function
Approximation,” Proceedings of the 1990 Neural

Information Processing System Conference, Denver,
€O, 1991,

